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ABSTRACT

As a recognized variant and improvement for Trust Region Policy Optimization
(TRPO), proximal policy optimization (PPO) has been widely used with several
advantages: efficient data utilization, easy implementation, and good parallelism.
In this paper, a first-order gradient reinforcement learning algorithm called Policy
Optimization with Penalized Point Probability Distance (POP3D), which is a
lower bound to the square of total variance divergence, is proposed as another
powerful variant. The penalty item has dual effects, prohibiting policy updates
from overshooting and encouraging more explorations. By carefully controlled
experiments on both discrete and continuous benchmarks, our approach is proved
highly competitive to PPO.

1 INTRODUCTION

With the development of deep reinforcement learning, lots of impressive results have been produced in
a wide range of fields such as playing Atari game (Mnih et al., 2015; Hessel et al., 2018), controlling
robotics (Lillicrap et al., 2015), Go (Silver et al., 2017), neural architecture search (Tan et al., 2019;
Pham et al., 2018).

The basis of a reinforcement learning algorithm is generalized policy iteration (Sutton & Barto,
2018), which states two essential iterative steps: policy evaluation and improvement. Among various
algorithms, policy gradient is an active branch of reinforcement learning whose foundations are Policy
Gradient Theorem and the most classical algorithm REINFORCEMENT (Sutton & Barto, 2018).
Since then, handfuls of policy gradient variants have been proposed, such as Deep Deterministic
Policy Gradient (DDPG) (Lillicrap et al., 2015), Asynchronous Advantage Actor-Critic (A3C) (Mnih
et al., 2016), Actor-Critic using Kronecker-factored Trust Region (ACKTR) (Wu et al., 2017), and
Proximal Policy Optimization (PPO) (Schulman et al., 2017).

Improving the strategy monotonically had been nontrivial until Schulman et al. (2015) proposed
Trust Region Policy Optimization (TRPO), in which Fisher vector product is utilized to cut down
the computing burden. Specifically, Kullback–Leibler divergence (KLD) acts as a hard constraint
in place of objective, because its corresponding coefficient is difficult to set for different problems.
However, TRPO still has several drawbacks: too complicated, inefficient data usage. Quite a lot of
efforts have been devoted to improving TRPO since then and the most commonly used one is PPO.

PPO can be regarded as a first-order variant of TRPO and have obvious improvements in several facets.
In particular, a pessimistic clipped surrogate objective is proposed where TRPO’s hard constraint
is replaced by the clipped action probability ratio. In such a way, it constructs an unconstrained
optimization problem so that any first-order stochastic gradient optimizer can be directly applied.
Besides, it’s easier to be implemented and more robust against various problems, achieving an
impressive result on Atari games (Brockman et al., 2016). However, the cost of data sampling is
not always cheap. Haarnoja et al. (2018) design an off-policy algorithm called Soft Actor-Critic and
achieves the state of the art result by encouraging better exploration using maximum entropy.

In this paper, we focus on the on-policy improvement to improve PPO and answer the question: how
to successfully leverage penalized optimization to solve the constrained one which is formulated by
Schulman et al. (2015).

1. It proposes a simple variant of TRPO called POP3D along with a new surrogate objective
containing a point probability penalty item, which is symmetric lower bound to the square
of the total variance divergence of policy distributions. Specifically, it helps to stabilize
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the learning process and encourage exploration. Furthermore, it escapes from penalty item
setting headache along with penalized version TRPO, where is arduous to select one fixed
value for various environments.

2. It achieves state-of-the-art results among on-policy algorithms with a clear margin on 49
Atari games within 40 million frame steps based on two shared metrics. Moreover, it also
achieves competitive results compared with PPO in the continuous domain. It dives into the
mechanism of PPO’s improvement over TRPO from the perspective of solution manifold,
which also plays an important role in our method.

3. It enjoys almost all PPO’s advantages such as easy implementation, fast learning ability.

We provide the code and training logs to make our work reproducible.

2 PRELIMINARY KNOWLEDGE AND RELATED WORK

2.1 POLICY GRADIENT

Agents interact with the environment and receive rewards which are used to adjust their policy in
turn. At state st, one agent takes strategy π and transfers to a new state st+1, rewarded rt by the
environment. Maximizing discounted return (accumulated rewards) Rt is its objective. In particular,
given a policy π, Rt is defined as

Rt =

∞∑
n=0

(rt + γrt+1 + γ2rt+2 + ...+ γnrt+n). (1)

γ is the discounted coefficient to control future rewards, which lies in the range (0, 1). Regarding a
neural network with parameter θ, the policy πθ(a|s) can be learned by maximizing Equation 1 using
the back-propagation algorithm. Particularly, given Q(s, a) which represents the agent’s return in
state s after taking action a, the objective function can be written as

max
θ

Es,a log πθ(a|s)Q(s, a). (2)

Equation 2 lays the foundation for handfuls of policy gradient based algorithms. Another variant can
be deduced by using

A(s, a) = Q(s, a)− V (s) (3)
to replace Q(s, a) in Equation 2 equivalently, V (s) can be any function so long as V depends on s
but not a. In most cases, state value function is used for V , which not only helps to reduce variations
but has clear physical meaning. Formally, it can be written as

max
θ

Es,a log πθ(a|s)A(s, a). (4)

2.2 ADVANTAGE ESTIMATE

A commonly used method for advantage calculation is one-step estimation, which follows
A(st, at) = Q(st, at)− V (st) = rt + γV (st+1)− V (st). (5)

However, a more accurate method called generalized advantage estimation is proposed in Schulman
et al. (2016), where all time steps of estimation are combined and summarized using λ-based weights,.
The generalized advantage estimator ÂGAE(γ,λ)

t is defined by Schulman et al. (2016) as

Â
GAE(γ,λ)
t := (1− λ) ∗ (Â(1)

t + λÂ
(2)
t + λ2Â

(3)
t + . . .) =

∞∑
l=0

(γλ)lδVt+l

δVt+l = rt+l + γV (st+l+1)− V (st+l).

Â
(k)
t :=

k−1∑
l=0

γlδVt+l = −V (st) + rt + γrt+1 + · · ·+ γk−1rt+k−1 + γkV (st+k)

(6)

The parameter λ meets 0 ≤ λ ≤ 1, which controls the trade-off between bias and variance. All
methods in this paper utilize ÂGAE(γ,λ)

t to estimate the advantage.
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2.3 TRUST REGION POLICY OPTIMIZATION

Schulman et al. (2015) propose TRPO to update the policy monotonically. In particular, its
mathematical form is

max
θ

Et[
πθ(at|st)
πθold(at|st)

Ât]− CEt[KL[πθold(·|st), πθ(·|st)]]

ε = max
s
Ea∼πθ(a|s)[Aπθold (s, a)])

(7)

where C is the penalty coefficient, C = 2εγ
(1−γ)2 .

In practice, the policy update steps would be too small if C is valued as Equation 7. In fact, it’s
intractable to calculate C beforehand since it requires traversing all states to reach the maximum.
Moreover, inevitable bias and variance will be introduced by estimating the advantages of old policy
while training. Instead, a surrogate objective is maximized based on the KLD constraint between the
old and new policy, which can be written as below,

max
θ

Et[
πθ(at|st)
πθold(at|st)

Ât]

s.t. Et[KL[πθold(·|st), πθ(·|st)]] ≤ δ
(8)

where δ is the KLD upper limitation. In addition, the conjugate gradient algorithm is applied to solve
Equation 8 more efficiently. Two major problems have yet to be addressed: one is its complexity
even using the conjugate gradient approach, another is compatibility with architectures that involve
noise or parameter sharing tricks (Schulman et al., 2017).

2.4 PROXIMAL POLICY OPTIMIZATION

To overcome the shortcomings of TRPO, PPO replaces the original constrained problem with a
pessimistic clipped surrogate objective where KL constraint is implicitly imposed. The loss function
can be written as

LCLIP (θ) = Et[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)]

rt(θ) =
πθ(at|st)
πθold(at|st) ,

(9)

where ε is a hyper-parameter to control the clipping ratio. Except for the clipped PPO version, KL
penalty versions including fixed and adaptive KLD. Besides, their simulation results convince that
clipped PPO performs best with an obvious margin across various domains.

3 POLICY OPTIMIZATION WITH PENALIZED POINT PROBABILITY DISTANCE

Before diving into the details of POP3D, we review some drawbacks of several methods, which partly
motivate us.

3.1 DISADVANTAGES OF KULLBACK-LEIBLER DIVERGENCE

TRPO (Schulman et al., 2015) induced the following inequality1,

η(πθ) ≤ Lπθold (πθ) +
2εγ

(1− γ)2
α2

α = Dmax
TV (πθold , πθ)

Dmax
TV (πθold , πθ) = max

s
DTV (πθold ||πθ)

(10)

TRPO replaces the square of total variation divergence Dmax
TV (πθold , πθ) by Dmax

KL (πθold , πθ) =
maxsDKL(πθold ||πθ).

1Note that η means loss instead of return as the ICML version (Schulman et al., 2015).
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Given a discrete distribution p and q, their total variation divergence DTV (p||q) is defined as

DTV (p||q) :=
1

2

∑
i

|pi − qi| (11)

in TRPO (Schulman et al., 2015). Obviously, DTV is symmetric by definition, while KLD is
asymmetric. Formally, given state s, KLD of πθold(·|s) for πθ(·|s) can be written as

DKL(πθold(·|s)||πθ(·|s)) :=
∑
a

πθold(a|s) ln
πθold(a|s)
πθ(a|s)

. (12)

Similarly, KLD in the continuous domain can be defined simply by replacing summation with
integration. The consequence of KLD’s asymmetry leads to a non-negligible difference of whether
choose DKL(πθold ||πθ) or DKL(πθ||πθold). Sometimes, those two choices result in quite different
solutions. Robert compared the forward and reverse KL on a distribution, one solution matches only
one of the modes, and another covers both modes (Murphy, 2012). Therefore, KLD is not an ideal
bound or approximation for the expected discounted cost.

3.2 DISCUSSION ABOUT PESSIMISTIC PROXIMAL POLICY

In fact, PPO is called pessimistic proximal policy optimization2 in the meaning of its objective
construction style. Without loss of generality, supposing At > 0 for given state st and action at, and
the optimal choice is a?t . When at = a?t , a good update policy is to increase the probability of action
to a relatively high value a?t by adjusting θ. However, the clipped item clip(rt(θ), 1− ε, 1 + ε)Ât
will fully contribute to the loss function by the minimum operation, which ignores further reward by
zero gradients even though it’s the optimal action. Other situation with At < 0 can be analyzed in
the same manner.

However, if the pessimistic limitation is removed, PPO’s performance decreases dramatically (Schul-
man et al., 2017), which is again confirmed by our preliminary experiments. In a word, the pessimistic
mechanism plays a very critical role for PPO in that it has a relatively weak preference for a good
action decision at a given state, which in turn affects its learning efficiency.

3.3 RESTRICTED SOLUTION MANIFOLD FOR EXACT DISTRIBUTION MATCHING

To be simple, we don’t take the model identifiability issues along with deep neural network into
account here because they don’t affect the following discussion much (LeCun et al., 2015). Suppose
πθ? is the optimal solution for a given environment, in most cases, more than one parameter set for
θ can generate the ideal policy, especially when πθ? is learned by a deep neural network. In other
words, the relationship between θ and πθ? is many to one. On the other hand, when agents interact
with the environment using policy represented by neural networks, they prefer to takes the action
with the highest probability. Although some strategies of enhancing exploration are applied, they
don’t affect the policy much in the meaning of expectation.

RL methods can help agents learn useful policies after fully interacting with the environment. Take
Atari-Pong game for example, when an agent sees a Pong ball coming close to the right (state s1),
its optimal policy is moving the racket to the right position (for example, the "RIGHT" action) with
a distribution ps1θ1 = [0.05, 0.05, 0.1, 0.7, 0.05, 0.05]3. The probability of selecting "RIGHT" is a
relatively high value such as 0.7. It’s almost impossible to push it to be 1.0 exactly since it’s produced
by a softmax operation on several discrete actions. In fact, we hardly obtain the optimal solution
accurately. Instead, our goal is to find a good enough policy. In this case, the policy of pushing
p(RIGHT|s1) above a threshold is sufficient to be a good one. In other words, paying attention to
the most critical actions is sufficient, and we don’t care much the probability value of the other
non-critical actions. For example, a good policy at s1 is [?,?, ≥ 0.7, ?,?,?]. Note that πθ(a|s) is
represented by a neural network parameterized using θ and a good policy for the whole game means

2The word “pessimistic” is used by the PPO paper.
3The action space is described as [‘NOOP’, ‘FIRE’, ‘RIGHT‘, ‘LEFT’, ‘RIGHTFIRE’, ‘LEFTFIRE’].
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that the network can perform well across the whole state space. Focusing on those critical actions at
each state4 and ignoring non-critical ones can help the network learn better and more easily.

Using a penalty such as KLD cannot utilize this good property, because it involves all of the
actions’ probabilities. Moreover, it doesn’t stop penalizing unless two distributions become exactly
indifferent or the advantage item is large enough to compensate for the KLD cost. Therefore, even if
θ outputs θold the same high probability for the right action, the penalization still exists. Suppose
that two parameters for θ1: θ2 and θ3, where ps1θ2 = [0.01, 0.15, 0.05, 0.7, 0.01, 0.08] and ps1θ3 =
[0.01, 0.01, 0.01, 0.7, 0.26, 0.01]. When the agent already chooses RIGHT at S1, the loss item
from a good penalized distance should be small. However, DKL(πθ1(·|s1)||πθ2(·|s1))=0.15 and
DKL(πθ1(·|s1)||πθ3(·|s1))=0.39. However, it’s not necessary to require the distribution of other
actions (‘NOOP’, ‘FIRE’, ‘LEFT’, ‘RIGHTFIRE’, ‘LEFTFIRE’) of ps1θ2 near to ps1θ1 . Instead, it’s
better to relax this requirement to enlarge the freedom degree of the network and focus on learning
important actions. Doing this brings another advantage, the agent can explore more for non critical
actions. From the perspective of the manifold, optimal parameters constitute a solution manifold.
The KLD penalty will act until θ exactly locates in the solution if possible, akin to mapping a point
onto a curve. Instead, if the agent concentrates only on critical actions like a human does, it’s much
easier to approach the manifold in a higher dimension. This is comparable to expanding the solution
manifold by at least one dimension, e.g. from curves to surfaces or from surfaces to spheres.

3.4 EXPLORATION

One shared highlight in reinforcement learning is the balance between exploitation and exploration.
For a policy-gradient algorithm, entropy is added in the total loss to encourage exploration in most
cases. When included in the loss function, KLD penalizes the old and new policy probability
mismatch for all possible actions as Equation 12 given a state s. This strict punishment for every
action’s probability mismatch, which discourages exploration.

3.5 POINT PROBABILITY DISTANCE

To overcome the above-mentioned shortcomings, we propose a surrogate objective with the point
probability distance penalty, which is symmetric and more optimistic than PPO. In the discrete
domain, when the agent takes action a, the point probability distance between πθold(·|s) and πθ(·|s)
is defined by

Da
pp(πθold(·|s), πθ(·|s)) = (πθold(a|s)− πθ(a|s))2. (13)

Attention should be paid to the penalty definition item, the distance is measured by the point
probability, which emphasizes its mismatch for the sampled actions for a state. Unless it would lead
to confusion, we omit a for simplicity in the following sections. Undoubtedly, Dpp is symmetric
by definition. Furthermore, it can be proved that Dpp is indeed a lower bound for the total variance
divergence DTV . As a special case, it can be easily proved that for binary distribution, D2

TV (p||q) =
Dpp(p||q).

Theorem 3.1. For two discrete probability distributions p and q with K values, then D2
TV (p||q) ≥

Da
pp(p||q) holds for any action a and EaDa

pp(p||q) is a lower bound for D2
TV (p||q).

4Note that some states don’t have critical action. Taking the Pong for example, when the ball is just shot
back, the agent can choose any action.
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Proof. Let pl = α, ql = β for the l-th action a, and suppose a ≥ b without loss of generalization. So,

D2
TV (p||q) = (

1

2

K∑
i=1

|pi − qi|)2 = (
1

2

K∑
i=1,i6=l

|pi − qi|+
1

2
|pl − ql|)2

≥ (
1

2
|

K∑
i=1,i6=l

pi − qi|+
1

2
(α− β))2 = (

1

2
|1− α− (1− β)|+ 1

2
(α− β))2

= (
1

2
(α− β) + 1

2
(α− β))2 = Da

pp(p||q)

EaDa
pp(p||q) =

∑
a

p(a)Da
pp(p||q) ≤

∑
a

p(a)D2
TV (p||q) = D2

TV (p||q)

Since 0 ≤ πθ(a|s) ≤ 1 holds for discrete action space, Dpp has a lower and upper boundary:
0 ≤ Dpp ≤ 1. Moreover, Dpp is less sensitive to action space dimension than KLD, which has a
similar effect as PPO’s clipped ratio to increase robustness and enhance stability. Equation 13 stays
unchanged for the continuous domain, and the only difference is πθ(a|s) represents point probability
density instead of probability.

3.6 POP3D

After we have defined the point probability distance, we use a new surrogate objective fθ for POP3D,
which can be written as

max
θ

Et[
πθ(at|st)
πθold(at|st)

Ât − βDat
pp(πθold(·|st), πθ(·|st))], (14)

where β is the penalized coefficient. These combined advantages lead to considerable performance
improvement, which escapes from the dilemma of choosing preferable penalty coefficient. Besides,
we use generalized advantage estimates to calculate Ât. Algorithm 1 shows the complete iteration
process of POP3D. Moreover, it possesses the same computing cost and data efficiency as PPO.

Algorithm 1 POP3D
1: Input: max iterations L , actors N , epochs K
2: for iteration = 1 to L do
3: for actor = 1 to N do
4: Run policy πθold for T time steps
5: Compute advantage estimations Â1, ..., ÂT
6: end for
7: for epoch = 1 to K do
8: Optimized loss objective f (θ) w.r.t θ with mini-batch size M ≤ NT , then update θold ← θ.
9: end for

10: end for

3.7 WORKING MECHANISM OF POP3D

As for the toy example in Section 3.3, DRIGHT
pp (πθ1(·|s) ||πθ2(·|s)=DRIGHT

pp (πθ1(·|s) ||πθ3(·|s)=0.
Therefore, it can help the agent to focus on the important action. When updating θ from θold as
Equation 14, the gradient f(θ) w.r.t. θ can be written as
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∇θf(θ) =
∇θπθ(at|st)
πθold(at|st)

Ât − 2β[πθ(at|st)− πθold(at|st)]∇θπθ(at|st)

= ∇θπθ(at|st)[
Ât

πθold(at|st)
− 2β(πθ(at|st)− πθold(at|st))]

= ∇θπθ(at|st)[
Ât

πθold(at|st)
− 2βδ(at|st)]

(15)

where δ(at|st) := πθ(at|st)−πθold(at|st). Suppose the agent selects at at st using πθold and obtains
a positive advantage Ât , if πθ(at|st) is larger than πθ(at|st), then 2βδ(at|st) will play a damping
role to avoid too greedy preference for at (i.e. too large probability), which in turn leaves more space
for other actions to be explored. Other cases such as negative Ât can be analyzed similarly. The
hyper-parameter β controls the damping force.

In the early stage of learning, πθold(at|st) is near 1/K (taking K discrete spaces for example) and
the magnitude of Ât is large, while the damping force is a bit weak. Therefore, the agent learns fast.
Then β shows a relative stronger force to avoid overshooting for action selection and encourage more
exploration. As for the final stage, the policy changes slowly because the learning rate is low, where
δ(at|st) is small and therefore it converges.

3.8 RELATIONSHIP WITH PPO

To conclude this section, we take some time to see why PPO works by taking the above viewpoints
into account. When we pour more attention to Equation 9, the ratio rt(θ) only involves the probability
for given action a, which is chosen by policy π. In other words, all other actions’ probabilities except
a are not activated, which no longer contribute to back-propagation and allow probability mismatch,
which encourage exploration. This procedure behaves similarly to POP3D, which helps the network
to learn more easily. Above all, POP3D is designed to conform with the regulations for overcoming
above mentioned problems, and in the next section experiments from commonly used benchmarks
will evaluate its performance.

4 EXPERIMENTS

4.1 CONTROLLED EXPERIMENTS SETUP

OpenAI Gym is a well-known simulation environment to test and evaluate various reinforcement
algorithms, which is composed of both discrete (Atari) and continuous (Mujoco) domains (Brockman
et al., 2016). Most recent deep reinforcement learning methods such as DQN variants (Van Hasselt
et al., 2016; Wang et al., 2016; Schaul et al., 2015; Bellemare et al., 2017; Hessel et al., 2018),
A3C, ACKTR, PPO are evaluated using only one set of hyper-parameters5. Therefore, we evaluate
POP3D’s performance on 49 Atari games(v4, discrete action space ) and 7 Mujoco (v2, continuous).

Since PPO is a distinguished RL algorithm which defeats various methods such as A3C, A2C ACKTR,
we focus on a detailed quantitative comparison with fine-tuned PPO. And we don’t consider large
scale distributed algorithms Apex-DQN (Horgan et al., 2018) and IMPALA (Espeholt et al., 2018),
because we concentrate on comparable and fair evaluation, while the latter is designed to apply with
large scale parallelism. Nevertheless, some orthogonal improvements from those methods have the
potentials to improve our method further. Furthermore, we include TRPO to acts as a baseline method.
Engstrom et al. (2020) carefully study the underlying factor that helps PPO outperform TPRO. To
avoid unfair comparisons, we carefully control the settings. In addition, quantitative comparisons
between KLD and point probability penalty helps to convince the critical role of the latter, where the
former strategy is named fixed KLD in Schulman et al. (2017) and can act as another good baseline
in this context, named by BASELINE below.

5DQN variants are evaluated in Atari environment since they are designed to solve problems about discrete
action space. However, policy gradient-based algorithms can handle both continuous and discrete problems.
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In particular, we retrained one agent for each game with fine-tuned hyper-parameters6. To avoid the
problems of reproduction about reinforcement algorithms mentioned in Henderson et al. (2018), we
take the following measures:

• Use the same training steps and make use of the same amount of game frames(40M for
Atari game and 10M for Mujoco).

• Use the same neural network structures, which is the CNN model with one action head
and one value head for the Atari game, and a fully-connected model with one value head
and one action head which produces the mean and standard deviation of diagonal Gaussian
distribution as PPO.

• Initialize parameters using the same strategy as PPO.

• Keep Gym wrappers from Deepmind such as reward clipping and frame stacking unchanged
for Atari domain, and enable 30 no-ops at the beginning of each episode.

• Use Adam optimizer (Kingma & Ba, 2014) and decrease α linearly from 1 to 0 for Atari
domain as PPO.

To facilitate further comparisons with other approaches, we release the seeds and detailed re-
sults7(across the entire training process for different trials). In addition, we randomly select three
seeds from {0, 10, 100, 1000, 10000} for two domains, {10,100,1000} for Atari and {0,10,100} for
Mujoco in order to decrease unfavorable subjective bias stated in Henderson et al. (2018).

4.2 EVALUATION METRICS

PPO utilizes two score metrics for evaluating agents’ performance using various RL algorithms. One
is the mean score of the last 100 episodes Score100, which measures how high a strategy can hit
eventually. Another is the average score across all episodes Scoreall, which evaluates how fast an
agent learns. In this paper, we conform to this routine and calculate individual metric by averaging
three seeds in the same way.

4.3 DISCRETE DOMAIN COMPARISONS

Hyper-parameters We search hyper-parameter four times for the penalty coefficient β based on four
Atari games while keeping other hyper-parameters unchanged as PPO and fix β = 5.0 to train all
Atari games. For BASELINE, we also search hyper-parameter four times on penalty coefficient β
and choose β = 10.0. To save space, detailed hyper-parameter setting can be found in Table 6 and 7.

This process is not beneficial for POP3D owing to missing optimization for all hyper-parameters.
There are two reasons to make this choice. On the one hand, it’s the simplest way to make a
relatively fair comparison group such as keeping the same iterations and epochs within one loop
to our knowledge. On the other hand, this process imposes low search requirements for time and
resources. That’s to say, we can draw a conclusion that our method is at least competitive to PPO if it
performs better on benchmarks.

Comparisons The final score of each game is averaged by three different seeds and the highest is in
bold. As Table 1 shows, POP3D outperforms 32 across 49 Atari games given the final score, followed
by PPO with 11, BASELINE with 5, and TRPO with 1. Interestingly, for games that POP3D score
highest, BASELINE score worse than PPO more often than the other way round, which means that
POP3D is not just an approximate version of BASELINE.

For another metric, POP3D wins 20 out of 49 Atari games which matches PPO with 18, followed by
BASELINE with 6, and last ranked by TRPO with 5. If we measure the stability of an algorithm by
the score variance of different trials, POP3D scores high with good stability across various seeds.
And PPO behaves worse in Game Kangaroo and UpNDown. Interestingly, BASELINE shows a large
variance for different seeds for several games such as BattleZone, Freeway, Pitfall, and Seaquest.
POP3D reveals its better capacity to score high and similar fast learning ability in this domain. The
detailed metric for each game is listed in Table 3 and 4.

6We use OpenAI’s PPO and TRPO code: https://github.com/openai/baselines.git
7https://drive.google.com/file/d/1c79TqWn74mHXhLjoTWaBKfKaQOsfD2hg/view
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4.4 CONTINUOUS DOMAIN COMPARISONS

Table 1: Top: The number of games "won"
by each algorithm for Atari games. Bot-
tom: The number of games won by each
algorithm for Mujoco games. Each experi-
ment is averaged across three seeds.

Metric PPO POP3D BASELINE TRPO

Score100 11 32 5 1
Scoreall 18 20 6 5

Metric PPO POP3D

Score100 1 6
Scoreall 4 3

Hyper-parameters For PPO, we use the same hyper-
parameter configuration as Schulman et al. (2017). Re-
garding POP3D, we search on two games three times
and select 5.0 as the penalty coefficient. More details
about hyper-parameters for PPO and POP3D are listed
in Table 8. Unlike the Atari domain, we utilize the con-
stant learning rate strategy as Schulman et al. (2017)
in the continuous domain instead of the linear decrease
strategy.

Comparison Results The scores are also averaged on
three trials and summarized in Table 1. POP3D occu-
pies 6 out of 7 games on Score100. Evaluation metrics
of both across different games are illustrated in Table 2
and 5. In summary, both metrics indicate that POP3D is competitive to PPO in the continuous domain.

5 CONCLUSION

Table 2: Mean final scores (last 100
episodes) of PPO, POP3D on Mujoco
games after 10M frames. The results are
averaged by three trials.

Game PPO POP3D

HalfCheetah 2726.03 3184.54
Hopper 2027.21 1452.09
InvertedDblPendulum 4455.03 4907.64
InvertedPendulum 544.02 741.94
Reacher -5.00 -4.29
Swimmer 111.88 112.08
Walker2d 1112.25 3966.01

In this paper, we introduce a new reinforcement learn-
ing algorithm called POP3D (Policy Optimization with
Penalized Point Probability Distance), which acts as a
TRPO variant like PPO. Compared with KLD that is an
upper bound for the square of total variance divergence
between two distributions, the penalized point proba-
bility distance is a symmetric lower bound. Besides,
it equivalently expands the optimal solution manifold
effectively while encouraging exploration, which is a
similar mechanism implicitly possessed by PPO. The
proposed method not only possesses several critical
improvements from PPO but outperforms with a clear
margin on 49 Atari games from the respective of fi-
nal scores and meets PPO’s match as for fast learning
ability.

More interestingly, it not only suffers less from the penalty item setting headache along with TRPO,
where is arduous to select one fixed value for various environments but outperforms fixed KLD
baseline from PPO. In summary, POP3D is highly competitive and an alternative to PPO.
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A SCORE TABLES AND CURVES

Mean scores of various methods for Atari domain are listed in Table 3 and 4.

Table 3: Mean final scores (last 100 episodes) of PPO, POP3D, BASELINE and TRPO on Atari
games after 40M frames. The results are averaged on three trials.

game POP3D PPO BASELINE TPRO

Alien 1510.80 1431.17 1311.23 1110.40
Amidar 729.15 790.75 655.10 200.56
Assault 5400.13 4438.82 1846.75 1363.46
Asterix 4310.67 3483.17 3657.67 2651.33
Asteroids 2488.10 1605.33 1615.37 2205.70
Atlantis 2193605.67 2140536.33 1515993.33 1419104.67
BankHeist 1212.23 1206.67 1124.43 1125.17
BattleZone 15466.67 14766.67 14690.00 15123.33
BeamRider 4549.00 2624.19 6898.09 5073.75
Bowling 38.99 47.27 30.48 31.24
Boxing 97.23 93.70 65.33 50.07
Breakout 458.41 281.93 67.70 40.65
Centipede 3315.44 3565.18 3393.93 3353.14
Chopper-Command 6308.33 4872.67 2676.00 2286.67
CrazyClimber 120247.33 105940.00 98219.67 87522.33
DemonAttack 61147.33 26740.57 57476.65 21525.08
DoubleDunk -7.89 -11.22 -8.61 -10.04
Enduro 459.85 698.46 518.41 365.95
FishingDerby 28.99 17.72 -64.27 -69.64
Freeway 21.21 21.11 18.37 20.89
Frostbite 316.87 280.30 280.30 291.77
Gopher 6207.00 1791.00 940.87 938.27
Gravitar 557.17 753.50 449.00 495.17
IceHockey -4.12 -4.83 -3.61 -4.61
Jamesbond 527.17 488.17 685.17 901.67
Kangaroo 3891.67 6845.00 1850.00 1214.67
Krull 7715.68 8329.08 7204.95 4881.65
KungFuMaster 33728.00 29958.67 29843.67 26808.00
Montezuma-Revenge 0.00 10.67 0.67 0.00
MsPacman 1683.87 1981.50 1170.70 1133.57
NameThisGame 6065.63 5397.47 5672.60 5604.10
Pitfall 0.00 -2.32 -17.26 -43.60
Pong 20.50 20.80 20.79 19.63
PrivateEye 79.67 36.50 99.67 99.33
Qbert 15396.67 14556.83 4114.00 3781.58
Riverraid 8052.23 7360.40 7722.00 6773.67
RoadRunner 44679.67 36289.33 43626.33 24061.33
Robotank 4.60 14.15 24.60 24.18
Seaquest 1807.47 1470.60 1501.47 926.40
SpaceInvaders 1216.15 944.63 814.53 634.07
StarGunner 48984.00 33862.00 47738.00 33442.67
Tennis -8.32 -13.74 -19.13 -18.40
TimePilot 3770.33 5321.33 6278.33 5701.00
Tutankham 241.21 177.58 135.80 136.21
UpNDown 242701.51 153160.66 11815.87 10949.53
Venture 36.33 0.00 4.00 0.00
VideoPinball 37780.70 31577.24 21438.64 25095.20
WizardOfWor 4704.00 4886.67 3533.67 3103.00
Zaxxon 9472.00 5728.67 1179.67 4796.67
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Table 4: All episodes mean scores of PPO, POP3D, BASELINE and TRPO on Atari games after
40M frames. The results are averaged by three trials.

game POP3D PPO BASELINE TRPO

Alien 1147.29 1115.94 851.13 841.08
Amidar 299.55 413.46 295.91 169.12
Assault 2139.15 2168.93 1159.50 971.78
Asterix 2004.43 2102.10 1884.68 1342.83
Asteroids 1652.48 1470.46 1477.71 1760.73
Atlantis 488134.03 596807.27 192798.74 174394.94
BankHeist 662.26 643.94 859.25 831.95
BattleZone 11131.44 9387.77 11674.30 12918.39
BeamRider 1965.27 1460.59 3321.25 2431.63
Bowling 37.97 39.41 33.90 30.99
Boxing 83.12 78.61 27.92 23.07
Breakout 143.60 124.98 29.99 26.56
Centipede 3056.81 3344.63 3042.48 3142.22
Chopper-
Command 3269.47 3106.14 1780.38 1595.82
CrazyClimber 97257.52 90169.60 69258.31 63189.78
DemonAttack 7611.27 7180.43 9814.42 6204.68
DoubleDunk -13.70 -15.45 -15.93 -14.57
Enduro 107.84 321.20 92.59 140.67
FishingDerby -21.00 -27.51 -81.90 -81.97
Freeway 17.76 15.87 15.93 17.33
Frostbite 276.47 267.73 270.42 270.57
Gopher 1556.29 1196.20 900.74 875.93
Gravitar 413.20 509.81 342.74 317.86
IceHockey -4.67 -5.50 -4.61 -5.21
Jamesbond 358.54 394.45 380.91 519.01
Kangaroo 1614.63 2199.74 937.98 566.85
Krull 6538.16 7195.24 4760.66 3861.87
KungFuMaster 23253.96 23283.31 19637.58 18293.12
Montezuma-
Revenge 0.14 0.74 0.22 0.12
MsPacman 1214.09 1482.77 860.63 864.84
NameThisGame 5353.14 5199.37 4562.32 4504.67
Pitfall -2.41 -5.81 -31.27 -33.93
Pong 13.24 12.83 7.20 -2.91
PrivateEye 87.37 52.76 56.70 98.79
Qbert 5852.10 6744.13 1760.92 1679.03
Riverraid 5260.89 5487.17 5220.64 4549.22
RoadRunner 25456.31 24688.07 20385.91 16269.40
Robotank 3.08 8.65 13.89 14.57
Seaquest 1487.84 1120.15 1112.51 848.47
SpaceInvaders 693.26 632.17 552.50 483.48
StarGunner 14734.11 13643.80 16288.35 13341.23
Tennis -19.86 -21.80 -21.84 -21.04
TimePilot 3396.61 4410.87 4718.46 4544.68
Tutankham 179.96 152.72 103.95 109.18
UpNDown 38728.48 43208.99 5430.22 7085.02
Venture 15.89 14.66 0.57 0.03
VideoPinball 27346.44 27549.55 23998.09 23705.39
WizardOfWor 2340.60 2743.40 2409.94 2045.17
Zaxxon 3739.56 1813.90 256.78 1521.28
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Table 5: All episodes mean scores of PPO, POP3D on Mujoco games after 10M frames. The results
are averaged by three trials.

game PPO POP3D

HalfCheetah 3250.22 2373.30
Hopper 1767.14 1257.72
InvertedDoublePendulum 3684.92 2561.77
InvertedPendulum 531.77 552.98
Reacher -5.94 -8.05
Swimmer 94.01 108.27
Walker2d 1770.37 2439.54

B EXPERIMENTS

B.1 HYPER-PARAMETERS

B.1.1 ATARI

PPO’s and POP3D’s hyper-parameters for Mujoco games are respectively listed in Table 6.

Table 6: Left: PPO’s hyper-parameters for Atari games. Right:POP3D’s hyper-parameters for Atari
games.

Hyper-parameter Value

Horizon (T) 128
Adam step-size 2.5 ×10−4 × α
Num epochs 3
Mini-batch size 32×8
Discount (γ) 0.99
GAE parameter (λ) 0.95
Number of actors 8
Clipping parameter 0.1×α
VF coeff. 1
Entropy coeff. 0.01

Hyper-parameter Value

Horizon (T) 128
Adam step-size 2.5 ×10−4 × α
Num epochs 3
Mini-batch size 32×8
Discount (γ) 0.99
GAE parameter (λ) 0.95
Number of actors 8
VF coeff. 1
Entropy coeff. 0.01
KL penalty coeff. 5.0

Table 7: BASELINE’s hyper-parameters for Atari games.
Hyper-parameter Value

Horizon (T) 128
Adam step-size 2.5 ×10−4 × α
Num epochs 3
Mini-batch size 32×8
Discount (γ) 0.99
GAE parameter (λ) 0.95
Number of actors 8
VF coeff. 1
Entropy coeff. 0.01
KL penalty coeff. 10.0

B.1.2 MUJOCO

PPO’s and POP3D’s hyper-parameters for Mujoco games are respectively listed in Table 8.
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Table 8: Left: PPO’s hyper-parameters for Mujoco games. Right:POP3D’s hyper-parameters for
Mujoco games.

Hyper-parameter Value

Horizon (T) 2048
Adam step-size 3 ×10−4
Num epochs 10
Mini-batch size 64
Discount (γ) 0.99
GAE parameter (λ) 0.95
Clipping parameter 0.2

Hyper-parameter Value

Horizon (T) 2048
Adam step-size 3 ×10−4
Num epochs 10
Mini-batch size 64
Discount (γ) 0.99
GAE parameter (λ) 0.95
KL penalty coeff. 5.0
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Figure 1: Score curves of three methods on Atari games within 40 million frame steps.
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Figure 2: Score curves on 7 Mujoco games within 10 million frame steps.
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