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Abstract001

Causal effect estimation is a core task in em-002
pirical research and evidence-based decision-003
making. Successfully performing this task typ-004
ically requires familiarity with a range of in-005
ference methods, their statistical assumptions,006
and domain-specific considerations. Recent007
advances in large language models (LLMs) of-008
fer the potential to automate the end-to-end009
causal inference pipeline and broaden access010
to causality-driven analysis. However, existing011
LLM-based approaches often require users to012
specify the estimation method and relevant vari-013
ables, which needs prior knowledge of causal014
inference on users end. Similarly, the end-to-015
end tools support a limited set of causal ef-016
fect measures, omitting many methods com-017
monly used in applied research. To address018
these limitations, we introduce Causal AI Sci-019
entist (CAIS), an end-to-end causal estimation020
tool that takes a natural language query, maps it021
to a formal causal estimation problem, selects022
and implements a suitable method, and inter-023
prets the result to answer the original query.024
CAIS supports a broad range of causal infer-025
ence methods, enabling estimation across di-026
verse scenarios. We evaluate CAIS using ex-027
amples drawn popular benchmark dataset, aca-028
demic publications, and synthetic datasets, cov-029
ering a wide spectrum of causal effect measures030
and estimation tasks.031

1 Introduction032

Causal effect estimation aims to quantify the im-033

pact of a treatment or intervention on an outcome of034

interest. Understanding cause-and-effect relation-035

ships is central to evidence-based decision-making036

and empirical research across disciplines such as037

social science, public health, and biomedicine (Im-038

bens, 2024; Glass et al., 2013; Kleinberg and Hripc-039

sak, 2011). One reason why real-world causal ef-040

fect estimation is hard is because we do not observe041

outcomes under both treatment and control for the042

same unit (Holland, 1986). Hence, causal infer- 043

ence relies on assumptions that justify comparisons 044

between treated and control groups. 045

Identifying suitable methods and justifying their 046

applicability to the task at hand typically requires 047

domain expertise. Researchers rely on their under- 048

standing of theory, identification strategies, and the 049

data-generating process to select estimation tech- 050

niques and assess result credibility. This reliance 051

on expert knowledge can limit access to causal anal- 052

ysis for users who may benefit from it but may lack 053

methodological training. For example, a policy an- 054

alyst with employment and wage data may wish 055

to evaluate the impact of minimum wage laws but 056

struggle to draw reliable conclusions without the 057

appropriate tools. 058

Recent advances in Large Language Models 059

(LLMs) offer a promising pathway to automate 060

the causal inference process (Kiciman et al., 2024). 061

Existing works use LLMs to generate code for user- 062

specified estimation tasks (Liu et al., 2024; Chen 063

et al., 2025). However, users need to choose the 064

method and variables, and doing so requires famil- 065

iarity with a wide range of techniques. 066

One approach to enable end-to-end causal anal- 067

ysis is fine-tuning models specifically for causal 068

inference, such as LLM4Causal (Jiang et al., 2024). 069

However, LLM4Causal support only a limited set 070

of effect measures, excluding many methods used 071

in applied research. Another direction involves 072

general-purpose agents powered by general pur- 073

pose language models. Some agents focus on sta- 074

tistical (Wu et al., 2024) or machine learning tasks 075

(Hong et al., 2024; Guo et al., 2024), while others 076

include causal inference capabilities but emphasize 077

discovery rather than estimation (Wang et al., 2025; 078

Han et al., 2024). 079

To address these limitations, we present the 080

Causal AI Scientist (CAIS), an end-to-end LLM- 081

powered pipeline for generating causality-driven 082

answers to natural language queries. Given a 083
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dataset, its description, and a query, CAIS frames084

the task as a causal estimation problem, selects085

an appropriate method, estimates the effect, and086

interprets the result in context. Inspired by the087

Tree-of-Thoughts prompting approach (Yao et al.,088

2023a; Long, 2023), CAIS uses a structured deci-089

sion tree to break down the method selection pro-090

cess into smaller and focused steps. Each node in091

the tree prompts the model to evaluate a specific092

feature of the dataset or query, such as identify-093

ing the treatment, outcome, or instrument. This094

step-by-step approach helps simplify the reasoning095

process and makes it easier to follow. In addition,096

CAIS performs diagnostic checks and incorporates097

a feedback loop to correct potential errors before098

producing a final answer.099

Additionally, we introduce a dataset of natural100

language causal queries. While existing bench-101

marks focus on implementing specified estimation102

procedures (Liu et al., 2024), our dataset evaluates103

whether LLMs can correctly frame causal estima-104

tion problems. This approach builds on related105

work in data-driven reasoning (Majumder et al.,106

2024; Wu et al., 2024; Gu et al., 2024) and extends107

it to causal inference. Finally, we evaluate CAIS108

on three types of datasets: textbook-based (QR-109

Data (Liu et al., 2024)), synthetic, and real-world110

examples, thus covering a wide range of causal111

estimation methods and scenarios.112

2 Problem Statement113

We are provided with:114

1. A dataset D = {Xi, Yi, Ti}ni=1, where i de-115

notes the participating units, Xi ∈ Rd denotes116

the covariates, Ti is the treatment (discrete or117

continuous), and Yi is the observed outcome118

for unit i.119

2. A brief description of the dataset and how it120

was collected121

3. A natural language (causal) question associ-122

ated with the dataset123

Given the above inputs, the goal is to generate124

a causality-driven answer to the query q. Con-125

sider the example query: Does participating in126

the training program lead to higher earnings?127

To answer this, we need to estimate the causal ef-128

fect of participating in the program on earnings. A129

common measure of causal effect i.e. the estimand130

is Average Treatment Effect (ATE), which the131

expected difference in earnings if everyone were to 132

participate versus if no one did. 133

If the dataset comes from a randomized experi- 134

ment, we can estimate the ATE by directly compar- 135

ing average outcomes between treated and control 136

groups. On the other hand, if the data is observa- 137

tional, we must account for confounding variables, 138

like education or prior income that affect both treat- 139

ment and outcome. An appropriate estimation 140

method computes the estimand. This value then 141

informs the answer to the natural language query. 142

While we focus here on ATE for illustration, 143

other causal quantities, such as the effect on treated 144

individuals (ATT) or compliers (LATE), maybe 145

more appropriate depending on the setting. Esti- 146

mating these requires different assumptions and 147

techniques. We refer readers to standard causal 148

inference texts for a broader treatment (Imbens and 149

Rubin, 2015; Hernan and Robins, 2025; Cunning- 150

ham, 2021). 151

3 Dataset 152

To comprehensively evaluate CAIS, we use three 153

types of datasets: QRData (Liu et al., 2024), real- 154

world studies, and synthetic data. 155

QRData is a benchmark designed to evaluate 156

the statistical and causal reasoning capabilities of 157

LLMs. The estimation tasks are adapted from 158

causal inference textbooks. Since the datasets are 159

constructed for teaching purposes, they are pre- 160

processed and the inference process is relatively 161

streamlined. 162

Real-world studies involve more complex de- 163

signs, a broader range of variables, and less struc- 164

tured datasets. To evaluate CAIS in these settings, 165

we curate examples directly from published empir- 166

ical research. ‘ Both QRData and real-world ex- 167

amples primarily rely on linear regression, which 168

limits coverage of other estimation methods. To ad- 169

dress this, we construct synthetic datasets where 170

the ground-truth causal effect is known and vari- 171

ables are generated according to specific model 172

specifications. This enable evaluation across a 173

wider range of methods and scenarios. 174

3.1 Textbook Examples 175

The causal effect estimation tasks in QRData spec- 176

ify the inference method or estimand. Since our fo- 177

cus is on end-to-end causal inference, including au- 178

tomatic method and variable selection, we modify 179

the queries by removing explicit references to esti- 180
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Assets

treat age re78
1 28 9679

0 37 5500

0 25 8000
1 22 6000

Description

The National Supported Work
(NSW) Demonstration was a
training program .........

Variables
 treat: whether or not the
participant received the
training
..........
 re78: earnings in 1978

lalonde.csv

Query: Does
participating in the
NSW program
boost earnings?

   
    
   import pandas as pd
   df = pd.read_csv(lalonde.csv)
   model = smf.ols("re78 ~ treat +   
                  age+....", data=df).fit()
  

treatment: treat
outcome: re78
covariates: age, educ, .......
method: OLS

CAIA

Output

ATE: 2457.89 (445) 

Interpretation: Based on
the above analysis,
participating in the training
program leads to higher
earnings. 

User

Input

+

LLM

Figure 1: CAIS workflow. The user provides an input dataset (CSV file), a description, and a causal query. Guided
by a decision tree and a backbone LLM, CAIS selects an appropriate estimation method, executes the code, and
returns the estimated causal effect along with a natural language interpretation.

Collection Origin #Queries #CSV
Median

Obs.
Median
Cols.

QRData Textbook examples 39 35 1209 19

Real-World Empirical research papers 29 14 1720 17.5

Synthetic Simulated scenarios 45 45 428 7

Table 1: Properties of dataset collections used for evalu-
ating CAIS.

mation techniques or causal effect measures. For181

example, the original question, "What is the Av-182

erage Treatment Effect (ATE) of the dataset?"183

is rephrased as "What is the effect of home visits184

by doctors on cognitive scores of infants?" We185

retain the original dataset descriptions and the as-186

sociated numerical estimates of the causal effects.187

Additionally, we restrict our evaluation to queries188

with numerical answers.189

3.2 Real-world Studies190

We compile research papers from a range of disci-191

plines, including economics, health policy, and po-192

litical science. Many of these studies use datasets193

available in the R package causaldata. For each194

study, we create a summary that captures key in-195

formation about the dataset, including variable de-196

scriptions, data sources, and collection procedures.197

We then formulate causal queries by examining the198

empirical results, the associated statistical models,199

and how they are interpreted in the original papers.200

3.3 Synthetic Data201

We randomly select the true causal effect τ in the202

range (1, 10). Continuous covariates are drawn203

from a normal distribution, while binary covariates 204

and treatment assignments (for binary treatment 205

settings) are generated from a binomial distribu- 206

tion. The outcome Y is determined by the model 207

specification. For example, for a randomized trial: 208

Y = α+Xθ⃗ + τT + ϵ, (1) 209

where ϵ ∼ N (0, 1) is the error term, θ⃗ ∼ 210

N (u, kI), and α is the intercept. Here, X denotes 211

the covariates and T is the treatment variable. 212

We also use LLMs to generate hypothetical con- 213

texts for each synthetic dataset. Specifically, we 214

prompt the model to create plausible scenarios ex- 215

plaining how and why the data might have been 216

collected. As part of the process, the LLM aslo 217

produces dataset metadata, including headings and 218

descriptions for covariates, treatment variables, and 219

outcomes. This approach adds context to synthetic 220

datasets and allows us to test CAIS’s ability to han- 221

dle real-world-like scenarios. 222

4 CAIS 223

Here, we describe CAIS, an end-to-end LLM- 224

powered tool for generating causality-driven an- 225

swers to natural language (causal) queries over tab- 226

ular datasets. At a high level, CAIS operates in 227

four stages: 228

Stage 1: Dataset Preprocessing and Query de- 229

composition CAIS begins by conducting a pre- 230

liminary analysis of both the input dataset and the 231

user query. This involves prompting a large lan- 232

guage model (LLM) to extract key variables and 233

dataset attributes, including treatment and outcome 234
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variables, the presence of valid instrumental vari-235

ables, timing of observations, and other relevant236

characteristics.237

Stage 2: Method Selection and Execution238

Based on the variables identified in the previous239

stage such as whether data comes from a random-240

ized controlled trial (RCT), CAIS selects one or241

more suitable causal inference methods. These242

methods are then applied to estimate the causal243

effect of interest.244

Stage 3: Validation To assess the reliability of245

the estimated causal effects, CAIS performs a se-246

ries of diagnostic evaluations, including statisti-247

cal tests and robustness checks. If these diagnos-248

tics reveal potential issues, CAIS either revisits the249

method selection process or switches to an alterna-250

tive modeling approach.251

Stage 4: Interpretation Finally, the outcomes of252

the estimation and validation stages are synthesized253

to generate an interpretable response that directly254

addresses the original user query.255

4.1 Stage 1: Dataset Preprocessing and Qeury256

decompostion257

CAIS initiates the pipeline with a thorough exam-258

ination of the dataset, inspecting column names,259

data types, quantifying missing values, and com-260

puting descriptive statistics. Beyond basic profil-261

ing, it investigates potential relationships within262

the data, such as correlations, and attempts to iden-263

tify features relevant to causal inference. CAIS264

then proceed to conceptualize the user’s query and265

actual data by prompting the LLM to determine266

which columns correspond to the treatment, out-267

come, and control variables. In addition, it guides268

the to identify the presence of instrumental vari-269

ables running variables that govern treatment as-270

signment, observed confounders, and time-related271

variables that indicate the timing of observations272

4.2 Stage 2: Method Selection and Execution273

In this stage CAIS identifies a suitable estimation274

method through a structured decision tree (refer Ap-275

pendix figure B). Inspired by the Tree of Thoughts276

framework (Yao et al., 2023a; Long, 2023), this tree277

decomposes method selection into sequential steps,278

where each node evaluates a specific property of279

the dataset (e.g., timing of treatment, presence of280

instruments). Additionally, each node is associated281

with a detailed prompt that specifies the required282

characteristics of a valid method or variable. The 283

hierarchical structure of the tree enhances inter- 284

pretability and leverages the LLM’s strength to 285

perform well on a specific narrowed-down task. If 286

multiple branches remain viable, CAIS relies on 287

LLM to rank them by inspecting stage 1 results 288

Compared to machine learning models, causal 289

estimation does involve hyperparameters to tune, 290

and a small number of methods are appropriate for 291

the task at hand. However, incorrect choices can 292

lead to invalid results. Thus, our goal is to ensure 293

interpretability and accuracy, and the decision tree 294

supports that. Nonetheless, errors in one step can 295

propagate to subsequent steps. For instance, the 296

model may incorrectly assume an RCT setting for 297

observational data, and produce incorrect findings. 298

We have implemented safeguards to mitigate such 299

cases. 300

For most selected method we rely on predefined 301

code template with with placeholders for key vari- 302

ables determined in Stage 1. This approach differs 303

from previous work that uses LLMs to generate 304

code from scratch (Liu et al., 2024). While LLM- 305

powered code generation can be flexible, chances 306

of implementation errors are high (Chen et al., 307

2025). One workaround is to use a loop with 308

try/except blocks to refine the code repeatedly until 309

successful execution. However, this requires multi- 310

ple API calls, making it both time consuming and 311

expensive. In contrast, using pre-defined templates 312

with variable placeholders minimizes implementa- 313

tion errors, as the only requirement is to identify 314

and substitute the relevant variables correctly. 315

4.3 Stage 3: Validation 316

After computing the numerical result, we first per- 317

form statistical checks to assess its reliability. Next, 318

we prompt an LLM to reflect on both the test out- 319

come and the numerical value to evaluate whether 320

the result is sensible. If the LLM perceives the 321

results to be unreliable, we go back to the method 322

and variable selection phase. In the next iteration, 323

we incorporate information about estimation and 324

validation test results from the previous run. This 325

allows an LLM to factor in previous results. Like- 326

wise, if more than one method was identified earlier, 327

we try an alternative one. 328

The feedback mechanism serves as a safeguard 329

against potential errors that may arise in the selec- 330

tion and estimation phases. We provide a detailed 331

example of the method validator in appendix C 332
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4.4 Stage 4: Interpretation333

In this stage, we prompt an LLM to interpret the334

results of the estimation step in the context of the335

original query. For example, the model may as-336

sess whether the estimated causal effect is strong,337

weak, or statistically significant. Alongside this338

interpretation, we include important caveats, such339

as validation results and notes on assumptions or340

limitations that could affect the reliability of the341

estimate.342

5 Experimental Setup343

5.1 Baseline344

We consider the following baseline models:345

ReAct Prompting Following Liu et al. (2024),346

we adopt a ReAct-based prompting strategy (Yao347

et al., 2023b). Each prompt includes (i) a de-348

scription of the dataset, and (ii) a natural language349

causal query, along with a list of candidate estima-350

tion methods. The LLM is then asked to identify351

relevant variables, select a suitable method, and352

compute the causal effect accordingly. A sample353

prompt is provided in the Appendix 7.354

Liu et al. (2024) benchmark several prompting355

strategies for causal inference and find that ReAct356

achieves the best overall performance. Hence, we357

select ReAct-based approach as the baseline.358

Veridical Data Science Prompting Typical359

prompting strategies for data science are relatively360

straightforward and involve limited self-reflection.361

To address this, we design a prompting structure362

based on the Veridical Data Science framework (Yu,363

2020). After each decision, the LLM is prompted364

to reflect on its response and reconsider its output,365

with the goal of improving stability in the reasoning366

process, refer Appendix 8.367

Program of Thought Prompting : Unlike Re-368

ACT prompting, which interleaves reasoning and369

tool invocation through iterative steps, Program of370

Thought (PoT) (Chen et al., 2022) follows a struc-371

tured template where the model outputs a complete372

executable Python function. This approach aims373

to improve execution reliability and interpretabil-374

ity, reduces retry loops, and facilitates code reuse,375

making it particularly effective for scientific do-376

mains requiring traceable and reproducible causal377

analysis, refer Appendix 6.378

5.2 Implementation Details 379

All models are implemented in Python. For causal 380

effect estimation, we use the DoWhy(Sharma and 381

Kiciman, 2020) and statsmodels(Seabold and 382

Perktold, 2010) libraries. The backbone LLMs in- 383

clude GPT-4o, GPT-4o-mini and o3-mini (OpenAI 384

et al., 2024), llama-3.3-70B-instruct (Grattafiori 385

et al., 2024) , and Gemini 2.5 Pro (Team, 2024). 386

All models are accessed via API calls. The tem- 387

perature parameter is set to 0 for reproducibility 388

purposes. 389

5.3 Evaluation Metrics 390

We evaluate our pipeline using the following met- 391

rics. 392

• Method Selection Accuracy (MSA): Percent- 393

age of queries where the selected method m̂i 394

matches the reference method (mi) 395

MSA =
1

N

N∑
i=1

1[m̂i = mi]× 100 (2) 396

• Variable Selection Accuracy (VSA): Aver- 397

age overlap between predicted model vari- 398

ables (V̂i) and reference model variables (Vi): 399

VSA =
1

N

N∑
i=1

|V̂i ∩ Vi|
|Vi|

× 100 (3) 400

• Mean Relative Error (MRE): Average rela- 401

tive error between predicted causal effects (τ̂i) 402

and reference values (τi): 403

MRE =
1

N

N∑
i=1

min

(
|τ̂i − τi|
|τi|

, 1

)
× 100%

(4) 404

To reduce sensitivity to outliers, relative error 405

is capped at 100% per query. 406

N denotes the total number of queries in the evalu- 407

ation set. 408

5.4 Ablation Studies 409

We conduct four ablation studies to assess the role 410

of the core components in our pipeline. 411

Removing Feedback from Validation To assess 412

the role of internal feedback, we remove the con- 413

nection between the validation and method selec- 414

tion. Without this feedback loop, CAIS loses the 415

ability to self-correct when validation detects an 416
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Study Feedback Loop GPT-4o GPT-4o-mini o3-mini

QR Without 48.4 54 43.3
With 31.6 55.9 43.1

Real Without 61.55 60.8 60.6
With 47.5 54.5 39.7

Synth Without 18.84 43.32 16
With 17.4 16.2 20

Table 2: Mean Relative Error (%) across dataset for With and
Without validation feedback loop for causal effect estimation
(lower is better)

error or inconsistency. Then, the pipeline proceeds417

with the initially selected method. Results (Table 2)418

clearly suggests having feedback from validation419

loop improves overall efficiency of CAIS420

Removing Decision Tree Guidance This abla-421

tion examines the benefit of structured decision-422

tree reasoning in method selection. Instead of re-423

lying on the tree, we prompt the LLM directly to424

select a suitable method based on the dataset and425

query. The chosen method is then executed using426

CAIS’s implementation module. The results (Table

Study Method Selection GPT-4o GPT-4o-mini o3-mini

QR LLM Based 48.4 50.6 50
Decision Tree 74.4 74.3 94.1

Real LLM Based 48 60.8 45.5
Decision Tree 69.2 65.2 76.9

Synth LLM Based 57.5 79.4 57.1
Decision Tree 76.9 78.9 73.3

Table 3: Method Selection Accuracy(%) across dataset for
LLM Based vs Decision Tree (CAIS’s) approach (higher is
better)

427
3) reveal a decision tree-based structured method428

approach significantly outperforms the LLM-based429

approach for method selection.430

6 Results431

6.1 Method Selection432

The results (Table 4) show that CAIS consistently433

surpasses baseline models (ReACT, PoTM, and434

Veridical) across all dataset types and LLMs, with435

substantial margins. This performance gain is pri-436

marily attributed to CAIS ’s structured, decision-437

tree-based approach to method selection. In con-438

trast, baseline models often fail to capture complex439

causal relationships and tend to default to simplis-440

tic estimation techniques, such as linear regression,441

regardless of the data context.442

6.2 Causal Effect Estimation443

Table 5 presents the mean relative errors of causal444

effect estimates across different models. For larger445

LLM Datatype ReACT PoT Veridical CAIS

GPT-4o QR Data 55 41 60.5 74.4
GPT-4o-mini 55.2 54.3 41 74.3
o3-mini 21.8 30.7 61.5 94.1
Gemini 2.5 Pro 62.2 50 59 81.2
Llama 3.3 70B 34.4 53.8 46.1 81.8

GPT-4o Synthetic Data 51.2 53.3 79 76.9
GPT-4o-mini 41.86 37.7 43.4 75.9
o3-mini 46.7 42.2 66.6 73.3
Gemini 2.5 Pro 48.2 53.2 58.5 75.6
Llama 3.3 70B 55.8 47.6 50 79.5

GPT-4o Real Data 69.5 57.7 48 69.2
GPT-4o-mini 51.8 54.6 28 65.2
o3-mini 57.1 33.3 59.2 76.9
Gemini 2.5 Pro 55 42.2 53.2 78.3
Llama 3.3 70B 44.4 53.8 24 73

Table 4: Method Selection Accuracy (%) across datasets com-
paring CAIS with baselines (higher is better)

LLM Datatype ReACT PoT Veridical CAIS

GPT-4o QR Data 43.2 32.6 40.7 31.6
GPT-4o-mini 33.9 33.6 42.2 55.9
O3-mini 44.7 30.7 27.6 43.1
Gemini 2.5 Pro 43.2 35.8 37.8 41.2
Llama 3.3 70B 43.9 31.5 55.4 54.19

GPT-4o Synthetic Data 27.9 19.9 27.7 17.4
GPT-4o-mini 21.2 37.7 25.7 16.2
O3-mini 21 42.2 20.2 20
Gemini 2.5 Pro 20.2 24 26.5 18.5
Llama 3.3 70B 21.3 21.1 33.3 50

GPT-4o Real Data 43.1 54.7 53.6 47.5
GPT-4o-mini 52.3 55.6 54.4 54.55
O3-mini 43.2 46.3 41.2 39.7
Gemini 2.5 Pro 38.1 42 39 32
Llama 3.3 70B 52.6 53.8 52.8 37.4

Table 5: Mean Relative Error (%) across datasets comparing
CAIS with baselines (lower is better)

models such as GPT-4o and o3-mini, CAIS pro- 446

duces smaller errors in causal effect estimation 447

compared to the overall baseline approach. How- 448

ever, the baseline model demonstrates comparable 449

performance QR Data and Baseline. This discrep- 450

ancy primarily stems from incorrect variable se- 451

lection during model implementation. Real-world 452

datasets tend to be more complex and extensive, of- 453

ten containing multiple interrelated variables. Con- 454

sequently, despite correct method selection, the 455

choice of inappropriate model variables leads to 456

higher estimation errors. Another notable observa- 457

tion is that the magnitude of differences is smaller 458

for synthetic data. This occurs because synthetic 459

data is generated from well-defined distributions, 460

ensuring that even when model misspecification 461

occurs, the overall estimates do not deviate sub- 462

stantially from true values. 463
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Figure 2: Confusion matrix showing method selection
performance of CAIS (GPT-4o).

7 Error Analysis464

7.1 Fine Grained Error Analysis465

A case-by-case analysis of the outputs reveals sev-466

eral key sources of error:467

• Incorrect Variable Selection: LLMs fre-468

quently misinterpret temporal covariates, such469

as birth year or quarter indicators, as ob-470

servation time points. This misinterpreta-471

tion can erroneously lead to the selection of472

Difference-in-Differences as the causal in-473

ference method. Additionally, LLMs often474

misidentify treatment and outcome variables,475

particularly when column names lack clear476

descriptive labels or contain ambiguous termi-477

nology.478

• Wrong Method Selection: , As demonstrated479

in Figure 2, LLMs misclassify Randomized480

Control Trials as Encouragement Designs,481

leading to the selection of Instrumental Vari-482

ables instead of linear regression. Similarly,483

for synthetic datasets, the model failed to484

identify Instrumental Variables as the optimal485

method in three instances. This pattern un-486

derscores the inherent challenge of selecting487

valid instruments based solely on data descrip-488

tions.489

• Incorrect Data Formats: Implementation490

errors also stem from inconsistent data for-491

matting. Specifically, certain variables are en-492

coded as strings when causal inference pack-493

ages like DoWhy require numerical inputs,494

creating compatibility issues that compromise495

execution.496

7.2 Overall Error Analysis497

We compared overall performance of baseline ap-498

proaches, which are based on prompting base LLM499

code generation vs. CAIS’s structured approach.500

• Higher Method Selection Accuracy: CAIS501

achieves a 46.3% higher method match rate502

Metric Baseline CAIS Change (%)

General Statistics
Total Queries 1551 585 –
Successful Queries 1476 512 –
Total Retries 930 159 –
Retries Per Query(%) 59.96 27.18 ↓ 54.69
Method Match Rate (%) 52.08 76.20 ↑ 46.3
Mean Error (%) 35.38 37.66 ↑ 6.4

Error Breakdown (%)
Execution & Runtime Error 34.39 22.91 ↓ 33.4
Method Mismatch 29.77 21.20 ↓ 28.8
Data Loading Failure 3.10 0.00 ↓ 100.0
Missing Result 0.76 6.84 ↑ 800.0

Table 6: Comparison of performance and error types
between baseline and CAIS (CAIS). Arrow indicates
direction of change from baseline to CAIS.

than the baseline (76.2% vs. 52.08%), indicat- 503

ing more accurate identification of appropriate 504

causal methods. 505

• Substantial Reduction in Retries: CAIS re- 506

duces total retries by 54.6% per query (in case 507

of CAIS retry refers to feedback via validation 508

loop), suggesting more robust and executable 509

outputs due to structured prompt generation 510

and template-based code execution. 511

• Improved Execution Stability: Execution 512

and runtime errors are reduced by 33.4%, and 513

method mismatches decrease by 28.8%, re- 514

flecting enhanced reliability in model reason- 515

ing and implementation. 516

• No Data Loading Failures: CAIS handles 517

datasets more reliably with 0% data loading 518

failures compared to 3.1% in the baseline. 519

• Trade-offs in Estimation Quality: While 520

CAIS increases mean error slightly (from 521

35.38% to 37.66%), this may stem from using 522

more advanced methods rather than defaulting 523

to simple linear regression. 524

8 Related Work 525

LLMs and causal effect estimation The use of 526

large language models (LLMs) for causal effect 527

estimation in tabular datasets has been explored in 528

Liu et al. (2024) and Chen et al. (2025), though 529

both approaches require users to specify the esti- 530

mation method and relevant variables. Jiang et al. 531

(2024) introduce a fine-tuned model enabling end- 532

to-end estimation but focus on only two causal 533

effect measures. Causal Copilot (Wang et al., 534

2025) expands the range of supported methods us- 535

ing general foundation models but has primarily 536
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been evaluated on causal discovery tasks. Another537

approach leverages LLMs’ existing knowledge to538

build causal graphs from variable names (Kiciman539

et al., 2024; Han et al., 2024) and apply front-door540

or back-door criteria (Pearl, 2009). Beyond tabular541

data, LLMs have been applied to causal estima-542

tion with text data (Dhawan et al., 2024; Lin et al.,543

2023; Imai and Nakamura, 2024; Veljanovski and544

Wood-Doughty, 2024).545

LLMs and causal structure learning Several546

approaches have explored the applicability of547

large language models (LLMs) in causal discovery.548

These include methods for identifying the causal549

ordering (i.e., the topological order of variables in a550

causal graph) (Vashishtha et al., 2023), integrating551

prompting with data-driven techniques (Ban et al.,552

2023), leveraging LLMs as experts to infer edges553

in a causal graph (Long et al., 2022), and designing554

efficient full-graph discovery algorithms (Jiraler-555

spong et al., 2024). Other works construct domain-556

specific probabilistic models to evaluate causal re-557

lations (Choi et al., 2022) or use variable names to558

build causal graphs (Kiciman et al., 2024). Beyond559

discovery, several studies investigate causal rea-560

soning with LLMs. These include testing whether561

models can identify cause-effect relations from tex-562

tual descriptions (Gao et al., 2023; Han et al., 2024),563

or distinguish causation from correlation in state-564

ments (Jin et al., 2024). Jin et al. (2023) develop a565

framework for formal causal reasoning grounded in566

Pearl’s structural causal model framework (Pearl,567

2009; Peters et al., 2017). Comprehensive evalu-568

ations of LLMs’ capabilities in causal inference569

across a range of prompting strategies and tasks570

are presented in Zhou et al. (2024) and Chen et al.571

(2024).572

LLMs-powered data analysis Several works573

study LLM code generation capabilities in data sci-574

ence, including machine learning, statistical anal-575

ysis, and data manipulation (Huang et al., 2022;576

Lai et al., 2023; Cheng et al., 2023; Nejjar et al.,577

2024; Jansen et al., 2023). Wu et al. (2024) ex-578

tend this approach by enabling LLM-powered tools579

to perform statistical reasoning and generate data-580

driven solutions to natural language queries. An-581

other promising direction is development if LLM-582

powered agents that perform end-to-end analysis,583

including data preprocessing, model selection, and584

evaluation. Some tools focus on machine learn-585

ing tasks (Zhang et al., 2023, 2024; Huang et al.,586

2024), while others emphasize broader data anal-587

ysis (Guo et al., 2024; Hong et al., 2024). Recent 588

enhancements include Case-Based Reasoning (Guo 589

et al., 2024), Hierarchical Decomposition (Hong 590

et al., 2024), and interactive tools (Wu et al., 2023). 591

However, these agents do not focus on causality- 592

based analysis, which requires fundamentally dif- 593

ferent methodological considerations. Our work 594

addresses this gap by developing an agent specifi- 595

cally designed for causal effect estimation. 596

Evaluation benchmarks include DS-1000 (Lai 597

et al., 2023) and ARCADE (Yin et al., 2022) for 598

code generation, and StatQA (Zhu et al., 2024) 599

and DACO (Wu et al., 2024) for answering data- 600

driven natural language queries. More compre- 601

hensive benchmarks evaluate general data analysis 602

tasks (Hu et al., 2024) and machine learning tasks 603

(Huang et al., 2024). Blade (Gu et al., 2024) and 604

DiscoveryBench (Majumder et al., 2024) focus on 605

scientific hypothesis evaluation in a more open- 606

ended fashion. 607

9 Conclusion 608

In this work, we introduce Causal AI Scientist 609

(CAIS), an end-to-end framework that maps natu- 610

ral language queries and datasets to formal causal 611

estimation tasks, automatically selecting appropri- 612

ate methods and interpreting results. We evaluate 613

CAIS across diverse causal inference tasks using 614

three dataset types: QRData, synthetic, and real- 615

world studies. CAIS consistently outperforms base- 616

line prompting strategies on method selection and 617

achieves competitive performance on causal effect 618

estimation, particularly on structured datasets like 619

QRData and synthetic examples. 620

These strong results underscore the value of 621

CAIS’s structured decision-tree-based approach, 622

which decomposes complex reasoning into inter- 623

pretable steps. This guided approach not only im- 624

proves estimation accuracy but also enhances ro- 625

bustness and transparency critical qualities for re- 626

searchers and practitioners in social science, health- 627

care, economics, and related fields. The frame- 628

work’s reliable performance on well-structured 629

datasets suggests that real-world results can be 630

further improved with better data preprocessing, 631

reinforcing the broader utility of CAIS as a trust- 632

worthy tool for domain experts seeking accessible 633

and interpretable causal analysis. 634
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10 Limitations635

Our work has several limitations. Some of these636

have been discussed in earlier sections, includ-637

ing the need for improved data preprocessing and638

additional verification steps to validate LLM out-639

puts. Moreover, the results reported in this study640

are based on a single run per dataset. Given the641

variability in LLM outputs, a robust evaluation642

would require running multiple trials on the in-643

put datasets. While CAIS supports a diverse set644

of causal inference methods applicable to a broad645

range of datasets, our current focus has been pri-646

marily on queries and datasets from the social sci-647

ences. Causal inference is a vast field, and this648

work concentrates on a selected subset of tools and649

techniques650
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Figure 3: Distribution of estimation methods across the three dataset collections

Assets

t y x1
1 5.6 97
0 7.8 87
1 3.0 56
1 2.5 68

   "description": "The
CSV file ihdp.csv
...........
     "query": "What is
the Average Treatment
Effect (ATE) of the
dataset?"
     "answer":  "4.0",
     "file": "ihdp.csv"
  

 
   "description": "The
CSV file ihdp.csv
....... 
     "query": "What is
the effect of home
visit of doctors on
cognitive scores of
infants?"
     "file": "ihdp.csv"
  

Filter the queries by method and select the corresponding csv
data files and metadata

Modify the query
+ description to

remove estimand /
 method

Create the
final input

ihdp.csv

QRData

Research
paper readme Assets

treat age re78
1 28 9679
0 37 5500
0 25 8000
1 22 6000

df <- read.csv("lalonde.csv")
model <- lm("re78 ~ treat + age", data=df)

Generate dataset summaries 
using notebook LLM + manual

editing

Replicate the code in Python

df = pd.read_csv("lalonde.csv"
model = smf.ols("re78 ~ treat + age",
data=df)

Academic papers + dataset, and if
available the readme doc 

  
   "description": "The
NSW program ............."
     "query": "Did
participating in NSW
training program boost
earnings?"
     "file": "lalonde.csv"
  

If available, obtain the code used to
generate the results

Create the final input

Real-world Studies

Synthetic Data

Reference values

ATE: 2257 (595)

Z D Y

U

Assets

Z D Y
1 1 97

0 0 87

0 1 56
1 0 68

Select the model and simulate data 

Generate column
labels + context +
query using GPT

   "description": "A study
was  conducted to
evaluate the impact of
extra math   lessons....", 
    "query": "Did the math
lessons boost exam
performance?",
    "file": "iv_synthetic.csv"
  

Create the final data and inputs

Assets

invited attended score

1 1 97

0 0 87

0 1 56

1 0 68

Synthetic Data

Figure 4: Dataset creation process for QRData, Real-world Studies, and Synthetic Data
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Is this a 
randomized 

trial?

   Is this an 
Encouragement 

Design?

 IV
         Are there
valid  pre-treatment 
         variables?

OLS with 
pre-treatment

variables

Difference in
means

Is treatment 
binary?

Is temporal 
information 
 available?

Is there a 
running 
variable?

Is there a 
valid  (backdoor)

adjustment
 set?

Matching IPW

Is there a 
valid 

instrument?

IV

Difference-in-
Differences

Regression
Discontinuity 

Design

Do covariates
 in the two groups 

overlap? 

Is frontdoor 
criterion 
satisfied?

Front door
adjustment

Is there a 
valid  (backdoor)

adjustment
 set?

Regression 
with backdoor 

adjustment. 

Yes

Yes

Yes
Yes

Yes

Yes

Yes

Yes

Yes

No

No
No

No

No

No

No

Yes No

No

Figure 5: Decision-tree that guides method selection in CAIS. We prompt an LLM to generate responses to
queries corresponding to the decision nodes, and traverse the tree accordingly before reaching a leaf node, which
corresponds a method
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Worked Example: Method Validation

Query: Does having access to electricity increase kerosene expenditures?

Dataset: electrification_data.csv

Database: All_Data Collection (Rural Electrification Survey)

Description: This household survey covers 686 households in 120 habitations across Uttar Pradesh,
India. Using a geographic eligibility rule (households within 20–35 m vs. 45–60 m of a power
pole), it records monthly expenditures on food, education, kerosene, total expenditure, appliance
ownership, lighting usage, and satisfaction measures to assess the impact of electrification.

Method Validation: During validation, the pipeline fits local regressions on kerosene expenditure
immediately below and above the 40 m cutoff to test for a sharp discontinuity. When using
the lightweight gpt-4o-mini model, the agent misidentified the “distance” variable effectively
widening the window around 40 m and consequently observed no statistically significant jump in
outcomes at the threshold (p > 0.05). Because a pronounced, localized shift at the cutoff is the
cornerstone of RDD, this absence of any detectable discontinuity constituted a direct violation of
the RDD assumptions and led to its rejection. The system then automatically backtracked down
the decision tree, removed RDD from consideration, and evaluated the next class of methods.
Given the observational nature of the data and the rich set of covariates, it advanced to propensity-
score-matching as the alternative method to create balanced treatment and control groups before
estimating the effect.
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Program of thought based Prompt

Prompt: You are a data analyst with strong quantitative reasoning skills. Your task is to answer a
data-driven causal question using the provided dataset. The dataset description and query are given
below.
You should analyze the first 10 rows of the dataset and then write Python code to generalize the
analysis to the full table. You may use any Python libraries.

The returned value of the program should be the final answer. Please follow this format:

def solution():
# import libraries if needed
# load data from {self.dataset_path}
# write code to get the answer
# return answer

print(solution())

Dataset Description: {self.dataset_description} Dataset Path: {self.dataset_path}

First 10 rows of data: {df.head(10)}

Question: {self.query}

Example Methods (choose one if applicable):

• propensity_score_weighting: output the ATE

• propensity_score_matching_treatment_to_control: output the ATT

• linear_regression: output coefficient of variable of interest

• instrumental_variable: output coefficient

• matching: output the ATE

• difference_in_differences: output coefficient

• regression_discontinuity_design: output coefficient

• linear_regression / difference_in_means: output coefficient / DiM

Response: The final answer should include a structured summary with the following fields (use
"NA" where not applicable):

• Method

• Causal Effect

• Standard Deviation

• Treatment Variable

• Outcome Variable

• Covariates

• Instrument / Running Variable / Temporal Variable

• Results of Statistical Test

• Explanation for Model Choice

• Regression Equation

Figure 6: Quantitative reasoning prompt for baseline evaluation.
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ReACT Prompt Example

Prompt: You are working with a pandas DataFrame in Python. The name of the DataFrame is df.
You should use the tools below to answer the question posed to you:
python_repl_ast: A Python shell. Use this to execute Python commands. Input should be a valid
Python command. When using this tool, sometimes output is abbreviated—make sure it does not
look abbreviated before using it in your answer.
Use the following format:

• Question: the input question you must answer

• Thought: what you should do next

• Action: the action to take (e.g., python_repl_ast)

• Action Input: the input to the action (code to execute)

• Observation: the result of the action

(This Thought/Action/Action Input/Observation can repeat N times.)
Final Answer: The final answer to the original input question. Please provide a structured response
including the following:

• Method

• Causal Effect

• Standard Deviation

• Treatment Variable

• Outcome Variable

• Covariates

• Instrument / Running Variable / Temporal Variable

• Results of Statistical Test

• Explanation for Model Choice

• Regression Equation

Instructions:

• Import libraries as needed.

• Do not create any plots.

• Use the print() function for all code outputs.

• If you output an Action step, stop after generating the Action Input and await execution.

• If you output the Final Answer, do not include an Action step.

Example Usage of python_repl_ast:
Action: python_repl_ast

Figure 7: Example of a ReACT-style prompt used in baseline prompting.
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Veridical Prompt

You are an expert in statistics and causal reasoning. You will use a rigorous scientific framework to
answer a causal question using a structured, step-by-step process with checklists.
Problem Statement: self.query
Step 1: Domain Understanding - What is the real-world question? Why is it important? - Could
alternate formulations impact the final result?
Step 2: Dataset Overview - Dataset Path: dataset_path - Description: dataset_description - Dataset
Summary, Types, Missing Values, Preview Rows
Checklist: - How was data collected? Design principles? - What are the variables, types, and units?
- Are there errors or pre-processing artifacts?
Step 3: Exploratory Analysis - Identify confounders, mediators, biases - Suspect endogeneity?
What instruments might be relevant? - Are strong correlations present?
Step 4: Modeling Strategy - Choose 3 candidate methods (e.g., matching, regression, IV) - State
assumptions and reasons for each method - Discuss software libraries to be used and potential
pitfalls - Outline key outputs and steps in analysis
Step 5: Post Hoc Analysis - Are relationships or outcomes unexpected? - Assess result stability
and robustness
Step 6: Interpretation and Reporting Final Answer: Report the following fields: - Method,
Causal Effect, Standard Deviation - Treatment and Outcome Variables - Covariates, Instruments or
Temporal Elements - Results of any statistical tests - Justification of model choice - Equation or
summary used

Figure 8: Veridical Style Prompting .
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