
Exact Soft Analytical Side-Channel Attacks using Tractable Circuits

Thomas Wedenig 1 Rishub Nagpal 2 Gaëtan Cassiers 3 Stefan Mangard 2 Robert Peharz 1

Abstract
Detecting weaknesses in cryptographic algo-
rithms is of utmost importance for designing se-
cure information systems. The state-of-the-art
soft analytical side-channel attack (SASCA) uses
physical leakage information to make probabilis-
tic predictions about intermediate computations
and combines these “guesses” with the known
algorithmic logic to compute the posterior distri-
bution over the key. This attack is commonly per-
formed via loopy belief propagation, which, how-
ever, lacks guarantees in terms of convergence
and inference quality. In this paper, we develop
a fast and exact inference method for SASCA,
denoted as ExSASCA, by leveraging knowledge
compilation and tractable probabilistic circuits.
When attacking the Advanced Encryption Stan-
dard (AES), the most widely used encryption al-
gorithm to date, ExSASCA outperforms SASCA
by more than 31% top-1 success rate absolute.
By leveraging sparse belief messages, this perfor-
mance is achieved with little more computational
cost than SASCA, and about 3 orders of mag-
nitude less than exact inference via exhaustive
enumeration. Even with dense belief messages,
ExSASCA still uses 6 times less computations
than exhaustive inference.

1. Introduction
Unifying learning, logical reasoning and probabilistic in-
ference at scale has a wide range of applications, such as
error correcting codes, verification and system diagnostics.
In particular, cryptographic attacks play a central role in

1Institute of Theoretical Computer Science, Graz University
of Technology, Graz, Austria 2Institute of Applied Information
Processing and Communications, Graz University of Technology,
Graz, Austria 3Institute of Information and Communication Tech-
nologies, Electronics and Applied Mathematics (ICTM), UCLou-
vain, Ottignies-Louvain-la-Neuve, Belgium. Correspondence to:
Thomas Wedenig <thomas.wedenig@tugraz.at>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

defining, analysing and designing cryptographic algorithms,
which form the backbone of our modern information so-
ciety. Specifically, side-channel attacks attempt to learn
about secret material used in a cryptographic computation
by observing implementation artifacts, commonly called
leakages, such as timing information (Kocher, 1996), elec-
tromagnetic emissions (Gandolfi et al., 2001), and power
consumption (Kocher et al., 1999). Most contemporary at-
tacks use these leakages to reason about the internal state of
a cryptographic algorithm in a probabilistic manner. Specif-
ically, in template attacks (Chari et al., 2002) the attacker
has access to a clone of the device under attack and can
run the algorithm repeatedly with randomly generated keys
and plaintexts as inputs. Simultaneously, the attacker also
records leakage information during all runs, e.g. the power
trace of the device. Using this data, the attacker can easily
build a set of probabilistic models, predicting distributions
of intermediate values conditional on the leakage.

The attacker’s goal is now to combine these value distri-
butions (“soft guesses”) and the (hard logical) knowledge
about the algorithm to infer the posterior distribution of the
secret key. A naı̈ve exhaustive computation of this poste-
rior is prohibitive for practical attacks as a single leakage
might require hours of compute time. As a remedy, the
state-of-the-art soft analytical side-channel attack (SASCA)
(Veyrat-Charvillon et al., 2014) uses loopy belief propaga-
tion (BP) on a factor graph representation of the crypto-
graphic algorithm, to produce an approximate key posterior.
However, loopy BP has limited theoretical underpinnings
as neither convergence is granted, nor does it guarantee ac-
curate posterior estimates in case of convergence (Knoll,
2022). Consequently, while SASCA can detect weaknesses
in cryptosystems, an unsuccessful SASCA does not imply
any certificate that the leakage cannot be exploited further.
On the contrary, it is straightforward to construct examples
where inference is in fact easy but loopy BP fails catastroph-
ically.

In this paper, we develop a fast and exact inference algo-
rithm for SASCA, denoted as ExSASCA, for the Advanced
Encryption Standard (AES), the most prominent and widely
used encryption algorithm to date. To this end, we build
on recent results from knowledge compilation (Darwiche &
Marquis, 2002; Darwiche, 2011) and tractable probabilistic
circuits (Kisa et al., 2014; Vergari et al., 2020). Similarly as

1

Exact Soft Analytical Side-Channel Attacks using Tractable Circuits

in SASCA, we start from a factor graph representation of
AES, whose core part, MIXCOLUMNS, is a highly loopy sub-
graph involving 168 binary variables (bits). While SASCA
performs loopy BP, we instead compile MIXCOLUMNS into
a compact (probabilistic) sentential decision diagram (SDD,
PSDD) (Darwiche, 2011; Kisa et al., 2014), a circuit repre-
sentation allowing a wide range of logic and probabilistic
inference routines (Vergari et al., 2020). On a conceptual
level, this amounts to replacing MIXCOLUMNS with a sin-
gle factor and reducing the factor graph to a tree, on which
we can perform exact message passing (Koller & Friedman,
2009), albeit involving a factor with 2168 entries. The com-
piled PSDD is compact, containing only 19,000 sums and
products, and allows inference in polynomial time of the
circuit size.

In particular, for the key posterior we require mainly fac-
tor multiplication (worst-case quadratic in the circuit size)
and factor summation (linear in the circuit size), which are
readily provided by tractable circuits and have previously
been employed in structured Bayesian networks (Shen et al.,
2019) and neuro-symbolic approaches (Ahmed et al., 2022).
When attacking standard AES, we leverage the fact that
the value distributions are typically concentrated on byte
values with the same hamming weight, allowing us to work
with sparse messages. With this simplification, an out-of-
the box implementation of ExSASCA yields an improve-
ment of 31% top-1 success rate absolute in comparison to
conventional SASCA. Here, the required computation for
ExSASCA is on the same level as for SASCA, which is three
orders of magnitude less than for exhaustive enumeration,
the only other known exact inference algorithm.

Countermeasures to side-channel attacks, such as protected
AES implementations, increase the entropy of intermedi-
ate algorithmic values and render our sparse-message ap-
proach futile. For this case, however, we develop a novel
dynamic compilation strategy for SDDs, reducing inference
to a weighted model counting problem. The resulting infer-
ence machine still requires 6 times less computation than
exhaustive inference and substantially outperforms SASCA
on all protection levels. Overall, our main contributions are:

• We propose ExSASCA, an exact SASCA implemen-
tation, which substantially improves the success rate
of attacks on AES, while using far less computational
resources than inference by exhaustive enumeration.

• With our method we open a new avenue to study vulner-
ability in cryptosystems; in the long run our techniques
might lead to stronger theoretical guarantees in cryp-
tographic algorithms, for example using results from
circuit complexity (de Colnet & Mengel, 2021) for
proving the non-existence of a tractable circuit repre-
sentation of particular cryptographic algorithms.

• We develop a novel dynamic compilation framework
for circuit-based inference in large-scale-probabilistic
systems, which has a wide range of applications, such
as error correcting codes (MacKay, 2003), system veri-
fication and structured Bayesian networks (Shen et al.,
2019).

2. Background
2.1. Advanced Encryption Standard

In this work, we attack the Advanced Encryption Stan-
dard (AES) (Daemen & Rijmen, 1998), the most popular
symmetric-key block cipher used to date. AES takes an
128-bit plaintext p and a secret b-bit key k as input, and pro-
duces a 128-bit ciphertext c as output. In our experiments,
we attack AES-128, i.e., b = 128. We refer to bytes of the
key and plaintext as input variables and the bytes of the
ciphertext as output variables; besides this, the algorithm
also computes several byte-valued intermediate variables
in the course of computing the ciphertext. AES encryp-
tion is performed in 10 iterations (so-called rounds), where
each round essentially consists of the functions SUBBYTES,
SHIFTROWS, MIXCOLUMNS, and ADDROUNDKEY. Fig-
ure 1 illustrates such a round.

2.2. Side-Channel Attacks

Although a cryptographic algorithm may be secure concep-
tually, its implementation may be not: Side-channel attacks
exploit the fact that physical implementations of an algo-
rithm unintentionally leak information about the processed
data (Spreitzer et al., 2018). For example, since the power
usage of CMOS transistors depends on the switching activ-
ity during the computation, the power consumption of the
device performing the encryption is data dependent (Stan-
daert, 2010). It has been frequently shown that side-channel
attacks are more efficient than the best-known cryptana-
lytic attacks, which consider the system under attack as an
idealized, mathematical model (Standaert, 2010). While ad-
versaries can exploit various side channels such as timing of
operations (Kocher, 1996) and electromagnetic emanation
(Gandolfi et al., 2001), this work focuses on power traces.

2.2.1. TEMPLATE ATTACKS

In a template attack the adversarial has access to a clone of
the target device (e.g., a smart card). First, in the so-called
profiling phase, the attacker queries the clone device with a
large number of random inputs, i.e. key and plaintext in case
of AES, and records side-channel leakage of their choice.
Let v be an arbitrary byte-valued variable involved in AES
(input, intermediate variable, or output). The profiling phase
yields a dataset {(ℓ(i), v(i))}ni=1, where n is the number
of profiling runs and ℓ ∈ Rd denotes the leakage. This

2

Exact Soft Analytical Side-Channel Attacks using Tractable Circuits

Figure 1. A round of AES takes a 4× 4-byte matrix M and computes a series of functions: (1) SUBBYTES applies a non-linear bijection
S to each byte individually, (2) SHIFTROWS shifts the rows of the input matrix to the left, (3) MIXCOLUMNS computes a linear
function which takes each input column and performs a matrix-vector product in the Galois field of characteristic 256 (F256) and (4)
ADDROUNDKEY, a byte-wise XOR operation with the ”round key” (which is just the key in the first round).

data is then used to construct a likelihood model p(ℓ | v),
a so-called template. A common choice are multivariate
Gaussians with mean µv and covariance Σv , i.e., p(ℓ | v) =
N (ℓ;µv,Σv) for each value v ∈ {0, . . . , 255}. Hence, n
is typically at least a few thousand, to make sure that for
each value there are sufficiently many leakage samples.

Since the leakages ℓ are high-dimensional (e.g., d ≈ 105 for
power traces), one usually first applies some dimensionality
reduction. We adopt the approach from (Bronchain et al.,
2021), using a combination of interest point detection in
ℓ and linear discriminant analysis. We also experimented
extensively with various neural network architectures to
construct more expressive templates, which, however, con-
sistently performed worse than (Bronchain et al., 2021).
Finally, in the attack phase, only the leakage ℓ is observed.
Using Bayes’ law and a uniform prior p(v), we get a local
distribution (belief) for v, conditional on the leakage:

p(v | ℓ) = p(ℓ | v)∑255
v′=0 p(ℓ | v′)

(1)

The procedure above, explained for a generic value v, is
done for several byte variables v1, . . . , vk computed in AES.
Usually, one selects variables which are “close to the key”
in the computational path, as these will typically be more
correlated with the secret key than variables “further away.”

2.2.2. SOFT ANALYTICAL SIDE-CHANNEL ATTACKS

After obtaining distributions p(v1 | ℓ), . . . , p(vk | ℓ) for all
variables of interest, the attacker aims to aggregate them into
a posterior distributions over the key bytes. Intuitively, the
beliefs about intermediate variables, which depend opera-

tionally and logically on the secret key, should be propagated
backwards and combined into beliefs about the key. This is
naturally expressed using a factor graph (Kschischang et al.,
2001; Veyrat-Charvillon et al., 2014), where variable nodes
(circles) correspond to the byte-valued variables and factors
(black squares) represent indicator functions that model the
logical relationship between variables.

Figure 2 (left) shows the factor graph for part of the first
round of AES, consisting of ADDROUNDKEY, SUBBYTES
and one column multiplication of MIXCOLUMNS. We do
not model the SHIFTROWS operation since it merely cor-
responds to a fixed re-labeling of the input bytes and does
not affect probabilistic inference. Note that the nodes rep-
resenting the plaintext are shaded, meaning that they are
observed, which is a common assumption in this type of
attacks (Veyrat-Charvillon et al., 2014). While the hard-
ware implementation of the SBOX also leaks information in
practice, we simply abstract it as a 256× 256-dimensional
binary factor (i.e., a lookup table).

Every variable (blank node) in the factor graph is equipped
with a local distribution derived via a template attack, as
described in Section 2.2.1. Note that the figure shows only
one of the four parallel branches of the first AES round; the
other three branches are of identical structure and can be
treated independently. In this work we attack, as common
in literature (Veyrat-Charvillon et al., 2014), only the first
round of AES; attacking later rounds is doable, but is of
diminishing return.

The desired posterior over the key bytes is now simply given
as a factor product of all involved factors, followed by a
summation over all unobserved variables, except for the

3

Exact Soft Analytical Side-Channel Attacks using Tractable Circuits

ADDROUNDKEY SUBBYTES MIXCOLUMNS

k1

p1
XOR

y1
SBOX

x1

XOR
x12

XTIME
x̃12

XOR
x′
12

XOR
x
(m)
1

k2

p2
XOR

y2
SBOX

x2

XOR
x23

XTIME
x̃23

XOR
x′
23

XOR
x
(m)
2

k3

p3
XOR

y3
SBOX

x3

XOR
x34

XTIME
x̃34

XOR
x′
34

XOR
x
(m)
3

k4

p4
XOR

y4
SBOX

x4

XOR
x41

XTIME
x̃41

XOR
x′
41

XOR
x
(m)
4

XOR
g

XOR(a, b, c) =

{
1 if a⊕ b = c

0 else
SBOX(a, b) =

{
1 if S(a) = b

0 else

XTIME(a, b) =

{
1 if fXTIME(a) = b

0 else

ki

p(ki|ℓ)

pi
XOR

yi
SBOX

p(yi|ℓ)

xi

p(xi|ℓ)

M

x
(m)
i

p(x
(m)
i |ℓ)

vi
p(vi|ℓ)

vi ∈ vmid

1 ≤ i ≤ 4

1 ≤ i ≤ 4

Figure 2. (left) Factor graph over the first four key bytes and plaintext bytes and their operations in AES. Black squares denote logical
factors that represent AES operations. For example, an XOR-factor is 1 if and only if the variable on its right is the bit-wise exclusive
or of the two variables on its left and 0 otherwise. Similarly, SBOX encodes a bijection S between byte-values and XTIME encodes
a multiplication with 2 in the Galois field of characteristic 256 (abstracted as fXTIME). Every unobserved (blank) variable node has an
additional factor p(v | ℓ) (omitted for sake of visual clarity). Shaded variable nodes are observed. (right) The same factor graph, but
where the loopy MIXCOLUMNS part has been summarized in a single high-dimensional factor M (represented by a PSDD). We use plate
notation to illustrate structurally identical parts. The set vmid contains all intermediate variables in the MIXCOLUMNS function.

key bytes (Kschischang et al., 2001). Evidently, a naı̈ve
implementation is infeasible, since the total factor product
is of size 2232 (involving 29 bytes). However, exploiting
the fact that the factor graph encodes an algorithm and
that all variables deterministically follow from the key (and
plaintext), one actually just needs to enumerate the values
of the 4 key bytes and evaluate the factor graph for each of
these 232 combinations. The desired key posterior is then
given by re-normalizing the computed factors.

As inference by exhaustive key enumeration is computa-
tionally expensive, the soft analytical side-channel attack
(SASCA) (Veyrat-Charvillon et al., 2014) applies loopy be-
lief propagation (BP) (Kschischang et al., 2001) to approx-
imate the desired conditional distribution over key bytes
p(ki | ℓ). Loopy BP requires about three orders of mag-
nitude less compute than exhaustive inference and is thus
considered a practically relevant attack.

However, while SASCA might detect weaknesses in a cryp-
toalgorithm, an unsuccessful application of SASCA is no
certificate towards security of the attacked system. In par-
ticular, loopy BP is notoriously unpredictable, as neither
convergence is granted, nor does convergence imply that
the posterior has been successfully approximated (Knoll,
2022). In fact, it is straightforward to design easy inference
problems where loopy BP fails catastrophically.

3. Exact Soft Analytical Side-Channel Attacks
In this paper, we develop the first exact attack on AES-128
which substantially improves over SASCA and uses far less
computational resources than exhaustive enumeration. Our
high-level strategy is to reduce the problem to a tree-shaped
factor graph, for which BP becomes an exact inference
algorithm (Kschischang et al., 2001; Koller & Friedman,
2009). Note that the central problem in Figure 2 (left) is the
sub-graph corresponding to MIXCOLUMNS, which involves
21 byte-valued variables and has many loops. We can now
summarize this part into a single logical factor M(v) as
shown in Figure 2 (right), where v contains all 21 variables.
Thus,M(v) is a binary function evaluating to 1 if and only
if v corresponds to variable assignment consistent with the
entire MIXCOLUMNS computation.

Running BP in the resulting tree-shaped factor graph yields
the exact marginals, by propagating messages fromM to
the input bytes xi, computed as (Kschischang et al., 2001),

µM→xi(xi) =
∑
v\xi

M(v) ·
∏

vj∈v\xi

p(vj |ℓ) (2)

which requires only two operations, namely factor multipli-
cation and factor summation. However, naı̈vely computing
these messages requires enumerating all 2168 possible as-
signments for v, which is clearly intractable.

In this paper, we therefore build on recent results from
knowledge compilation (Darwiche & Marquis, 2002; Dar-

4

Exact Soft Analytical Side-Channel Attacks using Tractable Circuits

MIXCOLUMN

MB

SDD Compiler
with Vtree search

CNF

SDD(M)

PC(M)

·

· ...
x
(2)
3 x

(7)
12

Vtree over all bits in v

·

x
(6)
1

·

... x
(3)
1

Vtree over all bits in x1

·

· x
(1)
2

x
(5)
2

...

Vtree over all bits in x2

...

Project

Project

PMF → PSDD
Compiler

p(x1|ℓ)

PMF → PSDD
Compiler

p(x2|ℓ)

PC(p(x1|ℓ))

PC(p(x2|ℓ))

Figure 3. Given the algorithmic description of MIXCOLUMN (M) and the local beliefs p(v | ℓ), v ∈ v as inputs to our compilation
pipeline, we yield a PSDD representations of all input distributions, denoted PC(p(v | ℓ)). Moreover, all PSDDs are pairwise compatible
for downstream circuit multiplication tasks.

wiche, 2011) and tractable probabilistic circuits (Vergari
et al., 2020; Choi et al., 2020; Peharz et al., 2020). The aim
of knowledge compilation (Darwiche & Marquis, 2002) is to
convert a logical formula, e.g. given in conjunctive normal
form (CNF), into a different target representation that can
tractably (i.e., in polynomial time) answer certain queries
(e.g., the SAT problem). In our context, the relevant formula
is the boolean factorM for MIXCOLUMNS.

Specifically, we compileM into a sentential decision dia-
gram (SDDs) (Darwiche, 2011) which is subsequently con-
verted into its probabilistic extension, probabilistic SDDs
(PSDDs) (Kisa et al., 2014). PSDDs are a special case
of probabilistic circuit, a structured representation of high-
dimensional probability distributions allowing a wide range
of tractable probabilistic inference routines (Vergari et al.,
2020). Our constructed PSDD represents the uniform distri-
bution over all v which are consistent with MIXCOLUMNS,
while inconsistent v are assigned probability 0.

PSDDs allow both factor multiplication and factor summa-
tion in polynomial time (Vergari et al., 2020; Choi et al.,
2020), as required in (2). Furthermore, they also allow to
compute a most probable evidence (MPE), i.e. a probability
maximizing assignment. These tractable routines are the
key routines we require for attacking AES. Before proceed-
ing with implementation details, we review the required
background on tractable circuits, in particular SDDs and
PSDDs. At their core, SDDs are hierarchical and structured
decompositions of Boolean functions, defined by so-called
compressed partitions.

Definition 3.1 (Compressed Partition (Darwiche, 2011)).
Let f(x,y) be a Boolean function over disjoint sets of bi-
nary variables x and y. Any such f can be written as
f = (p1(x) ∧ s1(y)) ∨ · · · ∨ (pk(x) ∧ sk(y)), where pi
(primes) and si (subs) are Boolean functions over x and

y, respectively. Moreover, this decomposition can be con-
structed such that pi ∧ pj = ⊥ for i ̸= j, p1 ∨ · · · ∨ pk = ⊤,
and pi ̸= ⊥ for all i. Further, we restrict the subs to
be distinct, i.e., si ̸= sj for all i ̸= j. Then we call
{(p1, s1), . . . , (pk, sk)} a compressed x-partition of f .

A structure-defining notion of SDDs are vtrees.

Definition 3.2 (Vtree (Pipatsrisawat & Darwiche, 2008)).
A vtree, or variable tree, over a set of binary variables z is
a full, rooted binary tree whose leaves are in a one-to-one
correspondence to the variables in z.

Definition 3.3 (Sentential Decision Diagram (Darwiche,
2011)). Let v be a vtree over binary variables z. A sentential
decision diagram (SDD) is a logical circuit where each
internal node is either an or-node (∨) or an and-node (∧),
while leaf nodes correspond to variables, their negation,
⊤, or ⊥. W.l.o.g., we demand that every or-node n has
k ≥ 1 ∧-nodes as children, denoted n1, . . . , nk. Each ni

has exactly two children, denoted pi, si. Then, n represents
a boolean function gn(x,y) (where x,y are disjoint sets
of binary variables) such that {(pi, si)}ki=1 is a compressed
x-partition of gn. Further, there exists a node v′ in the vtree
v such that x = v′l,y = v′r where v′l, v

′
r denote the set

of variables mentioned in the left and right subtree of v′,
respectively. We say that n is normalized w.r.t. v′. Moreover,
we say that an SDD respects a vtree v iff every or-node n
in the SDD is normalized w.r.t. a vtree node in v.

Hence, an SDD is a representation of a Boolean function;
due its structural constraints it allows a wide range of logical
operations (Darwiche, 2011). As mentioned above, we can
also think of an SDD as an unnormalized uniform distribu-
tion over all satisfying assignments z. It is straightforward
to turn an SDD into a proper probability distribution, a
so-called PSDD (Kisa et al., 2014).

5

Exact Soft Analytical Side-Channel Attacks using Tractable Circuits

Definition 3.4 (Probabilistic SDD). Given an SDD, the
corresponding PSDD is obtained by replacing all and-nodes
with product nodes and all or-nodes with sum nodes. A
product node computes the product of its inputs while a sum
node computes a convex combination of its inputs.

We denote the PSDD representation of a Boolean function
f as PC(f). A PSDD is a type of Probabilistic Circuit (PC)
(Choi et al., 2020) with particular properties, allowing (i)
arbitrary factor summation (marginalization) in time linear
in the circuit size; (ii) circuit multiplication of two circuits
respecting the same vtree, yielding a PSDD whose size is
in the worst-case the product of the sizes of the involved
circuits; (iii) computing a most-probable-explanation, i.e. a
probability maximizing variable assignment in time linear
in the circuit size. Hence, PSDDs provide, among others,
the operations required for exact message passing (Equation
2). The crucial first step is to compileM.

3.1. Compiling MixColumn into an SDD

In order to compile MIXCOLUMN (Algorithm 2) to an SDD,
we represent it as a Boolean function over 168 binary vari-
ables by replacing all variable assignments with equivalence
constraints. Represented in conjunctive normal form (CNF),
M consists of 648 clauses with an average of 3.09 literals
within a clause. To compile the CNF into an SDD represen-
tation SDD(M), we leverage the bottom-up SDD compiler
introduced in (Choi & Darwiche, 2013). Initializing the
vtree to be left-linear and using dynamic vtree minimization
(Choi & Darwiche, 2013), we find that the resulting SDD
contains 19k sums and products and takes ≈ 30 seconds to
compile on a modern laptop CPU.

Further, to tractably compute the BP message in (2), we
need to represent the productM(v) ·

∏
vj∈v\xi

p(vj |ℓ) as a
circuit. We present two methods for this task, namely (i) an
“out-of-the-box” implementation, compiling the mass func-
tions p(vj |ℓ) upon observing ℓ into PSDDs and computing
a sequence of circuit products, described in Section 3.2, and
(ii) compiling the product symbolically and reducing the
problem to weighted model counting (WMC) (Chavira &
Darwiche, 2008), described in Section 3.3. The first tech-
niques makes a slight simplifying sparseness assumption on
the variable beliefs, while the second method is exact and
can work with arbitrary messages.

3.2. PSDD Multiplication Chain

First, we convert the SDD representation of MIXCOLUMN
into a PSDD PC(M). Given the vtree of PC(M) (ranging
over 168 binary variables), we compute a vtree projection
(Shen et al., 2016) for each byte v in v, where each pro-
jection ranges over the 8 bits that make up v. It is then
straightforward to compile p(v|ℓ) into a PSDD that respects

the projected vtree. This technique ensures that all pairs of
circuits in {PC(M)} ∪ {PC(p(vj |ℓ))}21j=1 are compatible
and can be multiplied on the circuit level. Thus, the message
in Equation 2 can be computed by a tractable marginal query
in the circuit product PC(M(v)) ·

∏
vj∈v\xi

PC(p(vj |ℓ)).
In practice, computing this product is infeasible as the cir-
cuit size grows in the worst exponentially in the number of
multiplied circuits (i.e. quadratic for two circuits, cubic for
three, etc.), and the total number of involved circuits is 22.

However, when attacking vanilla AES, some of local be-
liefs p(v|ℓ), v ∈ v will typically have low entropy, i.e., the
probability mass is concentrated on only a few values, of-
ten sharing the same hamming weight. Thus, we can work
with sparse distributions by setting very small values in the
mass functions to 0: Given p(v|ℓ) and a hyperparameter
0 ≤ ε < 1, we sort the probabilities in ascending order and
find the largest k such that the sum of k smallest probabil-
ities is ≤ ε. We then clamp the k smallest probabilities to
0 and re-normalize the mass function. Empirically, we find
that even for values of ε as small as 10−8, the runtime of
computing this circuit product is comparable to SASCA,
while substantially outperforming it.

During compilation, this method can readily leverage sparse
probability distributions. However, since we fix the vtree af-
ter the initial SDD compilation we cannot perform dynamic
vtree optimization (Choi & Darwiche, 2013) during the
PSDD multiplication chain. Since dynamic compilation is
key to achieve small circuits, this out-of-the-box method is
computationally infeasible when dropping the low entropy
assumption. This is in particular the case for protection
techniques which add noise to the leakage signals.

3.3. SDD with Auxiliary Byte Indicators

Our second strategy is to perform symbolic circuit multipli-
cation, which can take use of dynamic vtree optimization
(Choi & Darwiche, 2013). Specifically, we take the SDD
representation of SDD(M) modelling bit interactions and,
akin to previous work on SDD compilation (Choi et al.,
2013), successively add auxiliary variables that represent
the values of bytes. For example, let v be a byte that con-
sists of the bits v(1), . . . , v(8). For each byte variable v in
MIXCOLUMN, we create 256 auxiliary boolean variables
bv=0, . . . , bv=255 that indicate the state of v. After adding
these byte indicator variables to the vtree, we conjoin the
following constraint to the current SDD:(

bv=0 ⇔
(
¬v(1) ∧ · · · ∧ ¬v(8)

))
∧ . . .(

bv=255 ⇔
(
v(1) ∧ · · · ∧ v(8)

))
To efficiently encode this into an SDD, we follow the
method proposed in (Choi et al., 2013) and compute a base

6

Exact Soft Analytical Side-Channel Attacks using Tractable Circuits

SDD α that represents ¬bv=0 ∧ · · · ∧ ¬bv=255 that we can
re-use throughout the compilation.

When compared to the PSDD multiplication chain, the ad-
vantage of this approach is that we can utilize dynamic
vtree optimization (Choi & Darwiche, 2013) throughout
the entire compilation procedure. In the SDD with byte
indicators, computing the BP messages defined in Equa-
tion 2 is effectively a series of weighted model counting
(WMC) problems: Let w(l) denote the weight of a literal
l. To compute µM→xi

(xi = x), we set w(bxi=x) = 1,
w(¬bxi=x) = 0, and the weight of all other byte indi-
cators to w(bv=x) = p(v = x|ℓ) and w(¬bv=x) = 1
∀x ∈ {0, . . . , 255},∀v ∈ v \ xi, while we set w(l) = 1
for all non-auxiliary literals l. Naı̈vely, this entails that
computing {µM→xi

}4i=1 requires 4 · 256 WMC executions.
However, it is known that all marginals (i.e., messages)
can be computed using a single WMC computation and its
derivative (backward pass) (Darwiche, 2000; Peharz et al.,
2015). We thus assume that the number of operations needed
to compute all messages is approximately twice the number
of operations needed for a bottom-up circuit evaluation.

3.4. Merging Trick and Conditioning

Even when using modern knowledge compilers, construct-
ing the SDD described above is prohibitively expensive.
Hence, we aid the SDD compiler by performing a num-
ber of pre-processing steps. First, we apply a known tech-
nique in the SCA literature, called the merging trick (Guo
et al., 2020): For example, in the SASCA factor graph
(Figure 2), x12 and x̃12 are connected via a determinis-
tic bijection fXTIME(x12) = x̃12. Thus, when computing
key marginals, there is no need to model both variables in
the factor graph—instead, we aggregate the leakage dis-
tributions of these variables by updating the local beliefs
p(x12 = x|ℓ) ← p(x12 = x|ℓ) · p(x̃12 = fXTIME(x)|ℓ) for
all x ∈ {0, . . . , 255}. We remove the node x̃12 from the
factor graph and omit introducing byte indicator variables
for it (or multiplying the PSDD that represents p(x̃12|ℓ)).
We repeat this trick to remove x̃23, x̃34, and x̃41.

Moreover, notice that if we condition on g, all XOR factors
connected to g become indicator functions XORg(x, x

′) that
evaluate to 1 iff x⊕g = x′. Thus, we can leverage the merg-
ing trick to remove x′

12, x
′
23, x

′
34, x

′
41 by combining their

local beliefs with the distributions of their corresponding
left neighbors x̃12, . . . , x̃41. In the same way, we remove
x34, x41 by updating the beliefs of x12 and x23, respectively.
As this simplifies the inference problem drastically, we con-
dition SDD(M) on a fixed g ∈ {0, . . . , 255} and only add
byte indicator variables for 10 bytes in total (corresponding
to 2560 auxiliary byte indicators). In the general case, we
can compile a conditional SDD for each value of g (resulting

in 256 SDDs) and easily combine them into a larger SDD
by connecting them to an or-node.

However, due to the linearity of MIXCOLUMN, it suffices
to compile a single conditional SDD (with arbitrary, fixed
g ∈ {0, . . . , 255}), as we can also run inference queries for
different g′ ̸= g by simply permuting some of the weight
functions. This novel technique (1) reduces the time and
space complexity of SDD compilation by a factor of ≈
256, and (2) opens up the possibility for highly-parallel
GPU-centric inference implementations. A more detailed
exposition of this technique can be found in Appendix A.

Using these techniques, compiling SDD(M) takes about
7 hours on a Intel Xeon E5-2670 CPU and the resulting
circuit consists of ≈ 20M nodes and needs 17.4M sums and
37.2M products for a bottom-up evaluation. When evaluated
256 times, this amounts to 6 times less computations for
MPE queries in the corresponding PSDD, and 3.5 times less
computations when computing all marginals.

3.5. Implementation

While our approach involves a rather sophisticated compi-
lation and inference pipeline, our implementation makes
heavy use of existing software packages for both knowl-
edge compilation and probabilistic inference. Most notably,
we leverage pysdd (Meert, 2017), a Python interface for
the sdd1 software package, which allows us to easily con-
struct, manipulate and optimize SDDs and their associated
vtrees. This allows us to implement many components
of our pipeline (e.g., the “merging trick”) in a relatively
straightforward way. Our implementation can be found at
https://github.com/wedenigt/exsasca.

4. Experiments
To evaluate our method, we use asynchronously captured
power traces from an SMT32F415 (ARM) microcontroller
(Bursztein & Picod, 2019) that performs encryption using
AES-128. The data D = {(ℓ(i),k(i),p(i))}ni=1 contains
n = 131,072 samples, each of which consists of a high-
dimensional power trace ℓ ∈ R20,000, and 16 byte key and
plaintext vectors k,p, with 512 unique keys k. For each
unique key, the dataset contains 256 elements, each with
a different plaintext p. During the attack phase, we as-
sume the plaintext to be known (known plaintext attack).
We use 20% of D as a test set Dtest, while the remaining
80% of D are again split into a training set Dtrain (82.5% of
D\Dtest) and a validation setDval (17.5% ofD\Dtest). The
set of unique keys in Dtrain,Dtest,Dval are non-overlapping,
i.e., when validating and testing a side-channel attack, it
must reason about keys k it has never seen during profil-
ing/training.

1http://reasoning.cs.ucla.edu/sdd/

7

https://github.com/wedenigt/exsasca
http://reasoning.cs.ucla.edu/sdd/

Exact Soft Analytical Side-Channel Attacks using Tractable Circuits

Table 1. Top-1 success rate of different inference methods, mea-
sured on the validation dataset Dval. ε controls the level of sparsity
in the approximated distributions, where ε = 0 means no approxi-
mation (utilizing the method in Section 3.3).

Top-1 Success Rate
Inference Method ε = 10−2 ε = 10−8 ε = 0
Baseline 0.10% 0.10% 0.10%
SASCA (3 iters) 0.52% 0.52% 0.52%
SASCA (50 iters) 32.34% 33.81% 33.76%
SASCA (100 iters) 34.25% 36.04% 35.84%
ExSASCA + MAR 57.36% 67.37% 67.37%
ExSASCA + MPE 57.51% 67.60% 67.61%

4.1. Evaluation

As usual in literature, we model only the first round of
AES, thus we can independently attack all 4 branches of
MIXCOLUMN and reason about the corresponding 4-byte
subkeys independently. For a given leakage ℓ, we utilize
the template attack described in (Bronchain et al., 2021) to
obtain a set of local beliefs p(v | ℓ) for all bytes v ∈ v and
for each call to MIXCOLUMN. Using these beliefs, SASCA
and ExSASCA + MAR compute marginal posterior distribu-
tions p(k1 | ℓ), . . . , p(k16 | ℓ) and then define the joint key
posterior to be p(k|ℓ) =

∏16
i=1 p(ki|ℓ). On the other hand,

ExSASCA + MPE does not make this conditional indepen-
dence assumption and directly computes argmaxk p(k | ℓ),
i.e., the MPE in the true joint key posterior according to our
probabilistic model p(k | ℓ) = p(k1:4 | ℓ) · · · p(k13:16 | ℓ),
where ki:j = (ki, ki+1, . . . , kj) denotes a subkey.

To simulate protected AES implementations, we experiment
with corrupting the local belief distributions: For α ∈ [0, 1]
and for all bytes v ∈ v, we compute

p̃α(v = x | ℓ) = (1− α)p(v = x | ℓ) + α
1

256

for all x ∈ {0, . . . , 255} and use the set of corrupted beliefs
p̃α(v | ℓ) as inputs to different inference methods. In this
scenario, we cannot effectively leverage sparse approxima-
tions and thus, choose ε = 0 in this experiment.

For evaluation we use top-1 success rate: Given a sin-
gle leakage ℓ and the corresponding 16-byte key k∗ and
plaintext p, we define an attack to be successful if k∗ =
argmaxk p(k|ℓ), i.e., the true key has the highest probabil-
ity in the joint key posterior. The top-1 success rate is the
fraction of successful attacks.

4.2. Results

While SASCA always computes approximate marginals
over key bytes, we can use our circuit to compute both

0.0 0.2 0.4 0.6 0.8 1.0
Noise level α

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
op

-1
S

u
cc

es
s

R
at

e

ExSASCA + MPE

SASCA (100 iters)

SASCA (3 iters)

ExSASCA + MAR

SASCA (50 iters)

Figure 4. Top-1 success rate of different inference methods when
using corrupted beliefs p̃α(v | ℓ), computed on a batch of 128
traces in Dval (ε = 0). As α → 1, the local beliefs become
increasingly uninformative.

(1) exact key marginals (ExSASCA + MAR) and (2) exact
most probable evidence assignments directly in the joint key
posterior (ExSASCA + MPE). As a baseline, we run BP only
in the acyclic factor graph given by the ADDROUNDKEY
and SUBBYTES routines, i.e., we neglect all local beliefs
over bytes involved in the computation of MIXCOLUMN.

The results in Table 1 show that (1) both ExSASCA vari-
ants systematically and substantially outperform all SASCA
runs—even when ExSASCA uses sparse approximations
and SASCA does not, and (2) directly computing the MPE
in the joint key posterior yields a slightly higher success
rate. Moreover, Figure 4 demonstrates empirically that
as the local beliefs become less informative (e.g. due to
noise), SASCA effectively fails to attack the system while
the ExSASCA variants still show success rates of about
20%.

4.3. Computational Complexity

When ε > 0, the computational cost of ExSASCA depends
on both ε and the entropy of the distributions p(v | ℓ). In our
experiments, we find that the runtime of ExSASCA with
ε ≥ 10−8 is still very competitive to a high-performance
implementation of SASCA (Cassiers & Bronchain, 2023):
For a single trace, a SASCA takes tens to hundreds of mil-
liseconds on a modern laptop CPU, while our PSDD multi-
plication chain takes hundreds of milliseconds for ε = 10−2

and seconds for ε = 10−8. In this regime, both SASCA and
ExSASCA need three orders of magnitudes less compute
than the naı̈ve exhaustive inference routine. Even without
approximations (ε = 0), ExSASCA + MPE can perform ex-
act inference with 6 times less operations than its exhaustive
counterpart, while ExSASCA + MAR needs 3.5 times less
operations.

8

Exact Soft Analytical Side-Channel Attacks using Tractable Circuits

4.4. Extensions to Larger Inference Problems

In principle, ExSASCA can also be used to attack more
than a single AES round:2 When neglecting the functional
relationship between the key and the so-called “round keys”,
the resulting factor graph is still acyclic (given that MIX-
COLUMNS is represented as a high dimensional factor).
However, in this scenario, the usefulness of attacking multi-
ple rounds heavily depends on the beliefs over the round key
bytes. Since our dataset does not contain traces for all round
key byte values, we cannot learn probabilistic models in the
same way as in the single-round attacks and thus, we do not
report empirical evaluations of attacking multiple rounds.

5. Conclusion
In this work, we introduce ExSASCA, a fast and exact prob-
abilistic inference algorithm for SASCA and demonstrate
that ExSASCA substantially outperforms SASCA when at-
tacking the Advanced Encryption Standard (AES). While
SASCA uses loopy belief propagation to compute approx-
imate marginal posteriors over the key bytes, we instead
choose to represent the loopy part of the factor graph as a
high-dimensional factor, which—conceptually—allows us
to perform message passing on a tree.

To efficiently compute messages which involve this factor,
we compile it into a tractable probabilistic model that al-
lows us to compute marginals and most probable evidence
(MPE) queries in polynomial time of the circuit size. In
particular, we develop two distinct approaches for compila-
tion: (i) leveraging sparsity in the beliefs about intermediate
computations during compilation, we frame the task as a
combination of an off-line compilation phase and an on-line
sequence of PSDD multiplications. (ii) for dense belief dis-
tributions, we present a novel dynamic compilation pipeline
that produces an SDD that can perform exact inference with
6 times less operations than exhaustive enumeration. We
posit that our method opens a new avenue for studying both
side-channel attacks and cryptanalysis using the framework
of tractable (probabilistic) models and may lead to stronger
theoretical guarantees in cryptographic systems.

Future work includes various interesting directions. In this
work we used the hand-designed template attacks proposed
by (Bronchain et al., 2021), but these might be replaced
with a deep neural nets in combination with PCs similar as
in (Stelzner et al., 2019; Tan & Peharz, 2019; Shao et al.,
2020; Ahmed et al., 2022; Gala et al., 2024).3

2Attacking multiple rounds is also necessary if the key is longer
than 128 bits (e.g., 192 or 256 bits).

3Our preliminary experiments for this paper were actually us-
ing deep learning templates, which however under-performed in
comparison to (Bronchain et al., 2021), indicating that designing
“deep templates” might require some additional engineering effort.

Moreover, while our central effort in this paper is to de-
tect weaknesses in cryptographic systems, the developed
techniques might well be used in other application requiring
large-scale integration of probabilistic and logical reasoning,
such as system verification and error correcting codes.

Acknowledgements
This project has received funding from the European
Union’s EIC Pathfinder Challenges 2022 programme under
grant agreement No 101115317 (NEO). Views and opinions
expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or European
Innovation Council. Neither the European Union nor the
European Innovation Council can be held responsible for
them.

Impact Statement
This paper presents work whose goals are to advance the
field of Machine Learning, specifically the area of exact in-
ference and tractable models, and the field of Cryptography,
by providing new tools to analyse weaknesses in crypto-
graphic algorithms via cryptographic attacks. Hence, our
work has a hypothetical potential of dual use. However, this
potential for dual use is very limited, since (i) we do not
provide a new attack, but rather a novel inference method to
perform an established attack, and (ii) this established attack
is technically challenging. Moreover, by publishing this
improved method we ensure that the scientific and general
public is aware of and can react to the connected risks.

References
Ahmed, K., Teso, S., Chang, K., den Broeck, G. V., and Ver-

gari, A. Semantic probabilistic layers for neuro-symbolic
learning. In NeurIPS, 2022.

Bronchain, O., Cassiers, G., and Standaert, F. Give me 5
minutes: Attacking ASCAD with a single side-channel
trace. IACR Cryptol. ePrint Arch., pp. 817, 2021.

Bursztein, E. and Picod, J.-M. A hacker guide to deep
learning based side channel attacks. In CON, D. (ed.),
DEF CON 27, 2019.

Cassiers, G. and Bronchain, O. Scalib: A side-channel
analysis library. J. Open Source Softw., 8(86):5196, 2023.

9

Exact Soft Analytical Side-Channel Attacks using Tractable Circuits

Chari, S., Rao, J. R., and Rohatgi, P. Template attacks.
In Jr., B. S. K., Koç, Ç. K., and Paar, C. (eds.), Crypto-
graphic Hardware and Embedded Systems - CHES 2002,
4th International Workshop, Redwood Shores, CA, USA,
August 13-15, 2002, Revised Papers, volume 2523 of
Lecture Notes in Computer Science, pp. 13–28. Springer,
2002.

Chavira, M. and Darwiche, A. On probabilistic inference
by weighted model counting. Artificial Intelligence, 172
(6-7):772–799, 2008.

Choi, A. and Darwiche, A. Dynamic minimization of sen-
tential decision diagrams. In desJardins, M. and Littman,
M. L. (eds.), Proceedings of the Twenty-Seventh AAAI
Conference on Artificial Intelligence, July 14-18, 2013,
Bellevue, Washington, USA, pp. 187–194. AAAI Press,
2013.

Choi, A., Kisa, D., and Darwiche, A. Compiling prob-
abilistic graphical models using sentential decision di-
agrams. In van der Gaag, L. C. (ed.), Symbolic and
Quantitative Approaches to Reasoning with Uncertainty
- 12th European Conference, ECSQARU 2013, Utrecht,
The Netherlands, July 8-10, 2013. Proceedings, volume
7958 of Lecture Notes in Computer Science, pp. 121–132.
Springer, 2013.

Choi, Y., Vergari, A., and Van den Broeck, G. Probabilistic
circuits: A unifying framework for tractable probabilistic
models. 10 2020.

Daemen, J. and Rijmen, V. The block cipher rijndael. In
Quisquater, J. and Schneier, B. (eds.), Smart Card Re-
search and Applications, This International Conference,
CARDIS ’98, Louvain-la-Neuve, Belgium, September 14-
16, 1998, Proceedings, volume 1820 of Lecture Notes in
Computer Science, pp. 277–284. Springer, 1998.

Darwiche, A. A differential approach to inference in
bayesian networks. In Boutilier, C. and Goldszmidt, M.
(eds.), UAI ’00: Proceedings of the 16th Conference in
Uncertainty in Artificial Intelligence, Stanford University,
Stanford, California, USA, June 30 - July 3, 2000, pp.
123–132. Morgan Kaufmann, 2000.

Darwiche, A. SDD: A new canonical representation of
propositional knowledge bases. In Walsh, T. (ed.), IJ-
CAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, Barcelona, Catalo-
nia, Spain, July 16-22, 2011, pp. 819–826. IJCAI/AAAI,
2011.

Darwiche, A. and Marquis, P. A knowledge compilation
map. J. Artif. Intell. Res., 17:229–264, 2002.

de Colnet, A. and Mengel, S. A compilation of suc-
cinctness results for arithmetic circuits. arXiv preprint
arXiv:2110.13014, 2021.

Gala, G., de Campos, C., Peharz, R., Vergari, A., and
Quaeghebeur, E. Probabilistic integral circuits. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 2143–2151. PMLR, 2024.

Gandolfi, K., Mourtel, C., and Olivier, F. Electromagnetic
analysis: Concrete results. In Koç, Ç. K., Naccache,
D., and Paar, C. (eds.), Cryptographic Hardware and
Embedded Systems - CHES 2001, Third International
Workshop, Paris, France, May 14-16, 2001, Proceedings,
volume 2162 of Lecture Notes in Computer Science, pp.
251–261. Springer, 2001.

Guo, Q., Grosso, V., Standaert, F., and Bronchain, O. Mod-
eling soft analytical side-channel attacks from a coding
theory viewpoint. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2020(4):209–238, 2020.

Kisa, D., den Broeck, G. V., Choi, A., and Darwiche, A.
Probabilistic sentential decision diagrams. In Baral, C.,
Giacomo, G. D., and Eiter, T. (eds.), Principles of Knowl-
edge Representation and Reasoning: Proceedings of the
Fourteenth International Conference, KR 2014, Vienna,
Austria, July 20-24, 2014. AAAI Press, 2014.

Knoll, C. Understanding the behavior of belief propagation.
CoRR, abs/2209.05464, 2022.

Kocher, P. C. Timing attacks on implementations of diffie-
hellman, rsa, dss, and other systems. In Koblitz, N. (ed.),
Advances in Cryptology - CRYPTO ’96, 16th Annual In-
ternational Cryptology Conference, Santa Barbara, Cali-
fornia, USA, August 18-22, 1996, Proceedings, volume
1109 of Lecture Notes in Computer Science, pp. 104–113.
Springer, 1996.

Kocher, P. C., Jaffe, J., and Jun, B. Differential power
analysis. In Wiener, M. J. (ed.), Advances in Cryptology
- CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-
19, 1999, Proceedings, volume 1666 of Lecture Notes in
Computer Science, pp. 388–397. Springer, 1999.

Koller, D. and Friedman, N. Probabilistic graphical models:
principles and techniques. MIT press, 2009.

Kschischang, F. R., Frey, B. J., and Loeliger, H.-A. Factor
graphs and the sum-product algorithm. IEEE Transac-
tions on information theory, 47(2):498–519, 2001.

MacKay, D. J. Information theory, inference and learning
algorithms. Cambridge university press, 2003.

10

Exact Soft Analytical Side-Channel Attacks using Tractable Circuits

Meert, W. Pysdd. In Darwiche, A., Marquis, P., Suciu, D.,
and Szeider, S. (eds.), Recent Trends in Knowledge Com-
pilation, Report from Dagstuhl Seminar 17381, Septem-
ber 2017. Dagstuhl Seminar.

Peharz, R., Tschiatschek, S., Pernkopf, F., and Domingos,
P. On Theoretical Properties of Sum-Product Networks.
In Lebanon, G. and Vishwanathan, S. V. N. (eds.), Pro-
ceedings of the Eighteenth International Conference on
Artificial Intelligence and Statistics, volume 38 of Pro-
ceedings of Machine Learning Research, pp. 744–752,
San Diego, California, USA, 09–12 May 2015. PMLR.

Peharz, R., Lang, S., Vergari, A., Stelzner, K., Molina, A.,
Trapp, M., Van den Broeck, G., Kersting, K., and Ghahra-
mani, Z. Einsum networks: Fast and scalable learning
of tractable probabilistic circuits. In International Con-
ference on Machine Learning, pp. 7563–7574. PMLR,
2020.

Pipatsrisawat, K. and Darwiche, A. New compilation lan-
guages based on structured decomposability. In Fox, D.
and Gomes, C. P. (eds.), Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI 2008,
Chicago, Illinois, USA, July 13-17, 2008, pp. 517–522.
AAAI Press, 2008.

Shao, X., Molina, A., Vergari, A., Stelzner, K., Peharz, R.,
Liebig, T., and Kersting, K. Conditional sum-product
networks: Imposing structure on deep probabilistic archi-
tectures. In International Conference on Probabilistic
Graphical Models, pp. 401–412. PMLR, 2020.

Shen, Y., Choi, A., and Darwiche, A. Tractable opera-
tions for arithmetic circuits of probabilistic models. In
Lee, D. D., Sugiyama, M., von Luxburg, U., Guyon, I.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain, pp. 3936–3944, 2016.

Shen, Y., Goyanka, A., Darwiche, A., and Choi, A. Struc-
tured bayesian networks: From inference to learning with
routes. In The Thirty-Third AAAI Conference on Artifi-
cial Intelligence, AAAI 2019, The Thirty-First Innovative
Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2019, Honolulu,
Hawaii, USA, January 27 - February 1, 2019, pp. 7957–
7965. AAAI Press, 2019.

Spreitzer, R., Moonsamy, V., Korak, T., and Mangard, S.
Systematic classification of side-channel attacks: A case
study for mobile devices. IEEE Commun. Surv. Tutorials,
20(1):465–488, 2018.

Standaert, F. Introduction to side-channel attacks. In Ver-
bauwhede, I. M. R. (ed.), Secure Integrated Circuits
and Systems, Integrated Circuits and Systems, pp. 27–
42. Springer, 2010.

Stelzner, K., Peharz, R., and Kersting, K. Faster attend-infer-
repeat with tractable probabilistic models. In Interna-
tional Conference on Machine Learning, pp. 5966–5975.
PMLR, 2019.

Tan, P. L. and Peharz, R. Hierarchical decompositional mix-
tures of variational autoencoders. In International Con-
ference on Machine Learning, pp. 6115–6124. PMLR,
2019.

Vergari, A., Choi, Y., Peharz, R., and Van den Broeck, G.
Probabilistic circuits: Representations, inference, learn-
ing and applications. AAAI Tutorial, 2020.

Veyrat-Charvillon, N., Gérard, B., and Standaert, F. Soft
analytical side-channel attacks. In Sarkar, P. and Iwata, T.
(eds.), Advances in Cryptology - ASIACRYPT 2014 - 20th
International Conference on the Theory and Application
of Cryptology and Information Security, Kaoshiung, Tai-
wan, R.O.C., December 7-11, 2014. Proceedings, Part I,
volume 8873 of Lecture Notes in Computer Science, pp.
282–296. Springer, 2014.

11

Exact Soft Analytical Side-Channel Attacks using Tractable Circuits

Algorithm 1 Simplified Beginning of AES-128
Input: Key bytes k1, . . . , k16, Plaintext bytes p1, . . . , p16
for i in 1, . . . , 16 do
yi ← ki ⊕ pi
xi ← S(yi)

end for
for i in 0, 4, 8, 12 do

x
(m)
i+1 , . . . , x

(m)
i+4 ← MIXCOLUMN(xi+1, . . . , xi+4)

end for

Algorithm 2 MIXCOLUMN

Input: Input bytes x1, . . . , x4

x12, x23, x34, x41 ← (x1 ⊕ x2), (x2 ⊕ x3), (x3 ⊕ x4), (x4 ⊕ x1)
g ← x12 ⊕ x34

x̃12, x̃23, x̃34, x̃41 ← XTIME(x12), XTIME(x23), XTIME(x34), XTIME(x41)
x′
12, x

′
23, x

′
34, x

′
41 ← (x̃12 ⊕ g), (x̃23 ⊕ g), (x̃34 ⊕ g), (x̃41 ⊕ g)

x
(m)
1 , x

(m)
2 , x

(m)
3 , x

(m)
4 ← (x1 ⊕ x′

12), (x2 ⊕ x′
23), (x3 ⊕ x′

34), (x4 ⊕ x′
41)

Return: x(m)
1 , x

(m)
2 , x

(m)
3 , x

(m)
4

A. Single-Circuit Compilation
As detailed in Section 3.4, we compileM conditioned on some arbitrary, but fixed g ∈ {0, . . . , 255}, denoted SDD(M| g).
Consider the set of models Xg = {v s.t. (M| g)(v) = 1}. Since g = x1 ⊕ x2 ⊕ x3 ⊕ x4, it is easy to see that g partitions
the set of all models into equally sized sets, i.e., |Xg| = |Xg′ | for all byte-valued g, g′. Thus, there exists a bijection
ϕg→g′ : Xg → Xg′ that maps a model from Xg to a model in Xg′ . Importantly, due to the linear structure of MIXCOLUMN,
we can define such a bijection by independently mapping the individual bytes v ∈ v:

(ϕg→g′(v))i = ϕvi
g→g′(vi) (3)

Let vg ∈ Xg. Since we can use the merging trick detailed in Section 3.4, it suffices to consider the subset of bytes in vg,
namely v̂g = (x1, x2, x3, x4, x12, x23, x

(m)
1 , x

(m)
2 , x

(m)
3 , x

(m)
4)⊤. To map this to some v̂g′ , we set

• ϕx4

g→g′(x4) = x4 ⊕ g ⊕ g′

• ϕ
x
(m)
1

g→g′(x
(m)
1) = x

(m)
1 ⊕ g ⊕ g′

• ϕ
x
(m)
2

g→g′(x
(m)
2) = x

(m)
2 ⊕ g ⊕ g′

• ϕ
x
(m)
3

g→g′(x
(m)
3) = x

(m)
3 ⊕ fXTIME(g ⊕ g′)

• ϕ
x
(m)
4

g→g′(x
(m)
3) = x

(m)
3 ⊕ fXTIME(g ⊕ g′)⊕ g ⊕ g′

and ϕv
g→g′(v) = v for all remaining bytes v ∈ v̂g . Consequently, we can exploit this fact to compute a weighted model count

over Xg′ using SDD(M| g) with g′ ̸= g by (1) performing the merge trick with g′ instead of g, and (2) by constructing a
new weight function w′ that first applies the corresponding byte-wise bijection before invoking the original weight function
w, i.e., w′(v) = w

(
ϕv
g→g′(v)

)
. Thus, we keep the circuit SDD(M| g) fixed and compute the weighted model count 256

times, where each computation is performed with a different weight function.

12

