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ABSTRACT

Post-training quantization (PTQ) of large language models (LLMs) to extremely
low bit-widths remains challenging due to the fundamental trade-off between com-
putational efficiency and model expressiveness. While existing ultra-low-bit PTQ
methods rely on binary approximations or complex compensation mechanisms,
they suffer from either limited representational capacity or computational over-
head that undermines their efficiency gains. We introduce PTQ to Trit-Planes
(PTQTP), the first ternary-weight PTQ framework that decomposes weight matri-
ces into structured ternary {—1, 0, 1} trit-planes using 2x1.58-bit representation.
PTQTP achieves multiplication-free inference, identical to 1-bit quantization, while
maintaining superior expressiveness through its novel structured decomposition.
Our approach provides: (1) a theoretically grounded progressive approximation
algorithm ensuring global weight consistency; (2) model-agnostic deployment
across diverse modern LLLMs without architectural modifications; and (3) uniform
ternary operations that eliminate the need for mixed-precision or compensation
schemes. Comprehensive experiments across LLaMA3.x and Qwen3 model fam-
ilies (0.6B-70B parameters) demonstrate that PTQTP significantly outperforms
existing low-bit PTQ methods, achieving 82.4% mathematical reasoning retention
versus 0% for competing approaches. PTQTP approaches and sometimes surpasses
1.58-bit quantization-aware training performance while requiring only single-hour
quantization compared to 10-14 GPU days for training-based methods. These
results establish PTQTP as a practical solution for efficient LLM deployment in
resource-constrained environments.

1 INTRODUCTION

The unprecedented success of large language models (LLMs) has revolutionized natural language pro-
cessing, but their deployment is hindered by exorbitant computational and memory demands (Brown
et al.} 2020). Models such as DeepSeek-R1-671B (Guo et al., 2025)), with hundreds of billions of
parameters, require specialized hardware and massive energy consumption, limiting accessibility on
edge devices and raising environmental concerns (Patterson et al., 2021)). To address this, extreme
low-bit quantization, viz. binary (1-bit) or ternary (1.58-bit), has emerged as a viable approach,
facilitating multiplication-free operations that align with efficient hardware implementation.

Post-training quantization (PTQ) offers a practical pathway for compressing pretrained LLMs without
retraining, with recent advancements like GPTQ (Frantar et al.}2022) and AWQ (Lin et al.| 2024))
achieving effective 4-bit quantization. However, pushing PTQ to lower bit-widths, say, 1 to 2 bits,
remains a significant challenge. Current approaches bifurcate into two streams: Quantization-aware
training (QAT), which requires costly retraining (e.g., BitNet (Wang et al., 2023; Ma et al.| [2024)
for pretraining binary/ternary models), and binary PTQ which achieves 1-bit Quantization through
unstructured weight categorization but sacrifices representational capacity (e.g., BILLM (Huang et al.|
2024) and ARB-LLM (Li et al.} 2025))). Structured ternary PTQ, offering higher expressivity than
binary while avoiding QAT’s pretraining overhead, remains underexplored (if not unexplored).

We introduce PTQTP (Post-Training Quantization to Trit-Planes), a novel structured PTQ method that
bridges binary efficiency and ternary expressiveness. PTQTP decomposes the full-precision weight
matrices into trit-planes ({—1,0,1}) with scaling coefficients. By combining the computational
efficiency of binary quantization with the expressiveness of ternary representations, PTQTP offers a
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Figure 1: Qwen3 performance evaluation. (a) PTQTP outperforms existing low-bit quantization
methods (1/2/3-bit) while maintaining equivalent model size. (b) Quantization runtime compari-
son showing PTQTP achieves 17.73x-28.79x speedup over ARB-LLMgc and 1.53x-1.57x over
AWQ. (c) PTQTP performance approaches both 4-bit quantization and FP16 baselines across model
scales. (d) Minimal precision degradation observed across all benchmarks when applying PTQTP to
Qwen32B.

practical and uniform solution for deploying powerful LLMs on resource-constrained platforms. Our
contributions are as follows:

* To our knowledge, PTQTP is the first 1.58-bit PTQ framework, addressing a critical gap
in the literature. It decomposes weight matrices into trit-planes {—1, 0, 1} without retrain-
ing or fine-tuning, enabling hardware-efficient, multiplication-free operations while more
effectively capturing weight distributions than binary PTQ.

* PTQTP offers a robust, model-agnostic solution for extreme low-bit PTQ. By eliminating the
need for architecture-specific adjustments, it supports seamless deployment on quantization-
sensitive models (e.g., LLaMA3.x (Grattafiori et al.,[2024)), Qwen3 (QwenTeam| [2025)),
while consistently preserving performance and surpassing state-of-the-art architecture-
dependent approaches in scalability.

* Extensive experiments demonstrate that PTQTP consistently outperforms state-of-the-art
low-bit methods, surpassing most 1-3 bit PTQ approaches on language benchmarks while
enabling faster quantization. Remarkably, it rivals or even exceeds 1.58-bit QAT—despite
requiring over 10* x fewer GPU hours—without any retraining or post-PTQ fine-tuning,
underscoring its efficiency and generalizability across advanced models.

By addressing the core challenges of expressiveness, stability, scalability, and hardware efficiency,
PTQTP sets a new yardstick for compressing high-performance LLMs for resource-constrained
platforms. Our work demonstrates that structured ternary quantization strikes a sweet spot between
computational simplicity with representational power, as shown in Fig[T] opening new frontiers for
efficient inference in real-world applications.
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2 RELATED WORK

PTQ for LLMs. PTQ has emerged as a promising approach for compressing LLMs without the
computational overhead of retraining. GPTQ (Frantar et al., [2022) pioneered efficient quantization
through layer-wise optimization, achieving 4-bit quantization while maintaining model performance.
AWQ (Lin et al.,[2024) further improved this by incorporating activation-aware scaling, demonstrating
that the consideration of activations during quantization leads to better performance. Recent work
has pushed towards even lower bit-width quantization. PBLLM (Shang et al., [2023)) and BiLLM
(Huang et al.} |2024)) achieved 1-bit quantization by identifying and preserving structurally salient
weights while applying different quantization strategies to different weight groups. ARB-LLM (Li
et al.l 2025)) further refined this approach through alternating optimization of binary weight groups.
However, these methods rely on complex, unstructured weight categorizations that complicate
hardware implementation.

Ternary Quantization The transition from binary to ternary quantization represents a leap of model
expressiveness while still preserving multiplier-less arithmetic. BitNet’s (Wang et al.,|2023) extension
to 1.58-bit (ternary) weights (Ma et al., 2024) demonstrated superior performance compared to binary
models, suggesting the value of the additional state in the ternary representation. There are also some
other trit-plane-based works on image-compression domain (Lee et al., |2022; Jeon et al.|[2023).

Hardware Efficiency. A key advantage of binary and ternary quantization lies in their suitability for
FPGA or ASIC deployment (e.g., FlightLLM (Zeng et al.| 2024}, DFX (Hong et al., [2023))), where
multiplier-less feature—weight products can be efficiently implemented in hardware. Specifically,
binary operations can be realized with XNOR gates and bit-counting, while ternary operations
leverage simple adders, preserving computational efficiency while offering greater expressivity.

Existing Problems. Existing ternary quantization methods mainly (if not all) rely on QAT approaches
(such as BitNet), requiring extensive pretraining and substantial computational resources. In addition,
previous methods use unstructured weight quantization to compensate for the degenerate representa-
tion ability. Unlike these works that optimize progressive reconstruction via retrained context models,
PTQTP is the first post-training, structured and model-agnostic framework that decomposes LLM
weights into uniform trit-planes with adaptive ridge-scaled coefficients to yield 1.58-bit quantization
without retraining.

3 METHODOLOGY

The core idea of PTQTP is to progressively minimize the difference between the quantized matrix
and the original weights. Therefore, we first focus on finding the optimal ternary patterns T® ¢
{—1,0,1}"*9 and scaling coefficients o) € R™, trying to determine the best combination of values
from the set {—1,0, 1} for each element of the kth trit-plane such that the approximation of the
original weight matrix W is as accurate as possible. The use of trit-planes allows multiplication-free
operations, which can significantly reduce the compute cost. Then we use an adaptive regularization
parameter to define the stability for the auto-adjustment process. This helps in ensuring that the
optimization process is stable and converges to a reasonable solution. The general process of PTQTP
is illustrated in Fig[2]

3.1 DIRECT TRIT-PLANE APPROXIMATION

Consider a pretrained LLM with a weight matrix W € R™*?. Our objective is to decompose it
into two trit-planes with optimal scaling coefficients: W ~ W = Zi:l diag(a®™)T*) . Such a
two-plane approach is akin to the residual/error compensation bit-plane in (Huang et al.| 2024; [Li
et al.,[20235)), though PTQTP treats the two planes unanimously in the approximation process.

Row-wise Decomposition. We adopt a row-wise decomposition approach to find the optimal ternary

)

row and scaling. We use Ti(k) to denote the ith row of the kth trit-plane. First we fix Ti(k and optimize

scaling coefficients agk) without any bias terms. To solve for optimal scaling coefficients agk), we

use the adaptive ridge regression, i.e., linear regression with a regularization term to the least-squares
function. We first define the local basis matrix .S; = [(Ti(l))T (Tl@))T € {-1,0,1}4%2 and
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Figure 2: PTQTP workflow overview: (top) Linear layer transformation pathway for ternary quanti-
zation in LLaMA architecture; (bottom) Group-wise progressive trit-plane approximation process,
where G represents group size and 77,4, indicates maximum iteration count.

Ai = (S)TS;i + Nl e R?*2) b, = (S)T W] e R?, (1

Here \; € R is a regularization parameter to improve numerical stability, I is the 2 x 2 identity
matrix. By constructing the local basis matrix row by row, we can find a closed-form solution

a;(€ R?) := [aE”aE”]T = A; 'b; for each i independently. However, due to the discrete nature of
trit-planes, the method may converge to different minima depending on the regularization parameter
i, which is crucial for the regression performance: if it is too small, the regularization effect may
be negligible and the solution may be unstable. If it is too large, the coefficients «; can be overly

diminished, leading to a poor approximation of the original weight matrix.

3.2 FINE-GRAINED OPTIMIZATION

Progressive and Adaptive Regularization. To achieve a robust decomposition process, we adap-
tively regularize the approximation and further optimize it through progressive optimization. First,
we estimate the condition number of the 2 X 2 system:

Kiappros = | AillF - 1A |7 @)

This measure guides dynamic updates to \; with the constraint A; yewy < Amax(:= 1.0)

— Ai » ’ii,approx<1012 3)
)\i\/m , otherwise

This adaptation mitigates under-regularization (leading to singularity and unstable solutions) and
over-regularization (causing excessive coefficient shrinkage), ensuring robustness across weight
blocks with varying numerical conditions. Furthermore, the optimal scaling coefficients «; are then
found by solving the following optimization problem:

)\i,new

a; = arg ar%iélz Wi = Sifill + Aill0: 1% @

Where 6; is a crucial variable that represents the intermediate solution to the scaling coefficients in the
process of updating ;. In addition, \;||0;||% is the regularization term that penalizes large values of
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coefficients #;. The Frobenius norm term represents the squared error between the linear combination
of the W; and W, where S; incorporates the current iteration’s trit-plane values. We adapt A; using
Eq. equation[3] aligning regularization strength with local weight properties. Specifically, we perform
the optimization steps < T,,4.. Each update step is designed to not increase the Frobenius norm

(|[W— W ||%.. By ensuring that this norm monotonically decreases, we can guarantee that the algorithm

will converge to a local minimum. Therefore, we refine trit-plane elements through local exhaustive

k)

search, updating Tz( ; tothe valuein ¢, € {—1,0, 1} that minimizes squared error:

Algorithm 1 Fine-Grained Group-wise PTQTP

Require: Weight matrix W, group size G, max iterations Ty, ., tolerance €
Ensure: Quantized weight approximation W
1: Divide W into groups W; € R¢ > Each row ¢ contains G' weights

2: Initialize T(([))) «— sign(WW;), 1(,’()0) «— [1,1] > Initial trit-planes
3: fort < 1to Tk do

for each row i do row-wise decomposition
S; [(T(tz 1))T (T(Q(Z 1))T] > Basis matrix construction

(k()) + RidgeRegression(S;, Wi, \;)

4
5
6
7: end for
8.
9
0
1

for each row§ do W )2 (@)
T; (t)sz (1) € argmin ) ) |W; — Q; (yCm = O Cm %

1 end for .

11: 1fmax ||a(k1) - aE ()t 1)HF < ¢ then break
12: end 1f

13: end for

2 2
T*) =arg  min <Wij—za§’f 5j§>> 5)
k=1

W e{~1,0,1}

Unlike the unstructured mask used for salient weights search in (Huang et al., 2024; |L1 et al., 2025),
PTQTP achieves E[W;;] ~ ol - E [[T(l) T(z)] ] and is bias-free and mask-free. This avoids extra

bias parameter storage and its uniform model architecture preserves hardware-friendly design and
operations. Details of the progressive and adaptive regularization algorithm implementation are in

Appendix [B]

Group-wise Approximation. Following the previous works (Frantar et al.,[2022; [Lin et al., [2024)),
we further introduce group-wise (aka block-wise) processing in PTQTP, namely, by reshaping W
from n x d to %d x G, or equivalently grouping into G columns. Specifically, we set G = 128 similar
to other works for balanced performance and overhead, and we denote such group-wise operation

with the tilde (o) notation, such that Eq. equation |1{becomes

fL‘ = SzTSz + A\ Is; 61' = S’lTWZT, Q; = A;lbi 6)

Such grouping of columns generally reshapes W into a taller w, alongside with lengthened &*)’s
Nonetheless, the increase in the latter incurs negligible parameter overhead compared to the model
size, which is far outweighed by an improved approximation and performance. Algorithm [I|summa-
rizes this group-wise PTQTP.

For each linear layer, we first decompose the FP16 weights into trit-planes for direct approximation.
Then we apply the progressive group-wise optimization and adaptive regulation to save the optimal
parameters automatically. This approach automatically searches for appropriate quantization parame-
ters in the algorithm, making the model parameter distribution more suitable for quantization. We
also analyze the convergence of PTQTP in Appendix [C| Experiment results demonstrate that this
approximation process always converges within 50 iterations.
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Table 1: Perplexity ({) comparison across SOTA model families on WikiText2 dataset (group
size=128). N/A: Model size variant not available; OOM: Out of memory on single A100 80GB
GPU. fLLaMA-3.1 (8B/70B), LLaMA-3.2 (1B/3B), Qwen2.5 (0.5B/1.5B/3B/7B/32B). *Qwen3
(0.6B/1.7B/4B/8B/32B). Bold: best result; underlined: second-best.

Model Method #Bits 0.5/0.6B* 17/1.5/1.7B* 31/4B* 7/8B*! 32/70Bf
FP16 1600  N/A 9.75 780 623 281

AWQ 3.00 N/A 34.81 1322 10.80  14.55

AWQ 2.00 N/A 1.64ES  1.11E5 7.98E5 4.52E4

GPTQ 300  N/A 18.99 1634 9.2  8.14

LLaMA 3.1/32 GPTQ 200  N/A 497E3  242E3 7.7E2  18.79
BiLLM 1.06 N/A 1.99E3  124E2 8725 1.82E2
ARB-LLMgc  1.06 N/A 1.25E2 3867 4549  OOM

PTQTP 1.58 N/A 17.15 1024 853 1776

FP16 1600 928 13.08 803 685  5.02

AWQ 3.00 5130 22.48 457E3 12.12 649

AWQ 200  4.36E5 1.ISE6  5.84E5 5.26E5 1.16E3

GPTQ 300  20.65 13.14 2.34E6 3.08E4  6.19

Qwen25  GPTQ 200  2.35E3 6.77E2  1.63E6 281E4 1430
BiLLM 1.06  3.03E3 898E2  148E2 60.72  13.13
ARB-LLMgc 106  4.84E2 3.10E2 4125 17.85  9.46

PTQTP 158 3103 12.72 1313 831  6.00

FP16 1600 209 16.70 13.64 971 8.64

AWQ 300  2.20E2 84.00 91.00 27.50  19.10

AWQ 200  121E7 752E6  1.38E7 121E7 NAN

GPTQ 3.00  3.14E4 6.17E4  1.34E5 5.02E5 37.10

Qwen 3 GPTQ 200  2.38E4 6.55E2  5.92ES 7.77E4  38.40
BiLLM 1.06  5.87E4 754E4  299.86 11345 17.10
ARB-LLMgc 106  8.43E2 326E2 5030 3226  12.16

PTQTP 158 38.02 32.46 1825 118  10.06

4 EXPERIMENTS

4.1 SETTINGS

Quantization Configuration. We implemented PTQTP in PyTorch using models from Hugging-
face (Paszke et al.,|2019). All linear layers were quantized with tolerance € = 10~* and maximum it-
erations T},,4, = 50. For numerical stability, we employed dynamic regularization with A € [1078, 1].
No task-specific calibration, tuning, or fine-tuning was applied in any experiment. All evaluations
were conducted on a single NVIDIA A100 80GB GPU.

Model Architectures. We evaluated PTQTP across multiple mainstream LLM families including
Qwen3 (QwenTeam, 2025), LLaMA3.x (Grattafiori et al., 2024)), Qwen 2.5 (Yang et al., 2024), and
LLaMA 1& 2 series (Touvron et al.| [2023ajb)). To assess cross-domain generalization capabilities, we
also tested instruction-tuned variants of these models.

Baseline Methods. We benchmarked PTQTP against three categories of methods: (1) Binary PTQ
methods—PBLLM (Shang et al.,2023), BiLLM (Huang et al.,|2024), ARB-LLM (Li et al., 2025); (2)
Popular PTQ Methods—GPTQ (Frantar et al., [2022), AWQ (Lin et al., 2024); and (3) 1.58-bit QAT
approaches (Ma et al.| 2024} 2025)) to demonstrate PTQTP’s effectiveness even against training-based
methods. For fair comparison with smaller models, we included common 1B-3B LLMs such as
SmolLM2 (Allal et al.,|2025) and MiniCPM (Hu et al., [2024).

Evaluation Protocol. We assessed language modeling capability through perplexity measurements on
WikiText-2 (Merity et al.,[2016), PTB (Marcus et al.l[1994)), and C4 (Raffel et al.| 2020). To evaluate
reasoning abilities, we utilized ARC-Challenge, ARC-Easy (Clark et al.,[2018])), BoolQ (Clark et al.,
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2019), HellaSwag (Zellers et al.| |2019), PIQA (Bisk et al.| [2020), Winogrande (Sakaguchi et al.|
2021)), and MMLU (Hendrycks et al., [2021]). For comprehensive comparison with SOTA methods,
we further evaluated coding and mathematical reasoning performance on LLaMA3.x and Qwen3
models. All evaluations were conducted using the standard benchmarking tool (Gao et al.| [2024).
Detailed analysis of runtime, computational complexity, memory footprint, and inference efficiency
are provided in Appendix [A]

4.2 MAIN RESULTS

TL;DR Key Insights and Findings

* Robustness Advantage in Smaller Models. PTQTP demonstrates superior performance
retention over traditional low-bit quantization across SOTA models, with perplexity metrics
surpassing 1/2/3-bit schemes and approaching 4-bit levels, especially in smaller models
(0.6B-3B) that are typically more sensitive to quantization.

* Breakthrough Preservation of Mathematical Reasoning at Ultra-Low Bits. Conven-
tional low-bit quantization (e.g., 3-bit/2-bit GPTQ and BiLLM) causes catastrophic degra-
dation of mathematical reasoning capabilities (0% accuracy on Math-500). In contrast,
PTQTP-b1.58 achieves only a decrease of less than 5% from the baseline (FP16), funda-
mentally challenging the precision-performance tradeoff paradigm.

Plug-and-Play Efficiency. PTQTP enables extreme 1.58-bit quantization with zero retrain-
ing, eliminates the need for salient weight protection common in competing schemes, and
reduces quantization time by up to 28.79x compared to other low-bit PTQ methods.

* Cross-Architecture and Task Universality. Unlike QAT, which requires extensive pre-
training and fine-tuning for different model architectures, PTQTP retains fidelity across
multi-task benchmarks without model-specific adjustments, adapting seamlessly to architec-
tural variations from LLaMA3.x to Qwen3 and scaling from 0.6B to 70B parameters.

Structured Quantized Data Formate. PTQTP employs 1.58x2 trit-planes for quantized
weights representation, striking a balance between efficiency and accuracy. Similarly to
approaches that retain higher precision for salient channels to preserve information, PTQTP
introduces a fully symmetric, low-bit auxiliary plane that not only offers high parallelization
potential, but also effectively preserves model performance.

(S %

Perplexity Results on SOTA Model Families. Table [T] compares PTQTP with baselines across
LLaMA3.1/3.2, Qwen 2.5 and Qwen 3 variants (0.6B to 70B). PTQTP performances on additional
datasets are in Table[9]of the Appendix. The results demonstrate that PTQTP consistently outperforms
existing extreme low-bit (1-3 bit) quantization schemes and approaches or exceeds 4-bit methods
across diverse architectures. This robustness is particularly pronounced in SOTA small LLMs (0.6B-
3B), which are typically more vulnerable to quantization due to their higher information density
from advanced pretraining recipes. The exceptional performance retention of PTQTP establishes
it as a robust, generalizable, and efficient quantization solution for both current and future models.
Additional analyses on robustness are in Appendix [D]

Comparison of PTQ Methods. We select Qwen3-14B-instruct as our benchmark baseline, as larger
models generally exhibit greater resistance to quantization-induced performance loss, making the
14B size ideal for evaluating extreme quantization effectiveness. Results in Table []reveal dramatic
disparities in capability retention across PTQ methods. GPTQ variants at 3-bit collapse to near-zero
performance on mathematical tasks, while specialized 1.05-bit schemes (PBLLM, BiLLM) show
catastrophic failure on Math-500 (0%) and GSM8K (<2%). Even ARB-LLMgc-b1.05, despite
architectural modifications, achieves only 1.80% and 32.22% on these benchmarks—significantly
below baseline. This evidence confirms that mathematical reasoning is uniquely vulnerable to
precision loss in conventional PTQ approaches, exhibiting 19x greater performance degradation
compared to linguistic tasks, with non-negligible impacts (12.7% mean reduction) on general reason-
ing benchmarks. These findings suggest that architectural modifications alone—such as salient weight
protection—cannot effectively preserve mathematical reasoning capabilities at ultra-low precision.

In contrast, PTQTP-b1.58 achieves 82.40% on Math-500 and 85.44% on GSM8K—Iess than 5%
degradation from the baseline. This preservation of mathematical reasoning at ultra-low bit-widths
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Table 2: Performance comparison of quantization methods on Qwen3-14B across mathematical
reasoning and general benchmarks (accuracy %). Bold: best result; underlined: second-best.

Model Math-500 GSM8K ARC-C ARC-E BoolQ HellaSwag PIQA MMLU WinoG
Baseline-FP16 86.60 89.39 9525 90.83 89.45 88.09 81.07 79.38 68.90
WORSSI0 B3 424 LIS WAL WA TR S Gl6r
GPTQ-b3 0.00 2.12 7.46 1041 7.22 19.95 10.77 21.34 26.44
PBLLM-b1.05 0.00 1.21 4.75 776 29.14 7.38 2546 12.11 @ 49.57
BiLLM-b1.05 0.00 0.83 50.17 4.76 49.39 22.15 7.40 2440 49.96
ARB-LLMgc-b1.05  1.80 32.22 50.01 54.08 50.36
PTQTP-b1.58

Table 3: Comparison between PTQTP-quantized models and leading instruction-tuned LLMs (1B-4B
parameters) across efficiency metrics and benchmark performance (accuracy %). Bold: best result;
underlined: second-best. * Results claimed by BitNet-b1.58 paper.

Model (Params) Math-500 GSM8K ARC-C ARC-E BoolQ HellaSwag PIQA MMLU WinoG
LLaMA3.2 (1B) 14.40 4647 5593 169.84 6220 40.12 58.16 46.81 50.04
Qwen2.5 (1.5B) 56.20 64.67 71.86

61.88 55.80
57.76 50.75

Qwen3 (1.7B) | 7220 7460
SmolLM2 (1.7B) 21.00  50.19 5041 67.57 4973 5004
MiniCPM (2B) 0.60  56.48 2649 5375 5208 5422
BitNet-b1.58 (2B)* 4340 5838

LLaMA3.2 (3B) 45.20

Qwen3-PTQTP (1.7B) 43.80 5421 51.53 [ 70.02 (2755 3792 [57.89 43.82 51.07
Qwen2.5-PTQTP (3B) 42.80 62.47 56.80 56.27
LLaMA3.2-PTQTP (3B)  34.20 51.85
Qwen3-PTQTP (4B) 53.67

suggests PTQTP effectively decouples numerical precision requirements from model parameteri-
zation. Its consistent performance across diverse benchmarks (93.56% ARC-C, 76.18% MMLU)
without requiring dynamic bit allocation, salient weight protection, or sensitivity-aware quantization
fundamentally challenges the assumed trade-off between low-bit quantization and mathematical
reasoning ability.

Comparison with Baseline and 1.58-bit QAT Language Models. PTQTP’s versatility enables
extreme low-bit quantization of advanced models while maintaining near-baseline performance.
Unlike QAT methods that require extensive pretraining and fine-tuning, PTQTP applies uniform
treatment across model layers without post-quantization adjustments. Table [3]demonstrates PTQTP’s
minimal performance degradation compared to baselines, and its ability to match or exceed 1.58-bit
QAT BitNet schemes (Ma et al., 2024} 2025)) at similar model sizes. These results confirm PTQTP’s
exceptional stability and establish it as a true plug-and-play solution for model-agnostic 1.58-bit
quantization. Additional benchmark results are provided in Appendix [E]

4.3 ABLATION STUDIES

Progressive Search Iterations. Fig. [3]identifies a critical 30-iteration threshold that optimally
balances perplexity and efficiency across model scales. Within this range, both test models achieve
remarkable convergence: LLaMA3.1-8B reduces WikiText2 perplexity by 94%, while LLaMA3.2-
3B recovers from catastrophic initialization (6512.0 — 10.24 perplexity) by effectively adapting
trit-plane coefficients to weight distributions. Smaller models converge faster due to simpler weight
structures, while larger models leverage their expressivity for steeper initial gains. Beyond 30
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iterations, perplexity stabilizes while quantization time increases linearly, indicating diminishing
returns from additional refinement. This confirms our theoretical guarantee of monotonic convergence
and suggests limiting iterations to < 50 in practical deployments to achieve near-optimal accuracy
without computational inefficiency.
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Figure 3: Effect of progressive search iterations on quantization time (left sub-figure) and perplexity
(PPL) (middle and right sub-figures) for LLaMA3.1-8B and LLaMA3.2-3B models.
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Figure 4: Trade-off between tolerance bounds (¢), quantization time (left sub-figure), and model
perplexity (PPL) (middle and right sub-figures) for LLaMA3.1-8B and LLaMA3.2-3B architectures.

Bound of Tolerance e. Fig. []reveals the crucial trade-off between tolerance € and quantization
performance. Tighter € values improve perplexity but at significant computational cost: LLaMA3.1-
8B achieves 9.1% perplexity reduction with a 172% runtime increase, while LLaMA3.2-3B shows
4.5% improvement with 137% longer processing time. The inflection point at ¢ = 10~2 marks where
returns diminish substantially—further tightening yields marginal improvements while significantly
increasing computation time. Smaller models show better stability at low e, while larger models
require stricter tolerance to capture complex weight relationships. Our experiments identify € €
[1073,1072] as the optimal range for balancing accuracy and efficiency, particularly important for
resource-constrained deployment scenarios.

5 CONCLUSION

We have introduced PTQTP, a structured PTQ framework that achieves 1.58-bit quantization through
systematic trit-plane decomposition, which strikes a balance between the efficiency of binary methods
and the representational capacity of higher-precision formats, all without requiring retraining or
fine-tuning. Extensive experiments demonstrate that PTQTP outperforms existing low-bit PTQ
(1/2/3-bit) methods, and approaches or even surpasses the accuracy of 1.58-bit QAT techniques.

Remarkably, PTQTP preserves mathematical reasoning capabilities that catastrophically degrade in
other extreme low-bit quantization schemes, challenging the conventional wisdom that such tasks
inherently require higher precision. In addition, PTQTP’s model-agnostic design ensures robust
deployment across diverse architectures from 1B to 70B models, across most versions of LLaMA
and Qwen families.
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LLM USAGE DISCLOSURE

This paper is primarily the work of the human authors, but we also made use of several advanced large
language models, including ChatGPT-5, Gemini 2.5, DeepSeek, and Claude-4, as general-purpose
assistive tools. They were employed to summarize background literature, provide feedback on
research ideas, assist with code development and debugging, support result analysis, and help with
formatting and language polishing. We acknowledge the contributions of these LL.Ms, while fully
recognizing their limitations, and take full responsibility for all content presented under our names.
We did not include hidden prompt-injection text in the submission, and all external data and code
comply with their respective licenses.
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APPENDIX

A EFFICIENCY ANALYSIS

PTQTP’s hardware efficiency is consistent with the binary quantization method. Moreover, the
inherent sparsity of trit-plane offers potential opportunities for further quantization to reduce
storage requirements and acceleration on application-specific integrated circuit (ASIC).

A.1 HARDWARE EFFICIENCY

The PTQTP framework leverages ternary operations {—1, 0, 1} to achieve hardware-efficient compu-
tations. For a ternary element ¢, € {—1,0, 1} and scaling coefficient «, the multiplication operation
« - ¢y, can be implemented as an addition, eliminating floating-point multipliers and replacing them
with sign flips, identity mappings, or zeroing operations. This reduces the arithmetic intensity to O(1)
per element in the matrices. The far lower multiplication and the inherent sparsity in PTQTP than
other low-bit methods (i.e., 2-bits to 8-bits) and the decomposition into two trit-planes T(l)7 7@ al-
lowing parallelized additive superposition: W= diag(aM)T™ + diag(a?)T(?), where each plane
can be processed independently on parallelized architectures, exploiting data-level parallelism and
minimizing latency in inference acceleration. This bandwidth reduction is critical for latency-bound
applications, as memory access often dominates inference time in modern hardware architectures,
though there are two parallel trit-planes to represent the original weights.

A.2 COMPUTATION AND TIME COMPLEXITY OF QUANTIZATION

Total Computational Complexity: For row 7, the normal equation matrix A; = (5;)7'.S; + \; I is
2 x 2, with inverse computed in constant time (O(1) using the adjugate formula:

a1 A2 -AQ,2) @)
T det(4y) | —A(2,1) A1)

Where det(A;) = A;(1,1)A;(2,2) — A;(1,2)2. The vector b; = STW]T requires 2d operations (dot
products for each column of S;), leading to O(d) per row. Adding up to n rows, this step is O(nd) per
iteration. In addition, for each element (i, j) in W, evaluating (T*), 7(?)) € {~1,0,1}? involves
9 arithmetic operations per element, resulting in O(1) complexity per element. For d elements per
row, this is O(nd) in n rows per iteration. Therefore, with T}, iterations, the total computational
complexity is O(Tax - nd).

Total Time Complexity: For each iteration, the time complexity can be presented as follows:

O(nd) + O(nd) =0(nd); Onh) < O(nd) (8)
—— ——
Ridge Regression Trit-Plane Convergence
solve for o element-wise search Check

With empirical convergence in T < 50 iterations (Appendix [C)), the total time complexity is
O (Tinax - nd), exhibiting linear scalability with the dimension of weight matrix n, d, critical for
deployment on LLMs with billions of parameters. O(T,.x - nd) complexity is optimal for low-bit
quantization when considering both approximation quality and computational efficiency. Compared
to PTQ methods like GPTQ (Frantar et al., 2022) and AWQ (Lin et al.| 2024), PTQTP achieves lower
per-iteration complexity due to its closed-form solutions and fixed-dimensional ridge regression.

For example, GPTQ’s iterative Hessian-based optimization has a per-iteration complexity of O(nd?),
which becomes infeasible for large d. The experiment results in Fig. |3| show that PTQTP can stably
converges in <50 iterations with different model structures, resulting in 1.2-28.79 x speedup during
quantization on modern GPUs, which are shown in Fig. [T[b).

A.3 SPACE COMPLEXITY AND MEMORY SAVING

Space Complexity. A matrix W € R"*? in FP16 format requires 2nd bytes (2 bytes per element).
However, each ternary element ¢,, € {—1,0, 1} can be encoded with 2 bits (since 3 < 22), thus two
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Figure 5: The single trit-plane update process during the optimization iterations on LLaMA3.1-8B.

Table 4: Memory footprint overhead comparison between PTQTP and binary methods including:
PB-LLM, BiLLM, ARB-LLM.

LLaMA - 7B LLaMA - 13B

Method  Group Memory Method  Group Memory
FP16 - 13.48GB FP16 - 26.03GB
PB-LLM -  291GB PB-LLM -  533GB
BiLLM -  293GB BiLLM -  536GB
ARB-LLMgc x 2.63GB ARB-LLMgc x 4.77GB
ARB-LLMgc v 2.83GB ARB-LLMgc v 5.17GB
PTQTP x 351GB PTQTP x  6.53GB
PTQTP v 3.69GB PTQTP v 6.89GB

trit-planes stored by nd/2 bytes. Moreover, two vectors 1), a(?) € R™ in FP16 require 4n bytes.
Therefore, the total storage complexity can be presented as O(nd), achieving a compression ratio of
4x for the trit-plane relative to FP16.

For example, for a typical LLM layer with n = 1024 and d = 4096, PTQTP reduces storage from
8MB to 1.004MB (i.e., 0.5 MB for trit-planes and 0.504 MB for scaling coefficients), illustrating a
7.96 x compression ratio. This reduction enables deploying LLMs on devices with limited memory,
such as edge GPUs with 8 GB RAM or mobile devices with 4 GB RAM. The optimized trit-planes
examples during the iteration progress are illustrated in Fig. [5]

Memory Saving. For W € R"*%, group size k, the memory of W after standard quantization of bits
mis

M=nxdxm+ [d/k] x mnx16 )
N——
B multiple groups ~ row-wise FP16 o

The memory required by BiLLM can be formulated as follows, where c is the number of salient
columns for W.

2 groups
Mpim = 2xnxc+[d/k] x3nx16+n x (d—c) + [d/k] X 2n x 16 x 2

second-order binarization first-order binarization
4+ nxd + d (10)
~—— ~—

group bitmap  salient column bitmap
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Previous work (Li et al.,|2025)) derived the total memory occupation ARB-RC and ARB-RC + CGB
(grouped column bitmap), which can be formulated as:

MARB—RC =2Xnx C+([d/l€]] X 27’I,—|—26) X 16

second-order binarization

2 groups
+nx(d—c)+ ([d/k] xn+(d—c)) x 16 x 2

first-order binarization

+ nxd + d (11)

group bitmap  salient column bitmap

Marg-re+ceB = 2 X n X ¢+ ([d/k] X 2n+2¢) x 16 x 2

second-order binarization

2 groups
+nx(d—c)+ ([d/k] xn+(d—rc)) x 16 x 2
first-order binarization
+ nxd + d (12)
~~

group bitmap ~ salient column bitmap

In PTQTP, each trit-plane containing 3 states has to be stored as a 2bit datatype due to the hardware
constraint. The total memory of PTQTP is

MPTQTPZ2><’I’L><d><2+[d/k]><2n><16 (13)
—_—— —, —
2 Trit-Plane row-wise FP16 «

Table [d]compares the estimated memory demand of PTQTP with other extreme quantization methods,
derived from the above formulas. The proposed PTQTP slightly increased the memory consumption
to other binary quantization approaches. This is a trade-off between storage and representational
capacity. However, methods such as BiLLM and ARB-LLMgc explicitly divide columns into first-
order and second-order groups based on their saliency (as shown in Eqs[I0} [T T} [T2)), assigning more
bit planes and FP16 parameters to the more salient second-order columns. As a result, although
PTQTP uses trit-planes to represent quantized weights, it does not incur significant memory overhead
compared to binary-based methods.

A.4 INFERENCE SPEED

We designed a GPU kernel for efficient inference based on PTQTP. Its performance was evaluated on
an NVIDIA RTX 4090 GPU, using different layers from LLaMA?2 as benchmarks.

Linear Layer. We evaluated the inference latency of the proposed PTQTP kernel on the gate
projection layers of LLaMA?2 of varying sizes, compared to the GPTQ, AWQ, and AQLM kernels.
The tests covered both the prefill and decode stages across a range of sequence lengths, with results
summarized in the Table

During the decode stage, PTQTP achieves up to 1.14x speedup. In the prefill stage, all kernels tend
to incur higher latency, but PTQTP exhibits significantly smaller latency increase compared to AWQ
and AQLM. Overall, PTQTP delivers inference speed second only to GPTQ 4-bit, while maintaining
better performance.

Attention Layer. For LlamaAttention, we designed a dedicated PTQTP kernel, and evaluated its
inference latency during the decode stage across models of different scales. As shown in the Table[6]
the proposed kernel achieves up to 1.16x speedup on the 70B model.

B DETAILS OF PROGRESSIVE AND ADAPTIVE REGULARIZATION

The proposed progressive and adaptive algorithm (Algorithm[2) iteratively refines both the continuous
scaling coefficients o and the discrete trit-planes 7", T(2) to minimize the approximation error
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Table 5: The inference latency (ms) of Gate_proj on Nvidia RTX 4090 GPU.

LLaMA2 Sequencelen. FP16 GPTQ/4bit AWQ/4bit AQLM/2x2bit TPQTP/1.58bit

1 0122 0.085 0.092 0.049 0.120
7B 128 0.164  0.159 0.325 5.656 0.208
2048 1153 1.693 4.890 85.425 2.094

1 0.176  0.114 0.136 0.063 0.170

13B 128 0241 0272 0.489 6.868 0310
2048 2154 2.654 7.428 110.051 3.661

1 0519  0.274 0.380 0217 0.454

70B 128 0.630  0.712 1.534 25.798 0.856
2048 5945 8813 23.562 413.290 13.442

Table 6: The inference latency (ms) and speedup of LlamaAttention.

LLaMA2 7B 13B 70B

FP16 0.224 0.345 0.460
PTQTP/1.58bit  0.197 0.317 0.395

Speedup 1.141x  1.087x 1.163x

of the weight matrix W € R™*<. In the beginning, the trit-planes 7*) are initialized using the
sign function of W, with zero entries replaced by 1 to ensure valid ternary values (later expanded
to include O through optimization); scaling coefficients « are initialized as uniform vectors [1, 1]
replicated across all rows; and the regularization parameter ) starts at a small value 10~8 to promote
numerical stability.

In each iteration, the algorithm first updates the continuous scaling coefficients o row by row. If the
condition number ; qpproz > 10'2, indicating ill-conditioning, the regularization parameter \; is
adaptively increased < A4, = 1.0 to stabilize the solution. This adaptive regularization mitigates the
sensitivity to small input perturbations. The scaling coefficients are then solved via closed-form ridge
regression, ensuring efficient computation without iterative solvers. Next, the algorithm optimizes
the discrete trit-planes. It generates all 9 possible ternary value combinations C = {—1,0, 1}? for
the pair (71, T(?)), and for each matrix element (7, j), computes the approximation error for each
combination. The combination c,,+ that minimizes the squared error e, is selected to update Ti(jl)
and Ti(jz), effectively conducting a local exhaustive search to find the best ternary representation for
each weight entry. Finally, convergence is checked by monitoring the Frobenius norm difference

between consecutive scaling coefficient updates. If ||y — a—1)||F < €, the algorithm terminates
early, balancing optimization quality with computational efficiency.

C CONVERGENCE ANALYSIS

In this section, we present a comprehensive convergence analysis of our progressive optimization
scheme. Our goal is to provide rigorous theoretical proofs that establish the monotonic reduction
of approximation error and the attainment of local optimality. This analysis not only elucidates the
trade-off between computational complexity and model expressiveness, but also offers a theoretical
foundation for deploying our method on resource-constrained devices.

C.1 REGULARIZED INITIALIZATION

We adopt a progressive initialization strategy to kick-start the optimization process. The first step
of our initialization focuses on approximating the weight matrix W; group by group. We start by
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Algorithm 2 Progressive and Adaptive Regularization

Require: Weight matrix W € R™*4 max iterations T}y, tolerance e
Ensure: Optimized parameters o, T(l) T7®)
1: Initialize:

2: T((é“)) <« sign(WW) with 0 — 1 replacement for k = 1,2

3 aq) + [L,1]®1, > Uniform initial scaling coefficients
4 Aoy 1081, > Initial regularization parameters
5: fort =1to T, do

6: Update Continuous Scaling Coefficients:

7: for row : = %15:% n do @

8: Si = [Tia—ny Tie-)]

10: b; +— (SZ)TWZT

11: Solve ar(; 4y (A;) 7 1b;

12: )\i,new — /\i V Kfi,approac/lolz when Ri,approx > 1012

13: end for
14: Optimize Discrete Trit-Planes:

15: C« {-1,0,1}? > All possible ternary value pairs
16: for element (i, j) € W do
17: Evaluate error for all ¢,,, € C:
18: Em (Wu Zk 1 afk()t)cgf))
19: m* < argmin,, e,
1 2 *
20: Tt Tintey <
21: end for
22: Convergence Check:
23: if ||a(t) — Q1) |7 < € then
24: break > Early termination if converged
25: end if
26: end for

2
27: Return oy, {T(t) Ty }

> Initial trit-planes

> Local basis matrix

> Ridge regression solution

> Select best ternary pair
> Update trit-plane elements
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initializing the trit-planes Ti(té) Ti(fg))using the sign function of W;:

Tisl(c())) = sign(WW;) (14)

After obtaining the group-wise initialized trit-planes Ti(i%) and f“iiz(%),
where each row contains elements from T.%) and Ti(%())). The initial scaling coefficients &; () are

obtained by solving:

we construct the matrix S’Z-,(O)

i o) = argmin ([[W; = S 0 0113 + A0I1F) (15)
The closed-form solution with dimension-compatible regularization becomes:
. ~ -1 -
d@(()) = (SZ(O)SL(O) + )\I) SZ(O)WzT (16)

The coefficient bound should be modified as follows, where o,.x () denotes the maximum singular
value.

; Omax(Si0) o
Gigoylla < 2 t2i©@) g (17)
il < = i

C.2 BOUNDED PARAMETERS AND MONOTONICITY

Equivalently, if we define the error function E(c,T(y)) as the squared Frobenius norm of
the difference between W and its approximation using ;) and T(;), we have E(oz(t)7 T(t)) <
E(ov—-1), T(t—1)). This property ensures that the algorithm is always moving towards a better
approximation of the weight matrix. Furthermore, the scaling coefficients o(;) are bounded in the
infinity-norm. Specifically, we have ||a()lco < v/ Amax> Where Apay is the maximum eigenvalue of
a certain matrix related to the optimization problem. This bound implies that the values of the scaling
coefficients do not grow unbounded during the optimization process, which is crucial for the stability
of the algorithm.

Moreover, each iteration of the optimization provides the global optimum for its corresponding phase
sub-problem. This means that within each sub-problem (either optimizing the continuous coefficients
or the discrete trit-planes), the algorithm finds the best possible solution. We can prove that there
exists a finite number of iterations ¢y such that the Frobenius norm of the difference between the
scaling coefficients at iteration ¢y and ¢y — 1 is less than a pre-specified tolerance €. This result
guarantees that the algorithm will converge in a finite number of steps, which is essential for practical
applications.

Therefore, 3ty where the changes fall below any € > 0, implying lim; .o ||y — a@—1)l[r = 0.

Jto < oo s.t. ||,y — qre—1)llF <€ (18)

Our experiments shown in Fig. [3]also evident that our PTQTP can converge fast in each layer, and
the performance will improve rapidly by performing the optimization iteratively.

C.3 CONDITION ABLATION STUDY.

Table|/|summarizes the validation perplexities obtained when sweeping a regularization coefficient
(in log-space) across two model scales: LLaMA-3.1 8B and LLaMA-3.2 3B. All PPLs are reported
on WikiText-2, PTB, and the C4 validation split. Across corpora, both models exhibit monotonically
decreasing perplexity (illustrates robustness) as the condition numbers increases from 10° to 102,
after which the metric saturates—indicating a regime where further rise the condition bounds offers
negligible improvement.

D ROBUSTNESS AND GENERALIZATION ANALYSIS
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Table 7: Perplexity (PPL) of LLaMA-3.1 8B and LLaMA-3.2 3B on WikiText-2, PTB, and C4 under
different regularisation strengths. Lower is better.

.. LLaMA-3.1 8B LLaMA-3.2 3B
Condition
WikiText-2 PTB C4 WikiText-2 PTB C4
1 12.45 17.52 17.76 12.52 21.20 18.09
5 10.86 16.11 16.17 11.52 19.98 17.13
10t 9.58 14.92 14.65 10.92 18.64 16.18
102 8.97 1420 13.81 10.52 17.76  15.56
104 8.62 13.84 13.40 10.26 17.32  15.26
108 8.53 13.72 13.22 10.24 17.41 15.28
102 8.53 13.72  13.22 10.24 17.41 15.28
106 8.53 13.72 13.22 10.24 17.41 15.28
1012 8.53 13.72  13.22 10.24 17.41 15.28
1018 8.53 13.72 13.22 10.24 17.41 15.28

PTQTP demonstrates strong robustness and generalization capabilities across model sizes and
architectures, achieving stable performance under extremely low-bit quantization without the
need for mixed precision storage, salient weight protection or model-specific adjustments.

D.1 OUTLIER INSENSITIVITY IN LARGE LANGUAGE MODELS

Prior work (Huang et al.,|2024; |Lin et al.,|2024; |L1 et al., |2025) highlights heterogeneous LLM weight
importance, driving non-uniform quantization strategy (e.g., preserve critical FP16 weights). However,
such approaches introduce hardware complexity, and LLM sensitivity to weight perturbations grows
with finer semantic encoding, requiring more precision retention that harms efficiency.

PTQTP addresses this by avoiding explicit mixed-precision storage while inheriting importance-
aware benefits. Its group-wise framework approximates weights locally, mitigating outliers with-
out heuristics. By decomposing optimization into local subproblems adapting to weight group
statistics, PTQTP ensures robust approximation across architectures. Unlike prior methods (e.g.,
GPTQ’s Hessian detection, AWQ’s layer scaling), it needs no auxiliary pre-processing or model-
specific tuning. Table 8] shows group-wise optimization (G' = 128) reduces quantization error: 3-bit
AWQ/GPTQ/OmniQuant (Shao et al., [2023)) without grouping suffer large perplexity degradation
(11.88 vs. 6.46 for AWQ on LLaMA-7B), while PTQTP achieves competitive performance at 1.58-bit
precision using local statistics. LLaMA2-70B’s smaller perplexity gap confirms model scale enhances
quantization robustness via parameter redundancy.

Table 8: The Perplexity of LLaMA-7B and LLaMA2-70B w/o Group-wise (G = 128) Optimization
on WikiText2 Dataset.

LLaMA-7B Perplexity | LLaMA2-70B Perplexity |
Method (#Bits) x Group /v Group | Method (#Bits) x Group /v Group
FP16 (16) 5.68 FP16 (16) 3.32
AWQ (3) 11.88/6.46 AWQ (3) 7.53/3.74
GPTQ (3) 8.06/6.55 GPTQ (3) 4.82/3.85
OmniQuant (3) 6.49/6.15 OmniQuant (3) 3.92/3.78
PTQTP (1.58) 6.64 / 6.40 PTQTP (1.58) 43/395

D.2 GENERALIZATION ACROSS ARCHITECTURES AND SCALES
PTQTP demonstrates stable approximation quality across models/architectures without retraining/fine-

tuning. As shown in Table [T} [2]and [3] it outperforms low-bit methods in numerical stability and
fidelity for models like Qwen3. Its modular design decouples quantization logic from model specifics,
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enabling plug-and-play adaptability to architectural variations (e.g., attention mechanisms) and scale
(7B-70B).

Avoiding outlier-specific interventions, PTQTP’s element-wise trit-plane search and group-wise ridge
regression naturally fit diverse weight distributions, ensuring high-fidelity approximation across layers.
Empirical results show near-FP16 accuracy on conventional models (Table [9} and superiority
on advanced architectures, establishing it as a broadly applicable strategy for hardware-constrained
LLM deployment.

E FULL RESULTS

In this supplementary chapter, we listed all our test results. Table [0] presents the perplexity evaluation
for the LLaMA series models, and Table [I0] shows the performance comparison of PTQTP after
quantizing the Qwen3 series models at different sizes. Table[11|displays the results of the benchmark
experiment with a certain level of difficulty, showing the quantization stability of our PTQTP for the
Qwen3-14B quantized model. Finally, we presented experiments results on HumanEval (Chen et al.,
2021) and MBPP (Austin et al.,[2021)) benchmarks. We compared PTQTP with baseline methods to
demonstrate the comprehensiveness of our method.

Table 9: Comparison between PTQTP and SOTA PTQ methods on LLaMA family across multiple
datasets: WikiText2, PTB, C4 (Group Size G = 128). N/A: No corresponding model; *: LLaMA-2/3
use 70B instead of 65B.Bold: best result; underlined: second-best.

Model  Method/#Bits WikiText2 PTB c4
7B/SB* 13B  65B/70B* 7B/SB* 13B 65B/70B* 7B/8B* 13B 65B/70B*
FP16/16.00 568 5090 353 4115 2809 2505 734 679 581
AWQ/4.00 581 519 362 3279 2189 2575 759 688 590

AWQ/3.00 635 552 395 4374 2509 5079 907 779 633
GPTQ/3.00 655 567 417 8488 2640 1955 5031 3231  6.03
LLaMA  GPTQ/2.00 129.19 2046  8.66 142147 22445 4770  79.06 18.97  10.23
PB-LLM/1.70 8276 4493 1281  603.57 237.22 11919 76.63 40.64  15.30
BiLLM/1.09 4979 1458 837  373.81 84.87 4468 4696 1683  11.09
ARB-LLMpc/1.09 14.03 10.18 656 19594 5438 3220 1738 1248 891
PTQTP/1.58 640 566 404 5041 3025 24.67 832 741 628
FP16/16.00 547 488 332 379 5093 2425 726 673 571
AWQ/4.00 561 497 341 4446 3645 2415 749 679  5.83
AWQ/3.00 624 532 374 4003 4392 23.59 888 750 627
GPTQ/3.00 644 546 388 206896 61.56 1826  7.95 7.06  5.88
LLaMA-2 GPTQ/2.00 5222 2363 8.8 558396 419.07 5051 3527 1966  9.55
PB-LLM/1.70 66.41 23640 2837  657.24 81631 NAN  80.69 184.67 NAN
BiLLM/1.08 3231 2135 1332 524301 309.12  72.02 3938 2587  17.30
ARB-LLMpc/1.08 1644 11.85  6.16  389.59 198.17 3279 2038 1436  8.65
PTQTP/1.58 632 529 395 4253 469 2815 841 734 6.3
FP16/16.00 614 N/A 286 1005 NA 853 954 NA 717
AWQ/4.00 736 NA 592 1114 NA 911 1036 N/A 898
AWQ/3.00 1207 NA 1067 1861 NA 2737 1898 N/A  22.19
GPTQ/3.00 1868 N/A 665 1883 N/A 1597 1768 NA  10.04
LLaMA-3 GPTQ/2.00 148043 N/A 8223 71724 N/A 7920 39474 N/A  (22.55
PB-LLM/1.70 7308 N/A 2296 10625 N/A 4513 104.15 N/A  40.69
BiLLM/1.06 5580 N/A 6630 8725 N/A  97.13 6104 N/A  198.86
ARB-LLMpc/1.06 2742 N/A  11.10 4549 N/A 1534 3570 N/A 1544
PTQTP/1.58 851 NA 612 1402 NA 1091 1324 NA  12.64

F BROADER IMPACTS

Our research fundamentally reconstructs the computational paradigm of artificial intelligence (AI)
edge systems by eliminating the vast majority of multiplication operations. This breakthrough enables
novel hardware innovations, particularly in the development of pure additive-operation-based neuro-
morphic chip designs, significantly enhancing both thermal efficiency and computational stability in
mobile devices. The advancement dramatically lowers the barrier to Al deployment, making server-
less architectures feasible even in energy-constrained regions. At the mathematical framework level,
the established non-multiplicative tensor algebra system opens new research directions in biologically
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Table 10: MMLU Results Comparison for Qwen3 Models (0.6B—32B) with Different Low-bit
Quantization Methods (1bit to 8bits).

Method 0.6B 1.7B 4B

Quant (#W/#A/#G) Acc./Per.(%) Quant (#W/HAMG) Acc./Per.(%) Quant (HW/HA/MG) Acc./Per.(%)
FP16 16/16/— 47.1/100.0 16/16/— 60.0/100.0 16/16/- 69.7/100.0
AWQ 8/16/128 47.0/99.8 8/16/128 59.8/99.7 8/16/128 69.6/99.9
GPTQ 8/16/128 47.0/99.8 8/16/128 59.9/99.8 8/16/128 69.7/100.0
AWQ 4/16/128 42.1/89.4 4/16/128 52.5/87.5 4/16/128 64.1/92.0
GPTQ 4/16/128 44.0/93.4 4/16/128 55.7/92.8 4/16/128 67.6/97.0
AWQ 2/16/128 25.7/54.6 2/16/128 25.2/42.0 2/16/128 24.6/35.3
GPTQ 2/16/128 23.5/49.9 2/16/128 25.6/42.7 2/16/128 24.4/35.0
BiLLM 1.06/16/128 23.3/49.5 1.04/16/128 25.1/41.8 1.07/16/128 26.3/37.7
PTQPT 1.58/16/128 33.6/71.4 1.58/16/128 43.8/73.0 1.58/16/128 63.7/91.3
Method 8B 14B 32B

Quant (#W/HA/MG) Acc./Per.(%) Quant (#W/#A/HG) Acc./Per.(%) Quant (#W/#A/#G) Acc./Per.(%)
FP16 16/16/—- 74.7/100.0 16/16/— 78.5/100.0 16/16/— 81.2/100.0
AWQ 8/16/128 74.5/99.7 8/16/128 78.5/100.0 8/16/128 81.3/100.1
GPTQ 8/16/128 74.7/100.0 8/16/128 78.4/99.9 8/16/128 81.4/100.2
AWQ 4/16/128 69.3/92.8 4/16/128 75.9/96.7 4/16/128 78.0/96.1
GPTQ 4/16/128 73.4/98.3 4/16/128 77.4/98.6 4/16/128 80.6/99.3
AWQ 2/16/128 25.3/33.9 2/16/128 25.0/31.8 2/16/128 24.6/30.3
GPTQ 2/16/128 25.0/33.5 2/16/128 28.5/36.3 2/16/128 28.1/34.6
BiLLM 1.05/16/128 32.8/43.9 1.05/16/128 39.9/50.8 1.06/16/128 57.5/70.8
PTQPT 1.58/16/128 68.2/91.3 1.58/16/128 76.2/97.1 1.58/16/128 80.6/99.3

Table 11: Accuracy of 7 Language Reasoning Datasets on Qwen3 family with PTQTP. We compare
the results among Qwen-3 Models FP16 and PTQPT-b1.58 across model size from 0.6B to 32B.

Metrics Method Size
06B 1.7B 4B 8B 14B 32B
FP16 52.88 65.08 79.66 82.37 82.37 88.81
ARC-Challenge PTQPT-b1.58 44.41 51.53 76.95 68.81 80.68 77.97
(%) 84.0 792 96.6 835 979 8738
FP16 73.72 80.25 87.13 89.07 90.83 92.24
ARC-Easy PTQPT-b1.58 56.44 70.02 86.60 81.13 88.71 86.24
(%) 76.6 873 994 91.1 97.7 93.5
FP16 66.42 78.87 86.36 86.39 89.45 87.98
BoolQ PTQPT-b1.58 62.57 27.55 84.13 85.44 89.02 86.27
(%) 942 349 974 989 995 98.1
FP16 43.60 58.03 78.19 84.67 88.09 90.80
HellaSwag PTQPT-b1.58 32.85 37.92 71.02 79.75 85.13 89.56
(%) 753 653 90.8 942 96.6 98.6
FP16 58.98 67.57 77.26 80.20 81.07 83.51
PIQA PTQPT-b1.58 57.67 57.89 73.18 73.78 79.33 80.41
(%) 97.8 857 947 920 979 96.3
FP16 50.51 50.99 58.96 54.14 68.90 77.82
WinoG PTQPT-b1.58 50.43 51.07 53.67 59.67 67.72 73.64
(%) 99.8 100.2 91.0 110.2 98.3 94.6
FP16 43.76 60.67 70.68 76.55 79.38 82.81
MMLU PTQPT-b1.58 33.64 43.82 63.65 68.23 76.20 80.56
(%) 769 722 90.1 89.1 96.0 97.3
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Table 12: Comparison of Model Performance on HumanEval and MBPP Benchmarks.

Model HumanEval (%) MBPP (%)
LLaMA-3.2-1B-Instruct 41.46 52.14
Qwen-2.5-1.5B-Instruct 53.66 57.59
Qwen-3-1.7B-Instruct 65.24 63.42
SmollLM2-1.7B-Instruct 35.98 49.81
MiniCPM-2B-DPO 39.02 55.64
LLaMA-3.2-3B-Instruct 62.20 63.81
Qwen3-1.7B-PTQTP 45.53 48.78
Qwen2.5-3B-Instruct-PTQTP 25.61 44.75
LLaMA-3.2-3B-Instruct-PTQTP 17.68 52.92

inspired dendritic computing. Although challenges remain in addressing the numerical stability of
additive accumulations and the co-design of next-generation Al accelerators, this computational
paradigm shift has already reshaped the energy-performance tradeoff curve, providing new pathways
for existing Al infrastructure development.

G LIMITATIONS AND FUTURE WORKS

Further optimize Memory Footprints. PTQTP’s memory layout can be further optimized through
bit-packing, where 8 ternary elements are stored in a single byte, improving cache locality and
reducing cache misses by 20%-30% compared to non-packed formats.

Compatibility with Specialized Hardware. PTQTP’s multiplication-free operations align perfectly
with hardware accelerators designed for binary/ternary neural networks, such as customized ASICs.
These architectures can execute sign flips and additions in single clock cycles, achieving peak
throughput with minimal energy consumption. For instance, ternary operations can leverage bitwise
XOR for sign inversion, enabling sub-nanosecond latency per operation on specialized hardware.
However, currently, technical support is still not widespread, and PTQTP’s storage and technical
computing still rely on modern computing devices, which limits the performance of PTQTP to some
extent. Future works can focus on software-hardware co-design and hardware framework design for
1.58-bit inference acceleration.

Generalization Optimization. Although we have tested on various benchmarks to showcase the
advancement and robustness of PTQTP as much as possible, due to time constraints, we will challenge
more difficult benchmarks in future work, which has been lacking in previous PTQ-related work. We
may further enhance the performance of PTQTP through methods similar to DPO or SFT, enabling it
to provide stable support for all future quantization-required scenarios.
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