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Abstract

While Active Learning (AL) techniques are ex-001
plored in Neural Machine Translation (NMT),002
only a few works focus on tackling low an-003
notation budgets where a limited number of004
sentences can get translated. Such situations005
are especially challenging and can occur for006
endangered languages with few human anno-007
tators or having cost constraints to label large008
amounts of data. Although AL is shown to be009
helpful with large budgets, it is not enough to010
build high-quality translation systems in these011
low-resource conditions. In this work, we pro-012
pose a cost-effective training procedure to in-013
crease the performance of NMT models uti-014
lizing a small number of annotated sentences015
and dictionary entries. Our method lever-016
ages monolingual data with self-supervised ob-017
jectives and a small-scale, inexpensive dictio-018
nary for additional supervision to initialize the019
NMT model before applying AL. We show020
that improving the model using a combination021
of these knowledge sources is essential to ex-022
ploit AL strategies and increase gains in low-023
resource conditions. We also present a novel024
AL strategy inspired by domain adaptation for025
NMT and show that it is effective for low bud-026
gets. We propose a new hybrid data-driven ap-027
proach, which samples sentences that are di-028
verse from the labelled data and also most sim-029
ilar to unlabelled data. Finally, we show that030
initializing the NMT model and further using031
our AL strategy can achieve gains of up to 13032
BLEU compared to conventional AL methods.033

1 Introduction034

There are several thousand languages in today’s035

world, with millions of people knowing only their036

native language. This creates a language barrier037

and is a hindrance to communication in this global-038

ized world. Translation technologies are essential039

to overcome the language barries and enable com-040

munication between monolingual speakers. Neural041

Machine Translation (NMT) systems (Bahdanau042

et al., 2015; Vaswani et al., 2017) have significantly 043

advanced translation quality to alleviate this prob- 044

lem. Supervised NMT models rely on vast amounts 045

of parallel sentences to translate between languages 046

with high quality. But, the labelled data is not avail- 047

able for many language pairs. 048

Unsupervised NMT (UNMT) (Lample et al., 049

2018; Artetxe et al., 2018) and UNMT with multi- 050

lingual transfer (Fraser, 2020; Garcia et al., 2021; 051

Li et al., 2020) are promising research directions 052

to tackle this problem. The former learns to trans- 053

late, relying on monolingual corpora but fails in 054

practical conditions when dealing with distant low- 055

resource language pairs (Kim et al., 2020; Marchi- 056

sio et al., 2020). The latter approach uses parallel 057

data between similar high-resource language pairs 058

and generates decent quality. However, it is not 059

enough to produce high-quality translations for sev- 060

eral language pairs in both directions (source ↔ 061

target). Labelled data between the language pair in 062

focus is necessary to attain SOTA performance. 063

However, human annotation of sentences poses 064

several challenges: 1) Costly and time-taking; 2) 065

Bilingual translators for several language pairs are 066

hard to find. Hence, annotating large amounts of 067

parallel sentences for low-resource languages is 068

impractical and expensive. We need to design a 069

training procedure that is cost-effective but also en- 070

ables the model to translate with adequate quality. 071

One way to save costs is by employing Active 072

Learning (AL) strategies with NMT (Zeng et al., 073

2019; Ambati, 2012; Haffari et al., 2009). The 074

goal of AL is to maximise translation quality for 075

an annotation budget of labelling B sentences. We 076

label only the most informative B sentences in 077

the whole unlabelled dataset using selection strate- 078

gies. Previous works on AL (Zeng et al., 2019; 079

Peris and Casacuberta, 2018) consider annotation 080

budgets between hundred thousand to million sen- 081

tences. But, it is not always possible to afford the 082

annotation such amounts of data for low-resource 083
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languages. Also, current AL frameworks do not084

utilize the monolingual data which does not require085

any labelling. Analysis on AL for low-annotation086

budgets1 with exploiting monolingual data is neces-087

sary to build good quality NMT systems in realistic088

scenarios.089

Another way to improve the model without090

spending significant money is by integrating small,091

inexpensive bilingual dictionaries. Word transla-092

tions are compact, can cover different domains and093

are a cheaper knowledge source to annotate. Ex-094

ploiting this additional information with monolin-095

gual data and combining it with AL can further096

improve the performance of the model. However,097

our methods should be robust and be able to utilize098

smaller dictionaries.099

In this work, we address the challenges above by100

the following contributions:101

• We show that improving the model’s quality102

by pretraining is necessary before applying103

AL strategies with low annotation budgets.104

(Table 4)105

• We present a novel "Cross-entropy difference"106

selection strategy for AL that is effective in107

low-resource scenarios. (§ 3.3)108

• We propose a inexpensive pretraining proce-109

dure by incorporating a small dictionary (1146110

entries) and show that combining this with AL111

can increase the translation quality up to 13112

BLEU. (Table 4)113

2 Background: Active Learning in NMT114

There are several language pairs for which parallel115

data is hardly available. To build NMT systems116

for these languages, we need to create bi-texts by117

annotating the unlabelled data. Given an annota-118

tion budget, we can only afford to label a certain119

amount of sentences in unlabelled data. However,120

choosing data points randomly might include an-121

notating uninformative data and incur a waste of122

resources.123

AL is an effective solution to reduce the amount124

of labelling. It uses selection strategies2 (ψ) to mit-125

igate this problem. ψ(·) is simply a scoring func-126

tion to estimate the "importance" of each sentence127

of the unlabelled data. Choosing the top-scoring128

1We consider budgets that can annotate between 0 to 50k
sentence pairs as low-annotation budgets

2We follow the terminology in Zeng et al. (2019)

sentences can help in maximising the translation 129

quality for an annotation budget. It can use any 130

of the following as input: 1) Labelled data3 (L) 2) 131

Unlabelled source data (US) 3) Batch size (B) 4) 132

Model (M) trained on the available data. 133

One paradigm is to use the modelM to score 134

each sentence in the unlabelled data. They are 135

grouped as model-driven strategies. The key idea 136

is to determine sentences in US for which the 137

model is relatively weaker. Round-trip-translation- 138

likelihood (RTTL) (Zeng et al., 2019; Haffari et al., 139

2009) is the current SOTA approach for model- 140

driven strategies. It gives higher score to sen- 141

tences for which, the model is unsure during back- 142

translation. We generate a intermediate translation 143

t̂ for a sentence s. Then, we take the average of 144

the log-probability at token level giving t̂ as input 145

and asking to reconstruct s at the output. Higher 146

value indicates that the model is more confident 147

and hence s obtains a lower score. 148

Another paradigm is to compare each sentence 149

s in unlabelled data to the labelled data L or the 150

whole unlabelled source data US itself. These 151

methods can be called as data-driven strategies. 152

They rely on the following heuristics: 153

• Diversity: Sampling sentences that are di- 154

verse from the existing labelled data L is im- 155

portant. 156

• Density: The test set follows the same dis- 157

tribution as the unlabelled data. Hence, sam- 158

pling from dense regions of unlabelled data 159

US is beneficial. 160

• Hybrid: Accounting to both of the above met- 161

rics with a trade-off. 162

N -gram overlap (Eck et al., 2005) is simple yet 163

an effective data-driven strategy. It only accounts 164

for the diversity metric. Sentences in the unlabelled 165

data US are given a higher score, if they have more 166

number of n-grams that are not present in the la- 167

belled data L. 168

3 Cost-Effective Training in NMT 169

We design a sequence of training steps to exploit 170

additional inexpensive data sources with AL to 171

increase translation quality. The overview of the 172

process is illustrated in Figure 1. We utilize the dic- 173

tionary and monolingual data by training a UNMT 174

3We generate the initial labelled data by annotating random
batch of sentences.
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Figure 1: Proposed pretraining procedure to integrate CLWE. The black dotted box denotes the pretraining stage
that only uses monolingual data. upervised NMT denotes the fine-tuning phase where we use the parallel data

system to improve the model. Then, we apply AL175

to sample informative data and maximise gains.176

As a first step, we use the bilingual dictionary to177

provide supplementary supervision signal by con-178

structing cross-lingual word embeddings (CLWE)179

(§ 3.1). We extract embeddings from monolingual180

data (Bojanowski et al., 2017) and map them into181

common space using a small dictionary (Artetxe182

et al., 2017). We hypothesize this is useful for183

supervised NMT in low-resource conditions.184

For the second step, we use the monolingual185

data with CLWE to provide a strong initialization186

for the NMT model (§ 3.2). We leverage Masked187

Language modelling (MLM) (Devlin et al., 2019)188

and UNMT (Lample et al., 2018; Artetxe et al.,189

2018) objectives (self-supervised) on monolingual190

data to provide a better initialization for the NMT191

model without the need of annotation. While train-192

ing on these objectives, we reload the embedding193

layer with CLWE created in the first step and freeze194

them for the entire process to always provide cross-195

lingual signal (Banerjee et al., 2021).196

The last step is to employ AL for labelling and197

prioritize the annotation of the most informative198

sentences. We present a novel AL strategy "Cross-199

entropy difference" that is effective in these low-200

resource conditions (§ 3.3). We reload the model201

trained using self-supervised objectives above as202

initialization before fine-tuning on the sampled par-203

allel data using AL to achieve higher performance.204

3.1 Integrating Dictionaries 205

Incorporating word-to-word translations can in- 206

crease the potential of NMT models to be handle 207

a wider range of words, especially in low-resource 208

conditions. We propose to take advantage of a 209

small dictionary by learning CLWE and utilizing 210

them for low-resource NMT. These embeddings 211

can help in building generalised and cross-lingual 212

NMT models which might be particularly useful in 213

our setup. We can learn the mapping between the 214

monolingual embeddings using a dictionary to cre- 215

ate CLWE. Then, we can integrate them with the 216

embedding layer of our NMT model. The only con- 217

straint is that the dictionary should contain single 218

token-token entries. But, the current NMT mod- 219

els operate on sub-words using Byte-pair encoding 220

(BPE) (Sennrich et al., 2016b). This is a problem 221

when learning CLWE from the dictionary. Entries 222

consisting of translating rare words would split into 223

multiple tokens. Discarding these (particularly in- 224

formative) entries would lead to losing information 225

about the mapping between infrequent words. 226

We can include the infrequent words by sim- 227

ply operating on the word level data. However, 228

this leads to losing all the advantages of operating 229

with sub-words. Chronopoulou et al. (2021) has 230

shown that CLWE is beneficial for UNMT even 231

on sub-word level data. Therefore, we propose 232

a modification to standard BPE in order to retain 233

advantages operating on both word and sub-word 234
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Dictionary Words [tomorrow, training, center]
Source sentence Academic Skills center will focus on training tomorrow

BPE Academic S@@ kills center will focus on train@@ ing tom@@ orrow

DP-BPE
Academic S@@ kills center will focus on training tomorrow

Academic S@@ kills center will focus on train@@ ing tom@@ orrow

Table 1: Example for DP-BPE. Words highlighted in bold indicate rare words present in dictionary that get split
into multiple words after BPE. The two new encoded sentences after applying DP-BPE are added to the training
data.

tokens. We explain this technique below and de-235

note it as Dictionary-preserving BPE (DP-BPE)236

First, we create a list of all the words that are237

present in the dictionary. We consider all the words238

in the list that will get split into multiple tokens239

as rare words. Next, we apply standard BPE for240

sentences that do not contain these rare words. For241

the remaining text that consists of rare words, we242

perform the following operations on each sentence:243

1. Apply BPE on tokens that are not rare words.244

So, the rare words remain as single tokens.245

2. Apply BPE on all the tokens including the246

rare words. In this case, these words get split247

into multiple tokens248

3. Add the above two BPE processed sentences249

to the existing data.250

We illustrate this process with an example in251

Table 1. The word "tomorrow" and "training" are252

rare words available in the dictionary which would253

split into different sub-words. We create two differ-254

ent sentences with selectively applying BPE. We255

ignore the rare words while applying BPE to form256

the first sentence. We create another sentence by257

applying BPE with including the rare words. Fi-258

nally, we join these two sentences to our dataset.259

There is no alignment between the texts for260

monolingual data. However, parallel data is aligned261

between the source and target sentences. The rare262

words might occur only in the source or only in263

target or in both sentences. Here, we simply apply264

standard BPE and DP-BPE at a time and create two265

new sentence pairs.266

Training on the new dataset will result in both267

the rare word and corresponding sub-words to268

have similar representation. The word/sub-words269

will appear in the same context and eventually be270

treated similarly by the model. Therefore, applying271

DP-BPE allows us to integrate CLWE with retain-272

ing advantages from sub-word based NMT models.273

After pre-processing the monolingual and par- 274

allel data using DP-BPE, we can start creating 275

CLWE. First, we create the sub-word monolingual 276

embeddings for both languages using a fasttext (Bo- 277

janowski et al., 2017) on the monolingual data. 278

Next, we align the monolingual embeddings us- 279

ing all the words in the dictionary to build CLWE. 280

As we want to minimize the costs, we only as- 281

sume having a small dictionary. Hence, we use a 282

semi-supervised learning algorithm that is robust 283

to small dictionaries and map the embeddings in a 284

common space using VecMap (Artetxe et al., 2017). 285

Therefore, we are able to build CLWE without 286

spending large amounts on collecting dictionaries. 287

3.2 Exploiting Monolingual Data 288

Pretraining in low-resource conditions has been 289

shown to improve the models quality significantly 290

(Conneau and Lample, 2019; Liu et al., 2020). 291

Therefore, we propose to use the monolingual 292

data to improve the models performance in these 293

challenging conditions. Moreover, having a better 294

model increases its ability to exploit both model 295

and data-driven AL strategies. It is easier for the 296

model to learn from the data selected through vari- 297

ous heuristics. Especially, the model-driven strate- 298

gies need the model to be good enough to accu- 299

rately identify and learn from data points where it 300

is weak. 301

We extend the process in Chronopoulou et al. 302

(2021) by integrating dictionaries and use that as a 303

initialization before fine-tuning with AL. We begin 304

by training the encoder using the Masked Language 305

Model (MLM) (Devlin et al., 2019) objective on 306

monolingual data for both languages. We build 307

this cross-lingual language model to promote cross- 308

lingual contextual representations. Then, we use 309

this language model for initializing the encoder and 310

decoder and train a UNMT (Lample et al., 2018; 311

Artetxe et al., 2018) system. The UNMT training 312

consists of Denoising auto-encoding (Vincent et al., 313

2008) and on-the-fly back translation (Sennrich 314
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et al., 2016a). Although this system often struggles315

to translate between distant languages adequately316

(Kim et al., 2020; Koneru et al., 2021), it provides317

a good initialization for the cross-attention and the318

decoder for fine-tuning.319

After training the model as described above, we320

can start the AL process to select samples. Then,321

we can fine-tune the model developed using mono-322

lingual data on the chosen data points.323

3.3 Effective Sampling for fine-tuning324

Model-driven strategies depend on the model to es-325

timate where it is weak. However, in low-resource326

conditions, the model is not strong enough to ac-327

curately select the data points where it is weak.328

Relying totally on diversity will lead to a challeng-329

ing and small dataset, making it hard for the model330

to learn. Depending on density alone will lead331

to a small subset of similar sentences with unin-332

formative samples causing unnecessary costs. We333

need hybrid approaches that account for both den-334

sity and diversity to increase gain in low or very335

low-resource conditions.336

Inspired from the strategy to select in-domain337

data by Moore and Lewis (2010), we present a338

new hybrid data-driven AL strategy called "Cross-339

entropy difference". The key idea is to use cross-340

entropy loss of causal language models (CLM)341

trained on the labeled and unlabeled data to es-342

timate both diversity and density metrics.343

Consider a CLM trained on the unlabelled source344

data. If a sentence would obtain a smaller cross-345

entropy loss, it indicates that this sentence is simi-346

lar to the data distribution of the unlabelled source347

data. This allows us to measure the density met-348

ric and help in selecting sentences that are highly349

representative. Similarly, higher cross-entropy loss350

on a language model trained on the labelled source351

data indicates that the sentence is quite diverse. We352

use these heuristics and explain how we measure353

the density and diversity.354

Let the labelled source data be denoted as LS .355

We train a CLM4 on LS and denote it as MLS .356

Further, we denote the cross-entropy loss of a sen-357

tence s onMLS as H(MLS , s). We can simply358

use H(MLS , s) to measure diversity. If the cross-359

entropy loss is high, than the sentence would score360

greater in the diversity metric.361

4Note that while training a CLM, we initialize with the
MLM trained on the monolingual data for better contextual-
ized representations.

Recall that the selection strategy scores each 362

sentence in unlabelled source data to estimate its 363

importance. To measure the density metric, we 364

cannot train a language model and evaluate cross- 365

entropy loss on sentences that the model has seen 366

during training. This causes over-fitting and does 367

not provide accurate scores. Therefore, we propose 368

to split the unlabelled source data into two halves 369

and train two separate language models. Then, the 370

first half of the data can be scored using the model 371

trained on the other half and vice-versa. 372

Let the unlabelled source data be denoted as 373

US . Due to reasons mentioned above, we split 374

this into two halves US1 and US2. We denote 375

the CLM trained on US1 and US2 as MUS1 and 376

MUS2. Now for a sentence s present in US1, we 377

useMUS2 (trained on the other half) to evaluate 378

the cross-entropy loss. Similarly, we useMUS1 if 379

s is present in US1 and estimate the density metric. 380

Finally, we combine the diversity and density 381

metric using the above cross-entropy losses. A 382

sentence s in US is scored with "Cross-entropy 383

difference" strategy using the following formula: 384

385

ψce-diff(s) = H(MLS , s)−I(s ∈ US2)·H(MUS1, s) 386

− I(s ∈ US1) ·H(MUS2, s) (1) 387

where I(s ∈ D) is 1 if s is present in D and 388

0 otherwise. Higher scores on H(MLS , s) and 389

lower scores on H(MUS , s) indicate diversity and 390

density. Therefore, we take the difference of the 391

two to estimate the importance of a sentence. 392

4 Experiments and Results 393

In this section, we consider English (En) and Kan- 394

nada (Kn) as our language pair of interest. We 395

chose this as it is truly low-resource, have different 396

writing systems and replicates the challenges faced 397

where AL is needed. We analyze the importance 398

of the proposed techniques to integrate CLWE and 399

evaluate several AL strategies with various annota- 400

tion budgets. 401

4.1 Datasets 402

We assume the availability of monolingual data 403

for the two languages. We use Wikipedia 404

dumps for English and AI4Bharat-IndicNLP cor- 405

pus (Kunchukuttan et al., 2020) for Kannada. We 406

chose not to use Wikipedia for Kannada to repli- 407

cate practical use cases between diverse languages. 408
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The parallel data between the languages is from409

PM-India dataset (Haddow and Kirefu, 2020). We410

train and evaluate according to the split provided by411

WAT 2021 MultiIndicMT (Nakazawa et al., 2021).412

We created our dictionary between English and413

Kannada using Kaikki5. We discared entries that414

are not single word-word translations. Statistics415

about the data are summarized in Table 2.416

Total Examples
Dataset Type Train Valid Test

Wikipedia Mono (En) 46M 5K 5K
AI4Bharat Mono (Kn) 15M 5K 5K

PMIndia
Parallel

(En↔ Kn)
29K 1.1K 2.4K

Kaikki
Dictionary
(En↔ Kn)

1.1K _ _

Table 2: Overview of the available data.

Word Embedding
BPE DP-BPE

Kn→ En En→ Kn Kn→ En En→ Kn

MWE 26.5 28.7 26.4 28.7
CLWE 25.1 27.8 27.3 30.0

Table 3: Performance of word embeddings v/s pre-
processing approach. We report the BLEU scores. Best
scores are highlighted in bold for each direction.

4.2 Results on integrating dictionary417

What is the benefit of applying DP-BPE and in-418

tegrating CLWE? We evaluate the proposed pre-419

training approach described to integrate dictionar-420

ies in § 3.2. First, we create monolingual word em-421

beddings (MWE) by joining fasttext embeddings422

for En and Kn and CLWE by mapping the MWE423

into a common space. Then, we pretrain the models424

using MWE/CLWE with standard BPE/DP-BPE425

techniques. Finally, we fine-tune these models on426

all the parallel data available and report the scores427

in Table 3. Comparing these 4 approaches gives us428

insight into the role of CLWE and DP-BPE. In the429

case of "MWE + DP-BPE", we do not have access430

to dictionary words. However, we simply assume431

that there is a dictionary and use that for DP-BPE.432

This tells us if CLWE are necessary. For "CLWE433

+ BPE", the rare words in the dictionary would434

split into multiple tokens. Therefore, we removed435

these entries and ended with 390 word pairs in the436

5https://kaikki.org/dictionary/
Kannada/words.html

dictionary. We mapped the monolingual embed- 437

dings with VecMap using only these entries. We do 438

this experiment to evaluate the importance of rare 439

words. 440

We observe similar scores for monolingual em- 441

beddings with different type of representations. 442

This shows that the gains from applying DP-BPE 443

are not due to better generalization as in the case 444

of applying dropout in BPE. For CLWE, we find 445

decrease in the performance compared to mono- 446

lingual embeddings when using standard BPE. We 447

hypothesize this is because of discarding the infre- 448

quent words when building CLWE. However, we 449

obtain the best scores by combining CLWE with 450

DP-BPE and gain up to 0.8 and 1.3 BLEU in En- 451

glish and Kannada respectively. In this case, we 452

included the rare words in the dictionary when cre- 453

ating our CLWE. This shows that retaining rare 454

words when learning the mapping between embed- 455

dings is helpful in exploiting dictionaries for NMT. 456

Do CLWE improve the ability to predict 457

words in the dictionary? Evaluation metrics like 458

BLEU is not enough to understand the models abil- 459

ity to predict words in the dictionary. We have 460

to also evaluate how many times we predict these 461

words accurately. Therefore, we calculate preci- 462

sion, recall and F1 scores on the dictionary words 463

in the test set. Note that this does not consider 464

the positional information of these words. How- 465

ever, we can judge them together with BLEU. If 466

the model is predicting these words at the wrong 467

positions, then the BLEU scores will be lower. 468

We consider two pretraining model configura- 469

tions: 1) CLWE and DP-BPE (With Dict) 2) MWE 470

with standard BPE (No Dict). Then, we fine-tune 471

these models on different parallel dataset sizes. Fi- 472

nally, we evaluate the models ability to predict 473

English words in the dictionary and report scores 474

in Table 5. 475

We observe that the model’s with CLWE are 476

consistently better at predicting these words with 477

relative increase of F1 score up to 3.1%. By includ- 478

ing rare words in dictionary with help of DP-BPE, 479

we are able to obtain higher performance on these 480

words. Also, the scores in Table 1 show that in- 481

cluding dictionaries with DP-BPE obtain higher 482

BLEU. This indicates the correctness of the pre- 483

dicted positions. However, as we do not explicitly 484

teach the model to predict the dictionary translation 485

(Niehues, 2021), we don’t expect significant gains. 486
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Selection Strategy

Annotation
Budget

Random RTTL (Zeng et al., 2019) n-gram Overlap (Eck et al., 2005) Cross-entropy diff (ours)

No
Init

UNMT
(MWE) Init

UNMT
(CLWE) Init

No
Init

UNMT
(MWE) Init

UNMT
(CLWE) Init

No
Init

UNMT
(MWE) Init

UNMT
(CLWE) Init

No
Init

UNMT
(MWE) Init

UNMT
(CLWE) Init

Kn→ En

5k 7.8 16.9 18.1 - - - - - - - - -
10k 10.4 20.3 21.7 9.9 20.2 21.3 9.2 17.8 19.2 10.6 20.2 22.2*
15k 12.8 22.4 23.1 11.3 22.0 24.1* 10.2 20.2 21.2 12.0 22.1 23.8
20k 13.3 24.3 25.2 13.4 23.9 25.2 12.9 21.9 23.2 13.5 24.4 25.5*

En→ Kn

5k 7.6 18.7 20.3 - - - - - - - - -
10k 11.6 22.5 24.0 11.2 22.4 23.7 10.3 20.3 21.8 12.2 22.5 24.6*
15k 14.5 25.1 26.5 12.9 24.1 26.8* 12.7 23.1 24.4 14.5 25.0 26.5
20k 15.1 26.8 27.8 15.9 26.5 28.4* 15.5 24.9 26.5 16.0 27.0 28.3

Table 4: Evaluation of AL strategies with respect to different types of pretraining modes and annoation budgets.
UNMT (MWE or CLWE) indicates a UNMT model trained using MWE or CLWE while pretraining. We report
BLEU scores and append * for the best model given an annotation budget. We highlight in bold if the score is
higher than random for that pretraining configuration and budget.

Precision
(%)

Recall
(%)

F1
(%)

Dataset
Size

No
Dict

With
Dict

No
Dict

With
Dict

No
Dict

With
Dict

10k 44.6 49.2 48.5 50.0 46.5 49.6
15k 46.4 48.1 51.6 51.3 48.9 49.6
20k 48.9 49.0 51.7 52.5 50.3 50.7

Full (∼30k) 51.0 53.2 51.4 55.1 52.6 54.1

Table 5: Impact of CLWE on the test set for predicting
English words in the dictionary. We report precision,
recall and F1 scores for total 2091 occurrences. Best
scores for each configuration are highlighted in bold.

4.3 Comparision of AL Strategies487

We perform a set of experiments using several AL488

selection strategies with multiple pretraining con-489

figurations. This enables us to assess the role of490

dictionary in AL and advantages of selection strate-491

gies. We consider a batch size of 5k and report the492

scores in Table 4. For the first batch, there is no493

available labelled data. Therefore, we randomly494

select 5k sentences and initialize our model and495

labelled data.496

Without any initialization, we mostly do not497

achieve better scores than random with using RTTL498

or n-gram overlap strategy. Our proposed approach499

Cross-entropy difference is able to beat random500

most of the time but only with slight gains. Also,501

the translation quality is not adequate. For pretrain-502

ing using monolingual embeddings as initialization,503

we only obtain slight gains than random with our504

strategy for a budget of 20k. But, the performance505

of these models has increased significantly with at506

least 10 BLEU. 507

For models using pretraining with our proposed 508

approach as initialization, we are consistently able 509

to exploit AL strategies by only spending small 510

amounts on dictionary. Random sampling with a 511

budget of 10k and pretraining with monolingual 512

embeddings achieves 20.3 BLEU when translat- 513

ing to English. While, "Cross-entropy difference" 514

sampling with the same budget but using a small 515

dictionary increases the models performance by 516

1.9 BLEU. This shows that building CLWE can be 517

highly beneficial. Furthermore, we observe that 518

the impact of CLWE decreases from around 2 to 1 519

BLEU as we increase the parallel data. Therefore, 520

building CLWE has a bigger impact on very-low 521

resource conditions and might not be as impactful 522

with large amounts of parallel data. 523

We can conclude that our proposed "Cross- 524

entropy difference" strategy is highly competitive 525

to RTTL in almost all scenarios while RTTL being 526

better in Kannada. However, the "n-gram overlap" 527

strategy fails throughout all cases and shows that 528

diversity alone is not a sufficient metric. We need 529

to estimate both density and diversity to gain from 530

data-driven methods for low-annotation budgets. 531

4.4 Impact of freezing the embedding layer 532

We proposed to freeze the embedding layer during 533

all stages of training. To understand its role, we 534

evaluate our method with/without freezing at dif- 535

ferent phases using the full dataset. We report the 536

scores in Table 6. We observe that freezing at all 537

stages leads to the best performance. By always 538

providing cross-lingual and forcing the model to 539

learn from the CLWE enables the model to exploit 540

7



Freezing Kn→ En En→ Kn

None 25.9 27.9
MLM 25.0 26.9

↪→ + UNMT 25.6 28.4
↪→ + Supervised NMT 27.3 30.0

Table 6: Analysis on freezing the embedding layer. We
report BLEU scores starting from not freezing the em-
bedding layer at any stage and sequentially consider
freezing until each phase. ↪→ + UNMT indicates freez-
ing the embeddings at both MLM and UNMT. Best
scores are highlighted in bold.

them in these low-resource conditions. Also, freez-541

ing during only MLM is worse than not freezing542

at all. We force the model to use CLWE in the543

pretraining stage and later allow the freedom to544

alter the embedding layer. We believe this hinders545

the ability to transfer learning and therefore does546

not achieve the best results. Moreover, freezing547

prevents erasing the knowledge from the dictio-548

nary and does not allow to drastically change the549

embeddings weights based on limited parallel data.550

5 Related Work551

There are several works on AL in the context of552

MT (Eck et al., 2005; Haffari et al., 2009; Am-553

bati, 2012). These methods operated and evalu-554

ated using phrase-based machine translation sys-555

tems. Zeng et al. (2019) provides a comprehensive556

summary of AL strategies using the current SOTA557

transformer architecture. They propose a novel558

model-driven strategy RTTL and show it outper-559

forms other data-driven methods. However, they560

consider large annotation budgets in their analy-561

sis. We focus on scenarios with small budgets562

and show that the model’s quality is insufficient to563

exploit this strategy. We show pretraining is nec-564

essary to enable model-driven sampling methods565

like RTTL in low budgets. Moreover, we propose566

a data-driven strategy "Cross-entropy difference"567

adapted from (Moore and Lewis, 2010), that is com-568

petitive to RTTL in these challenging low-resource569

conditions.570

Instead of relying on heuristics with selection571

strategies, Liu et al. (2018) uses Deep Imitation572

Learning to learn the best way to sample using573

a high resource language pair. They also con-574

sider a scenario of limited labelling budgets (10k)575

and show their approach’s effectiveness. However,576

these methods are computationally expensive and577

rely on having auxiliary parallel data. 578

Our pretraining approach is similar to and largely 579

inspired from (Chronopoulou et al., 2021). Their 580

work operates only on sub-word level data using 581

identical sub-words as a seed dictionary to build 582

CLWE. They show that these lexically aligned em- 583

beddings are beneficial when training a UNMT 584

system between distant languages. We use this ap- 585

proach to include a dictionary and provide better 586

supervision for the pretrained model. We show how 587

we can further include the rare words using DP- 588

BPE, when learning the mapping between mono- 589

lingual embeddings. 590

6 Conclusion 591

The main goal of the paper was to design a high- 592

quality NMT system with limited annotation costs. 593

To achieve this, we designed a cost-effective train- 594

ing procedure by proposing improvements in mul- 595

tiple avenues. First, we showed the necessity of 596

pretraining with monolingual data. This is useful as 597

the monolingual data does not require any labelling 598

and improves the models significantly. Moreover, 599

it enables us to gain from selection strategies. Sec- 600

ond, we suggested a pretraining procedure by inte- 601

grating a dictionary which can be created cheaply. 602

We proposed DP-BPE to include the rare words in 603

the dictionary while learning the alignment. Fur- 604

ther, we showed the importance of including these 605

rare words from our experiments. Using our ap- 606

proach, we were able to increase the models ability 607

to predict these words. Finally, we presented a 608

novel data-driven strategy "Cross-entropy differ- 609

ence" that is helpful in low-resource scenarios. We 610

empirically showed that sampling using our strat- 611

egy achieves better scores than random consistently 612

and is competitive to the SOTA approach RTTL. 613

Pretraining with auxiliary data of similar high- 614

resource languages can substantially increase the 615

model’s quality. Building such multilingual models 616

can greatly increase the potential of model-driven 617

strategies. Also, designing AL strategies for con- 618

structing a dictionary can even further decrease 619

costs while increasing gains. We leave these direc- 620

tions as future work. 621
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A Appendix 813

A.1 AL Framework 814

Algorithm 1 General AL Algorithm

Require: Parallel Data DP ,
Monolingual Data DM ,
Unlabelled in-domain source data US ,
Batch size B, Selection strategy ψ()
MPRE ← PRETRAIN(DM , empty);
M← SNMT (DP ,MPRE);
while Budget 6= 0 do

for x ∈ US do
f(x) += ψ(x,US ,DP ,M);

end for
XB = Topscoring(f(x),B);
YB = HumanTranslated(XB);
US = US −XB;
DP = DP ∪ (XB, YB);
M← SNMT (DP ,MPRE);

end while
return M,DP

A.2 Pre-processing and Hyperparameters 815

We tokenize the data with Moses (Koehn et al., 816

2007) for English and Indic-NLP-Library6 for Kan- 817

nada. We learn sub-words using BPE (Sennrich 818

et al., 2016b) with 50k merge operations on con- 819

catenating subset of English and Kannada data. We 820

report detokenized BLEU (Papineni et al., 2002) 821

using SacreBLEU7 (Post, 2018). We use the SOTA 822

6https://github.com/anoopkunchukuttan/
indic_nlp_library

7BLEU+case.mixed+numrefs.1+smooth.exp+tok.
spm+version.1.4.12
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Transformer architecture (Vaswani et al., 2017) for823

building NMT models. For pretraining, we use a824

transformer with 6 layers and 8 heads and an em-825

bedding dimension of 1024. While fine-tuning on826

the parallel data, we use label-smoothing of 0.2,827

activation dropout of 0.2 and attention dropout of828

0.2 as we have limited data. The language mod-829

els for the "Cross-entropy difference" strategy use830

the pretrained MLM model as initialization before831

training on the CLM objective. For the models that832

do not use any initialization in Table 4, we use a833

smaller model with 5 layers and 2 heads and an em-834

bedding dimesion of 512. We use the same value835

for the regularization parameters as mentioned in836

the pretraining architecture. Furthermore, the CLM837

for the "Cross-entropy difference" strategy use a838

transformer with 3 layers and 2 heads as there is no839

pretrained model. We use the XLM8 code base to840

perform our experiments and set the other parame-841

ters to default.842

8https://github.com/facebookresearch/
XLM
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