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One-shot In-context Part Segmentation
Anonymous Authors

ABSTRACT
In this paper, we present the One-shot In-context Part Segmentation
(OIParts) framework, designed to tackle the challenges of part seg-
mentation by leveraging visual foundation models (VFMs). Existing
training-based one-shot part segmentation methods that utilize
VFMs encounter difficulties when faced with scenarios where the
one-shot image and test image exhibit significant variance in ap-
pearance and perspective, or when the object in the test image is
partially visible. We argue that training on the one-shot example
often leads to overfitting, thereby compromising the model’s gen-
eralization capability. Our framework offers a novel approach to
part segmentation that is training-free, flexible, and data-efficient,
requiring only a single in-context example for precise segmentation
with superior generalization ability. By thoroughly exploring the
complementary strengths of VFMs, specifically DINOv2 and Stable
Diffusion, we introduce an adaptive channel selection approach by
minimizing the intra-class distance for better exploiting these two
features, thereby enhancing the discriminatory power of the ex-
tracted features for the fine-grained parts.We have achieved remark-
able segmentation performance across diverse object categories.
The OIParts framework not only eliminates the need for extensive
labeled data but also demonstrates superior generalization abil-
ity. Through comprehensive experimentation on three benchmark
datasets, we have demonstrated the superiority of our proposed
method over existing part segmentation approaches in one-shot
settings.

CCS CONCEPTS
• Computing methodologies→ Image segmentation.

KEYWORDS
Part Segmentation, One-shot Segmentation, Semantic Segmentation

1 INTRODUCTION
Part segmentation involves segmenting objects into their constituent
parts, providing a more granular understanding of their intricate
structure. This granular understanding holds immense potential in
various applications, including image editing, object manipulation,
and behavior analysis. The task of part segmentation is highly com-
plex, primarily due to the diverse definitions of parts across different
object categories and the varying granularity of parts defined for
different purposes. Additionally, obtaining an adequate amount of
labeled data for this task is both costly and labor-intensive, further
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increasing the challenge. Therefore, it is crucial to investigate a
generalized and data-efficient approach for part segmentation that
can flexibly adapt to various objects.

Recent advancements in visual foundation models (VFMs) have
revolutionized several computer vision tasks, demonstrating re-
markable capabilities across a range of tasks. These models exhibit
a remarkable generalization capacity for in-context learning, mak-
ing them well-suited for adapting to downstream tasks with just a
few examples. Efforts such as SegGPT [42] focused on developing
generalized in-context learning frameworks for semantic segmenta-
tion, enabling inference for novel objects with one labeled example.
However, these methods still heavily rely on labeled data for train-
ing. Some previous works have primarily focused on exclusively
exploring the capabilities of specific VFMs for part segmentation.
For instance, SLiMe [14] leveraged the Stable Diffusion [32] model
to localize part regions by learning a prompt embedding for each
part from only one or a few annotated examples. Nonetheless, these
methods still rely on training from a single labeled example, which
can result in overfitting and undermine the generalization capabili-
ties of models. Consequently, they encounter challenges in dealing
with significant appearance and perspective differences between
the test and training examples, as well as difficulties with when
the object in the test image is partially visible. These limitations
have motivated us to explore a training-free paradigm that relies
on a single in-context example for precise part segmentation with
superior generalization ability, as the examples shown in Figure 1.

In this paper, we introduce a training-free One-shot In-context
Part Segmentation (OIParts) framework designed to unleash the
full potential of VFMs in part segmentation, which is achieved
by establishing correspondence between an in-context example
and the test image leveraging the representations extracted from
VFMs. To enhance the representation for fine-grained object parts,
we leverage the complementary strengths of two distinct VFMs:
DINOv2 and Stable Diffusion. DINOv2 effectively captures dense
visual descriptors critical for precise part correspondence, while Sta-
ble Diffusion is perceptual to global object structural information.
The integration of these two types of features gives rise to two key
considerations: (1) Distinguishability: The exploration of effec-
tive feature fusion techniques to extract discriminative information
for fine-grained part segmentation, relying solely on a single ex-
ample. (2) Generalization: It involves developing a harmonious
fusion approach for these inherently different-dimensional and -
scale features, ensuring that the resulting representation maintains
its generalization ability across diverse scenarios.

To address the challenges, we introduce a novel adaptive chan-
nel selection approach that minimizes the intra-class distance. We
employ this approach to create a distinctive representation for each
object part category by selecting channels that improve intra-class
compactness, leveraging the information provided by the in-context
example. This approach allows us to selectively fuse features from
both DINOv2 and Stable Diffusion, yielding a unique representa-
tion for each part category that enhances discriminatory power and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Part segmentation results in various scenarios. Each in-context example is displayed on the left, with the part
segmentation results generated by our OIParts highlighted in the dotted boxes.

maintains the generalization capabilities of the extracted features.
By leveraging this selectively fused feature, we can accurately seg-
ment fine-grained object parts by computing the pixel-wise similar-
ity between the provided in-context example and the query image,
without requiring extensive labeled data for training. Furthermore,
our approach enables flexible and effective selection of the most
relevant features for object parts from different in-context exam-
ples, offering adaptation for various objects. Hence, our framework
exhibits characteristics of generalization ability, data efficiency, and
adaptation. The primary contributions of this work are summarized
as follows:

• We comprehensively explore the complementary features
of DINOv2 and Stable Diffusion to enhance part segmenta-
tion effectively, resulting in a training-free framework for
one-shot in-context part segmentation by synergizing the
complementary strengths of the two models.

• We propose a novel adaptive channel selection approach by
improving intra-class compactness to effectively fuse the
two features, yielding more discriminative fine-grained part
representations without compromising the generalization
ability.

• Through comprehensive experimentation, we demonstrate
that the segmentation performance of our proposed method
surpasses that of existing part segmentation methods utiliz-
ing only one in-context example. This superiority is espe-
cially notable in datasets with significant pose and perspec-
tive variations, such as the horse and car datasets.

2 RELATEDWORK
2.1 Visual Foundation Models
Visual Foundation Models (VFMs) are trained on broad data that
can be adapted to a wide range of downstream tasks. One of the
key strengths of VFMs is their adaptability and versatility. Unlike
traditional models that are often tailored to specific tasks, VFMs
exhibit a remarkable ability to generalize. This versatility allows
them to be fine-tuned or adapted for different downstream tasks

without the need for extensive retraining or modification. The ex-
isting Visual Foundation Models (VFMs) primarily fall into two
categories: (1) General Visual Foundation Models: These models
learn comprehensive visual representations, forming the founda-
tion for a diverse array of downstream computer vision tasks. They
often leverage techniques like self-supervised learning to extract
valuable features without heavy reliance on labeled data. Promi-
nent examples include CLIP [29], which excels in zero-shot image
recognition by learning from a vast corpus of image-text pairs.
Subsequently, several works like [48] have exploited it for few-
shot learning. DINO [4], DINOv2 [27], SimCLR [7], MAE [11] and
MoCo [12] are other notable models in this category, focusing on
contrastive learning to derive robust representations. These models
demonstrate remarkable versatility, adapting seamlessly to various
vision tasks such as classification, detection, and segmentation. (2)
Specialized Vision Foundation Models: These models are tailored
to address specific sets of vision problems or tasks. They often
exhibit exceptional performance in their respective domains due
to their targeted design. For instance, DALL-E [31], DALL-E 2 [30],
Stable Diffusion [32], and Imagen [34] are renowned for their profi-
ciency in generating realistic and high-fidelity visual content from
textual descriptions. In addition, models like GLIP [19] are specifi-
cally crafted for open-set object detection, excelling in identifying
objects beyond predefined categories. The recently introduced "seg-
ment anything" model (SAM) [15] has garnered significant atten-
tion for its remarkable ability to segment objects based on diverse
input prompts. Matcher [23] and PerSAM [45] have explored data-
efficient semantic segmentation based on SAM. Hummingbird [1]
is developed for in-context scene understanding. In this paper, we
focus on exploring the pre-trained stable diffusion model and DI-
NOv2 to develop a training-free framework for accurate one-shot
part segmentation.

2.2 Part Segmentation
Part segmentation, a fundamental task in computer vision, involves
the delineation of objects into their constituent parts, thereby pro-
viding a more detailed understanding of their intricate structure. As
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a fine-grained variety of semantic segmentation, part segmentation
has experienced notable advancements parallel to the rapid expan-
sion of semantic segmentation [5, 6, 9, 13, 21, 24]. Previous efforts
were predominantly centered around the design and refinement
of network architectures. These efforts [10, 20, 25, 39, 40] involved
enhancing existing semantic segmentation networks through the
integration of novel modules aimed at enhancing contextual infor-
mation or fine-grained details. Furthermore, some methods [22, 26,
33, 47] explored multi-task joint learning, like edge detection, for
utilizing supplementary information from complementary tasks.
In addition, Pan et al. [28] explored a new open-set part segmen-
tation framework, achieving category-agnostic part segmentation
by disregarding part category labels during training. To achieve
data-efficient part segmentation, several approaches have explored
the use of generative models [2, 37, 46]. Some approaches for
universal semantic segmentation often encompass part segmen-
tation as well. These methods, such as SEEM [49], SegGPT [42],
Semantic-SAM [18], and HIPIE [41], aim to integrate various seman-
tic segmentation-related tasks into a unified framework, thereby
designing a general framework applicable to all segmentation tasks.
However, those approaches still heavily rely on extensive labeled
data for training. Recently, there have been attempts to utilize
VFMs for open-vocabulary or data-efficient part segmentation. For
instance, Tang et al. [36] proposed a language-driven segmenta-
tion model that achieves part segmentation through interactive
segmentation. OV-PARTS [43] addressed the issue of data scarcity
in open-vocabulary part semantic tasks by introducing two open-
vocabulary datasets. They also explored utilizing VFMs to assist
in open-vocabulary part segmentation. In addition, Sun et al. [35]
designed an open-vocabulary part segmentation algorithm com-
bined with object detection, aiming to simultaneously address the
issues of open object categories and open part categories in part
segmentation, and utilized the DINOv2 model for visual part fea-
tures extraction. SLiMe [14] introduced a method aimed at part
segmentation with arbitrary granularities, which was achieved by
harnessing the text and visual features alignment power of attention
mechanisms inherent in the diffusion generation process of Stable
Diffusion. Unlike existing training-based methods, we introduce a
training-free approach that combines the complementary strengths
of two distinct VFMs. Furthermore, we comprehensively explore
the fusion of these two feature types to achieve more accurate and
generalized one-shot in-context part segmentation.

3 METHODS
We present a novel One-shot In-context Part Segmentation (OIParts)
framework designed to achieve part segmentation with just one
labeled image as an in-context example, leveraging existing visual
foundation models without requiring any training or fine-tuning.
Given an in-context example composed of an image 𝐼𝑟 ∈ R𝐻×𝑊 ×3

and a corresponding binary mask𝑀𝑟 ∈ R𝐻×𝑊 ×𝐶 , OIParts can seg-
ment the object in query image 𝐼𝑞 into desired parts as defined in
𝑀𝑟 , where𝑀𝑟 denotes binary mask of𝐶 object parts. The overview
of the whole framework is illustrated in Figure. 2. Specifically, we
employ the pre-trained stable diffusion model (SD) and DINOv2 to
extract complementary semantic features for images 𝐼𝑟 and 𝐼𝑞 . Fur-
ther, we fuse these two types of features with an adaptive channel

selection mechanism to obtain more distinctive representations for
each part. Subsequently, the selectively fused features are used to
calculate the pixel-wise semantic similarity between 𝐼𝑟 and 𝐼𝑞 , we
can obtain segmentation masks by transferring the pixel-wise label
in the in-context example 𝑀𝑟 to the novel query images guided by
the computed semantic similarity. In the following subsections, we
will delve into the details of the overall process.

3.1 Feature Extraction
Previous works have demonstrated DINOv2’s capability to pro-
vide explicit information crucial for semantic segmentation tasks.
Additionally, Stable Diffusion (SD) exhibits a robust internal repre-
sentation of objects, effectively capturing both their content and
layout. Leveraging these strengths, we employ DINOv2 to extract
dense visual descriptors for object parts and utilize SD to derive
complementary global structure information, thereby enhancing
the overall part representation. Specifically, we extract the token
features from layer 11 of DINOv2 for each image, denoted as 𝐹𝑑𝑖𝑛𝑜 ,
and extract the SD features 𝐹𝑠𝑑 from the denoising U-Net.

To align the scales and distributions of these two types of fea-
tures, we first normalize the SD feature and DINOv2 feature by L2
normalization respectively following [44]. Then concatenate them
along the channel dimension to get the feature 𝐹 ∈ R𝐻 ′×𝑊 ′×𝐷 :

𝐹 = Concat(∥𝐹𝑠𝑑 ∥2, ∥𝐹𝑑𝑖𝑛𝑜 ∥2) (1)

3.2 Adaptive Channel Selection
Considering that not every channel of the feature contributes mean-
ingful information for each object part, we perform feature selection
for the concatenated features. Some channels may be corrupted by
noise or may capture irrelevant variations, thereby obscuring the
distinctiveness of the representation for the specific part. Therefore,
it becomes crucial to eliminate these noisy channels for specific
object parts, ensuring a more discriminative and focused feature
representation. Although it may seem intuitive to adopt a learning-
based method for further fusing the two types of features, relying
solely on a one-shot in-context example could undermine their
generalization capabilities, as explored in the experiments section.
Instead, we present an innovative approach leveraging channel
selection to generate more discriminative representations using the
two complementary features without additional training.

To achieve this, two primary concerns need to be addressed: (1)
Identifying the specific channels that should be chosen to achieve
the desired discriminative power; and (2) Determining the optimal
number of channels to be selected. In this paper, we introduce a
novel adaptive channel selection mechanism by formulating an
optimization problem that minimizes the intra-class distance. By
solving this optimization problem, we aim to select discriminative
channels that effectively capture the distinguishing characteristics
of each part. This selection process ensures that the new features
formed by the selected channels minimize the distance within the
same class, allowing for the effective separation of different classes.

To identify representative feature channels for each object part,
we select channels that generate new features, thereby enhancing
the compactness of data points associated with the same object part
in the new feature space. This approach can implicitly improve the
separability of data points from different object parts, as illustrated
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Figure 2: The overall framework of our proposed OIParts. We acquire features for each image by extracting them from DINOv2
and SD. Initially, we calculate representative feature channels for each object part based on the provided in-context example.
During the inference phase, we generate representative features for each object part. Subsequently, cosine similarity scores are
calculated between pixels of the in-context image and the query image, which are further utilized to predict part masks for the
query image.

in Figure 2. Specifically, given the L2 normalized feature 𝐹𝑟 of
the in-context example, we denote the pixels in 𝐹𝑟 ∈ R𝐻 ′×𝑊 ′×𝐷

corresponding to part 𝑐 as 𝑥𝑐 = {𝑥𝑐
𝑖
∈ R𝐷 , 𝑖 = 1, . . . , |𝑀𝑐

𝑟 |}, where
𝑀𝑐
𝑟 represents the binary mask corresponding to part 𝑐 , and |𝑀𝑐

𝑟 | is
the number of pixels belonging to the part 𝑐 at the resolution 𝐻 ′ ×
𝑊 ′. Conversely, 𝑥𝑐 represents pixels that do not belong to part 𝑐 . We
use a binary matrix 𝐵 ∈ {0, 1}𝐶×𝐷 to indicate the selected channels
for each category. Therefore, 𝐵𝑐 ∈ {0, 1}𝐷 is a binary vector that
denotes whether each channel is chosen for part category 𝑐 . Then,
to select 𝐾 representative channels, we define the channel selection
as an optimization problem. The objective of this optimization is to
minimize the intra-class distance computed using the new feature
vectors composed of 𝐾 selected channels:

minD(𝑥𝑐 ⊙ 𝐵𝑐 ) + D(𝑥𝑐 ⊙ 𝐵𝑐 ), s.t. 𝐵𝑐 (𝐵𝑐 )⊤ = 𝐾, (2)

where 𝑥𝑐 ⊙𝐵𝑐 denotes only selecting the feature channels according
to 𝐵𝑐 , D(·) is used to measure the distance of the feature set, 𝐾 is
the number of channels to be selected.

Hence, our goal is to identify a subset of K channels. When these
channels represent a pixel, they minimize the distance between
pixels belonging to the same part. Here, we utilize a straightforward
metric, variance, for D(·) to identify the optimal subset among the
various subsets of K channels. Although we have explored several
metrics, like Kullback-Leibler divergence and Jensen–Shannon di-
vergence, as evaluated in the experimental section, we have found
that adopting variance is the simple yet most effective approach.
We denote the feature set 𝑥𝑐 ⊙𝐵𝑐 as𝑦𝑐 = {𝑦𝑐

𝑖
∈ R𝐾 , 𝑖 = 1, . . . , |𝑀𝑐

𝑟 |},

and 𝑦𝑐
𝑗
denotes the mean of 𝑗-th channel. Thus, D(·) can be formu-

lated as:

D(𝑥𝑐 ⊙ 𝐵𝑐 ) = 1
𝐾

𝐾∑︁
𝑗

1
|𝑀𝑐
𝑟 |

|𝑀𝑐
𝑟 |∑︁
𝑖

(𝑦𝑐𝑖 𝑗 − 𝑦𝑐𝑗 )
2 (3)

Given that the variance of a set of feature vectors is calculated
separately for each channel, we can efficiently solve this optimiza-
tion problem of Equation 2 to obtain 𝐵𝑐 by ranking the variances of
all 𝐷 channels and subsequently selecting the top 𝐾 channels with
the lowest variances. Those 𝐾 channels form a subset with the min-
imum variance among all subsets of 𝐾 channels. This approach is
also intuitively reasonable, as a channel with low variance indicates
that it represents a common characteristic among pixels belong-
ing to that part, thereby making it suitable as the representative
channel for that part.

We further evaluate the segmentation accuracy on the given
in-context example to find the optimal value of 𝐾 for each part
category 𝑐 . Specifically, given a particular value of 𝐾 , we utilize
the aforementioned method to decide which channels should be
selected for the part category. Subsequently, we compute two class
centers corresponding to two feature vector sets, one belonging to
part 𝑐 and the other not. These two class centers are then utilized
to re-assign labels for the in-context example to obtain a clustered
mask �̂�𝑐

𝑟 . By varying the value of 𝐾 , we can obtain different clus-
tered masks �̂�𝑐

𝑟 . Finally, we evaluate the accuracy of the clustered
mask �̂�𝑐

𝑟 with the corresponding ground-truth mask𝑀𝑐
𝑟 , choosing

the value of 𝐾 that yields the highest accuracy for our approach.



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

One-shot In-context Part Segmentation ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 3: The overall pipeline of the proposed channel selection.

The overall pipeline of performing this channel selection is il-
lustrated in Figure 3. Note that this channel selection process only
needs to be calculated once using the in-context example and can
subsequently be applied during inference.

3.3 Part Segmentation
To perform part segmentation for a query image 𝐼𝑞 using the in-
context example, we first extract the complementary feature and
utilize 𝐵 to obtain the selectively fused feature 𝐹𝑞 ∈ R𝐻 ′×𝑊 ′×𝐾

for each part category. Subsequently, we use cosine similarity to
measure the pixel-wise semantic similarity. For each pixel in 𝐹 𝑖𝑞 ,
we can calculate the similarity score with each pixel in 𝐹 𝑗𝑟 by:

𝑠𝑖, 𝑗 =
1
𝛽

⟨𝐹 𝑖𝑞, 𝐹
𝑗
𝑟 ⟩

∥𝐹 𝑖𝑞 ∥ × ∥𝐹 𝑗𝑟 ∥
, 𝑎𝑖 = softmax

𝑗
(𝑠𝑖 ), (4)

where 𝑆𝑖, 𝑗 denotes the cosine similarity between 𝐹 𝑖𝑟 and 𝐹 𝑖𝑞 , 𝑏𝑒𝑡𝑎
serves as a hyper-parameter for scaling value before applying a
softmax operation to obtain the score values, and 𝑎𝑖, 𝑗 stands for
the similarity score that have been normalized using the softmax
function. We then utilize this similarity score to combine the cor-
responding labels from 𝑀𝑟 , thereby generating a prediction for
each pixel in the query image and acquiring the predicted part
segmentation mask𝑀𝑐

𝑞 :

𝑀𝑐
𝑞 =

∑︁
𝑗

𝑎𝑖, 𝑗𝑀
𝑐,𝑗
𝑟 (5)

Finally, by concatenating the predictions of all the parts, we
obtain the final part segmentation prediction𝑀𝑞 . This prediction
is further upsampled to the original image size using bilinear in-
terpolation. In addition, the resolution of the extracted features
used for part segmentation is relatively low, resulting in a loss of
object details and coarse segmentation results around the boundary
regions. To mitigate this issue and enhance the quality of segmen-
tation, we incorporate an edge smoothing technique called the Fast

Bilateral Solver (FBS) [3]. This technique effectively refines the
coarse segmentation masks, providing more precise boundaries,
thereby improving the overall accuracy and visual quality of the
segmentation results.

4 EXPERIMENTS
In this section, we comprehensively evaluate our approach both
qualitatively and quantitatively.

4.1 Experimental Settings
Implementation Details In our experiments, we employ the DI-
NOv2 [27] and Stable Diffusion v1-5 model [32] for feature ex-
traction following [44]. For the Stable Diffusion model, we set the
timestep to 100 and use a generic text prompt template like "a photo
of c", where c is the corresponding category name. The feature maps
extracted from both the Stable Diffusion and DINOv2 models are at
a consistent resolution of 60 × 60 with dimensions of 768 and 1024,
respectively. All experiments are conducted on NVIDIA RTX3090
GPU.
Datasets and MetricsWe conduct experiments on two datasets of
three distinct object categories, PASCAL-Part [8] and CelebAMask-
HQ [17], following the same dataset setting as SLiMe [14]. We
evaluate our results using the mean Intersection over Union (mIoU)
metric. PASCAL-Part provides comprehensive annotations of var-
ious object parts across images, encompassing 20 distinct object
categories. We focus on the object categories of car and horse. In
the car category, the object is annotated into six parts: body, light,
plate, wheel, window and background. In the horse category, the
object is annotated into five parts: head, neck+torso, legs, tail, and
background. CelebAMask-HQ is a large-scale face image dataset
created for facial segmentation tasks. We report results on the parts
used in ReGAN and SLiMe for comparison, which divide the face
into ten parts: cloth, ear, eye, eyebrow, skin, hair, mouth, neck, nose
and background.
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Table 1: Comparison to other 1-shot and 10-shot methods on
the face dataset.

Part Name 10-shot 1-shot

ReGAN SegGPT SegDDPM SLiMe Ours
Cloth 15.5 24.0 28.9 52.6 ± 1.4 60.9
Brow 68.2 48.8 46.6 44.2 ± 2.1 48.1
Ear 37.3 32.3 57.3 57.1 ± 3.6 63.4
Eye 75.4 51.7 61.5 61.3 ± 4.6 65.0
Hair 84.0 82.7 72.3 80.9 ± 0.5 82.2
Mouth 86.5 66.7 44.0 74.8 ± 2.9 79.1
Neck 80.3 77.3 66.6 78.9 ± 1.3 76.9
Nose 84.6 73.6 69.4 77.5 ± 1.8 74.0
Skin 90.0 85.7 77.5 86.8 ± 0.3 86.5
BG 84.7 28.0 76.6 81.6 ± 0.8 83.8
mIoU 70.7 57.1 60.1 69.6 ± 0.3 72.0

4.2 Quantitative Comparisons
We conduct experiments on the same test sets of the mentioned
datasets employed in previous methods to ensure fair comparisons.
We mainly compare our method with three existing methods across
three distinct categories of datasets. In the 1-shot setting, our pri-
mary comparisons are with SegGPT, SegDDPM [2] and SLiMe.
SegGPT explored an in-context learning framework for semantic
segmentation training on a vast amount of annotated data, enabling
inference with just one in-context example. SegDDPM explored
denoising diffusion probabilistic models as an effective source of
image representation for semantic segmentation. SLiMe was de-
signed for part segmentation, exploiting the SD model capable of
learning a part prompt using just one labeled example. Notably, our
method even surpasses other methods in the 10-shot settings and
even some fully supervised part segmentation methods [38, 39]. For
a more comprehensive comparison, we also include ReGAN in the
10-shot settings. ReGAN leverages pretrained GAN models, specifi-
cally trained on the FFHQ and LSUN-Horse datasets for face and
horse part segmentation. Additionally, for car part segmentation,
ReGAN employs a pre-trained GAN from the LSUN-Car dataset.
Comparison on the Face Dataset The results presented in Ta-
ble 1 demonstrate the effectiveness of our method compared to
other 1-shot and 10-shot approaches on the CelebAMask-HQ10
dataset. Overall, our method surpasses SLiMe, SegDDPM and Seg-
GPT in terms of mIoU performance and for the majority of facial
parts in the 1-shot setting, achieving a mIoU of 72.0% compared
to 69.6% of SLiMe, 60.1% of SegDDPM and 57.1% of SegGPT. No-
tably, our method achieves these results without any training or
fine-tuning, whereas SegGPT requires a large annotated dataset
for supervision, and SLiMe necessitates specific fine-tuning. Addi-
tionally, despite the inherent disadvantage of comparing against
a 10-shot method like ReGAN, our approach still outperforms Re-
GAN on mIoU, achieving 1.3% improvements compared to 70.7% of
ReGAN. It’s worth noting that the comparisons made here highlight
the robustness and effectiveness of our method, particularly in sce-
narios where annotated data is limited or fine-tuning is impractical.
Comparison on the Car Dataset Car images in PASCAL-Part
present distinct challenges compared to well-aligned face images

Table 2: Comparison to other 1-shot and 10-shot methods on
the car dataset.

Part Name Supervised 10-shot 1-shot

CNN CNN+CRF ReGAN SegGPT SLiMe Ours
Body 73.4 75.4 75.5 62.7 79.6 ± 0.4 77.7
Light 42.2 36.1 29.3 18.5 37.5 ± 5.4 59.1
Plate 41.7 35.8 17.8 25.8 46.5 ± 2.6 57.2
Wheel 66.3 64.3 57.2 65.8 65.0 ± 1.4 66.9
Window 61.0 61.8 62.4 69.5 65.6 ± 1.6 59.2
BG 67.4 68.7 70.7 77.7 75.7 ± 3.1 71.1
mIoU 58.7 57.0 52.2 53.3 61.6 ± 0.5 65.2

Table 3: Comparison to other 1-shot and 10-shot methods on
the horse dataset.

Part Name Supervised 10-shot 1-shot

Shape+
Appereance

CNN+
CRF ReGAN

Seg
GPT

Seg
DDPM SLiMe Ours

Head 47.2 55.0 50.1 41.1 12.1 61.5 ± 1.0 73.0
Leg 38.2 46.8 49.6 49.8 42.4 50.3 ± 0.7 50.7
Neck+Torso 66.7 - 70.5 58.6 54.5 55.7 ± 1.1 72.6
Tail - 37.2 19.9 15.5 32.0 40.1 ± 2.9 60.3
BG - 76.0 81.6 36.4 74.1 74.4 ± 0.6 77.7
mIoU - - 54.3 40.3 43.0 56.4 ± 0.8 66.9

in CelebA-HQ10, as they exhibit larger variations in perspective
and appearance. Table 2 presents the results for the car class. In the
1-shot setting, our method outperforms SegGPT and SLiMe in terms
of mIoU, yielding improvements of 11.9% (53.3% vs. 65.2%) and 3.6%
(61.6% vs. 65.2%) , respectively. Qualitative results are illustrated in
Figure 2, demonstrating the superior performance of our method
compared to SegGPT and SLiMe. In the 10-shot setting, our method
outperforms ReGAN in terms of mIoU. Additionally, our method
performs better than fully supervised baselines like CNN [38] and
CNN+CRF [16, 38].
Comparison on the Horse Dataset The part segmentation of
horse images in PASCAL-Part is more challenging than the other
two object categories because of the ambiguity in distinguishing
between different parts and the horse object in this dataset is usually
partially visible. Table 3 shows our results on the horse class. Our
method exhibits superior performance. For the 1-shot setting, our
method has a large improvement over SegGPT, SegDDPM and
SLiMe in all parts as well as on mIoU, gaining improvements of
26.6% (40.3% vs. 66.9%), 23.9% (43.0% vs. 66.9%) and 10.5% (56.4% vs.
66.9%), respectively. Furthermore, our method outperforms ReGAN
on mIoU in the 10-shot setting. For fully supervised baselines like
shape+Appereance [39] and CNN+CRF [16, 38] our method also
performs much better in the report results.

4.3 Qualitative Comparisons
To gain a deeper understanding of our method’s performance, we
conduct a qualitative comparison with SLiMe and SegGPT. As de-
picted in Figure 4, in the face dataset example, SLiMe often produces



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

One-shot In-context Part Segmentation ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 4: Qualitative comparison with other methods. The
three examples are from face, car, and horse datasets respec-
tively. Existing methods exhibit three main issues: segmen-
tation results not aligned with the query image, challenges
in handling perspective differences, and difficulty with par-
tially visible objects.

erroneous segmentations that do not align with the original image,
particularly near the hair area. SegGPT tends to produce noisy
segmentations, especially around the nose and mouth regions. In
contrast, our method excels in accurately capturing fine-grained
object details and delineating object parts, surpassing existing meth-
ods in this aspect. From the example of the car dataset, when the
in-context example and the query image are captured from different
perspectives, the performance of SLiMe and SegGPT methods can
be significantly affected. As demonstrated in Figure 4, when the
query image is taken from an aerial perspective, while the provided
example is from a distinctly different perspective, both SegGPT
and SLiMe struggle to achieve accurate part segmentation. From
the example of the horse dataset, we observe that when the object
in the query image is partially visible, segmentation performance
suffers, indicating a challenge for SegGPT and SLiMe in handling
occluded or partially visible objects.

Additionally, given that both SLiMe and our proposed method
rely solely on one labeled example, we conducted further exper-
iments to comprehensively compare with SLiMe. As illustrated
in Figure 5, we conduct additional experiments to evaluate the
segmentation of a single query image using various in-context
examples. Our observations reveal that SLiMe’s performance on
the same query image fluctuates considerably depending on the
provided examples. Specifically, SLiMe tends to perform well when
the in-context example closely resembles the query image, but its
performance deteriorates rapidly when significant differences exist
between them. This pattern can be traced back to SLiMe’s reliance
on training specifically with the in-context example, which may
result in overfitting to that specific example. Although our method
also exhibits fluctuations, we demonstrate better stability compared
to SLiMe across various in-context examples.

4.4 Ablation Study
In this section, to comprehensively evaluate the contributions of
different components in our approach, we conducted an ablation
study on the face and car dataset as presented in Table 4. Each row in

Figure 5: Comparison between our proposed method and
SLiMe across various in-context examples. Evaluations were
performed on 20 randomly selected query images using 8
distinct randomly selected in-context examples.

Table 4: Ablation study results. The contributions of various
components in our approach.

DINOv2 SD Selection FBS Car Face
✓ 60.2 63.4

✓ 39.5 62.0
✓ ✓ 61.0 66.9
✓ ✓ ✓ 62.5 67.9
✓ ✓ ✓ ✓ 65.2 72.0

the table represents a distinct configuration of components, and the
corresponding segmentation performance is reported as the average
mIoU score. Through this study, we explored multiple strategies
aimed at gradually improving part segmentation performance.
Discussion of the SD and DINOv2 Features To demonstrate the
complementary nature of SD and DINOv2 features for part segmen-
tation, we conducted experiments using each feature separately.
Initially, from Table 6, it is evident that SD outperforms on specific
parts, while DINOv2 features excel on others, highlighting their
complementary characteristics. Furthermore, simply concatenating
the two features results in an improvement in mIoU, with enhance-
ments of 3.5% and 4.9% on the face dataset and 0.8% and 21.5% on
the car dataset compared to using DINOv2 and SD features individ-
ually, as depicted in Table 4. Given that DINOv2 excels at capturing
dense descriptors for local matching, while SD excels at perceiving
global structures, their combination leverages the strengths of both
features.
Effectiveness of the Channel Selection To validate the effec-
tiveness of the proposed adaptive channel selection approach, we
contrast it with the concatenation operation without further selec-
tion. As shown in Table 4, our channel selection approach yields
improvements of 1.5% (61.0% vs. 62.5%) and 1.0% (66.9% vs. 67.9%) on
the car and face datasets, respectively. Additionally, Table 6 reveals
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Table 5: Evaluation of different distance metrics for the pro-
posed feature selection.

w/o Selection Variance Cosine KL JS
mIoU 66.9 67.9 67.0 67.7 67.3

improvements across nearly all parts, indicating the capability of
our adaptive channel selection approach to generate more represen-
tative features for each part. This enhancement facilitates one-shot
part segmentation. We further provide a visualized example with
and without the channel selection in Figure 6. We can observe that
without the channel selection, the hand area is misclassified as face
skin and neck, whereas with our channel selection, it is correctly
classified as background, well demonstrating the effectiveness of
our approach.

Figure 6: Qualitative comparison of channel selection.

Discussion of the Distance Metrics for Channel Selection We
explore several metrics used in Equation 2 to identify the channels
to be selected. In addition to variance, we further investigate cosine
distance, Kullback-Leibler (KL) divergence, and Jensen–Shannon
(JS) divergence. The results are presented in Table 5. Both of these
distance metrics are capable of selecting representative features,
thereby enhancing the mIoU. However, the straightforward appli-
cation of variance enables us to identify the channels that achieve
optimal performance, resulting in the highest mIoU of 67.9%. Chan-
nels with low variance tend to have more consistent feature values
within the part, indicating that they may capture more relevant
information for distinguishing between different parts of objects.
Therefore, we adopt variance as the preferred distance metric for
channel selection in our method.
Selection-based Fusion vs. Learning-based Fusion To further
evaluate the effectiveness of our proposed selection-based feature
fusion, we train a linear classifier with two linear projection layers
on top of the extracted complementary features of the in-context
example. We conduct two additional experiments: first, we exploit
the classifier’s ability to perform part segmentation directly, and the
results are detailed in Table 6 under the column labeled "Classifier".
Second, we utilize the intermediate linear projection layer in the
classifier to fuse the two features and perform segmentation like
our approach as described in Equations 4 and 5, results are reported
in Table 6 under the column labeled "Classifier Feature". Our anal-
ysis demonstrates that direct part segmentation using the linear
classifier achieved a notably low accuracy of 45.4%. When fusing
the SD and DINOv2 features using the linear projection layer, the
performance improves to 64.3%, yet remains lower than directly
concatenating the two features, which yields 66.9%. Notably, our

Table 6: Comparison of learning-based fusion with our
selection-based fusion on the face dataset.

Part Classifier ClassifierFeature DINOv2 SD DINOv2+SD DINO+SD+
Selection

Cloth 9.9 26.0 47.8 34.6 49.7 51.6
Brow 7.7 48.2 45.2 46.0 51.3 52.8
Ear 42.4 53.4 52.4 59.5 56.2 56.7
Eye 18.1 59.0 62.8 47.8 61.4 62.6
Hair 65.3 78.6 71.8 73.7 76.8 76.9
Mouth 28.3 67.8 58.1 58.3 66.0 69.5
Neck 53.7 71.1 67.0 71.4 70.5 71.5
Nose 71.6 75.0 74.6 71.4 75.5 75.4
Skin 78.7 86.0 82.4 82.4 84.0 84.4
BG 77.9 78.1 71.6 75.2 78.0 77.9
mIoU 45.4 64.3 63.4 62.0 66.9 67.9

selective fusion approach achieved the highest accuracy of 67.9%.
These findings underscore the effectiveness of our selection-based
feature fusion method, surpassing learning-based fusion techniques.
Additionally, our part segmentation method outperforms directly
training a classifier based on the extracted features.
Post-processing To address the loss of spatial details stemming
from the relatively small size of the extracted features, we employ
an edge-aware smoothing algorithm FBS, which aids in restoring
finer details around boundaries. Results in Table 4 showcase the
effectiveness. Nevertheless, it is worth mentioning that these im-
provements are primarily attributed to the detailed cues provided
by the higher-resolution inputs.
Generalization Capability The proposed OIParts is a training-
free framework, thereby preserving the generalization capabilities
of the VFMs. This remarkable feature ensures that our method can
be seamlessly applied to various object categories, needing only
a single in-context example. As illustrated in Figure 1, with just
one labeled example, OIParts precisely segments the parts of novel
objects and exhibits robust performance when dealing with objects
in different poses or perspectives.

5 CONCLUSION
In conclusion, our One-shot In-context Part Segmentation (OIParts)
framework presents a pioneering solution to the challenges of part
segmentation by harnessing visual foundation models (VFMs). We
address the limitations of existing training-based methods, which
struggle with variance in appearance, perspective, and partial visi-
bility between one-shot and test images, often leading to overfitting
and reduced generalization. Our framework introduces a novel,
training-free approach that requires only a single in-context exam-
ple for precise segmentation with superior generalization ability.
Through a comprehensive exploration of VFMs’ strengths, particu-
larly DINOv2 and Stable Diffusion, we integrate an adaptive channel
selection approach by minimizing intra-class distance, enhancing
feature extraction and discriminatory power for fine-grained part
segmentation. Ourmethod achieves remarkable performance across
diverse object categories, showcasing its effectiveness in one-shot
settings.
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