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Abstract Keywords

Assessing the effectiveness of large language models (LLMs) in per-
forming different tasks is crucial for understanding their strengths
and weaknesses. This paper presents Hierarchical Prompting Taxon-
omy (HPT), grounded on human cognitive principles and designed to
assess LLMs by examining the cognitive demands of various tasks.
The HPT utilizes the Hierarchical Prompting Framework (HPF),
which structures five unique prompting strategies in a hierarchical
order based on their cognitive requirement on LLMs when compared
to human mental capabilities. It assesses the complexity of tasks
with the Hierarchical Prompting Index (HPI), which demonstrates
the cognitive competencies of LLMs across diverse datasets and
offers insights into the cognitive demands that datasets place on
different LLMs. This approach enables a comprehensive evaluation
of LLM’s problem-solving abilities and the intricacy of a dataset,
offering a standardized metric for task complexity. Extensive exper-
iments with multiple datasets and LLMs show that HPF enhances
LLM performance by 2 — 63% compared to baseline performance,
with GSMS8k being the most cognitively complex task among rea-
soning and coding tasks with an average HPI of 3.20 confirming the
effectiveness of HPT. To support future research in this domain, the
implementations of HPT and HPF are publicly available!.

CCS Concepts

¢ Computing methodologies — Natural language generation;
Reasoning about belief and knowledge; Cognitive science.
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1 Introduction

Large Language Models (LLMs) have revolutionized natural lan-
guage processing (NLP), enabling significant advancements in a
wide range of applications. Conventional evaluation frameworks
often apply a standard prompting approach to assess different LLMs,
regardless of the complexity of the task, which may result in biased
and suboptimal outcomes. Moreover, applying the same prompting
approach across all samples within a dataset without considering
each sample’s relative complexity adds to the unfair situation. To
achieve a more balanced evaluation framework, it is essential to
account for both the task-solving ability of LLMs and the varying
cognitive complexities of the dataset samples. This limitation high-
lights the need for more sophisticated evaluation methods that can
adapt to varying levels of sample task complexity. This study de-
fines complexity as the cognitive demands imposed by a task or the
cognitive load introduced by a prompting strategy on LLMs. Task
complexity in human cognition reflects the mental effort required
for processing, analyzing, and synthesizing information. As Sweller
[30] noted, complexity increases with greater cognitive resource
demands, engaging working memory in reasoning and problem-
solving. Similarly, Anderson et al. [2] describes cognitive abilities
as a continuum, from basic recall to higher-order thinking, with dif-
ficulty rising for tasks requiring analysis, synthesis, and evaluation.
By mapping LLM prompting strategies onto this hierarchy, we sys-
tematically assess how LLMs handle varying cognitive loads. This
framework provides a structured, cognitively grounded method for
evaluating model performance across tasks of differing complexity.
This study is directed by the following research questions:
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Figure 1: The Hierarchical Prompting Framework includes five
distinct prompting strategies, each designed for different levels
of task complexity to ensure the appropriate prompt is selected
for the given task. A v indicates task completion, while a x
signifies task incompletion.

Research Questions:

e RQ1: Does cognitively inspired strategic selection
of prompts enable small language models (SLMs) to
match the performance of LLMs?

e RQ2: How can cognitive demand measurements of
LLMs guide model selection and deployment deci-
sions beyond traditional metrics?

e RQ3: How can we align prompt complexity with task
demands to optimize both computational efficiency
and performance?

This paper introduces the HPT, a set of rules that maps the hu-
man cognitive principles for assessing the complexity of different
prompting strategies. It employs the HPF shown in Figure 1, a
prompt selection framework that selects the prompt with the opti-
mal cognitive load on LLM required in solving the task. The main
contributions of this work are:

e Hierarchical Prompting Taxonomy (HPT): The paper in-
troduces HPT, rules mapping prompting strategies to human
cognitive principles, enabling a universal measure of LLMs’
task complexity.

e Hierarchical Prompting Framework (HPF): The HPF frame-
work selects the best prompt from five strategies to optimize
LLMSs’ cognitive load, improving evaluation and performance
transparency.

e Hierarchical Prompting Index (HPI): HPI? quantitatively
assesses LLMs’ task complexity across datasets, revealing
cognitive demands on various LLMs.

HPF can be compared to an "open book" exam (see Figure 2), with
tasks analogous to questions and prompting strategies akin to text-
books. The exam questions, ranging from basic recall to complex
analysis, parallel the cognitive challenges in HPT tasks. Similarly,
textbooks offer structured support, much like HPF, which arranges
prompts by complexity to assist LLMs. A glossary lookup represents
a task with low complexity, whereas solving a multi-step analytical

2HPI can be quantitatively assessed to analyze the cognitive abilities of an LLM and the
cognitive demands imposed by datasets on LLMs, as both factors are interchangeably
related to the complexity of tasks.
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Figure 2: Analogical framework comparing the HPF with "open
book'' examination methodology. The diagram illustrates how
HPF components (below) mirror traditional educational as-
sessment elements (above), with parallel relationships between
task complexity levels, resource utilization (prompts/textbooks),
and performance metrics (HPI/student effort). This comparison
demonstrates how LLM task complexity scales similarly to ed-
ucational assessment complexity, from simple lookup tasks to
complex synthesis problems.

problem indicates high complexity. The effort exerted by a student
is similar to HPI, which measures the cognitive demand on LLMs.
Just as structured learning materials improve students’ performance,
carefully crafted hierarchical prompts help LLMs in addressing in-
creasingly complex tasks more effectively.

The remainder of the paper is structured as follows: Section 2
reviews the related work on prompting and evaluation in LLMs.
Section 3 details the HPT and its associated frameworks. Section 4
outlines the experimental setup, results, and ablation studies. Section
5 concludes the paper. Section 6 discusses the limitations of the
work. Section 7 discusses the ethical impact of the work.

2 Related Work

The advent of LLMs has revolutionized NLP by demonstrating
significant improvements in few-shot and zero-shot learning capa-
bilities. Brown et al. [6] introduced GPT-3, a 175 billion parameter
autoregressive model, showcasing its ability to perform a wide range
of tasks such as question-answering, reading comprehension, transla-
tion, and natural language inference without fine-tuning. This study
highlighted the potential of very large models for in-context learning
while also identifying limitations in commonsense reasoning and
specific comprehension tasks. Similarly, Liu et al. [23] surveyed
prompt-based learning, emphasizing the role of prompt engineer-
ing in leveraging pre-trained models for few-shot and zero-shot
adaptation to new tasks with minimal labeled data.



2.1 Prompt Engineering

Prompting plays a vital role in unlocking the full potential of LLMs.
By designing specific input prompts, the LLM’s responses can be
guided, significantly influencing the quality and relevance of the out-
put. Effective prompting strategies have enhanced LLM performance
on tasks ranging from simple question-answering to complex rea-
soning and problem-solving. Recent research has explored various
approaches to prompting and reasoning evaluation in LLMs. Chain-
of-Thought (CoT) prompting [39] elicits step-by-step reasoning, im-
proving performance on complex tasks. Specializing smaller models
[13] and using large models as reasoning teachers [16] have demon-
strated the potential for enhancing reasoning capabilities. Emergent
abilities in LLMs, which appear suddenly at certain scale thresholds,
have also been a topic of interest. Wei et al. [38] examined these abil-
ities in few-shot prompting, discussing the underlying factors and
implications for future scaling. Complementing this, Kojima et al.
[19] demonstrated that LLMs could exhibit multi-step reasoning
capabilities in a zero-shot setting by simply modifying the prompt
structure, thus highlighting their potential as general reasoning en-
gines. Yao et al. [40] introduced the Tree-of-Thoughts framework,
enabling LLMs to deliberate over coherent text units and perform
heuristic searches for complex reasoning tasks. This approach gener-
alizes over chain-of-thought prompting and has shown significant
performance improvements in tasks requiring planning and search,
such as creative writing and problem-solving games. Kong et al. [20]
introduced role-play prompting to improve zero-shot reasoning by
constructing role-immersion interactions, which implicitly trigger
chain-of-thought processes and enhance performance across diverse
reasoning benchmarks. Progressive-hint prompting [41] has been
proposed to conceptualize answer generation and guide LLMs to-
ward correct responses. Metacognitive prompting [37] incorporates
self-aware evaluations to enhance understanding abilities.

These studies highlight progress in using innovative prompting
techniques to improve LLMs’ emergent abilities, reasoning, inter-
action strategies, robustness, and evaluation. Yet, challenges persist
in prompt design, managing complex reasoning tasks, and perfor-
mance evaluation across various scenarios. Although LLMs show
promising emergent abilities, they frequently lack predictability and
control, and their resistance to misleading prompts is still an issue.

2.2 Prompt Optimization and Selection

The challenge of optimizing prompts for LLMs has been addressed
in several key studies, each contributing unique methodologies to
enhance model performance and efficiency. Shen et al. [29] intro-
duce PFLAT, a metric utilizing flatness regularization to quantify
prompt utility, which leads to improved results in classification tasks.
Do et al. [12] propose a structured three-step methodology that con-
tains data clustering, prompt generation, and evaluation, effectively
balancing generality and specificity in prompt selection. ProTeGi
[27] offers a non-parametric approach inspired by gradient descent,
leveraging natural language "gradients" to iteratively refine prompts.
Wang et al. [36] present PromISe, which transforms prompt optimiza-
tion into an explicit chain of thought, employing self-introspection
and refinement techniques. Zhou et al. [43] proposed DYNAICL,
a framework for efficient prompting that dynamically allocates in-
context examples based on a meta-controller’s predictions, achieving

better performance-efficiency trade-offs compared to uniform exam-
ple allocation.

These studies seek to automate prompt design, reducing reliance
on manual trial-and-error while improving efficiency and scalability
across tasks and models. They report performance gains of 5% to
31% across benchmarks, highlighting the growing significance of
prompt optimization. Future research directions include exploring
theoretical foundations, combining optimization techniques, and
differentiating task-specific from general-purpose strategies.

2.3 Evaluation Benchmarks

To facilitate the evaluation and understanding of LLM capabilities,
Zhu et al. [44] introduced PromptBench, a unified library encom-
passing a variety of LLMs, datasets, evaluation protocols, and ad-
versarial prompt attacks. This modular and extensible tool aims to
support collaborative research and advance the comprehension of
LLM strengths and weaknesses. Further exploring reasoning ca-
pabilities, Qiao et al. [28] categorized various prompting methods
and evaluated their effectiveness across different model scales and
reasoning tasks, identifying key open questions for achieving robust
and generalizable reasoning. [35] introduced a multitask benchmark
for LLM robustness evaluation, which extends the original GLUE
[34] benchmark to assess model robustness against adversarial in-
puts. It incorporates perturbed versions of existing GLUE tasks, such
as paraphrasing, negation, and noise, to test models’ abilities with
challenging data. The study highlights that despite their success on
clean datasets, state-of-the-art models often struggle with adversarial
examples, underscoring the importance of robustness evaluations in
model development.

3 Hierarchical Prompting Taxonomy
3.1 Governing Rules

Figure 3 illustrates the HPT, a taxonomy that systematically reflects
human cognitive functions as outlined in Bloom [4]. Each rule em-
bodies complex cognitive processes based on established principles
from learning and psychology.

(1) Basic Recall and Reproduction: This reflects the fundamen-
tal cognitive process of remembering and reproducing factual
information without analysis or interpretation, which involves
mere recognition or retrieval of knowledge from memory [2].

(2) Understanding and Interpretation: This corresponds to the
second cognitive rule of [4], where individuals must not only
recall information but also explain it in their own words, sum-
marize key points or clarify the meaning of content. This rule
demands an intermediate cognitive load involving informa-
tion processing rather than retrieving it.
Analysis and Reasoning: This aligns with the analysis stage
of [4], which involves higher cognitive functions such as com-
parison, contrast, and deep understanding of the underlying
principles. It is more complex than mere understanding be-
cause it requires examining structure and identifying patterns
and connections.

(4) Application of Knowledge and Execution: This mirrors the
application and evaluation stages of [4], where individuals
must not only understand and analyze but also use knowledge
to perform multi-step tasks, solve complex problems, and
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Figure 3: Hierarchical Prompting Taxonomy: A taxonomy designed to assess the complexity of prompting strategies based on the
criteria: Basic Recall and Reproduction, Understanding and Interpretation, Analysis and Reasoning, and Application of Knowledge

and Reasoning.

execute decisions. It represents the most cognitively complex
tasks, which require synthesis of information and practical
decision-making, highlighting the critical leap from under-
standing theory to executing it in practice.

In HPT, the progression from basic recall to application of knowl-
edge reflects increasing cognitive complexity, consistent with edu-
cational and cognitive frameworks, where more advanced cognitive
processes build on foundational ones, demanding deeper engagement
and mental effort.

3.2 Hierarchical Prompting Framework

The HPF consists of five prompting strategies, each assigned a com-
plexity level. These levels are determined by the degree to which
the strategies are shaped by the four principles of the HPT. The
complexity levels of the prompting strategies are assigned based on
human assessment of their relative cognitive loads over a set of 7
different tasks, guaranteeing that the cognitive abilities of LLMs are
in harmony with those of humans. This approach enables the assess-
ment of tasks in terms of their complexity and the cognitive load
they impose on both humans and LLMs by utilizing HPI. Section
4.5 examines the hierarchical structure of the HPF in conjunction
with the LLM-as-a-Judge framework, validating that the cognitive
demands on LLMs can be aligned with those of humans.

The five prompting strategies were selected to ensure compre-
hensive coverage of cognitive demands rather than maximizing the
number of strategies (see Appendix A). This makes HPF adaptable,
allowing for replication or expansion with similar strategies. The
strategies, ordered by increasing complexity, are:

(1) Role Prompting [20]: Specifies the LLM’s role in task reso-
lution, exerting minimal influence from HPT principles.

(2) Zero-Shot Chain-of-Thought Prompting (Zero-CoT) [19]:
Uses “Let’s think step by step” to encourage reasoning, mod-
erately influenced by rule 3.

(3) Three-Shot Chain-of-Thought Prompting (3-CoT) [39]:
Provides three examples to guide reasoning, strongly influ-
enced by rules 1 and 2, with moderate influence from rule
3.

(4) Least-to-Most Prompting [42]: Breaks tasks into sub-problems,
requiring recall, interpretation, and analysis, exerting strong
influence from rules 1, 2, & 3.

(5) Generated Knowledge Prompting (GKP) [22]: Integrates
external knowledge, demanding correlation, application, and
analysis, making it the most cognitively complex (rules 2,
3, and 4). Llama-3 8B generates the external knowledge in
experiments.

3.3 Hierarchical Prompting Index

HPI is an evaluation metric for assessing the task complexity of
LLMs over different datasets, which is influenced by the HPT rules.

A lower HPI for a dataset suggests that the corresponding LLM

is more adept at solving the task with fewer cognitive processes.
For each dataset instance, we begin with the least complex prompt-
ing strategy and progressively move through the HPF prompting
strategies until the instance is resolved. The HPI corresponds to
the complexity level of the prompting strategy where the LLM first
tackles the instance.

Algorithm 1 illustrates the process for determining HPI, with m

indicating the total levels within the HPF and n representing the
number of samples in the evaluation dataset. HPI p;45¢; denotes the
penalty that human evaluations impose on the framework. Additional
information regarding human annotation is provided in Appendix A.



Algorithm 1 HPI Computation

HPI_List =[]
for sample i in the evaluation dataset do
for level x in the HPF do
if LLM resolves the task then
HPI_List[i] = x
break
end if
end for
if LLM failed to resolve the task then
HPI_List[i] = m+ HPIparaser
end if
end for
HPI =1 X HPI_List[j]

4 Results
4.1 Experimental Setup

Datasets

We evaluated the framework on diverse datasets spanning reasoning,
coding, mathematics, question-answering, summarization, and ma-
chine translation. For dataset sizes, see Appendix A.

Reasoning: MMLU [15] (57 subjects, multiple-choice), CSQA [31]
( 12K commonsense questions).

Coding: HumanEval [8] (164 function-based coding tasks).
Mathematics: GSM8k [11] (8.5K multi-step math problems).
Question-Answering: BoolQ [10] ( 16K True/False questions from
Wikipedia).

Summarization: SamSum [14] ( 16K human-annotated dialogue
summaries).

Machine Translation: IWSLT-2017 en-fr [7] (TED Talk parallel
corpus).

Large Language Models: We tested LLMs ranging from 7B to 12B
parameters across open-source and proprietary models.
Proprietary LLMs: GPT-40 [25], Claude 3.5 Sonnet [3].

SLMs: Gemma 7B [32], Mistral 7B [17], Llama-3 8B [1], Gemma-2
9B [33], Mistral-Nemo 12B [24].

Additional Evaluation Metrics

Coding: Pass@k [9] estimates the probability of at least one correct
solution among the top k outputs for code generation.
Summarization: ROUGE-L [21] measures sequence-level similar-
ity via the longest common subsequence.

Machine Translation: BLEU [26] evaluates n-gram precision against
reference texts.

Summarization and translation tasks used thresholds of 0.15 and
0.20, respectively, to define task completion at each HPF complexity
level, enabling iterative refinement of prompting strategies.

4.2 Results on Standard Benchmarks: MMLU,
GSMS8K, and Humaneval

The evaluation of HPF effectiveness as shown in Figure 4 spans

three standard benchmarks: MMLU, GSM8k, and HumanEval. On

the MMLU benchmark, which tests general knowledge across mul-

tiple domains, all models showed notable improvements over their
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Figure 4: Performance Comparison of HPT-based Evaluation vs.
Standard Evaluation: Performance improvements (in %) when
using HPT-based evaluation compared to standard evaluation
across three benchmarks: MMLU, GSM8k, and HumanEval.
Positive values indicate performance gains with HPT, while neg-
ative values indicate performance decreases. The baseline stan-
dard evaluation scores are sourced from Hugging Face leader-
board and official research reports.

baseline performance. Mistral-Nemo 12B demonstrated the most
substantial MMLU enhancement (+21.8%), while Claude 3.5 Son-
net achieved a consistent improvement of 3.5%. In mathematical
reasoning, assessed through GSM8Kk, the results revealed a corre-
lation with the model scale. Larger models like GPT-4 and Claude
3.5 Sonnet showed modest gains (+4.4% and +1.3% respectively),
while smaller models exhibited more variable performance. The
HumanEval benchmark, which assesses code generation capabilities,
revealed the most dramatic improvements across all models. Mis-
tral 7B achieved an exception 62.5% improvement in HumanEval
scores, followed by Mistral-Nemo 12B with an impressive 51.4%
improvement, and Gemma-2 9B with a 50.8% enhancement. The
results suggest that HPF enhances performance on all benchmarks
for the majority of SLMs and achieves similar performance to LLMs
such as GPT-40 and Claude 3.5 Sonnet, thereby addressing RQ1,
its impact is particularly pronounced in programming tasks, sug-
gesting that the technique may be especially valuable for enhancing
code-related capabilities.

Table 1 highlights the improved performance of various LLMs
on MMLU, with all models showing an HPI index below three.
This indicates that reasoning over most MMLU samples requires
minimal cognitive effort for these models, compared to baseline
multi-shot CoT methods (5 shot), which typically require more than
five examples and are more cognitively demanding according to HPT.
Interestingly, while Claude 3.5 Sonnet achieves the highest MMLU
accuracy, GPT-4o records the best HPI score, showing that minimal
cognitive effort does not necessarily equate to the best performance
addressing RQ2. The enhancement in GSM&K is relatively smaller
compared to MMLU, with decreased performances for both Mistral



Table 1: HPI (lower is better) and accuracy of LLMs across MMLU, GSMS8K, BoolQ, and CSQA datasets. Blue indicates datasets
where the LLM with the best HPI does not achieve the best performance. Green indicates the LLM with the best performance over the

maximum number of datasets.

DATASETS MMLU GSMS8k BoolQ CSQA
Models HPI Accuracy HPI Accuracy HPI Accuracy HPI Accuracy
GPT-40 1.81 91.61 1.71 96.43 1.32 96.82 1.65 92.54
Claude 3.5 Sonnet  1.84 92.16 1.35 97.72 1.20 99.81 2.01 86.15
Mistral-Nemo 12B  2.45 89.75 3.01 86.80 1.75 99.87 2.06 90.17
Gemma-2 9B 2.34 87.28 2.17 91.28 1.30 98.28 1.94 88.86
Llama-3 8B 2.84 82.63 2.34 86.20 1.37 99.30 243 84.76
Gemma 7B 2.93 83.31 6.70 27.88 1.45 99.42 2.50 83.78
Mistral 7B 2.89 81.45 5.11 46.93 1.41 98.07 2.49 82.06

7B and Gemma 7B. The high HPI values for Gemma 7B and Mistral
7B indicate that none of the five prompting strategies in HPF posed
significant cognitive challenges for these LLMs, i.e more cognitively
demanding prompting strategies are needed, highlighting a limitation
of the HPF. As shown in Table 2, Claude 3.5 Sonnet achieves a
perfect pass@1 of 1.00 with low HPI values, outperforming GPT-4o,
which scores 0.95 but has a higher HPI. Gemma 7B struggles with
the lowest pass@1 of 0.79 and the highest HPI of 3.71, indicating a
need for a more complex prompting strategy.

Notably, HPF noticeably boosted the performance of the majority
of LLMs on three benchmark datasets, despite the HPI difference
being less than 1 compared to the top-performing LLMs. This sug-
gests that even with a minimal number of inferences, utilizing HPF
can achieve optimal performance, unlike multi-shot prompting and
prompt optimization strategies, thereby addressing RQ3. This high-
lights that tailoring the prompting strategy to align with the complex-
ity of each dataset instance can lead to substantial improvements,
achieving performance levels comparable to state-of-the-art LLMs
such as GPT-40 and Claude 3.5 Sonnet on these benchmarks.

Table 2: HPI (lower is better) and Pass@1 of LLMs on the
HumanEval dataset. Blue indicates datasets where the LLM
with the best HPI does not achieve the best performance. Green
indicates the LLMs with the best performance over the dataset.

DATASET HumanEval
Models HPI Pass@1
GPT-40 2.25 0.95

Claude 3.5 Sonnet 1.04 1.00
Mistral-Nemo 12B  2.07 0.96

Gemma-2 9B 1.01 0.91
Llama-3 8B 1.03 1.00
Gemma 7B 3.71 0.79
Mistral 7B 1.10 0.93

4.3 Results on Other Datasets

Table 1 presents LLM performance on the BoolQ and CSQA datasets.
While no significant insights emerge, an unexpected result is GPT-
40’s poor performance, which deviates from its typical trend. With

most LL.Ms achieving near-perfect scores, BoolQ appears insuf-
ficiently complex to serve as an effective benchmark for modern
LLMs, as they excel even with minimal cognitive prompting. This
highlights HPF’s value in assessing dataset complexity relative to
LLM capabilities, providing researchers with insights for designing
more challenging and robust benchmarks.

Table 3 presents the performance of LLMs on IWSLT and Sam-
Sum datasets at varying thresholds. GPT-4o consistently achieved
the highest scores across all thresholds, while most models, except
Gemma 7B, performed similarly. Interestingly, Claude 3.5 Sonnet,
which excelled in reasoning tasks, did not perform as strongly in sum-
marization and translation tasks. The threshold selection is guided by
the observed performance plateau across most LLMs as the threshold
increases.

4.4 Threshold Selection for SamSum and IWSLT

In addition to the 0.15 and 0.20 thresholds presented in the main
experiments, extended evaluations were conducted on the IWSLT
and SamSum datasets using thresholds of 0.25 and 0.30 with GPT-
40, Mistral-Nemo 12B, and Llama-3 to assess the impact of varying
thresholds on LLM performance.

SamSum Dataset: In the summarization task, increasing the thresh-
old evaluates an LLM’s ability to condense content while retaining
key information. Higher thresholds like 0.25 and 0.30 reveal the
trade-offs between conciseness and informativeness. However, as
shown in Figure 5, there was no significant improvement in ROUGE-
L, except for a slight increase with GPT-40. The experiments showed
a sharp rise in HPI, reflecting the increased task complexity. These
results suggest that LLM performance has plateaued, with no further
gains at higher thresholds. This validates that the use of 0.15 and
0.20 thresholds are sufficient for optimal LLM performance.

IWSLT Dataset: In machine translation, higher thresholds (0.25
and 0.30) impose stricter evaluations, assessing how well models
capture the nuances of the source text. Lower thresholds (0.15 and
0.20) focus on general adequacy, while higher ones test performance
under more challenging conditions. As shown in Figure 6, no BLEU
improvements were observed across any LLMs, with models either
reaching saturation or showing decreased performance alongside
a rapid rise in HPI. This validates the selection of 0.15 and 0.20
thresholds are sufficient for optimal LLM performance.



Table 3: HPI (lower is better), BLEU score for IWSLT, and ROUGE-L score for SamSum, of LLLMs with thresholds.

DATASETS IWSLT SamSum

HPI BLEU HPI ROUGE-L
Models 0.15 0.20 0.15 0.20 0.15 0.20 0.15 0.20
GPT-40 2.66 3.08 0.32 0.32 1.11 1.21 0.30 0.29
Claude 3.5 Sonnet 4.63 4.87 0.20 0.20 1.25 1.60 0.23 0.23
Mistral-Nemo 12B 2.87 3.40 0.27 0.27 1.19 1.47 0.23 0.24
Gemma-2 9B 4.40 4.75 0.21 0.20 1.30 1.86 0.22 0.22
Llama-3 8B 3.40 3.92 0.24 0.23 1.30 1.72 0.22 0.22
Gemma 7B 5.39 5.84 0.08 0.09 3.31 5.03 0.11 0.10
Mistral 7B 3.52 4.14 0.22 0.22 1.26 1.68 0.21 0.22
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Figure 5: Comparison of HPI and ROUGE-L scores across dif-
ferent threshold values on SamSum dataset.
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Figure 6: Comparison of HPI and BLEU score across different
threshold values in the translation task.

4.5 Complexity Levels with LLM-as-a-Judge

This study evaluated prompting strategies by assessing how GPT-4o,
as the LLM judge, replicates the hierarchical complexity levels of

Figure 7 shows a consistent hierarchy with less variability than
human judges, indicating a strong alignment between LLM and
human judgment. These results validate the proposed framework and
demonstrate the correspondence between human cognitive principles
and LLM behavior. Figure 8 shows the scoring distribution across the
four HPT rules for each strategy. Further details related to evaluation
dataset specifications and scoring method are in Appendix B.
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Figure 7: Hierarchy of prompting strategies with LL.M-as-a-
Judge framework with GPT-40 as the judge.

4.6 Parallels with System 1 and System 2 Thinking

HPF parallels dual-process cognitive theories’ System 1 and System
2 thinking [5, 18]. HPT classifies tasks, and HPF designs prompts
based on cognitive complexity, reflecting human cognitive resource
allocation. For tasks with low cognitive demands, HPF uses simple
prompts akin to System 1 thinking, like fact recall or basic classi-
fication, enabling quick LLM responses with minimal reasoning.
Conversely, tasks with high cognitive demands require prompts
for complex reasoning and problem-solving, similar to System 2
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Figure 8: Scoring distribution for each of the four rules of the
HPT for the prompting strategies in the HPF.

thinking, involving logical arguments or intricate problems need-
ing deliberate processing. Elevated HPF levels are used for tasks
demanding deep analysis.

HPF explicitly measures this transition with HPI, assessing the
cognitive load required for each task. By tailoring prompting strate-
gies to task complexity, HPF optimizes LLM performance, much
like humans adaptively switch between System 1 and System 2
based on the situation. This parallel highlights how HPT bridges
computational strategies with human-like cognitive models, enabling
more nuanced task evaluation and resource allocation.

4.7 Adaptive HPF

The Adaptive HPF automates the selection of the optimal complexity
level in the HPF using a prompt-selector, Llama-3 8B in a zero-shot
setting, bypassing iterative steps. Figure 9 shows that Adaptive HPF
yields higher HPI but lower evaluation scores than the standard HPF.
This suggests that Adaptive HPF struggles to select the optimal
complexity level, likely due to hallucinations by the prompt-selector
when choosing the prompting strategy. For more results and ablation
studies, see Appendix C.

The prompt-selector can dynamically select the most suitable
prompting strategy for a given task’s complexity from the HPF’s
hierarchy of complexity levels. To determine the most effective
prompting strategy to complete the task, the prompt-selector was
given a maximum number of iterations equivalent to the number
of levels in the manual HPF. The score for ith iteration is i + x,
where x is the complexity level by the prompt-selector. If the LLM
fails to complete the task after all iterations, it is assigned a penalty,
HPIpgraser- Algorithm 2 demonstrates the calculation of HPI for
an adaptive HPF, where x denotes the HPF level chosen by the
prompt-selector at the ith iteration as the task is being tackled. Here,
m indicates the total number of HPF levels, and n signifies the total
quantity of samples in the evaluation set.
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Figure 9: HPI of datasets for LLMs in Adaptive HPF.

Algorithm 2 HPI Computation for Adaptive HPF

HPI_List =[]
for sample j in the evaluation dataset do
solved = False
for iteration i = 1 to m do
Select prompting strategy at level x
if LLM completes the task at iteration i then
HPI_List[j]=x+i
solved = True
break
end if
end for
if solved = False then
HPI_List[j] = m+ HPIpataset
end if
end for
HPTpdaptive = 3 21—y HPI_List[]]

5 Conclusion

The HPT offers an efficient way to evaluate LLMs by focusing on
task cognitive demands. It shows that cognitively inspired selection
of prompting strategies enhances LLM performance across various
datasets. This method offers insights into LLM problem-solving and
improves evaluation methods based on human cognition, supporting
better in-context learning strategies for assessing LLMs.

6 Limitations

Human Annotation Constraints: A limitation of this study is the
reliance on human evaluation for inducing the HPI pgsgser penalty
into the HPF. While this study assessed 5% of the datasets, expand-
ing coverage would offer a more comprehensive analysis. However,
due to constraints in human resources for manual annotation, we
could not include a larger portion. Future work could address this by
increasing manpower or automating parts of the evaluation process.

HPF Optimization: The effectiveness of the HPF heavily relies
on the quality of the prompts used at each level of the taxonomy.
Crafting high-quality prompts that accurately reflect the subtleties of



each level demands considerable expertise and repeated refinement.
This study only investigated a limited set of prompting strategies
within the HPF, indicating a need for further research into creating
diverse structural frameworks and incorporating additional prompt-
ing strategies.

Zero-shot Prompt Selection: HPF dynamically determines the opti-
mal cognitive complexity level by iterating through the framework’s
levels, which leads to increased inference time. While this study in-
vestigated Adaptive HPF for zero-shot prompt selection, it faced con-
siderable hallucinations. Future research should focus on automating
HPF using fine-tuning or reinforcement learning-based approaches
to select the appropriate complexity level without manual iteration.
This strategy would optimize inference time and improve overall
performance.

7 Ethical Statement

The HPI pgsqser assigned by experts to MMLU, GSM8k, HumanEval,
BoolQ, CSQA, IWSLT, and SamSum may introduce bias due to the
subjective nature of expert scoring, influenced by individual expe-
rience and perspective. However, these publicly available, widely
recognized datasets help mitigate unforeseen ethical concerns. Ac-
knowledging potential scoring bias remains essential for transparency
and integrity in the analysis.
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A Human Annotation and Judgement Policy
A.1 Human Annotation Policy

HPIpgtaser 1S introduced to penalize the HPI of tasks or samples
unsolvable by the LLM, aligning the framework more closely with
human cognitive demands and enhancing its comprehensiveness.
We implemented a rigorous human annotation process to ensure
the quality of HPI pgsqser scored by human experts for the datasets.
Human annotators were tasked with calculating the HPI for each
sample in a given dataset. The HPI quantifies the cognitive demands
imposed on human expert proficiency in completing a task, based
on the HPT, where higher values indicate greater cognitive demands.
Each sample was scored on a scale from / (lowest complexity level)
to 5 (highest complexity level) for the following criteria:

(1) Basic Understanding and Reproduction: This criterion eval-
uates the annotator’s ability to comprehend and accurately
reproduce the content.

Understanding and Interpretation: This criterion assesses

the annotator’s depth of understanding and the ability to in-

terpret the information correctly.

(3) Analysis and Reasoning: This criterion measures the anno-
tator’s ability to analyze the information and apply logical
reasoning.

(4) Application of Knowledge and Execution: This criterion
evaluates the annotator’s practical application of knowledge
and the execution of tasks based on the relevant knowledge.

2

~

Higher scores for the four rules signify a stronger influence of the
respective rules, indicating that completing the task requires greater
cognitive effort. The HPI p,;4se¢ for each dataset, as shown in Table
4, was calculated by taking the mean of the values from these four
criteria, acknowledging the challenge of estimating or computing
the individual weights of the influence of each rule.

The Representative Set Size in Table 4 refers to the subset
of the dataset evaluated by human annotators, ensuring that the
assessment reflects the overall task. Human annotation, while time-
consuming and costly, provides a gold standard for calibrating the
evaluation process of this paper. Selecting 5% of the dataset as the
representative set size balances quality assessment and feasibility,
capturing the dataset’s diversity and ensuring that human annotations
encompass a broad range of cases without needing to annotate every
sample.

A.2 Human Judgement Policy

To populate the HPF with relevant prompting strategies across a
wide range of strategies, human annotators who adhered to the
annotation policy for assessing HPIpg;qser Were instructed to follow
a judgment policy for a predefined set of prompting strategies. They
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Table 4: HPIp,;450: Scores across datasets evaluated by human
annotators. The table lists the evaluation set size, representative
set size, and HPIp, 4q0: for various datasets. HPIp,;45c; SCOTES
provide a measure of task complexity relative to human annota-
tors.

Dataset Evaluation Representative  HPIp,;qser
Set Size Set Size
MMLU 14500 725 3.03
GSMS8k 1320 66 2.14
Humaneval 160 8 4.68
BoolQ 3270 162 1.71
CSQA 1221 60 2.52
IWSLT 890 45 1.92
SamSum 819 40 2.23

were instructed to evaluate the influence of the four rules of the HPT
on solving the annotated tasks using each prompting strategy, rating
their influence as High (H), Moderate (M), or Low (L). It’s important
to note that a high rating on rule 4 has a greater influence than a high
rating on rule 3, and similarly for the other two rules. Considering
the rating as shown in Table 5 and varying influences of these rules,
five prompting strategies that prioritize comprehensive coverage
of cognitive demands while ensuring the set optimally widens the
variation across complexity levels were selected for populating the
HPFE.

Prompting Strat- Rulel Rule2 Rule3 Rule4
egy

Role Prompting L L
Emotion Prompt- L L M L
ing

Zero-shot CoT L L M L
Meta Prompting M H M L
Three-shot CoT H H M L
Five-shot CoT H H H L
Chain-of- H H H H
Verification

Least-to-Most H H H L
Prompting

Self-Consistency H H H M
GKP L H H

Table 5: Human judgment of influence of the rules of taxon-
omy on different prompting strategies in solving the tasks of the
representative set. The ratings are provided based on a voting
system involving all human annotators. Green represents the
prompting strategies selected for populating the complexity lev-
els of the HPF.

B LLM-as-a-Judge
B.1 Scoring Prompt Template

The system prompt is designed to guide the LLM judge in evalu-
ating different prompting strategies based on four specific criteria:
Basic Recall and Reproduction, Understanding and Interpretation,
Analysis and Reasoning, and Application of Knowledge and Execu-
tion. Each criterion is scored on a scale of 1-5. The evaluation uses
GPT-4o0 as a judge, with the following system prompt:

You are a judge evaluating different prompting strategies
and you need to score these prompting strategies based

on pre-defined criteria. Different prompting strategies

leverage varied amounts of intelligence from the model

to achieve the required answer. So, assign the scores

very carefully based on your analysis of the prompt and

its effect on your intelligence to achieve the given

answer as well as the number of multi-step prompts which

increases the complexity of execution.

scorel: Basic Recall and Reproduction

Definition: The need of the model to remember and
reproduce factual information without interpretation
or analysis to answer the prompt

Range: 1-5

score2: Understanding and Interpretation

Definition: The need of the model to comprehend and
explain the meaning of information, summarizing or
clarifying content to answer the prompt

Range: 1-5

score3: Analysis and Reasoning

Definition: The need for the model to break down complex
information, understand relationships, and solve problems
using logical reasoning to answer the prompt

Range: 1-5

score4: Application of Knowledge and Execution
Definition: The need for the model to apply knowledge
in practical situations, execute multi-step processes,
and solve complex tasks to answer the prompt

Range: 1-5

B.2 Hybrid Dataset

The hybrid dataset is composed of 1106 samples uniformly dis-
tributed over seven different task-specific datasets, covering a wide
range of language understanding and generation tasks. This diversity
allows for a comprehensive evaluation of the prompting strategies
across various problem types. The evaluation uses a hybrid dataset
composed of samples from various task-specific datasets and each
dataset contributes specific types of tasks:

(1) MMLU (Massive Multitask Language Understanding)

(2) HumanEval (Code Generation and Completion)

(3) GSMB8K (Grade School Math 8K)

(4) BoolQ (Boolean Questions)

(5) CSQA (Commonsense Question Answering)

(6) IWSLT (International Workshop on Spoken Language Trans-
lation)



(7) SamSum (Dialogue Summarization)

B.3 Scoring Method

For each prompting strategy (Role Prompting, Zero-shot CoT, Three-
shot CoT, Least to Most Prompting, Generated Knowledge Prompt-
ing), the system:
(1) Applies the prompting strategy to each sample in the hybrid
dataset
(2) Generates an answer using GPT-40
(3) Presents the prompt, generated answer, and correct answer to
the LLM judge
(4) Collects scores for each of the four criteria and the system
calculates average scores for each criterion across all tasks
and datasets.

This study ensured that both the human judge and the LLM judge
utilized the same scoring methodology to eliminate any potential
bias in the comparison.

C Hallucination in Adaptive HPF

Hallucinations in prompt-selector refer to instances where the LLM
generates incorrect or misleading prompting levels or nonsensical in-
formation that is not supported by the HPF. These hallucinations can
occur across various tasks, including question answering, multiple-
choice questions, translation, and summarization.

For the BoolQ task, the prompt-selector initially struggles, indi-
cated by the iterations where it reaches Level 4 with hallucinations.
However, by the fourth iteration, Llama-3 8B manages to answer
correctly at Level 2. For the CSQA task, prompt-selector exhibits
hallucinations initially, shown by Level 4 and Level O (not included
in HPF) responses. Eventually, it corrects itself by the third iteration,
providing the correct answer at Level 2. For the IWSLT task, prompt-
selector demonstrates a consistent pattern of hallucinations across
multiple iterations. Even though Llama-3 8B attempts the translation
at Level 2 multiple times, it ultimately fails to provide a correct
translation, indicating a persistent hallucination. For the SamSum
task, prompt-selector shows initial hallucinations in the first three
iterations (Level 4). However, by the fourth and fifth iterations, the
prompt-selector starts producing lower levels. Finally, Llama-3 §B
achieves the correct answer at Level 2 in the last iteration .

The results in Table 6 and Table 7 indicate that the prompt-selector
exhibits hallucinations in selecting complexity levels across various
tasks and iterations resulting in higher HPI for Adaptive HPF, with
performance varying significantly. While the LLLM can eventually
produce correct answers, as seen in the BoolQ and SamSum tasks,
it often requires multiple attempts and may still fail in tasks like
IWSLT translation.

C.1 Prompt Template for Prompt-Selector

The prompt-selector in adaptive HPF selects the prompting level
based on the task complexity to address the task. Llama-3 8B serves
as the prompt-selector in the experiments. The prompt template was
meticulously designed to ensure maximum clarity, aiming to reduce
hallucinations and select the most effective prompting strategy.

Prompt Template: Choose the most effective prompting strategy

among five available strategies for the task. Begin with the lowest in-
dexed strategy and progress to higher indexed strategies if the earlier
ones are not effective. For a given task, the prompting strategies are:

¢ Role Prompting: Defines a role for the model in solving the
task.

e Zero-shot Chain of Thought prompting: Stimulates reason-
ing and problem-solving by including the phrase "Let’s think
step by step’ without offering previous examples related to
the task.

o Three-shot Chain of Thought prompting: Offers three ex-
amples related to the task to guide the model’s reasoning
process.

o Least-to-most prompting: Uses a sequential method to de-
rive essential insights from the task to solve it.

o Generated Knowledge Prompting: Integration and appli-
cation of external knowledge to accomplish the task. The
external knowledge is generated using some other model
based on the task.

Select only the index (do not provide the name) of the most effective
prompting strategy.

D Computational Budget

All evaluation experiments and ablation studies were conducted
on V100 GPUs (16GB and 32GB variants), utilizing a total of
around 9,000 computation hours, this equates to approximately 1.125
petaflop-hours of computational resources.

E Large Language Models Used for Evaluation

The HPF supports leading open source and proprietary LLMs and
includes mechanisms for optimizing performance through advanced
quantization techniques. The experiments were conducted on the
following instruction-tuned LL.Ms, and the model description and
licenses are discussed in Table 8.

The LLMs were loaded in 4-bit precision format, with a maximum
generation limit of 1024 tokens per run to ensure concise outputs.
The temperature was set to 0.6 to control prediction randomness,
while top-p sampling (p=0.9) enabled the exploration of diverse
continuations. Additionally, a repetition penalty was applied to dis-
courage the generation of repeated phrases, promoting coherent and
varied text output.

F Prompt Templates
F.1 Level 1: Role Prompting

Role prompting represents the most basic interaction with an LLM,
assigning it a specific role or task without additional context or ex-
amples. This approach relies solely on the initial instruction to guide
responses. For instance, asking the LLM to “act as a translator’
prompts it to translate text based on its training data. While straight-
forward, this method may lack depth, resulting in less accurate or
nuanced outputs. Table 9 shows the prompt templates used for role
prompting across all datasets in the experiments.

>



Table 6: HPI (lower is better) of LLMs across datasets (with thresholds) for Adaptive HPF.

Model BoolQ CSQA IWSLT (0.15) IWSLT (0.20) SamSum (0.15) SamSum (0.20)

Llama-38B 5.2173 5.9136 6.2006 6.2841 5.0316 5.5756

Mistra 7B 5.0483 5.9073 6.2478 6.4604 4.7423 5.1336

Phi-33.8B  5.1386 5.6793 6.3955 6.4936 5.0961 5.7778

Gemma 7B 5.1514 5.5771 6.5947 6.6605 5.7229 6.4347

Table 7: Performance scores of LLLMs across datasetsfor Adaptive HPF.
Dataset Metric Threshold Llama-38B  Phi-3 3.8B Mistral 7B Gemma 7B
BoolQ Accuracy - 0.88577 091115 0.91752 0.91166
CSQA Accuracy - 0.59451 0.68019 0.60111 0.68549
0.15 0.21140 0.15557 0.20000 0.08447
TWSLT BLEU 0.2 0.21146 0.15354 0.20568 0.07730
0.15 0.24407 0.20586 0.26910 0.16023
SamSum ROUGE-L 5 0.24981 0.21580 0.28335 0.16179
Table 8: License information for LL.Ms used in the experiments.
Model License Type Usage Restrictions
GPT-40 Proprietary Commercial use requires paid API access, subject to OpenAlI’s
terms of service
Claude 3.5 Sonnet Proprietary Commercial use requires paid API access, subject to Anthropic’s
terms of service

Mistral-Nemo 12B Proprietary Usage likely restricted to authorized partners or specific use

cases

Gemma-2 9B Research License Non-commercial use only, research purposes
Llama-3 8B Research License Specific restrictions may apply, typically for non-commercial
research use
Mistral 7B Open-source Broad use allowed, must include original license and notices
Gemma 7B Open-source/Research Depending on the license, may have non-commercial restrictions
or broad use allowed
Phi-3 3.8B Open-source Broad use allowed, must include original license and notices
Table 9: Prompt templates of different datasets for Role Prompting.

Dataset Prompt

BoolQ Based on the passage: “passage”, answer True/False to the question: “question”
as an Omniscient person.

CSQA Choose the answer: “question”,A. “option 1”,B. “option 2",C. “option 3",D.
“option 4" E. “option 5" as a critical thinker.

IWSLT Translate “english text” to french as a Translator.

SamSum Summarize the Dialogue: “dialogue” as a Summarizer.

GSM8k Based on the question: "question”, calculate the numerical answer to the
question as an expert mathematician.

HumanEval Complete the given code based on the mentioned constraints: "code” as an
expert programmer.

MMLU Choose the answer: “question”,A. “option 1",B. “option 2",C. “option 3",D.

“option 4" as a critical thinker.




F.2 Level 2: Zero-shot Chain-of-Thought
Prompting

Zero-shot Chain-of-Thought (CoT) prompting enhances basic role
prompting by requiring the LLM to generate a reasoning process for
a task, despite not being explicitly trained on similar examples. This
method encourages the LLM to break down the problem and solve
it step-by-step using its internal knowledge, improving response
quality through logical progression and coherence. Table 10 displays
the prompt templates used for Zero-CoT across all datasets in the
experiments.

F.3 Level 3: Three-Shot Chain-of-Thought
Prompting

Three-shot Chain-of-Thought (CoT) prompting builds on the zero-
shot approach by providing the LLM with three task examples,
including the reasoning steps used to reach the solution. These exam-
ples help the LLM grasp the required structure and logic, enabling
it to better replicate the problem-solving process and produce more
accurate, contextually relevant responses. Table 11 shows the prompt
templates used for 3-CoT across all datasets in the experiments.

F.4 Level 4: Least-to-Most Prompting

Least-to-most prompting is an advanced technique that gradually
increases prompt complexity, starting with simpler tasks and pro-
gressing to more complex challenges. This method allows the LLM
to build confidence and leverage insights from easier prompts to
tackle harder ones, enhancing its ability to generalize from straight-
forward examples to intricate scenarios. Table 12 displays the prompt
templates used for Least-to-Most Prompting across all datasets in
the experiments.

F.5 Level 5: Generated Knowledge Prompting

Generated Knowledge prompting is one of the most complex tech-
niques in HPF, where the LLM not only addresses the task but also
integrates relevant additional information to enhance its response.
This method prompts another LLM to produce auxiliary knowledge,
creating a richer context for understanding and solving the prob-
lem. By leveraging self-generated insights, the LLM can deliver
more detailed, accurate, and nuanced answers. Table 13 shows the
prompt templates used for Generated Knowledge Prompting across
all datasets in the experiments.



Table 10: Prompt templates of different datasets for Zero-shot Chain-of-Thought Prompting.

Dataset Prompt

BoolQ Based on the passage: “passage”, answer True/False to the question: “question”.
Let’s think step by step.

CSQA Choose the answer: A. “option 1",B. “option 2",C. “option 3",D. “option 4" E.
“option 5". Let’s think step by step.

IWSLT Translate “english text” to french. Let’s think step by step.

SamSum Summarize the Dialogue: “dialogue”. Let’s think step by step.

GSM8k Based on the question: "question”, calculate the numerical answer to the
question. Let’s think step by step.

HumanEval Complete the given code based on the mentioned constraints: "code”. Let’s
think step by step.

MMLU Choose the answer: “question”,A. “option 1",B. “option 2",C. “option 3",D.

“option 4". Let’s think step by step.




Table 11: Prompt templates of different datasets for Three-Shot Chain-of-Thought Prompting.

Dataset

Prompt

BoolQ

Based on the passage: "passagel”, answer True/False to the question:
"questionl1”. Answer: "answer1”. Explanation: "explaination1”. Based on the
passage: "passage2”, Answer True/False to the question: "question2". Answer:
"answer2"”. Explanation: "explaination2”. Based on the passage: "passage3",
Answer True/False to the question: "question3”. Answer: "answer3". Explanation:
"explaination3”. Based on the passage: "passage”, Answer True/False to the
question: "question”.

CSQA

Choose the answer: "question1”,A. "option1-1",B. "option2-1",C. "option3-1",D.
"option4-1",E. "option5-1", Answer: "answer1”, Explanation: "explaination1”.
Choose the  answer: "question2”, A. "option1-2",B. "option2-2",C.
"option3-2",D. "option4-2",E. "option5-2", Answer: "answer2”, Explanation:
"explainatio n2"”. Choose the answer: "question3”, A. "option1-3",B.
"option2-3",C. "option3-3",D. "option4-3" E. "option5-3", Answer: "answer3",
Explanation: "explaination3”. Choose the answer: "question”, “question”, A.
“option 1",B. “option 2",C. “option 3",D. “option 4",E. “option 5".

IWSLT

Translate "english text1” to French. French: "french text1”. Translate
"english text2"” to French. French: "french text2"”. Translate "english text3”
to French. French: "french text3". Translate "english text" to French.

SamSum

Summarize the Dialogue: "dialoguel”. Summary: "summaryl1”. Summarize
the Dialogue: "dialogue2”. Summary: "summary2”. Summarize the Dialogue:
"dialogue3”. Summary: "summary3". Summarize the Dialogue: "dialogue”.

GSMS8k

Based on the question:"gsm8k_question1”, calculate the numerical answer to
the question.Answer: "gsm8k_ans1”.Based on the question:"gsm8k_question2”,
calculate the numerical answer to the question.Answer: "gsm8k_ans2". Based
on the question:"gsm8k_question3”, calculate the numerical answer to the
guestion.Answer: "gsm8k_ans3"”. Based on the question: "question”, calculate
the numerical answer to the question.

HumanEval

Complete the given code based on the mentioned constraints: "humaneval_codel”,
Code: "humaneval_soll1"”. Complete the given code based on the mentioned
constraints: "humaneval_code2”, Code: "humaneval_sol1".Complete the given
"code” based on the mentioned constraints: "humaneval_code3”, Code:
"humaneval_so0l3".

MMLU

Choose the answer for the question: "mmlu_ques1” A. [AND, NOT] B. [NOT, OR]
C. [AND, OR] D. [NAND] Answer: C. Explanation: "mmlu_exp1”. Choose the answer
for the question "mmlu_ques2” A. The defendant’s statement was involuntary. B.
The defendant’s statement was voluntary. C. The defendant was not in custody
when the statement was made. D. The statement was not made in response to
a known police interrogation. Answer: A, Explanation: "mmlu_exp2”. Choose
the answer for the question: "mmlu_ques3” . A. Wrong, Wrong. B. Wrong, Not
wrong C. Not wrong, Wrong D. Not wrong, Not wrong. Answer: B Explanation:
"mmlu_exp3"”. Choose the answer."question” “question”,A. “option 1",B. “option
2",C. “option 3",D. “option 4".




Table 12: Prompt templates of different datasets for Least-to-Most Prompting.

Dataset Prompt

BoolQ prompt 1: Summarize the main points of this passage: "passage”. prompt 2:
Analyze this question to identify its key components: "question”.
prompt 3: Find the part of the passage that relates to this question:
"question”, Passage: "passage”.
prompt 4: Based on the passage, what is the answer to this question: "question”,
Relevant Information: "previous response”.

CSQA prompt 1: Analyze this question: "question"”.
prompt 2: Elaborate about each option for the question: "question”, options:
A. “option 1",B. “option 2",C. “option 3",D. “option 4" ,E. “option 5".
prompt 3: Based on the analysis: "previous response”, discard wrong answers
among the options: A. “option 1”,B. “option 2",C. “option 3"”,D. “option 4" E.
“option 5".
prompt 4: Choose the correct answer from the options: A. “option 1",B. “option
2",C. “option 3",D. “option 4" E. “option 5".

IWSLT prompt 1: What is the main idea or theme of this text? "english text”.
prompt 2: Identify and list the key phrases or terms in this text: "english
text”.
prompt 3: Translate the following key phrases into French: "previous response”.
prompt 4: Translate "english text” into French, incorporating the translations
of the key phrases: "previous response”.

SamSum prompt 1: List the main points or key ideas present in this dialogue:
"dialogue”.
prompt 2: Elaborate on the following key points, providing additional details
or context: "previous response”.
prompt 3: Using the listed key points and their elaborations, draft a concise
summary of this text: "dialogue”.
prompt 4: Refine this draft summary to make it more concise and coherent,
ensuring it captures the essence of the text: "dialogue".

GSMS8k Analyze the question: "question”. Break the question into sub-problems:
"question”. Calculate answers for the subproblems of the question: "pred”.
Calculate the numerical answer to this question: "question” based on the
previous calculations: "pred”

HumanEval Analyze the code: "code”. Break the question into sub-problems: "code"”.
Complete code for the subproblems of the code: "pred”. Complete the code
based on the mentioned constraints: "code” based on the previous calculations:
"pred”

MMLU Analyze the question: "question”. Elaborate about each option for the question:

"question”, options: A. "option 1" B. "option 2" C. "option 3" D. "option 4".
Based on the analysis: "question”, Discard wrong answers among the options:
A. "option 1" B. "option 2" C. "option 3" D. "option 4".




Table 13: Prompt templates of different datasets for Generated Knowledge Prompting.

Dataset Prompt

BoolQ inference prompt: Based on the passage:"passage”, answer True/False to the
question: ’question’ using knowledge of the passage:"knowledge"
knowledge generation prompt: Generate Knowledge about the passage: "passage”.

CSQA inference prompt: Choose the answer:"question”, A. “option 1",B. “option
2",C. “option 3",D. “option 4" E. “option 5" using knowledge of the
question: "knowledge"
knowledge generation prompt: Generate Knowledge about the question:
"question”.

IWSLT inference prompt: Translate "english text”: to French using definitions of
the keywords: "knowledge”
knowledge generation prompt: Generate definitions in french of each word in
the text: "english text"”.

SamSum inference prompt: Summarize the Dialogue: "dialogue" using the interpretation
of the dialogue:"knowledge"”
knowledge generation prompt: Generate interpretation about the dialogue:
"dialogue”.

GSMS8k Based on the question:"question”, calculate the numerical answer to the
question using an interpretation of the question:"pred”

HumanEval Complete the code based on the mentioned constraints:"”code” using knowledge
of the constraints:"pred”

MMLU Choose the answer. "question”, options: A. "option 1" B. "option 2" C. "option

3" D. "option 4" using knowledge of the question:"pred”
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