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Abstract

We present the first gap-dependent analysis of
regret and communication cost for online feder-
ated Q-Learning in tabular episodic finite-horizon
Markov decision processes (MDPs). Existing fed-
erated reinforcement learning (FRL) methods fo-
cus on worst-case scenarios, leading to

√
T -type

regret bounds and communication cost bounds
with a log T term scaling with the number of
agents M , states S, and actions A, where T is
the average total number of steps per agent. In
contrast, our novel framework leverages the be-
nign structures of MDPs, such as a strictly pos-
itive suboptimality gap, to achieve a log T -type
regret bound and a refined communication cost
bound that disentangles exploration and exploita-
tion. Our gap-dependent regret bound reveals a
distinct multi-agent speedup pattern, and our gap-
dependent communication cost bound removes
the dependence on MSA from the log T term.
Notably, our gap-dependent communication cost
bound also yields a better global switching cost
when M = 1, removing SA from the log T term.

1. Introduction
Federated reinforcement learning (FRL) is a distributed
learning framework that combines the principles of rein-
forcement learning (RL) (Sutton & Barto, 2018) and fed-
erated learning (FL) (McMahan et al., 2017). Focusing on
sequential decision-making, FRL aims to learn an optimal
policy through parallel explorations by multiple agents un-
der the coordination of a central server. Often modeled as
a Markov decision process (MDP), multiple agents inde-
pendently interact with an initially unknown environment
and collaboratively train their decision-making models with
limited information exchange between the agents. This
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approach accelerates the learning process with low commu-
nication costs. In this paper, we focus on the online FRL
tailored for episodic tabular MDPs with inhomogeneous
transition kernels. Specifically, we assume the presence of a
central server and M local agents in the system. Each agent
interacts independently with an episodic MDP consisting of
S states, A actions, and H steps per episode.

Multiple recent works studied the online FRL for tabu-
lar MDPs. Zheng et al. (2024) proposed model-free al-
gorithms FedQ-Hoeffding and FedQ-Bernstein that show
the regret bounds Õ(

√
MH4SAT ) and Õ(

√
MH3SAT )

respectively under O(MH3SA log T ) rounds of commu-
nications. Here, T is the average total number of steps
for each agent, and Õ hides logarithmic factors. Zheng
et al. (2025a) proposed FedQ-Advantage that improved
the regret to Õ(

√
MH2SAT ) under a reduced com-

munication rounds of O(fMH2SA(logH) log T ) where
fM ∈ {1,M} reflects the optional forced synchroniza-
tion scheme. Chen et al. (2022) and Labbi et al. (2024)
proposed model-based algorithms that extend the single-
agent algorithm UCBVI (Azar et al., 2017). Byzan-UCBVI
(Chen et al., 2022) reaches regret Õ(

√
MH3S2AT ) under

O(MHSA log T ) rounds of communications. Fed-UCBVI
(Labbi et al., 2024) reaches the regret Õ(

√
MH2SAT ) un-

der O(HSA log T +MHSA log log T ) rounds of commu-
nications. Here, model-based methods require estimating
the transition kernel so that their memory requirements scale
quadratically with the number of states S. Model-free meth-
ods, which are also called Q-Learning methods (Watkins,
1989), directly learn the action-value function, and their
memory requirements only scale linearly with S. The re-
gret Õ(

√
MH2SAT ) reached by both FedQ-Advantage

and Fed-UCBVI is almost optimal compared to the regret
lower bound Õ(

√
MH2SAT ) (Jin et al., 2018; Domingues

et al., 2021). In summary, all the works above provided
worst-case guarantees for all possible MDPs and proved√
T -type regret bounds and communication cost bounds

that linearly depend on MSA log T or SA log T . The re-
sults of these works are also summarized in Table 1.

In practice, RL algorithms often perform better than their
worst-case guarantees, as they can be significantly improved
under MDPs with benign structures (Zanette & Brunskill,
2019). This motivates the problem-dependent analysis ex-
ploiting benign MDPs (Wagenmaker et al., 2022a; Zhou
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Table 1. Comparison of online FRL algorithms

Algorithm Gap-dependent Regret Number of rounds

Byzan-UCBVI (Chen et al., 2022) × Õ(
√
MH3S2AT ) O(MHSA log T )

FedQ-Hoeffding (Zheng et al., 2024) × Õ(
√
MH4SAT ) O(MH3SA log T )

FedQ-Bernstein (Zheng et al., 2024) × Õ(
√
MH3SAT ) O(MH3SA log T )

FedQ-Advantage (Zheng et al., 2025a) × Õ(
√
MH2SAT ) O(fMH2SA(logH) log T )

Fed-UCBVI (Labbi et al., 2024) × Õ(
√
MH2SAT ) O∗(HSA log T )

Our work ✓ O∗
(

H6SA log(MSAT )
∆min

)
O∗(H2 log T )

In this table, Õ hides logarithmic factors and O∗ hides logarithmic lower-order terms, such as log log T and
√
log T , as well as constants.

Parameter fM ∈ {1,M} indicates the optional forced synchronization scheme.

et al., 2023; Zhang et al., 2024b). One of the benign struc-
tures is based on the dependency on the positive subop-
timality gap: for every state, the best actions outperform
others by a margin. It is important because nearly all non-
degenerate environments with finite action sets satisfy some
sub-optimality gap conditions (Yang et al., 2021). For single-
agent algorithms, Simchowitz & Jamieson (2019); Dann
et al. (2021) analyzed gap-dependent regret for model-based
methods, and Yang et al. (2021); Xu et al. (2021); Zheng
et al. (2025b) analyzed model-free methods. Here, Yang
et al. (2021) focused on UCB-Hoeffding proposed by Jin
et al. (2018), while Xu et al. (2021) proposed an algorithm
that did not use upper confidence bounds (UCB). Zheng
et al. (2025b) analyzed UCB-Advantage (Zhang et al., 2020)
and Q-EarlySettled-Advantage (Li et al., 2021), which used
variance reduction techniques. All of these works reached
regrets that logarithmically depend on T , which is much
better than the worst-case

√
T -type regrets. However, no

literature works on the gap-dependent regret for online FRL.
This motivates the following open question:

Is it possible to establish gap-dependent regret bounds for
online FRL algorithms that are logarithmic in T?

Meanwhile, recent works have proposed FRL algorithms for
tabular episodic MDPs in various settings, such as the offline
setting (Woo et al., 2024) and scenarios where a simulator
is available (Woo et al., 2023; Salgia & Chi, 2024). Differ-
ent from the online methods, state-of-the-art algorithms for
these settings do not update the implemented behavior poli-
cies (exploration) and reach MSA-free logarithmic bounds
on communication rounds, whereas the worst-case com-
munication cost bounds for online FRL methods require
the dependence on M , S, and A in the log T term (e.g.,
O(MH3SA log T ) in Zheng et al. (2024)). While increased
communication for exploration is reasonable, existing on-
line FRL methods cannot quantify the communication cost
paid for exploring non-optimal actions or exploiting optimal
policies under the worst-case MDPs since the suboptimality

gaps can be arbitrarily close to 0 (see Section 5.1 for more
explanations). This leads to the dependence on M , S, and
A for the log T term, which motivates the following open
question:

Is it possible to establish gap-dependent communication
cost upper bounds for online FRL algorithms that

disentangle exploration and exploitation and remove the
dependence on MSA from the log T term?

A closely related evaluation criterion for online RL is the
global switching cost, which is defined as the times for
policy switching. It is important in applications with restric-
tions on policy switching, such as compiler optimization
(Ashouri et al., 2018), hardware placements (Mirhoseini
et al., 2017), database optimization (Krishnan et al., 2018),
and material discovery (Nguyen et al., 2019). Next, we
review related literature on single-agent model-free RL al-
gorithms. Under the worst-case MDPs, Bai et al. (2019)
modified the algorithms in Jin et al. (2018), achieving a
switching cost of O(H3SA log T ), and UCB-Advantage
(Zhang et al., 2020) reached an improved switching cost
of O(H2SA log T ), with both algorithms depending on
SA log T . In gap-dependent analysis, Zheng et al. (2025b)
proved that UCB-Advantage enjoyed a switching cost that
linearly depends on S log T . Whether single-agent model-
free RL algorithms can avoid the dependence on SA for the
log T term remains an open question.

In addition, multiple technical challenges exist when trying
to establish gap-dependent bounds and improve the exist-
ing worst-case ones. First, gap-dependent regret analysis
often relies on controlling the error in the value function es-
timations. However, the techniques for model-free methods
(Yang et al., 2021; Xu et al., 2021; Zheng et al., 2025b) can
only adapt to instant policy updates in single-agent methods,
while FRL often uses delayed policy updates for a low com-
munication cost. Second, proving low communication costs
for FRL algorithms often requires actively estimating the
number of visits to each state-action-step triple (see, e.g.,
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Woo et al. (2023)). However, this is challenging for on-
line algorithms because the implemented policy is actively
updated, and a universal stationary visiting probability is
unavailable. Existing online FRL methods reached loga-
rithmic communication costs by controlling the visit and
synchronization with the event-triggered synchronization
conditions. These conditions guaranteed a sufficient in-
crease in the number of visits to one state-action-step triple
between synchronizations. However, this analysis is insuffi-
cient for the estimation of visiting numbers and results in
the dependence on SA for the log T term.

Summary of Our Contributions. We give an affirmative
answer to these important open questions by proving the first
gap-dependent bounds on both regret and communication
cost for online FRL in the literature. We focus on FedQ-
Hoeffding (Zheng et al., 2024), an online FRL algorithm
designed for tabular episodic finite-horizon MDPs. Our
contributions are summarized as follows.

Gap-Dependent Regret (Theorem 3.1). Denote ∆min as
the minimum nonzero suboptimality gap for all the state-
action-step triples. We prove that FedQ-Hoeffding guaran-
tees a gap-dependent expected regret of

O

(
H6SA log(MSAT )

∆min
+ Cf

)
(1)

where Cf = M
√
H7SA

√
log(MSAT ) + MH5SA pro-

vides the gap-free part. This bound is logarithmic in T and
better than the worst-case

√
T -type regret discussed above

when T is large enough. When M = 1, (1) reduces to the
single-agent gap-dependent regret upper bound established
in Yang et al. (2021) for UCB-Hoeffding (Jin et al., 2018),
which is the single-agent counterpart of FedQ-Hoeffding.
When T is large enough and ∆min is small enough, (1)
shows a better multi-agent speedup in terms of the average
regret per episode, compared to the

√
T -type worst-case

regrets shown in Zheng et al. (2024). We will present the
theoretical details in Section 3.2 and Section 4. Our nu-
merical experiments in Appendix B.1 also demonstrate the
log T -pattern of the regret for any given MDP.

Gap-Dependent Communication Cost (Theorem 3.3).
We prove that under some general uniqueness of optimal
policies, for any p ∈ (0, 1), with probability at least 1− p,
both the number of communication rounds and the num-
ber of different implemented policies required by FedQ-
Hoeffding are upper bounded by

O

(
MH3SA log(MH2ι0) +H3SA log

(
H5SA

∆2
min

)
+H3S log

(
MH9SAι0
∆2

minCst

)
+H2 log

( T

HSA

))
. (2)

Here, Cst ∈ (0, 1] represents the minimum of the nonzero
visiting probabilities to all state-step pairs under optimal

policies, and ι0 = log(MSAT/p). Since the communica-
tion cost of each round is O(MHS), the total communica-
tion cost is (2) multiplied by MHS.

Compared to the existing worst-case communication rounds
that depend on MSA log T (Zheng et al., 2024; 2025a; Qiao
et al., 2022) or SA log T (Zheng et al., 2025a; Labbi et al.,
2024), the first three terms in (2) only logarithmically de-
pend on 1/∆min and log T , and the last term removes the
dependence on MSA from the log T term. This improve-
ment is significant since M represents the number of col-
laborating agents, and SA represents the complexity of the
state-action space that is often the bottleneck of RL methods
(Jin et al., 2018). Compared to the SA-free communication
rounds for FRL methods that do not update policies, (2)
quantifies the cost of multiple components in online FRL:
the first two terms represent the cost for exploration, and the
last two terms show the cost of implementing the optimal
policy (exploitation). Further technical details are provided
in Section 3.3 and Section 5. Our numerical experiments,
presented in Appendix B.2, demonstrate that the log T term
in the communication cost is independent of M , S, and A.

When M = 1, FedQ-Hoeffding becomes a single-agent al-
gorithm with low global switching cost shown in (2) (Corol-
lary 3.4). It removes the dependence on SA from the log T
term compared to existing model-free methods (Bai et al.,
2019; Zhang et al., 2020; Zheng et al., 2025b).

Technical Novelty and Contributions. We develop a new
theoretical framework for the gap-dependent analysis of on-
line FRL with delayed policy updates. It provides two fea-
tures simultaneously: controlling the error in the estimated
value functions (Lemma 4.1) and estimating the number of
visits (Lemma 5.2). The first feature helps prove the gap-
dependent regret (1), and the second is key to proving the
bound (2) for communication rounds. Here, to overcome the
difficulty of estimating visiting numbers, we develop a new
technical tool: concentrations on visiting numbers under
varying policies. We establish concentration inequalities
for visits with the stationary visiting probability of the opti-
mal policies via error recursion on episode steps. This step
relies on the logarithmic number of visits with suboptimal
actions instead of the algorithm settling on the same policy.
It provides better estimations of visiting numbers.

We also establish the following techniques with the tool and
nonzero minimum suboptimality gap: (a) Lemma 5.1: Ex-
ploring visiting discrepancies between optimal actions and
suboptimal actions. This validates the concentrations above.
(b) Lemma 5.3: Showing agent-wise simultaneous sufficient
increase of visits. This helps remove the linear dependency
on M in the last three terms of (2). (c) Lemma 5.4: Show-
ing state-wise simultaneous sufficient increase of visits for
states with unique optimal actions. This helps remove the
linear dependence on SA from the last term in (2).
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To the best of our knowledge, these techniques are new to
the literature for online model-free FRL methods. They
will be of independent interest in the gap-dependent analy-
sis of other online RL and FRL methods in controlling or
estimating the number of visits.

2. Background and Problem Formulation
2.1. Preliminaries

We begin by introducing the mathematical framework of
Markov decision processes. In this paper, we assume that
0/0 = 0. For any C ∈ N, we use [C] to denote the set
{1, 2, . . . C}. We use I[x] to denote the indicator function,
which equals 1 when the event x is true and 0 otherwise.

Tabular Episodic Markov Decision Process (MDP). A
tabular episodic MDP is denoted asM := (S,A, H,P, r),
where S is the set of states with |S| = S,A is the set
of actions with |A| = A, H is the number of steps in each
episode, P := {Ph}Hh=1 is the transition kernel so that Ph(· |
s, a) characterizes the distribution over the next state given
the state action pair (s, a) at step h, and r := {rh}Hh=1 is the
collection of reward functions. We assume that rh(s, a) ∈
[0, 1] is a deterministic function of (s, a), while the results
can be easily extended to the case when rh is random.

In each episode, an initial state s1 is selected arbitrarily by
an adversary. Then, at each step h ∈ [H], an agent observes
a state sh ∈ S , picks an action ah ∈ A, receives the reward
rh = rh(sh, ah) and then transits to the next state sh+1.
The episode ends when an absorbing state sH+1 is reached.

Policies and Value functions. A policy π is a collection of
H functions

{
πh : S → ∆A}

h∈[H]
, where ∆A is the set of

probability distributions over A. A policy is deterministic if
for any s ∈ S, πh(s) concentrates all the probability mass
on an action a ∈ A. In this case, we denote πh(s) = a. Let
V π
h : S → R and Qπ

h : S × A → R denote the state value
function and the state-action value function at step h under
policy π. Mathematically, for any (s, a, h) ∈ S ×A× [H],

V π
h (s) :=

H∑
t=h

E(st,at)∼(P,π) [rt(st, at) | sh = s]

and

Qπ
h(s, a) := rh(s, a)+

H∑
t=h+1

E(st,at)∼(P,π) [rt(st, at) | (sh, ah) = (s, a)] .

Since the state and action spaces and the horizon are all fi-
nite, there exists an optimal policy π⋆ that achieves the
optimal value V ⋆

h (s) = supπ V
π
h (s) = V π∗

h (s) for all
(s, h) ∈ S × [H] (Azar et al., 2017). The Bellman equation

and the Bellman optimality equation can be expressed as V π
h (s) = Ea′∼πh(s)[Q

π
h(s, a

′)]
Qπ

h(s, a) := rh(s, a) + Es′∼Ph(·|s,a)V
π
h+1(s

′)
V π
H+1(s) = 0,∀(s, a, h) ∈ S ×A× [H], V ⋆
h (s) = maxa′∈A Q⋆

h(s, a
′)

Q⋆
h(s, a) := rh(s, a) + Es′∼Ph(·|s,a)V

∗
h+1(s

′)
V ⋆
H+1(s) = 0,∀(s, a, h) ∈ S ×A× [H].

(3)

Suboptimality Gap. For any given MDP, we can provide
the following formal definition of the suboptimality gap.

Definition 2.1. For any (s, a, h) ∈ S × A× [H], the sub-
optimality gap is defined as

∆h(s, a) := V ⋆
h (s)−Q⋆

h(s, a).

(3) implies that for any (s, a, h), ∆h(s, a) ≥ 0. Then, it is
natural to define the minimum gap, which is the minimum
non-zero suboptimality gap.

Definition 2.2. We define the minimum gap as

∆min := inf {∆h(s, a) | ∆h(s, a) > 0, ∀(s, a, h)} .

We remark that if

{∆h(s, a) | ∆h(s, a) > 0, (s, a, h) ∈ S ×A× [H]} = ∅,

then all policies are optimal, leading to a degenerate MDP.
Therefore, we assume that the set is nonempty and ∆min > 0
in the rest of this paper. Definitions 2.1 and 2.2 and the non-
degeneration are standard in the literature of gap-dependent
analysis (Simchowitz & Jamieson, 2019; Yang et al., 2021;
Xu et al., 2020).

Global Switching Cost. We provide the following defini-
tion for any algorithm with U > 1 episodes, which is also
used in Bai et al. (2019) and Qiao et al. (2022).

Definition 2.3. The global switching cost for any learning
algorithm with U episodes is defined as

Nswitch :=

U−1∑
u=1

I[πu+1 ̸= πu].

Here, πu is the policy implemented in the u-th episode.

2.2. The Federated RL Framework

We consider an FRL setting with a central server and M
agents, each interacting with an independent copy of M.
The agents communicate with the server periodically: after
receiving local information, the central server aggregates it
and broadcasts certain information to the agents to coordi-
nate their exploration.

For agent m, let Um be the number of generated episodes,
πm,u be the policy in the u-th episode of agent m, and xm,u

1
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be the corresponding initial state. The regret of M agents
over T̂ = H

∑M
m=1 Um total steps is

Regret(T ) =
∑

m∈[M ]

Um∑
u=1

(
V ⋆
1 (s

m,u
1 )− V πm,u

1 (sm,u
1 )

)
.

Here, T := T̂ /M is the average total steps for M agents.

We also define the communication cost of an algorithm as
the number of scalars (integers or real numbers) communi-
cated between the server and agents.

3. Performance Guarantees
3.1. FedQ-Hoeffding Algorithm

In this subsection, we briefly review FedQ-Hoeffding. De-
tails are provided in Algorithm 1 and Algorithm 2 in Ap-
pendix C.1. FedQ-Hoeffding proceeds in rounds, indexed
by k ∈ [K]. Round k consists of nm,k episodes for agent m,
where the specific value of nm,k will be determined later.

Notations. For the j-th (j ∈ [nm,k]) episode for agent m
in the k-th round, we use {(sk,j,mh , ak,j,mh , rk,j,mh )}Hh=1 to
denote the corresponding trajectory. Denote nm,k

h (s, a) as
the number of times that (s, a, h) has been visited by agent
m in round k, nk

h(s, a) :=
∑M

m=1 n
m,k
h (s, a) as the total

number of visits in round k for all agents, and Nk
h (s, a)

as the total number of visits to (s, a, h) among all agents
before the start of round k. We also use {V k

h : S → R}Hh=1

and {Qk
h : S ×A → R}Hh=1 to denote the global estimates

of the state value function and state-action value function
at the beginning of round k. Before the first round, both
estimates are initialized as H .

Coordinated Exploration. At the beginning of round k,
the server decides a deterministic policy πk = {πk

h}Hh=1,
and then broadcasts it along with {Nk

h (s, π
k
h(s))}s,h and

{V k
h (s)}s,h to agents. Here, π1 can be chosen arbitrarily.

Then, the agents execute πk and start collecting trajectories.
During the exploration in round k, every agent m will moni-
tor its number of visits to each (s, a, h). For any agent m, at
the end of each episode, if any (s, a, h) has been visited by

ckh(s, a) = max

{
1,

⌊
Nk

h (s, a)

MH(H + 1)

⌋}
(4)

times by agent m, the agent will send a signal to the server,
which will then abort all agents’ exploration. Here, we say
that (s, a, h) satisfies the trigger condition in round k.
During the exploration, for all (s, a, h), agent m adaptively
calculates nm,k

h (s, a) and the local estimate for the next-step
return vm,k

h+1(s, a) by

nm,k∑
j=1

V k
h+1

(
sk,j,mh+1

)
I
[
(sk,j,mh , ak,j,mh ) = (s, a)

]
.

At the end of round k, each agent sends{
rh
(
s, πk

h(s)
)
, nm,k

h

(
s, πk

h(s)
)
, vm,k

h+1

(
s, πk

h(s)
)}

s,h

to the central server for aggregation.

Updates of Estimated Value Functions. The central server
calculates nk

h(s, a), N
k+1
h (s, a) for all triples. While letting

Qk+1
h (s, a) = Qk

h(s, a) for triples such that nk
h(s, a) = 0,

it updates the estimated value functions for each triple with
positive nk

h(s, a) as follows.

Case 1: Nk
h (s, a) < 2MH(H+1) =: i0. This case implies

that each client can visit each (s, a) pair at step h at most
once. Let Q = Qk

h(s, a). Then the server iteratively update
Q using the following assignment:

Q
+← ηt

(
rh + V k,t

h+1 + bt −Q
)
, t = Nk

h + 1, . . . , Nk+1
h

and then assign Qk+1
h (s, a) with Q. Here, rh, Nk

h , N
k+1
h

are abbreviations for their respective values at (s, a), ηt ∈
(0, 1] is the learning rate, bt > 0 is a bonus, and V k,t

h+1 repre-
sents the (t−Nk

h )-th nonzero value in {vm,k
h+1(s, a)}Mm=1.

Case 2: Nk
h (s, a) ≥ i0. In this case, the central server calcu-

lates the global estimate of the expected return vkh+1(s, a) =∑M
m=1 v

m,k
h+1(s, a)/n

k
h(s, a) and updates the Q-estimate as

Qk+1
h =

(
1− ηh,ks,a

)
Qk

h + ηh,ks,a

(
rh + vkh+1

)
+ βk

s,a,h.

Here, rh, Qk
h, Q

k+1
h , vkh+1 are abbreviations for their respec-

tive values at (s, a), ηh,ks,a ∈ (0, 1] is the learning rate and
βk
s,a,h > 0 represents the bonus.

After updating the estimated Q-function, the central server
updates the estimated V -function and the policy as

V k+1
h (s) = min

{
H,max

a′∈A
Qk+1

h (s, a′)
}

and
πk+1
h (s) = argmax

a′∈A
Qk+1

h (s, a′).

Such update implies that FedQ-Hoeffding is an optimism-
based method. It then proceeds to round k + 1.

In FedQ-Hoeffding, agents only send local estimates instead
of original trajectories to the central server. This guaran-
tees a low communication cost for each round, which is
O(MHS). In addition, the event-triggered termination con-
dition with the threshold (4) limits the number of new visits
in each round, with which Zheng et al. (2024) proved the
linear regret speedup under worst-case MDPs. Moreover,
it guarantees that the number of visits to the triple that sat-
isfies the trigger condition sufficiently increases after this
round. This is the key to proving the worst-case logarithmic
communication cost in Zheng et al. (2024).
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3.2. Gap-Dependent Regret

Next, we provide a new gap-dependent regret upper bound
for FedQ-Hoeffding algorithm.
Theorem 3.1. Let ι1 = log(MSAT ). For FedQ-Hoeffding
(Algorithms 1 and 2), E (Regret(T )) can be bounded by

O

(
H6SAι1
∆min

+M
√
H7SA

√
ι1 +MH5SA

)
. (5)

The proof is provided in Appendix F. Theorem 3.1 shows
that the regret is logarithmic in T for MDPs with positive
minimum gap ∆min. When T is sufficiently large, it is better
than the

√
T -type worst-case regrets in the literature.

When M = 1, the bound reduces to

O

(
H6SA log(SAT )

∆min

)
,

which matches the result in Yang et al. (2021) for the single-
agent counterpart, UCB-Hoeffding algorithm. Therefore,
when T is sufficiently large, for the average regret per
episode defined as Regret(T )/(MT ), the ratio between
FedQ-Hoeffding and UCB-Hoeffding is Õ(1/M), which
serves as our error reduction rate. As a comparison, it is
better than the rates under worst-case MDPs for online FRL
methods in the literature, which are Õ(1/

√
M) because of

their linear dependency on
√
MT . We will also demon-

strate this Õ(1/M) pattern in the numerical experiments in
Appendix B.1.

3.3. Gap-Dependent Communication Cost

We first introduce two additional assumptions:

(I) Full synchronization. Similar to Zheng et al. (2024), we
assume that there is no latency during the communications,
and the agents and server are fully synchronized (McMahan
et al., 2017). This means nm,k = nk for each agent m.
(II) Random initialization. We assume that the initial states
{sk,j,m1 }k,j,m are randomly generated following some dis-
tribution on S, and the generation is not affected by any
result in the learning process.

Next, we introduce a new concept: G-MDPs.
Definition 3.2. A G-MDP satisfies two conditions:

(a) The stationary visiting probabilities under optimal poli-
cies are unique: if both π∗,1 and π∗,2 are optimal policies,
then we have P

(
sh = s|π∗,1) = P

(
sh = s|π∗,2) =: P∗

s,h.

(b) Let A∗
h(s) = {a | a = argmaxa′ Q∗

h(s, a
′)}. For any

(s, h) ∈ S × [H], if P∗
s,h > 0, then |A∗

h(s)| = 1, which
means that the optimal action is unique.

G-MDPs represent MDPs with generally unique optimal
policies. (a) and (b) above characterize the general unique-
ness, and an MDP with a unique optimal policy is a G-MDP.

Compared to requiring a unique optimal policy, G-MDPs
allow the optimal actions to vary outside the support under
optimal policies, i.e., the state-step pairs with P∗

s,h = 0.

For a G-MDP, we define Cst = min{P∗
s,h | s ∈ S, h ∈

[H],P∗
s,h > 0}. Thus, 0 < Cst ≤ 1 reflects the minimum

visiting probability on the support of optimal policies. Next,
we provide gap-dependent upper bound for the number com-
munication rounds and communication costs.

Theorem 3.3. For any p ∈ (0, 1), define ι0 = log(MSAT
p ).

Then under the full synchronization and random initializa-
tion assumptions, with probability at least 1 − p, FedQ-
Hoeffding (Algorithm 1 and Algorithm 2) satisfies the fol-
lowing relationship for any given G-MDP:

K ≤ O

(
MH3SA log(MH2ι0) +H3SA log

(
H5SA

∆2
min

)
+H3S log

(
MH9SAι0
∆2

minCst

)
+H2 log

( T

HSA

))
. (6)

We can get the upper bound of total communication cost by
multiplying the upper bound in (6) and O(MHS), the com-
munication cost of each round in FedQ-Hoeffding. We will
highlight the key technical tools for proving Theorem 3.3
in Section 5.1, provide a sketch of proof in Section 5.2, and
give a complete proof in Appendix G.

Compared to existing worst-case costs that depend on SA
(Zheng et al., 2025a; Labbi et al., 2024) or MSA (Zheng
et al., 2024; 2025a; Qiao et al., 2022) for log T , (6) is better
when T is sufficiently large since the first three terms only
logarithmically depend on 1/∆min and log T , and the last
term that is logarithmic in T removes the dependency on
MSA. Moreover, (6) highlights the cost for different proce-
dures in FedQ-Hoeffding: the first two terms represent the
cost for exploration, and the last two terms show the cost
when exploiting the optimal policies. We will provide more
theoretical explanations in Section 5. Our numerical experi-
ments in Appendix B.2 also demonstrate that the log T term
in the communication cost is independent of M , S, and A.

Since FedQ-Hoeffding implements a fixed policy in each
round, when M = 1, the algorithm reduces to a single-agent
algorithm with a low global switching cost. The result is
formally shown in Corollary 3.4.

Corollary 3.4. For any p ∈ (0, 1), define ι2 = log(SAT
p ).

Then under the random initialization assumption, for any
given G-MDP, with probability at least 1 − p, the global
switching cost for FedQ-Hoeffding algorithm (Algorithm 1
and Algorithm 2 with M = 1) can be bounded by

O

(
H3SA log

(
H5SAι2
∆2

min

)
+H3S log

(
1

Cst

)
+H2 log

( T

HSA

))
.

6



Gap-Dependent Bounds for Federated Q-Learning

Given that the switching costs of existing single-agent
model-free algorithms depend on SA (Bai et al., 2019;
Zhang et al., 2020) or S (Zheng et al., 2025b) for log T 1,
our log T -dependency is better by removing the factor SA.

At the end of this section, we briefly discuss FedQ-Bernstein,
another online FRL algorithm in Zheng et al. (2024). Com-
pared to FedQ-Hoeffding, FedQ-Bernstein uses different
bonuses (bt and βk

s,a,h) that incorporate variance estimators.
Although FedQ-Bernstein achieves a

√
H factor improve-

ment in worst-case regret while maintaining identical worst-
case communication costs (Zheng et al., 2024), our analysis
in Appendix F and Appendix G shows both algorithms share
the same gap-dependent bounds ((5), (6)). Whether FedQ-
Bernstein can achieve tighter gap-dependent regret bounds
remains an open question.

4. Bounding the Regret with (5)

In this section, we bound the gap-dependent regret by con-
trolling the error in value function estimations. Define
clip[x | y] := x · I[x ≥ y]. Let ι = log( 2SAHT1

δ ) where
δ ∈ (0, 1) and T1 ≤ 2T̂ + MHSA is an known upper
bound of the total steps T̂ as defined in (e) of Lemma E.1.
We provide Lemma 4.1 to control the total error in the value
function estimations (Qk

h −Q∗
h)(s, a).

Lemma 4.1. For FedQ-Hoeffding (Algorithm 1 and Algo-
rithm 2), for any δ ∈ (0, 1), with probability at least 1− δ,
the following two conclusions hold for any ϵ ∈ (0, H]:

H∑
h=1

∑
k,j,m

I
[
(Qk

h −Q∗
h)(s

k,j,m
h , ak,j,mh ) ≥ ϵ

]
≤ Cϵ. (7)

H∑
h=1

∑
k,j,m

clip
[
(Qk

h −Q∗
h)(s

k,j,m
h , ak,j,mh ) | ϵ

]
≤ ϵCϵ. (8)

Here

Cϵ = c0

(
H6SAι

ϵ2
+

MH5SA+M
√
H7SA

√
ι

ϵ

)
,

where c0 > 0 is a sufficiently large constant.

The proof of Lemma 4.1 is in Appendix F.2. Both bounds
depend on log T when ϵ is fixed. Compared to the methods
for single-agents algorithms (see, e.g., Yang et al. (2021)),
Lemma 4.1 also accommodates the delayed policy updates,
and its dependency on M reflects the cost of collaborating
multiple agents. We will let ϵ = ∆min later.

1In the literature, these bounds are for local switching cost that
counts the state-step pairs where the policy switches. The local
switching cost is greater than or equal to the global switching cost,
but these works didn’t find tighter bounds for the global switching
cost. We refer readers to Bai et al. (2019) for more information.

Next, Lemma 4.2 characterizes the relationship between the
expected regret and the total error (Qk

h −Q∗
h)(s, a).

Lemma 4.2. For FedQ-Hoeffding (Algorithm 1 and Algo-
rithm 2), the expected regret E(Regret(T )) is bounded by

E

[
H∑

h=1

∑
k,j,m

clip[(Qk
h −Q∗

h)(s
k,j,m
h , ak,j,mh ) | ∆min]

]
.

The proof of Lemma 4.2 is provided in Appendix F.3. By
combining Equation (8) in Lemma 4.1 and Lemma 4.2
and using the definition of expectation, we can bound the
expected regret and finish the proof of Theorem 3.1. Further
details can be found in Appendix F.4.

5. Bounding the Communication Cost with (6)

5.1. Bounding the Number of Visits

In this subsection, we introduce the new technical tool for
estimating visiting numbers. We first provide Lemma 5.1
that quantifies the frequency and the probability of imple-
menting non-optimal actions.

Lemma 5.1. For any δ ∈ (0, 1) and any given deterministic
optimal policy π∗, with probability at least 1− 3δ, we have

H∑
h=1

∑
k,j,m

I
[
ak,j,mh /∈ A∗

h(s
k,j,m
h )

]
≤ Cmin (9)

∑
k,j,m

P
(
ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
≤ 4Cmin,∀h ∈ [H].

(10)
Here Cmin equals Cϵ in Lemma 4.1 with ϵ = ∆min.

For each ak,j,mh /∈ A∗
h(s

k,j,m
h ), the optimism of FedQ-

Hoeffding ensures that(
Qk

h −Q∗
h

) (
sk,j,mh , ak,j,mh

)
≥ ∆min

with high probability. Therefore, by taking ϵ = ∆min in (7),
we can bound

I
[
ak,j,mh /∈ A∗

h(s
k,j,m
h )

]
in (9) and its conditional expectation in (10). See Ap-
pendix G.2 for details of the proof.

Since Cmin scales logarithmically with T , (9) shows that the
frequency of non-optimal action selections becomes negli-
gible compared to T asymptotically. This means that most
states in the learning process are generated under optimal
actions and reveals the visiting discrepancy between optimal
and non-optimal actions in the gap-dependent analysis.

Such discrepancy helps us quantify the communication cost
paid for exploring non-optimal actions. The threshold of

7
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the synchronization condition (4) implies that the number
of visits to the triple (s, a, h) that satisfies the trigger condi-
tion increases by at least 1/(2MH(H + 1)) times. Conse-
quently, the logarithmic upper bound for non-optimal visits,
as provided in (9), implies a log log(T )-type communica-
tion cost for exploration, which is reflected in the first two
terms of (6). These two terms depend on SA because FedQ-
Hoeffding only ensures a sufficient increase in the number
of visits for one triple in a round. We remove the depen-
dency on M from the second term by proving agent-wise
simultaneous sufficient increase of visits (Lemma 5.3), lever-
aging the stationary visiting probability under their common
policy in a round.

Next, we bound the number of visits to the optimal visits.
For any k′ ∈ [K], let Rk′ =

∑k′

k=1

∑
j,m 1 be the number

of episodes in the first k′ rounds. Lemma 5.2 quantifies the
difference between the number of visits to any (s, a, h) with
a ∈ A∗

h(s) in the first k′ rounds and the expected number
of visits Rk′P∗

s,h under the optimal policy.
Lemma 5.2. For any δ ∈ (0, 1), with probability at least
1− 5δ, the following conclusion holds simultaneously for
any (s, h, k′) ∈ S × [H]× [K]:∣∣∣∣∣

k′∑
k=1

∑
j,m

I
[
sk,j,mh = s, ak,j,mh ∈ A∗

h(s)
]
−Rk′P∗

s,h

∣∣∣∣∣
≤ 5
√
Rk′P∗

s,hι+ 32HCmin.

Lemma 5.2 establishes that the average number of visits
to (s, a, h) with a ∈ A∗

h(s) per episode will converge to
the stationary visiting probability P∗

s,h under the optimal
policies. Furthermore, it implies that for any (s, a, h, k)
such that P⋆

s,h > 0 and a = π∗
h(s),

Nk+1
h (s, a) ∈

[
RkP∗

s,h − 5
√

RkP∗
s,hι− 32HCmin,

RkP∗
s,h + 5

√
RkP∗

s,hι+ 32HCmin

]
.

Therefore, when Nk
h (s, a) is sufficiently large (ensuring

that both Rk−1P∗
s,h and RkP∗

s,h are sufficiently large), the
ratio Nk+1

h (s, a)/Nk
h (s, a) approximates Rk/Rk−1. Since

Rk/Rk−1 is independent of (s, a, h), the number of visits
to each optimal (s, a, h) (P∗

s,h > 0 and a is the optimal
action) increases at similar speed. This explains why the
communication cost for exploiting the unique optimal action
after sufficient visits (the last term of (6)) does not depend
on the factor SA. The dependence on M is also removed
due to the agent-wise simultaneous sufficient increase. Ad-
ditionally, we remark that the third term of (6) accounts for
cost with insufficient visit counts.

Finally, we provide the intuition for the proof of Lemma 5.2.
Standard concentration inequalities typically relate the num-
ber of visits of (s, h) to the policy-dependent probability

P(sh = s | πk). However, the varying policies employed
by FedQ-Hoeffding across different rounds prevent direct
alignment between the executed policy πk and the optimal
policy π⋆. To overcome this challenge, our proof establishes
a relationship between P(sh = s | πk) and the optimal
stationary visiting probabilities P∗

s,h through error recur-
sion over the step h. This analysis exploits the discrepancy
in visit counts between optimal and non-optimal actions,
which is a distinctive feature enabled by the gap-dependent
structure. Especially, we prove that for any h′ ∈ [H],∑

s

∣∣∣P(sk,j,mh′ = s | πk
)
− P∗

s,h′

∣∣∣
≤ 2

h′−1∑
h=1

P
(
ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
,

which is further bounded by (10) in Lemma 5.1 and helps
complete the proof of Lemma 5.2. See Appendix G.3 for
more details of the proof.

5.2. Proof Sketch of Theorem 3.3

With the tools introduced in Section 5.1, we outline the
key steps in proving the gap-dependent bound (6) for the
number of communication rounds.

Let ι′ = log
(
2MSAHT1

δ

)
, i1 = 200MH(H + 1)ι′, i2 =

6500H3Cmin/Cst and C̃ = 1/(H(H + 1)). In this subsec-
tion, for any (s, h) ∈ S × [H] such that P∗

s,h > 0, we use
π⋆
h(s) to denote its unique optimal action.

Lemma 5.3 shows agent-wise simultaneous sufficient in-
crease of visits for the triple (s, a, h) that satisfies the trigger
condition in round k when Nk

h (s, a) > i1.

Lemma 5.3. For any δ ∈ (0, 1), with probability at least
1− δ,

Nk+1
h (s, a) ≥

(
1 + C̃/3

)
Nk

h (s, a)

holds simultaneously for any (s, a, h, k) ∈ S ×A× [H]×
[K] such that Nk

h (s, a) > i1 and the triple (s, a, h) satisfies
the trigger condition (4) in round k.

The proof of Lemma 5.3 can be found in Appendix G.4.

Lemma 5.4 shows the state-wise simultaneous sufficient
increase of visits for states with unique optimal actions,
which is proved based on Lemma 5.2.

Lemma 5.4. For any δ ∈ (0, 1), with probability at least
1 − 5δ, the following events hold simultaneously for any
k ∈ [K]: If there exists (s0, a0, h0) ∈ S × A × [H], such
that it satisfies the trigger condition (4) in round k and
Nk

h0
(s0, a0) > i1 + i2, then a0 ∈ A∗

h0
(s0).

Furthermore, if the state-action-step triple (s0, a0, h0) also
satisfies that P∗

s0,h0
> 0, then for any (s′, h′) ∈ S × [H]

8
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such that P∗
s′,h′ > 0, we have

Nk+1
h′ (s′, π∗

h′(s′)) ≥
(
1 + C̃/6

)
Nk

h′ (s′, π∗
h′(s′))

The complete proof of Lemma 5.4 is in Appendix G.5.

We now analyze the number of rounds in which the trigger
condition is satisfied, categorized according to the four cases
corresponding to the terms in (6). A detailed discussion can
be found in Appendix G.6.

Type-I Trigger: It occurs when a triple (s, a, h) satisfies
the trigger condition in round k with Nk

h (s, a) ≤ i1.

For each time the trigger condition is met by a triple (s, a, h),
the number of visits to it increases by at least C̃/2M times.
Therefore, the maximum number of Type-I triggers for any
triple (s, a, h) is

O

(
log(i1)

log(1 + C̃/(2M))

)
= O

(
MH2 log(i1)

)
.

Thus, the number of rounds with Type-I triggers is no more
than O

(
MH3SA log (i1)

)
.

Type-II Trigger: It occurs when a triple (s, a, h) satisfies
the trigger condition in round k with i1 < Nk

h (s, a) ≤
i1 + i2 and either a /∈ A∗

h(s) or a ∈ A∗
h(s) and P∗

s,h = 0.

By Lemma 5.3, which establishes the agent-wise simulta-
neous sufficient increase, the number of visits to the triple
(s, a, h) increases by at least C̃/3 times each time the trigger
condition is satisfied.

Furthermore, as shown in (9) of Lemma 5.1 and Lemma 5.2
with P∗

s,h = 0, for state-action-step triple (s, a, h) where
a /∈ A∗

h(s) or a ∈ A∗
h(s) and P∗

s,h = 0, the total number of
visits is bounded by 32HCmin with high probability. Conse-
quently, the maximum number of Type-II triggers for any
such triple is

O

(
log(32HCmin/i1)

log(1 + C̃/3)

)
≤ O

(
H2 log

(
H5SA

∆2
min

))
.

Then the upper bound for the number of rounds with Type-II
triggers is

O

(
H3SA log

(
H5SA

∆2
min

))
.

Type-III Trigger: It occurs when a triple (s, a, h) satisfies
the trigger condition in round k with i1 < Nk

h (s, a) ≤
i1 + i2, a ∈ A∗

h(s) and P∗
s,h > 0.

For any triple (s, a, h) that satisfies Type-III triggers, condi-
tion (b) of Definition 3.2 ensures that a is the unique optimal
action π∗

h(s). Therefore, at most HS different triples can
satisfy Type-III trigger conditions.

When such a trigger occurs, we have Nk
h (s, a) > i1, and

Lemma 5.3 implies that the number of visits to the triple
(s, a, h) increases by at least C̃/3 times. Therefore, the
maximum number of Type-III triggers for any such triple is

O

(
log(i2/i1 + 1)

log(1 + C̃/3)

)
≤ O

(
H2 log(i2)

)
.

Then the number of rounds with Type-III triggers is no more
than O(H3S log(i2)).

Type-IV Trigger: It occurs when a triple (s, a, h) satisfies
the trigger condition in round k with Nk

h (s, a) > i1 + i2.

In this case, whenever the trigger condition is satisfied by
(s, a, h) in round k, we have Nk

h (s, a) > i2 > 32HCmin
and a ∈ A∗

h(s) by Lemma 5.4. Furthermore, since
Lemma 5.2 establish an upper bound of 32HCmin on the
number of visits to triples (s′, a′, h′) where P∗

s′,h′ = 0,
we can conclude that with high probability, P∗

s,h > 0 and
a = π⋆

h(s) holds.

By Lemma 5.4, for any state-step pair (s′, h) ∈ S × [H]
such that P∗

s′,h′ > 0, the number of visits to (s′, π∗
h′(s′), h′)

simultaneously increases by at least C̃/6 times. Therefore,
the maximum number of rounds with Type-IV triggers is

O

(
log(T̂ /(i1 + i2))

log(1 + C̃/6)

)
≤ O

(
H2 log

(
T

HSA

))
.

By aggregating the bounds on the number of communication
rounds across all four cases, we derive the gap-dependent
upper bound presented in (6).

6. Conclusion
In this paper, we establish the first gap-dependent bounds
on regret and communication cost for online federated Q-
Learning in tabular episodic finite-horizon MDPs, address-
ing two important open questions in the literature. While
existing FRL methods focus on worst-case MDPs, we show
that when MDPs exhibit benign structures, such as a strictly
positive suboptimality gap, the worst-case bounds can be
significantly improved. Specifically, we prove that both
FedQ-Hoeffding and FedQ-Bernstein can achieve logarith-
mic regret. Additionally, we derive a gap-dependent com-
munication cost upper bound that disentangles exploration
and exploitation, with the log T term in the bound being
independent of M , S, and A. This makes our work the first
result in the online FRL literature to achieve such a low
communication cost. When M = 1, our gap-dependent
communication cost upper bound also yields a tighter global
switching cost upper bound, removing the dependence on
SA from the log T term.
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Organization of the appendix. In the appendix, Appendix A reviews related works. Appendix B presents the results of our
numerical experiments, demonstrating a log T -type regret and showing that the log T term of the communication cost is
independent of M , S, and A. Appendix C provides algorithmic details for both the FedQ-Hoeffding and FedQ-Bernstein
algorithms. Appendix D and Appendix E include some useful lemmas. Appendix F contains the proof of the gap-dependent
regret bound (Theorem 3.1). Appendix G presents the proof of the gap-dependent communication cost bound (Theorem 3.3).

A. Related Work
online RL for Single Agent RL with Worst-Case Regret. There are mainly two types of algorithms for reinforcement
learning: model-based and model-free learning. Model-based algorithms learn a model from past experience and make
decisions based on this model, while model-free algorithms only maintain a group of value functions and take the induced
optimal actions. Due to these differences, model-free algorithms are usually more space-efficient and time-efficient compared
to model-based algorithms. However, model-based algorithms may achieve better learning performance by leveraging the
learned model.

Next, we discuss the literature on model-based and model-free algorithms for finite-horizon tabular MDPs with worst-case
regret. Auer et al. (2008), Agrawal & Jia (2017), Azar et al. (2017), Kakade et al. (2018), Agarwal et al. (2020), Dann et al.
(2019), Zanette & Brunskill (2019), Zhang et al. (2021), Zhou et al. (2023) and Zhang et al. (2024b) worked on model-based
algorithms. Notably, Zhang et al. (2024b) provided an algorithm that achieves a regret of Õ(min{

√
SAH2T , T}), which

matches the information lower bound. Jin et al. (2018), Yang et al. (2021), Zhang et al. (2020), Li et al. (2021) and Ménard
et al. (2021) work on model-free algorithms. The latter three works achieved the minimax regret of Õ(

√
SAH2T ).

Suboptimality Gap. When there is a strictly positive suboptimality gap, it is possible to achieve logarithmic regret bounds.
In RL, earlier work obtained asymptotic logarithmic regret bounds (Auer & Ortner, 2007; Tewari & Bartlett, 2008). Recently,
non-asymptotic logarithmic regret bounds were obtained (Jaksch et al., 2010; Ok et al., 2018; Simchowitz & Jamieson,
2019; He et al., 2021). Specifically, Jaksch et al. (2010) developed a model-based algorithm, and their bound depends on the
policy gap instead of the action gap studied in this paper. Ok et al. (2018) derived problem-specific logarithmic type lower
bounds for both structured and unstructured MDPs. Simchowitz & Jamieson (2019) extended the model-based algorithm in
Zanette & Brunskill (2019) and obtained logarithmic regret bounds. Logarithmic regret bounds are also derived in linear
function approximation settings He et al. (2021). Additionally, Nguyen-Tang et al. (2023) provides a gap-dependent regret
bounds for offline RL with linear funciton approximation.

Specifically, for model free algorithm, Yang et al. (2021) showed that the optimistic Q-learning algorithm by Jin et al. (2018)
enjoyed a logarithmic regret O(H

6SAT
∆min

), which was subsequently refined by Xu et al. (2021). In their work, Xu et al. (2021)
introduced the Adaptive Multi-step Bootstrap (AMB) algorithm. Zheng et al. (2025b) further improved the logarithmic
regret bound by leveraging the analysis of the UCB-Advantage algorithm (Zhang et al., 2020) and Q-EarlySettled-Advantage
algorithm (Li et al., 2021).

There are also some other works focusing on gap-dependent sample complexity bounds (Jonsson et al., 2020; Marjani &
Proutiere, 2020; Al Marjani et al., 2021; Tirinzoni et al., 2022; Wagenmaker et al., 2022b; Wagenmaker & Jamieson, 2022;
Wang et al., 2022; Tirinzoni et al., 2023).

RL with Low Switching Cost and Batched RL. Research in RL with low-switching cost aims to minimize the number
of policy switches while maintaining comparable regret bounds to fully adaptive counterparts, and it can be applied to
federated RL. In batched RL (Perchet et al., 2016; Gao et al., 2019), the agent sets the number of batches and the length of
each batch upfront, implementing an unchanged policy in a batch and aiming for fewer batches and lower regret. Bai et al.
(2019) first introduced the problem of RL with low-switching cost and proposed a Q-learning algorithm with lazy updates,
achieving Õ(SAH3 log T ) switching cost. This work was advanced by Zhang et al. (2020), which improved the regret
upper bound and the switching cost. Additionally, Wang et al. (2021) studied RL under the adaptivity constraint. Recently,
Qiao et al. (2022) proposed a model-based algorithm with Õ(log log T ) switching cost. Zhang et al. (2022b) proposed a
batched RL algorithm that is well-suited for the federated setting.

Multi-Agent RL (MARL) with Event-Triggered Communications. We review a few recent works for online MARL with
linear function approximations. Dubey & Pentland (2021) introduced Coop-LSVI for cooperative MARL. Min et al. (2023)
proposed an asynchronous version of LSVI-UCB that originates from Jin et al. (2020), matching the same regret bound with
improved communication complexity compared to Dubey & Pentland (2021). Hsu et al. (2024) developed two algorithms
that incorporate randomized exploration, achieving the same regret and communication complexity as Min et al. (2023).
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Dubey & Pentland (2021), Min et al. (2023) and Hsu et al. (2024) employed event-triggered communication conditions
based on determinants of certain quantities. Different from our federated algorithm, during the synchronization in Dubey &
Pentland (2021) and Min et al. (2023), local agents share original rewards or trajectories with the server. On the other hand,
Hsu et al. (2024) reduces communication cost by sharing compressed statistics in the non-tabular setting with linear function
approximation.

Federated and Distributed RL. Existing literature on federated and distributed RL algorithms highlights various aspects.
For value-based algorithms, Guo & Brunskill (2015), Zheng et al. (2024), and Woo et al. (2023) focused on linear speed
up. Agarwal et al. (2021) proposed a parallel RL algorithm with low communication cost. Woo et al. (2023) and Woo
et al. (2024) discussed the improved covering power of heterogeneity. Wu et al. (2021) and Chen et al. (2023) worked on
robustness. Particularly, Chen et al. (2023) proposed algorithms in both offline and online settings, obtaining near-optimal
sample complexities and achieving superior robustness guarantees. In addition, several works have investigated value-based
algorithms such as Q-learning in different settings, including Beikmohammadi et al. (2024), Jin et al. (2022), Khodadadian
et al. (2022), Fan et al. (2023), Woo et al. (2023), Woo et al. (2024); Anwar & Raychowdhury (2021) Zhao et al. (2023), He
et al. (2022), Yang et al. (2024) and Zhang et al. (2024a). The convergence of decentralized temporal difference algorithms
has been analyzed by Doan et al. (2019), Doan et al. (2021), Chen et al. (2021b), Sun et al. (2020), Wai (2020), Wang et al.
(2020), Zeng et al. (2021), and Liu & Olshevsky (2023).

Some other works focus on policy gradient-based algorithms. Communication-efficient policy gradient algorithms have
been studied by Chen et al. (2021a) and Fan et al. (2021). Lan et al. (2023) further reduces the communication complexity
and also demonstrates a linear speedup in the synchronous setting. Optimal sample complexity for global convergence in
federated RL, even in the presence of adversaries, is studied in Ganesh et al. (2024). Lan et al. (2024) proposes an algorithm
to address the challenge of lagged policies in asynchronous settings.

The convergence of distributed actor-critic algorithms has been analyzed by Shen et al. (2023) and Chen et al. (2022).
Federated actor-learner architectures have been explored by Assran et al. (2019), Espeholt et al. (2018) and Mnih et al.
(2016). Distributed inverse reinforcement learning has been examined by Banerjee et al. (2021), Gong et al. (2023), and Liu
& Zhu (2022; 2023; 2024; 2025). Personalized federated learning has been discussed in (Hanzely & Richtárik, 2020; Li
et al., 2020; Smith et al., 2017; Yu et al., 2024)

B. Numerical Experiments
In this section, we conduct experiments2. All the experiments are conducted in a synthetic environment to demonstrate the
log T -type regret and reduced communication cost bound with the coefficient of the main term O(log T ) being independent
of M,S,A in FedQ-Hoeffding algorithm (Zheng et al., 2024). We follow Zheng et al. (2024) and generate a synthetic
environment to evaluate the proposed algorithms on a tabular episodic MDP. After setting H,S,A, the reward rh(s, a) for
each (s, a, h) is generated independently and uniformly at random from [0, 1]. Ph(· | s, a) is generated on the S-dimensional
simplex independently and uniformly at random for (s, a, h). We also set the constant c in the bonus term bt to be 2 and
ι = 1. We will first demonstrate the log T -type regret of FedQ-Hoeffding algorithm.

B.1. Logarithmic Regret and Speedup

In this section, we show that the regret for any given MDP follows a log T pattern. We consider two different values for
the triple (H,S,A): (2, 2, 2) and (5, 3, 2). For FedQ-Hoeffding algorithm, we set the agent number M = 10 and generate
T/H = 107 episodes for each agent, resulting in a total of 108 episodes. Additionally, to show the linear speedup effect, we
conduct experiments with its single-agent version, the UCB-Hoeffding algorithm (Jin et al., 2018), where all the conditions
except M = 1 remain the same. To show error bars, we also collect 10 sample paths for each algorithm under the same
MDP environment.

The regret results are shown in Figure 1 and Figure 2. Both figures display performance metrics through two visualization
panels: the left showing raw regret Regret(T ) versus the normalized horizon T/H , and the right plotting adjusted regret
Regret(T )/ log(T/H+1) versus T/H . All solid lines represent median values across 10 trials, with shaded areas indicating
the 10th-90th percentile ranges. Specifically: the yellow lines show the regret results of FedQ-Hoeffding, the red lines
represent the regret results UCB-Hoeffding, and the blue line displays the FedQ-Hoeffding regret scaled by 1/

√
M to

2All the experiments are run on a server with Intel Xeon E5-2650v4 (2.2GHz) and 100 cores. Each replication is limited to a single
core and 50GB RAM. The code for the numerical experiments is included in the supplementary materials along with the submission.
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demonstrate its regret error reduction speedup pattern.

Figure 1. Regret results for H = 2, S = 2, and A = 2. The left panel directly shows the plot of Regret(T ) versus T/H , while the right
panel illustrates the relationship between Regret(T )/ log(T/H + 1) and T/H . In both plots, the yellow line represents the regret results
of the FedQ-Hoeffding algorithm, while the red line represents the results of the UCB-Hoeffding algorithm. The blue line in each plot
denotes the adjusted regret of the FedQ-Hoeffding algorithm, which is obtained by dividing the regret results of the yellow line by

√
M .

Figure 2. Regret results for H = 5, S = 3, and A = 2. The left panel directly shows the plot of Regret(T ) versus T/H , while the right
panel illustrates the relationship between Regret(T )/ log(T/H + 1) and T/H . In both plots, the yellow line represents the regret results
of the FedQ-Hoeffding algorithm, while the red line represents the results of the UCB-Hoeffding algorithm. The blue line in each plot
denotes the adjusted regret of the FedQ-Hoeffding algorithm, which is obtained by dividing the regret results of the yellow line by

√
M .

From the two groups of plots, we observe that the two yellow lines in the plots on the right side of Figure 1 and Figure 2
tend to approach horizontal lines as T/H becomes sufficiently large. Since the y-axis represents Regret(T )/ log(T/H + 1)
in these two plots, we can conclude that the regret of the FedQ-Hoeffding algorithm follows a log T -type pattern for any
given MDP, rather than the

√
MT pattern shown in the Theorem 4.1 of Zheng et al. (2024). This is consistent with the

logarithmic regret result presented in Theorem 3.1. Furthermore, as T/H becomes sufficiently large, we observe that the
adjusted regret of FedQ-Hoeffding (represented by the blue lines) for both groups of (H,S,A) is significantly lower than
the corresponding regret of the single-agent version, UCB-Hoeffding (represented by the red lines). This further supports
the conclusion that the regret of FedQ-Hoeffding does not follow a

√
MT pattern, or else the blue lines and the red lines

would be close to each other. Finally, as T/H grows larger, we notice that the yellow lines and the red lines become close,
confirming that the regret of FedQ-Hoeffding approaches that of UCB-Hoeffding as T becomes sufficiently large. This also
supports the error reduction rate Õ(1/M) for the gap-dependent regret.
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B.2. Dependency of Communication Cost on M , S, and A

In this section, we will demonstrate that the coefficient of the log T term in the communication cost is independent of M , S
and A. To eliminate the influence of terms with lower orders of log T , such as log(log T ) and

√
log T in Theorem 3.3, we

will focus exclusively on the communication cost for sufficiently large values of T .

B.2.1. DEPENDENCY ON M

To explore the dependency of communication cost on M , we set (H,S,A) = (2, 2, 2) and let M take values in {2, 4, 6, 8}.
We generate 107 episodes for each agent and only consider the communication cost after 5× 105 episodes. The Figure 3
shows the communication cost results for each M after 5× 105 episodes.

Figure 3. Number of communication rounds vs Log-number of Episodes for different M Values with H = 2, S = 2 and A = 2. Each
solid line represents the number of communication rounds for each value of M ∈ {2, 4, 6, 8} after 5× 105 episodes, while the dashed
line represents the fitted line for each M .

In Figure 3, each solid line represents the communication cost for each value of M ∈ {2, 4, 6, 8} after 5× 105 episodes,
while the dashed line represents the corresponding fitted line. Since the x-axis represents the log-number of episodes,
log(T/H), the slope of the fitted line is very close to the coefficient of the log T -term in the communication cost when
log T is sufficently large. We observe that the slopes of these fitted lines are very similar, which indicates that for any given
MDP, the coefficient of the log T -term in the communication cost is independent of M . If the coefficient were linearly
dependent on M , as shown in Zheng et al. (2024), then for M = 8, the slope of the fitted line should be nearly four times
the value of the slope of the fitted line for M = 2.

B.2.2. DEPENDENCY ON S

To explore the dependency of communication cost on S, we set (H,A,M) = (2, 2, 2) and let S take values in {2, 4, 6, 8}.
We generate 107 episodes for each agent and only consider the communication cost after 5× 105 episodes. The Figure 4
shows the communication cost results for each S after 5× 105 episodes.

In Figure 4, each solid line represents the communication cost for each value of S ∈ {2, 4, 6, 8} after 5 × 105 episodes,
while the dashed line represents the corresponding fitted line. Since the x-axis represents the log-number of episodes,
log(T/H), the slope of the fitted line is very close to the coefficient of the log T -term in the communication cost when
log T is sufficently large. We observe that the slopes of these fitted lines are very similar, which indicates that for any given
MDP, the coefficient of the log T -term in the communication cost is independent of S.
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Figure 4. Number of communication rounds vs Log-number of Episodes for different S Values with H = 2, A = 2 and M = 2. Each
solid line represents the number of communication rounds for each value of S ∈ {2, 4, 6, 8} after 5× 105 episodes, while the dashed line
represents the fitted line for each S.

B.2.3. DEPENDENCY ON A

Figure 5. Number of communication rounds vs Log-number of Episodes for different A Values with H = 2, S = 2 and M = 2. Each
solid line represents the number of communication rounds for each value of A ∈ {2, 4, 6, 8} after 5× 105 episodes, while the dashed line
represents the fitted line for each A.

To explore the dependency of communication cost on A, we set (H,S,M) = (2, 2, 2) and let A take values in {2, 4, 6, 8}.
We generate 107 episodes for each agent and only consider the communication cost after 5× 105 episodes. The Figure 5
shows the communication cost results for each A after 5× 105 episodes.
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In Figure 5, each solid line represents the communication cost for each value of A ∈ {2, 4, 6, 8} after 5 × 105 episodes,
while the dashed line represents the corresponding fitted line. Since the x-axis represents the log-number of episodes,
log(T/H), the slope of the fitted line is very close to the coefficient of the log T -term in the communication cost when
log T is sufficently large. We observe that the slopes of these fitted lines are very similar, which indicates that for any given
MDP, the coefficient of the log T -term in the communication cost is independent of A.

C. Algorithm Review
C.1. FedQ-Hoeffding Algorithm

In this section, we present more details for Section 3.1. Denote ηt = H+1
H+t , η00 = 1, ηt0 = 0 for t ≥ 1, and ηti =

ηi
∏t

i′=i+1(1 − ηi′),∀ 1 ≤ i ≤ t. We also denote ηc(t1, t2) =
∏t2

t=t1
(1 − ηt) for any positive integers t1 < t2.

After receiving the information from each agent m, for each triple (s, a, h) visited by the agents, the server sets ηh,ks,a =

1− ηc
(
Nk

h (s, a) + 1, Nk+1
h (s, a)

)
and βk

s,a,h =
∑tk

t=tk−1+1 η
tk

t bt, where the confidence bound is given by bt = c
√

H3ι
t

for some sufficiently large constant c > 0. Then the server updates the Q-estimate according to the following two cases.

Case 1: Nk
h (s, a) < 2MH(H + 1) =: i0. This case implies that each client can visit each (s, a) pair at step h at most

once. Then, we denote 1 ≤ mNk
h
< mNk

h+1 . . . < mNk+1
h
≤M as the agent indices with nm,k

h (s, a) > 0. The server then
updates the global estimate of action values sequentially as follows:

Qk+1
h (s, a) = (1− ηt)Q

k
h(s, a) + ηt

(
rh(x, a) + vmt,k

h+1 (s, a) + bt
)
, t = Nk

h (s, a) + 1, . . . Nk+1
h (s, a). (11)

Case 2: Nk
h (s, a) ≥ i0. In this case, the central server calculates vkh+1(s, a) =

∑M
m=1 v

m,k
h+1(s, a)/n

k
h(s, a) and updates

Qk+1
h (s, a) = (1− ηh,ks,a )Q

k
h(s, a) + ηh,ks,a

(
rh(s, a) + vkh+1(s, a)

)
+ βk

s,a,h. (12)

After finishing updating the estimated Q function, the server updates the estimated value function and the policy as follows:

V k+1
h (s) = min

{
H,max

a′∈A
Qk+1

h (s, a′)
}
, πk+1

h (s) = argmax
a′∈A

Qk+1
h (s, a′) ,∀(s, h) ∈ S × [H]. (13)

The details of the FedQ-Hoeffding algorithm are presented below.

Algorithm 1 FedQ-Hoeffding (Central Server)
1: Input: T0 ∈ N+.
2: Initialization: k = 1, N1

h(s, a) = 0, Q1
h(s, a) = V 1

h (s) = H , ∀(s, a, h) ∈ S×A×[H] and π1 =
{
π1
h : S → A

}
h∈[H]

is an arbitrary deterministic policy.
3: while

∑H
h=1

∑
s,a N

k
h (s, a) < T0 do

4: Broadcast πk, {Nk
h (s, π

k
h(s))}s,h and {V k

h (s)}s,h to all clients.
5: Wait until receiving an abortion signal and send the signal to all agents.
6: Receive {rh(s, πk

h(s))}s,h, {nm,k
h (s, πk

h(s))}s,h,m and {vm,k
h+1(s, π

k
h(s))}s,h,m from clients.

7: Calculate Nk+1
h (s, a), nk

h(s, a), v
k
h+1(s, a),∀(s, h) ∈ S × [H] with a = πk

h(s).
8: for (s, a, h) ∈ S ×A× [H] do
9: if a ̸= πk

h(s) or nk
h(s, a) = 0 then

10: Qk+1
h (s, a)← Qk

h(s, a).
11: else if Nk

h (s, a) < i0 then
12: Update Qk+1

h (s, a) according to Equation (11).
13: else
14: Update Qk+1

h (s, a) according to Equation (12).
15: end if
16: end for
17: Update V k+1

h and πk+1 by Equation (13).
18: k ← k + 1.
19: end while
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Algorithm 2 FedQ-Hoeffding (Agent m in round k)
1: Initialize nm

h (s, a) = vmh+1(s, a) = rh(s, a) = 0,∀(s, a, h) ∈ S ×A× [H].
2: Receive πk, {Nk

h (s, π
k
h(s))}s,h and {V k

h (s)}s,h from the central server.
3: while no abortion signal from the central server do
4: while nm

h (sh, ah) < max
{
1, ⌊ 1

MH(H+1)N
k
h (sh, ah)⌋

}
,∀(s, a, h) ∈ S ×A× [H] do

5: Collect a new trajectory {(sh, ah, rh)}Hh=1 with ah = πk
h(sh).

6: nm
h (sh, ah)← nm

h (sh, ah) + 1, vmh+1(sh, ah)← vmh+1(sh, ah) + V k
h+1(sh+1), and rh(sh, ah)← rh,∀h ∈ [H].

7: end while
8: Send an abortion signal to the central server.
9: end while

10: nm,k
h (s, a)← nm

h (s, a), vm,k
h+1(s, a)← vmh+1(s, a),∀(s, h) ∈ S × [H] with a = πk

h(s).
11: Send {rh(s, πk

h(s))}s,h,{nm,k
h (s, πk

h(s))}s,h and {vm,k
h+1(s, π

k
h(s))}s,h to the central server.

C.2. FedQ-Bernstein Algorithm

The Bernstein-type algorithm differs from the Hoeffding-type algorithm Algorithms 1 and 2, in that it selects the upper
confidence bound based on a variance estimator, akin to the approach used in the Bernstein-type algorithm in Jin et al.
(2018). In this subsection, we first review the algorithm design in Zheng et al. (2024).

To facilitate understanding, we introduce additional notations exclusive to Bernstein-type algorithms, supplementing the
already provided notations for the Hoeffding-type algorithm.

µm,k
h (s, a) =

1

nm,k
h (s, a)

nm,k∑
j=1

[
V k
h+1

(
sk,j,mh+1

)]2
I[(sk,j,mh , ak,j,mh ) = (s, a)].

µk
h(s, a) =

1

Nk+1
h (s, a)−Nk

h (s, a)

M∑
m=1

µm,k
h (s, a)nm,k

h (s, a).

Here, µm,k
h (s, a) is the sample mean of [V k

h+1(s
k,j,m
h+1 )]2 for all the visits of (s, a, h) for the m-th agent during the k-th round

and µk
h(s, a) corresponds to the mean for all the visits during the k-th round. We define Wk(s, a, h) to denote the sample

variance of all the visits before the k-th round, i.e.

Wk(s, a, h) =
1

Nk
h (s, a)

Nk
h (s,a)∑
i=1

V ki

h+1(s
ki,ji,mi

h+1 )− 1

Nk
h (s, a)

Nk
h (s,a)∑
i′=1

V ki

h+1(s
ki,ji,mi

h+1 )

2

.

Here, (ki, ji,mi) is the (round, episode, agent) index for the i-th visit to (s, a, h) defined in Appendix E. Using the
expressions of µk

h and vm,k
h+1, we further find that

Wk(s, a, h) =
1

Nk
h (s, a)

k−1∑
k′=1

µk′

h (s, a)nk′

h (s, a)−

[
1

Nk
h (s, a)

k−1∑
k′=1

vk
′

h+1(s, a)n
k′

h (s, a)

]2
.

Therefore, the quantity Wk(s, a, h) can be calculated efficiently in the following way. Define

W1,k(s, a, h) =

k−1∑
k′=1

µk′

h (s, a)nk′

h (s, a), W2,k(s, a, h) =

k−1∑
k′=1

vk
′

h+1(s, a)n
k′

h (s, a), (14)

then we have

W1,k+1(s, a, h) = W1,k(s, a, h) + µk
h(s, a)n

k
h(s, a), W2,k+1(s, a, h) = W2,k(s, a, h) + vkh+1(s, a)n

k
h(s, a) (15)

and

Wk+1(s, a, h) =
W1,k+1(s, a, h)

Nk+1
h (s, a)

−

[
W2,k+1(s, a, h)

Nk+1
h (s, a)

]2
. (16)
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This indicates that the central server, by actively maintaining and updating the quantities W1,k and W2,k and systematically
collecting nm,k

h s, µm,k
h s and vm,k

h+1s, is able to compute Wk+1.

Next, we define

βB
t (s, a, h) = c′

(
min

{√
Hι

t
(Wkt+1(s, a, h) +H) + ι

√
H7SA+

√
MSAH6

t
,

√
H3ι

t

})
, (17)

in which c′ > 0 is a positive constant. With this, the upper confidence bound bt(s, a, h) for a single visit is determined by
βB
t (s, a, h) = 2

∑t
i=1 η

t
ibt(s, a, h), which can be calculated as follows:

b1(s, a, h) :=
βB
1 (s, a, h)

2
, bt(s, a, h) :=

βB
t (s, a, h)− (1− ηt)β

B
t−1(s, a, h)

2ηt
.

When there is no ambiguity, we use the simplified notation b̃t = bt(s, a, h). In the FedQ-Bernstein algorithm, let
β̃ = βB

tk(s, a, h)− ηc(tk−1 + 1, tk)βB
tk−1(s, a, h). Then similar to the FedQ-Hoeffding, we can updates the global estimate

of the value functions according to the following two cases.

• Case 1: Nk
h (s, a) < i0. This case implies that each client can visit each (s, a) pair at step h at most once. Then, we

denote 1 ≤ m1 < m2 . . . < mtk−tk−1 ≤M as the agent indices with nm,k
h (s, a) > 0. The server then updates the global

estimate of action values as follows:

Qk+1
h (s, a) = (1− ηt)Q

k
h(s, a) + ηt

(
rh(x, a) + vmt,k

h+1 (s, a) + b̃t

)
, t = tk−1 + 1, . . . tk. (18)

• Case 2: Nk
h (s, a) ≥ i0. In this case, the central server calculates vkh+1(s, a) =

∑M
m=1 v

m,k
h+1(s, a)/n

k
h(s, a) and updates

the Q-estimate as
Qk+1

h (s, a) = (1− ηh,ks,a )Q
k
h(s, a) + ηh,ks,a

(
rh(s, a) + vkh+1(s, a)

)
+ β̃/2. (19)

Then we can present the FedQ-Bernstein Algorithm in Zheng et al. (2024).

Algorithm 3 FedQ-Bernstein (Central Server)
1: Input: T0 ∈ N+.
2: Initialization: k = 1, N1

h(s, a) = W1,k(s, a, h) = W2,k(s, a, h) = 0, Q1
h(s, a) = V 1

h (s) = H,∀(s, a, h) ∈
S ×A× [H] and π1 =

{
π1
h : S → A

}
h∈[H]

is an arbitrary deterministic policy.

3: while
∑H

h=1

∑
s,a N

k
h (s, a) < T0 do

4: Broadcast πk, {Nk
h (s, π

k
h(s))}s,h and {V k

h (s)}s,h to all clients.
5: Wait until receiving an abortion signal and send the signal to all agents.
6: Receive {rh(s, πk

h(s))}s,h, {nm,k
h (s, πk

h(s))}s,h,m, {vm,k
h+1(s, π

k
h(s))}s,h,m and {µm,k

h (s, πk
h(s))}s,h,m from clients.

7: Calculate Nk+1
h (s, a), nk

h(s, a), v
k
h+1(s, a), µ

k
h(s, a), ∀(s, h) ∈ S × [H] with a = πk

h(s).
8: Calculate Wk(s, a, h),Wk+1(s, a, h),W1,k+1(s, a, h),W2,k+1(s, a, h), ∀(s, h) ∈ S × [H] with a = πk

h(s) based
on Equation (14), Equation (15) and Equation (16).

9: for (s, a, h) ∈ S ×A× [H] do
10: if a ̸= πk

h(s) or nk
h(s, a) = 0 then

11: Qk+1
h (s, a)← Qk

h(s, a).
12: else if Nk

h (s, a) < i0 then
13: Update Qk+1

h (s, a) according to Equation (18).
14: else
15: Update Qk+1

h (s, a) according to Equation (19).
16: end if
17: end for
18: Update V k+1

h and πk+1 by Equation (13).
19: k ← k + 1.
20: end while
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Algorithm 4 FedQ-Bernstein (Agent m in round k)
1: nm

h (s, a) = vmh+1(s, a) = rh(s, a) = µm
h (s, a) = 0,∀(s, a, h) ∈ S ×A× [H].

2: Receive πk, {Nk
h (s, π

k
h(s))}s,h and {V k

h (s)}s,h from the central server.
3: while no abortion signal from the central server do
4: while nm

h (sh, ah) < max
{
1, ⌊ 1

MH(H+1)N
k
h (sh, ah)⌋

}
,∀(s, a, h) ∈ S ×A× [H] do

5: Collect a new trajectory {(sh, ah, rh)}Hh=1 with ah = πk
h(sh).

6: nm
h (sh, ah) ← nm

h (sh, ah) + 1, vmh+1(sh, ah) ← vmh+1(sh, ah) + V k
h+1(sh+1), µm

h (sh, ah) ← µm
h (sh, ah) +[

V k
h+1(sh+1)

]2
, and rh(sh, ah)← rh,∀h ∈ [H].

7: end while
8: Send an abortion signal to the central server.
9: end while

10: nm,k
h (s, a) ← nm

h (s, a), vm,k
h+1(s, a) ← vmh+1(s, a) and µm,k

h (s, a) ← µm
h (s, a)/nm

h (s, a),∀(s, h) ∈ S × [H] with
a = πk

h(s).
11: Send {rh(s, πk

h(s))}s,h,{nm,k
h (s, πk

h(s))}s,h, {µm,k
h (s, πk

h(s))}s,h and {vm,k
h+1(s, π

k
h(s))}s,h to the central server.

D. Technical Lemmas
Lemma D.1. (Freedman’s inequality, Theorem EC.1 of Li et al. (2024)) Consider a filtration F0 ⊂ F1 ⊂ F2 ⊂ · · ·, and let
Ek stand for the expectation conditioned on Fk. Suppose that

Yn =

n∑
k=1

Xk ∈ R,

where {Xk} is a real-valued scalar sequence obeying

|Xk| ≤ R and Ek−1[Xk] = 0 for all k ≥ 1

for some quantity R <∞. We also define

Wn :=

n∑
k=1

Ek−1[X
2
k ].

In addition, suppose that Wn ≤ σ2 holds deterministically for some given quantity σ2 <∞. Then for any positive integer
m ≥ 1, with probability at least 1− δ, one has

|Yn| ≤

√
8max

{
Wn,

σ2

2m

}
log

2m

δ
+

4

3
R log

2m

δ
.

Lemma D.2. (Lemma 10 in Zhang et al. (2022a)) Let X1, X2, . . . be a sequence of random variables taking value in [0, l].
Define Fk = σ(X1, X2, . . . , Xk−1) and Yk = E[Xk|Fk] for k ≥ 1. For any δ > 0, we have that

P

[
∃n,

n∑
k=1

Xk ≥ 3

n∑
k=1

Yk + l log(1/δ)

]
≤ δ

and

P

[
∃n,

n∑
k=1

Yk ≥ 3

n∑
k=1

Xk + l log(1/δ)

]
≤ δ.

E. Key Lemmas
In this section, we introduce some useful lemmas which will be used in the proofs. Before starting, we define ki(s, a, h),
ji(s, a, h), and mi(s, a, h) as the round, episode, and agent indices, respectively, for the i-th visit to the state-action-step
triple (s, a, h) in chronological order. Under the full synchronization assumption, these indices can be constructed as:

ki(s, a, h) = sup
{
k ∈ N+ : Nk

h (s, a) < i
}
,
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ji(s, a, h) = sup

j ∈ N+ :

j−1∑
j′=1

M∑
m=1

I
[
(s, a) = (sk

i,j′,m
h , ak

i,j′,m
h )

]
< i−Nki

h (s, a)

 ,

mi(s, a, h) = sup

{
m ∈ N+ :

m−1∑
m′=1

I
[
(s, a) = (sk

i,ji,m′

h , ak
i,ji,m′

h )
]

< i−Nki

h (s, a)−
ji−1∑
j′=1

M∑
m=1

I
[
(s, a) = (sk

i,j′,m
h , am,ki,j′,m

h )
] .

When there is no ambiguity, we use ki, mi and ji for short. Next, we begin to introduce the lemmas. First, Lemma E.1
establishes some relationships between some quantities used in Algorithm 1 and Algorithm 2.

Lemma E.1. (Paraphrased from Lemma B.1 in Zheng et al. (2024)). The following relationships hold for both algorithms.

(a) T0 ≤ T̂ .

(b) NK
h (s, a) ≤

∑
s,a N

K
h (s, a) ≤ T0/H .

(c) For any (s, a, h, k) ∈ S ×A× [H]× [K], we have

nm,k
h (s, a) ≤ max

{
1,

⌊
Nk

h (s, a)

MH(H + 1)

⌋}
,∀m ∈ [M ],

If Nk
h (s, a) < i0,

nm,k
h (s, a) ≤ 1, nk

h(s, a) ≤M.

If Nk
h (s, a) ≥ i0,

nm,k
h (s, a) ≤ Nk

h (s, a)

MH(H + 1)
, nk

h(s, a) ≤
Nk

h (s, a)

H(H + 1)
.

(d) For any (s, a, h) ∈ S ×A× [H],

NK+1
h (s, a) ≤

∑
s,a

NK+1
h (s, a) ≤

(
1 +

1

H(H + 1)

)
T0

H
+MSA.

(e) Let

T1 =

(
1 +

1

H(H + 1)

)
T0 +MHSA,

then we have T̂ ≤ T1 ≤ 2T̂ +MHSA.

(f) K ≤ T1

H .

Proof of Lemma E.1. (a), (b), (c) can be directly proved given and Algorithm 1 and Algorithm 2.

(d) By property (b) and (c), it holds that

∑
s,a

NK+1
h (s, a) ≤

∑
s,a

NK
h (s, a) +

∑
s,a

nK
h (s, a) ≤ T0

H
+
∑
s,a

(
M +

Nk
h (s, a)

H(H + 1)

)
≤
(
1 +

1

H(H + 1)

)
T0

H
+MSA.

(e) With conclusion (d), we have T̂ =
∑

s,a,h N
K+1
h (s, a) ≤ T1. The second inequality is because of (a).

(f) It is because K ≤ T̂ /H ≤ T1/H .
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Next, we define new weights η̃ti . For any (s, a, h, k) ∈ S × A × [H] × [K], we let t = Nk
h (s, a) and i ∈ [t]

⋃
{0}. Let

t′ = Nki

h (s, a) and t′′ = Nki+1
h (s, a), we denote

η̃ti(s, a, h) = ηtiI[t′ < i0] +
1− ηc(t′ + 1, t′′)

t′′ − t′
ηc(t′′ + 1, t)I[t′ ≥ i0],

and we will use the simplified notation η̃ti when there is no ambiguity. In Lemma E.2, we will present some properties of the
new weights and their relationship with the original weights ηti .

Lemma E.2. The following properties holds:

(a) For all t ∈ N+,
∑∞

i=t η
i
t = 1 + 1/H.

(b) For any k, k′ ∈ N+ such that t = Nk′

h (s, a) and k < k′, we have

Nk+1
h∑

i=Nk
h+1

η̃ti′(s, a, h) =

Nk+1
h∑

i=Nk
h+1

ηti ,

which further indicates that
t∑

i=1

η̃ti = I[t > 0].

(c) For any t ∈ N+ and any i ∈ [t], we have that

η̃ti/η
t
i ≤ exp(1/H).

(d) For any t ∈ N+ and any (s, a, h) ∈ S × A × [H], if t < i, ki(s, a, h) = k and Nk
h (s, a) ≥ i0, we have that

η
Nk

h
t /ηit ≤ exp(1/H).

(e) 1/tα ≤
∑t

i=1 η
t
i/i

α ≤ 2/tα.

Proof. Here (a), (b) and (c) are from Lemma B.2 and B.3 in Zheng et al. (2024) and (e) is from Lemma 1 of Li et al. (2021),
so here we only prove the property (d). Note that

η
Nk

h
t

ηit
=

i∏
q=Nk

h+1

(1− ηq)
−1

(I)

≤
(
1− ηNk

h+1

)−(i−Nk
h ) (II)

≤
(
1− ηNk

h+1

)− Nk
h

H(H+1)

=

(
1 +

H + 1

Nk
h

) Nk
h

H(H+1)

≤ exp(1/H).

Here (I) is because ηq is monotonically decreasing. (II) is because i−Nk
h (s, a) ≤ nk

h(s, a) ≤
Nk

h (s,a)
H(H+1) for Nk

h (s, a) ≥ i0
by (c) of Lemma E.1.

Lemma E.3. For any non-negative weight sequence {ωk,j,m
h }h,k,j,m and α ∈ [0, 1), it holds for any h ∈ [H] that:

∑
k,j,m,Nk

h>0

ωk,j,m
h

Nk
h (s

k,j,m
h , ak,j,mh )α

≤
∑
k,j,m

ωk,j,m
h

I
[
0 < Nk

h (s
k,j,m
h , ak,j,mh ) < M

]
Nk

h (s
k,j,m
h , ak,j,mh )α

+
2α

1− α
(SA∥ω∥∞,h)

α∥ω∥1−α
1,h

≤ 2MSA∥ω∥∞,h +
2α

1− α
(SA∥ω∥∞,h)

α∥ω∥1−α
1,h .

Here, ∥ω∥∞,h = max
k,j,m
{ωk,j,m

h } and ∥ω∥1,h =
∑

k,j,m ωk,j,m
h .
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Proof. We can decompose the summation into two terms∑
k,j,m,Nk

h>0

ωk,j,m
h

Nk
h (s

k,j,m
h , ak,j,mh )α

=
∑
k,j,m

ωk,j,m
h

Nk
h (s

k,j,m
h , ak,j,mh )α

(
I
[
0 < Nk

h (s
k,j,m
h , ak,j,mh ) < M

]
+ I
[
Nk

h (s
k,j,m
h , ak,j,mh ) ≥M

])
=
∑
s,a

∑
k,j,m

ωk,j,m
h

(Nk
h (s, a))

α
I[(sk,j,mh , ak,j,mh ) = (s, a)]

(
I
[
0 < Nk

h (s, a) < M
]
+ I
[
Nk

h (s, a) ≥M
])

.

Let k0(s, a) = max{k | 1 ≤ k ≤ K,Nk
h (s, a) < M}. Then for the first term, it holds that

∑
k,j,m

ωk,j,m
h

I
[
0 < Nk

h (s
k,j,m
h , ak,j,mh ) < M

]
Nk

h (s
k,j,m
h , ak,j,mh )α

=
∑
s,a

∑
k,j,m

ωk,j,m
h

(Nk
h (s, a))

α
I[(sk,j,mh , ak,j,mh ) = (s, a)]I

[
0 < Nk

h (s, a) < M
]

≤ ∥ω∥∞,h

∑
s,a

∑
k,j,m

I[(sk,j,mh , ak,j,mh ) = (s, a)]I
[
0 < Nk

h (s, a) < M
]

= ∥ω∥∞,h

∑
s,a

k0∑
k=1

∑
j,m

I
[
0 < Nk

h (s, a) < M
]

= ∥ω∥∞,h

∑
s,a

Nk0+1
h (s, a) ≤ 2MSA∥ω∥∞,h. (20)

The last inequality is because Nk0+1
h (s, a) = Nk0

h (s, a) + nk0

h (s, a) ≤ 2M by Nk0

h (s, a) < M . For the second term, let

ch(s, a) =
∑
k,j,m

ωk,j,m
h I[(sk,j,mh , ak,j,mh ) = (s, a)]I

[
Nk

h (s, a) ≥M
]
=

K∑
k=k0+1

∑
j,m

ωk,j,m
h I[(sk,j,mh , ak,j,mh ) = (s, a)].

Then we have
∑

s,a ch(s, a) ≤
∑

k,j,m ωk,j,m
h = ∥ω∥1,h. Given the term

∑
k,j,m

ωk,j,m
h

(Nk
h (s, a))

α
I[(sk,j,mh , ak,j,mh ) = (s, a)]I

[
Nk

h (s, a) ≥M
]
,

when the weights ωk,j,m
h concentrates on smallest round indices with largest values of 1

(Nk
h (s,a))α

, we can obtain the largest

value. Let k0(s, a) < k1 < k2 < ... < kt ≤ K be all round indices that satisfy nki

h (s, a) > 0 and let kt+1 = K + 1. Then
we have:

ch(s, a) ≤ ∥ω∥∞,h

K∑
k=k0+1

∑
j,m

I[(sk,j,mh , ak,j,mh ) = (s, a)] = ∥ω∥∞,h

t∑
i=1

nki

h (s, a).

Let

q = max

{
q | 0 ≤ q ≤ t, ∥ω∥∞,h

q∑
i=1

nki

h (s, a) ≤ ch(s, a)

}
,

and

d = ch(s, a)− ∥ω∥∞,h

q∑
i=1

nki

h (s, a).

Then for q ≤ t, we have the following inequality:∑
k,j,m

ωk,j,m
h

(Nk
h (s, a))

α
I[(sk,j,mh , ak,j,mh ) = (s, a)]I

[
Nk

h (s, a) ≥M
]
≤

q∑
i=1

∥ω∥∞,h
nki

h (s, a)

(Nki

h (s, a))α
+

d

(N
kq+1

h (s, a))α
. (21)
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Note that for any 0 < y < x and α ∈ [0, 1), we have:

x− y

xα
≤ 1

1− α
(x1−α − y1−α). (22)

Then, for any i ∈ [t], let x = Nki

h (s, a) and y = Nki+1
h (s, a), it holds that:

nki

h (s, a)

(Nki

h (s, a))α
≤ 2α

nki

h (s, a)

(Nki+1
h (s, a))α

≤ 2α

(
(Nki+1

h (s, a))1−α − (Nki

h (s, a))1−α

1− α

)
. (23)

Here the first inequality is because Nki+1
h (s, a) = Nki

h (s, a) + nki

h (s, a) ≤ 2Nki

h (s, a) by (c) of Lemma E.1. Summing up
Equation (23) from 1 to q, we know

q∑
i=1

nki

h (s, a)

(Nki

h (s, a))α
≤ 2α

q∑
i=1

(Nki+1
h (s, a))1−α − (Nki

h (s, a))1−α

1− α

≤ 2α
q∑

i=1

(N
ki+1

h (s, a))1−α − (Nki

h (s, a))1−α

1− α

= 2α

(
(N

kq+1

h (s, a))1−α

1− α
−

(Nk1

h (s, a))1−α

1− α

)

≤ 2α

(∑q
i=1 n

ki

h (s, a)
)1−α

1− α
. (24)

The second inequality is because ki + 1 ≤ ki+1 and thus Nki+1
h (s, a) ≤ N

ki+1

h (s, a). The last inequality is because for any
x > 1 and 0 ≤ α < 1, we have the following inequality

x1−α ≤ (x− 1)1−α + 1,

and we can let x = N
kq+1

h (s, a)/Nk1

h (s, a). Applying Equation (24) to Equation (21), for q < t, we have

∑
k,j,m

ωk,j,m
h

(Nk
h (s, a))

α
I[(sk,j,mh , ak,j,mh ) = (s, a)]I

[
Nk

h (s, a) ≥M
]

≤ 2α∥ω∥∞,h

(∑q
i=1 n

ki

h (s, a)
)1−α

1− α
+

d

(N
kq+1

h (s, a))α

≤ 2α

∥ω∥∞,h

(∑q
i=1 n

ki

h (s, a)
)1−α

1− α
+

d

(N
kq+1+1
h (s, a))α


= (2∥ω∥∞,h)

α


(
∥ω∥∞,h

∑q
i=1 n

ki

h (s, a)
)1−α

1− α
+

d

(N
kq+1+1
h (s, a)∥ω∥∞,h)α


≤ (2∥ω∥∞,h)

α


(
∥ω∥∞,h

∑q
i=1 n

ki

h (s, a)
)1−α

1− α
+

d

(ch(s, a))α


≤ (2∥ω∥∞,h)

α (ch(s, a))
1−α

1− α
. (25)

Here the second inequality is because N
kq+1+1
h (s, a) ≤ 2N

kq+1

h (s, a) for q < t. the second last inequality is because
ch(s, a) ≤ N

kq+1+1
h (s, a)∥ω∥∞,h by the definition of q. The last inequality is by Equation (22) with x = ch(s, a) and

y = ∥ω∥∞,h

∑q
i=1 n

ki

h (s, a).
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We can also prove the Equation (25) for q = t with d = 0. In this case, by applying Equation (24) to Equation (21), it holds
that

∑
k,j,m

ωk,j,m
h

(Nk
h (s, a))

α
I[(sk,j,mh , ak,j,mh ) = (s, a)]I

[
Nk

h (s, a) ≥M
]
≤ 2α∥ω∥∞,h

(∑q
i=1 n

ki

h (s, a)
)1−α

1− α

= (2∥ω∥∞,h)
α (ch(s, a))

1−α

1− α
.

Therefore, with Equation (25), we can conclude that

∑
s,a

∑
k,j,m

ωk,j,m
h

(Nk
h (s, a))

α
I[(sk,j,mh , ak,j,mh ) = (s, a)]I

[
Nk

h (s, a) ≥M
]
≤

2α∥ω∥α∞,h

1− α

∑
s,a

(ch(s, a))
1−α

≤ 2α

1− α
(SA)α∥ω∥α∞,h∥ω∥1−α

1,h . (26)

The last inequality is by Hölder’s inequality, as
∑

s,a ch(s, a)
1−α ≤ (SA)α∥ω∥1−α

1,h . Combining the results of Equation (20)
and Equation (26), we prove the following conclusion:

∑
k,j,m,Nk

h>0

ωk,j,m
h

Nk
h (s

k,j,m
h , ak,j,mh )α

≤ 2MSA∥ω∥∞,h +
2α

1− α
(SA)α∥ω∥α∞,h∥ω∥1−α

1,h .

F. Proofs of Theorem 3.1
F.1. Auxillary Lemmas

In this section, we provide the proof of the gap-dependent regret bound (Theorem 3.1) for both FedQ-Hoeffding and
Fed-Bernstein algorithms together. We first provide several lemmas describing the key properties of Q-estimates Qk

h(s, a).

Lemma F.1. (Lemma C.1 of Zheng et al. (2024)). Using ∀(s, a, h, k) as the simplified notation for ∀(s, a, h, k) ∈
S ×A× [H]× [K]. Then given any δ ∈ (0, 1), with probability at least 1− δ, for FedQ-Hoeffding algorithm (Algorithm 1
and Algorithm 2), the following event holds:

G1 =

0 ≤ (Qk
h −Q⋆

h)(s, a) ≤ η
Nk

h
0 H +

Nk
h∑

i=1

η̃
Nk

h
i (V ki

h+1 − V ∗
h+1)(s

ki,ji,mi

h+1 ) + βH
Nk

h
(s, a, h), ∀(s, a, h, k)

 .

Here, for some sufficiently large constant c > 0,

βH
Nk

h
(s, a, h) =

Nk
h∑

i=1

η
Nk

h
i c

√
H3ι

i
.

Lemma F.2. (Lemma E.1 of Zheng et al. (2024)). Given any δ ∈ (0, 1), with probability at least 1− δ, for FedQ-Bernstein
algorithm (Algorithm 3 and Algorithm 4), the following event holds:

G2 =

0 ≤ (Qk
h −Q⋆

h)(s, a) ≤ η
Nk

h
0 H +

Nk
h∑

i=1

η̃
Nk

h
i (V ki

h+1 − V ∗
h+1)(s

ki,ji,mi

h+1 ) + βB
Nk

h
(s, a, h), ∀(s, a, h, k)

 .

Here, βB
t (s, a, h) is the cumulative bonus defined in Equation (17).

Let X = (S,A, H,K, T, 1/δ). The notation f(X ) ≲ g(X ) means that there exists a universal constant C1 > 0 such that
f(X ) ≤ C1g(X ). Then we have the following lemma.
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Lemma F.3. For FedQ-Hoeffding algorithm (Algorithm 1 and Algorithm 2), under the event G1 in Lemma F.1, for any
non-negative weight sequence {ωk,j,m

h }h,k,j,m, it holds for any h ∈ [H] that:

∑
k,j,m

ωk,j,m
h

(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh ) ≲

√
H5SA∥ω∥∞,h∥ω∥1,hι+

H∑
h′=h

∑
k,j,m

ωk,j,m
h′ (h)Y k,j,m

h′ ,

where for any h ≤ h′ ≤ H − 1

ωk,j,m
h (h) := ωk,j,m

h ,

ωk,j,m
h′+1 (h) =

∑
k′,j′,m′

ωk′,j′,m′

h′ (h)I
[
Nk′

h′ (s
k′,j′,m′

h′ , ak
′,j′,m′

h′ ) ≥ i0

]Nk′
h′∑

i=1

η̃
Nk′

h′
i I

[
(ki, ji,mi) = (k, j,m)

]
,

with

Y k,j,m
h′ = η

Nk
h′

0 H +HI
[
0 < Nk

h′(s
k,j,m
h′ , ak,j,mh′ ) < i0

]
+

√
H3ι

Nk
h′
I
[
0 < Nk

h′(s
k,j,m
h′ , ak,j,mh′ ) < M

]
.

The same conclusion also holds for FedQ-Bernstein (Algorithm 3 and Algorithm 4) under the event G2 in Lemma F.2.

Proof. By Lemma F.1, under the event G1, we have the following relationship∑
k,j,m

ωk,j,m
h

(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh )

≤
∑
k,j,m

ωk,j,m
h η

Nk
h

0 H +
∑
k,j,m

ωk,j,m
h

Nk
h∑

i=1

η̃
Nk

h
i (V ki

h+1 − V ∗
h+1)(s

ki,ji,mi

h+1 ) +
∑
k,j,m

ωk,j,m
h βH

Nk
h
. (27)

For the third term of Equation (27), by (e) of Lemma E.2, we have

βH
Nk

h
(s, a, h) =

Nk
h∑

i=1

η
Nk

h
i c

√
H3ι

i
≤ 2c

√
H3ι

Nk
h

.

Then by Lemma E.3, it holds that∑
k,j,m

ωk,j,m
h βH

Nk
h
(sk,j,mh , ak,j,mh , h)

≲
√
H3ι

∑
k,j,m

ωk,j,m
h

√
1

Nk
h (s

k,j,m
h , ak,j,mh )

≲
∑
k,j,m

ωk,j,m
h

√
H3ι

Nk
h

I
[
0 < Nk

h < M
]
+
√

H3SA∥ω∥∞,h∥ω∥1,hι. (28)

Next, we will bound the second term of Equation (27). We can decompose the term into two parts as

∑
k,j,m

ωk,j,m
h

Nk
h∑

i=1

η̃
Nk

h
i (V ki

h+1 − V ∗
h+1)(s

ki,ji,mi

h+1 )

=
∑
k,j,m

ωk,j,m
h

Nk
h∑

i=1

η̃
Nk

h
i (V ki

h+1 − V ∗
h+1)(s

ki,ji,mi

h+1 )
(
I
[
0 < Nk

h (s
k,j,m
h , ak,j,mh ) < i0

]
+ I
[
Nk

h (s
k,j,m
h , ak,j,mh ) ≥ i0

])
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For the first part of the second term in Equation (27), we have

∑
k,j,m

ωk,j,m
h

Nk
h∑

i=1

η̃
Nk

h
i (V ki

h+1 − V ∗
h+1)(s

ki,ji,mi

h+1 )I
[
0 < Nk

h (s
k,j,m
h , ak,j,mh ) < i0

]

≤ H
∑
k,j,m

ωk,j,m
h I

[
0 < Nk

h (s
k,j,m
h , ak,j,mh ) < i0

] Nk
h∑

i=1

η̃
Nk

h
i

≤ H
∑
k,j,m

ωk,j,m
h I

[
0 < Nk

h (s
k,j,m
h , ak,j,mh ) < i0

]
(29)

Here, the second inequality is because
∑Nk

h
i=1 η̃

Nk
h

i ≤ 1 by (b) of Lemma E.2.

For the second part of the second term in Equation (27), we group the summations in a different way.

∑
k,j,m

ωk,j,m
h

Nk
h∑

i=1

η̃
Nk

h
i (V ki

h+1 − V ∗
h+1)(s

ki,ji,mi

h+1 )I
[
Nk

h (s
k,j,m
h , ak,j,mh ) ≥ i0

]

=
∑
k,j,m

Nk
h∑

i=1

ωk,j,m
h η̃

Nk
h

i (V ki

h+1 − V ∗
h+1)(s

ki,ji,mi

h+1 )I
[
Nk

h (s
k,j,m
h , ak,j,mh ) ≥ i0

] ∑
k′,j′,m′

I
[
(ki, ji,mi) = (k′, j′,m′)

]
=

∑
k′,j′,m′

ω̃k′,j′,m′

h

(
V k′

h+1 − V ∗
h+1

)
(sk

′,j′,m′

h+1 ), (30)

where

ω̃k′,j′,m′

h =
∑
k,j,m

I
[
Nk

h (s
k,j,m
h , ak,j,mh ) ≥ i0

]
ωk,j,m
h

Nk
h∑

i=1

η̃
Nk

h
i I

[
(ki, ji,mi) = (k′, j′,m′)

]
.

Let ∥ω̃∥∞,h = max
k,j,m
{ω̃k,j,m

h } and ∥ω̃∥1,h =
∑

k,j,m ω̃k,j,m
h . Since

∑Nk
h

i=1 η̃
Nk

h
i ≤ 1 by (b) of Lemma E.2, we have the

following property:

∥ω̃∥1,h =
∑

k′,m′,j′

ω̃k′,j′,m′

h ≤
∑
k,j,m

I
[
Nk

h (s
k,j,m
h , ak,j,mh ) ≥ i0

]
ωk,j,m
h ≤ ∥ω∥1,h. (31)

If we have proved that:
∥ω̃∥∞,h ≤ exp(3/H)∥ω∥∞,h, (32)

then combining the results of Equation (28), Equation (29) and Equation (30) together with Equation (27), we reach∑
k,j,m

ωk,j,m
h

(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh )

≲
∑

k′,j′,m′

ω̃k′,j′,m′

h

(
V k′

h+1 − V ∗
h+1

)
(sk

′,j′,m′

h+1 ) +
√
H3SA∥ω∥∞,h∥ω∥1,hι+

∑
k,j,m

ωk,j,m
h η

Nk
h

0 H

+
∑
k,j,m

ωk,j,m
h HI

[
Nk

h (s
k,j,m
h , ak,j,mh ) < i0

]
+
∑
k,j,m

ωk,j,m
h

√
H3ι

Nk
h

I
[
0 < Nk

h (s
k,j,m
h , ak,j,mh ) < M

]
≲

∑
k′,j′,m′

ω̃k′,j′,m′

h

(
Qk′

h+1 −Q∗
h+1

)
(sk

′,j′,m′

h+1 , ak
′,j′,m′

h+1 ) +
√
H3SA∥ω∥∞,h∥ω∥1,hι+

∑
k,j,m

ωk,j,m
h Y k,j,m

h . (33)

with ∥ω̃∥1,h ≤ ∥ω∥1,h and ∥ω̃∥∞,h ≤ exp(3/H)∥ω∥∞,h. Here the last inequality is because

V k′

h+1(s
k′,j′,m′

h+1 ) ≤ Qk′

h+1(s
k′,j′,m′

h+1 , ak
′,j′,m′

h+1 ) and V ∗
h+1(s

k′,j′,m′

h+1 ) ≥ Q∗
h+1(s

k′,j′,m′

h+1 , ak
′,j′,m′

h+1 ).
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With Equation (33), we develop a recursive relationship for the weighted sum of Qk
h −Q∗

h between step h and step h+ 1.
By recursions with regard to h, h+ 1, ...,H , we finish the proof for Algorithm 1 and Algorithm 2.

For Algorithm 3 and Algorithm 4, the only difference lies in the bonus term in Equation (27) and Equation (28). According to
Lemma F.2, under the event G2, we have the same relationship for FedQ-Bernstein algorithm as in Equation (27). Moreover,
note that βB

Nk
h

(s, a, h) ≲
√

H3ι
Nk

h

by Equation (17), it is easy to prove the same conclusion as Equation (28). Then the
following part remains the same. Now we only need to prove Equation (32).

Proof of Equation (32): Now we have

ω̃k′,j′,m′

h =
∑
k,j,m

I
[
Nk

h (s
k,j,m
h , ak,j,mh ) ≥ i0

]
ωk,j,m
h

Nk
h∑

i=1

η̃
Nk

h
i I

[
(ki, ji,mi) = (k′, j′,m′)

]

≤ ∥ω∥∞,h

∑
k,j,m

I
[
Nk

h (s
k,j,m
h , ak,j,mh ) ≥ i0

] Nk
h∑

i=1

η̃
Nk

h
i I

[
(ki, ji,mi) = (k′, j′,m′)

]
We only need to prove for any triple (k′, j′,m′) and any h ∈ [H],

∑
k,j,m

I
[
Nk

h (s
k,j,m
h , ak,j,mh ) ≥ i0

] Nk
h∑

i=1

η̃
Nk

h
i I

[
(ki, ji,mi) = (k′, j′,m′)

]
≤ exp(3/H). (34)

For i ∈ [Nk
h ], by definition of ki, ji and mi, for any given triple (k′, j′,m′),

I
[
(ki, ji,mi) = (k′, j′,m′)

]
= 1

if and only if
(sk,j,mh , ak,j,mh ) = (sk

′,j′,m′

h , ak
′,j′,m′

h ), k′ < k and i = i′(k′, j′,m′),

where i′(k′, j′,m′) is the global visiting number for (sk
′,j′,m′

h , ak
′,j′,m′

h ) at (k′,m′, j′). When there is no ambiguity, we
will use i′ for short. Therefore

∑
k,j,m

I
[
Nk

h (s
k,j,m
h , ak,j,mh ) ≥ i0

] Nk
h∑

i=1

η̃
Nk

h
i I

[
(ki, ji,mi) = (k′, j′,m′)

]

=

K∑
k=k′+1

∑
j,m

I
[
Nk

h (s
k′,j′,m′

h , ak
′,j′,m′

h ) ≥ i0, (s
k,j,m
h , ak,j,mh ) = (sk

′,j′,m′

h , ak
′,j′,m′

h )
] η̃

Nk
h

i′ . (35)

Let k′ < k1 < k2 < ... < kt ≤ K be all the round index such that n
kq

h (sk
′,j′,m′

h , ak
′,j′,m′

h ) > 0 and
N

kq

h (sk
′,j′,m′

h , ak
′,j′,m′

h ) ≥ i0 for any q ∈ [t], then we can simplify Equation (35):

∑
k,j,m

I
[
Nk

h (s
k,j,m
h , ak,j,mh ) ≥ i0

] Nk
h∑

i=1

η̃
Nk

h
i I

[
(ki, ji,mi) = (k′, j′,m′)

]

=

t∑
q=1

∑
j,m

I
[
(s

kq,j,m
h , a

kq,j,m
h ) = (sk

′,j′,m′

h , ak
′,j′,m′

h )
] η̃

N
kq
h

i′

≤
t∑

q=1

n
kq

h (sk
′,j′,m′

h , ak
′,j′,m′

h )η̃
N

kq
h

i′ (36)

For any q ∈ [t] and n ∈ [n
kq

h ], by (d) of Lemma E.2, the following relationship holds

η
N

kq
h

i′

η
N

kq
h +n

i′

≤ exp(1/H). (37)

31



Gap-Dependent Bounds for Federated Q-Learning

Combining Equation (37) with the property (c) of Lemma E.2, for any p ∈ [n
kq

h ], we have

η̃
N

kq
h

i′ ≤ exp(1/H)η
N

kq
h

i′ ≤ exp(2/H)η
N

kq
h +n

i′ ,

and thus

t∑
q=1

n
kq

h (sk
′,j′,m′

h , ak
′,j′,m′

h )η̃
N

kq
h

i′ ≤ exp(2/H)

t∑
q=1

n
kq
h∑

n=1

η
N

kq
h +n

i′

(I)

≤ exp(2/H)

∞∑
r=i′

ηri′ ≤ exp(3/H).

Here (I) is because k′ < k1 < k2 < ... < kt ≤ K and Nk1

h ≥ Nk′+1
h ≥ i′. The last inequality is by (a) of Lemma E.2.

Applying this inequality to Equation (36), we complete the proof of Equation (34), and consequently, Equation (32).

F.2. Proof of Lemma 4.1

Proof. The following proof holds for both FedQ-Hoeffding algorithm and FedQ-Bernstein algorithm.

Let N = ⌈log2(H/ϵ)⌉. For any i < N , k ∈ [K] and given h ∈ [H], let:

ωk,j,m
h,i = I

[
Qk

h(s
k,j,m
h , ak,j,mh )−Q∗

h(s
k,j,m
h , ak,j,mh ) ∈

[
2i−1ϵ, 2iϵ

)]
,

and
ωk,j,m
h,N = I

[
Qk

h(s
k,j,m
h , ak,j,mh )−Q∗

h(s
k,j,m
h , ak,j,mh ) ∈

[
2N−1ϵ,H

]]
.

Then
∥ω∥(i)∞,h = max

k,j,m
ωk,j,m
h,i ≤ 1, ∥ω∥(i)1,h =

∑
k,j,m

ωk,j,m
h,i .

Now for any i ∈ [N ], we have the following relationship:∑
k,j,m

ωk,j,m
h,i

(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh ) ≥ 2i−1ϵ∥ω∥(i)1,h. (38)

Combining the results of Lemma F.3 and Equation (38), we have:

2i−1ϵ∥ω∥(i)1,h ≲
√
H5SA∥ω∥(i)1,hι+

H∑
h′=h

∑
k,j,m

ωk,j,m
h′,i (h)Y k,j,m

h′ , (39)

where

ωk,j,m
h,i (h) := ωk,j,m

h,i ,

ωk,j,m
h′+1,i(h) =

∑
k′,j′,m′

ωk′,j′,m′

h′,i (h)I
[
Nk′

h′ (s
k′,j′,m′

h′ , ak
′,j′,m′

h′ ) ≥ i0

]Nk′
h′∑

i=1

η̃
Nk′

h′
i I

[
(ki, ji,mi) = (k, j,m)

]
, h ≤ h′ ≤ H − 1,

Therefore, for any triple (k, j,m) and h ≤ h′ ≤ H − 1, we have

N∑
i=1

ωk,j,m
h′+1,i(h) =

∑
k′,j′,m′

(
N∑
i=1

ωk′,j′,m′

h′,i (h)

)
I
[
Nk′

h′ (s
k′,j′,m′

h′ , ak
′,j′,m′

h′ ) ≥ i0

]Nk′
h′∑

i=1

η̃
Nk′

h′
i I

[
(ki, ji,mi) = (k, j,m)

]
Then by mathematical induction on h′ ∈ [h,H], it is straightforward to prove that for any j ∈ [K],

N∑
i=1

ωk,j,m
h′,i (h) ≤ (exp(3/H))

h′−h
< 27, (40)

given Equation (34) and the base case
∑N

i=1 ω
k,j,m
h,i (h) =

∑N
i=1 ω

k,j,m
h,i ≤ 1.
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Solving Equation (39), we can derive the following relationship:

∥ω∥(i)1,h ≲
H5SAι

4iϵ2
+

∑H
h′=h

∑
k,j,m ωk,j,m

h′,i (h)Y k,j,m
h′

2iϵ
. (41)

We claim that
H∑

h′=1

∑
k,j,m

Y k,j,m
h′ ≲ MH4SA+M

√
H5SA

√
ι, (42)

which will be proved later. Therefore, by

I
[(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh ) ≥ ϵ

]
=

N∑
i=1

ωk,j,m
h,i ,

we have

H∑
h=1

∑
k,j,m

I
[
Qk

h(s
k,j,m
h , ak,j,mh )−Q∗

h(s
k,j,m
h , ak,j,mh ) ≥ ϵ

]
≤

H∑
h=1

∑
k,j,m

N∑
i=1

ωk,j,m
h,i =

H∑
h=1

N∑
i=1

∥ω∥(i)1,h. (43)

By Equation (41), it holds that

N∑
i=1

∥ω∥(i)1,h ≲
N∑
i=1

H5SAι

4iϵ2
+

N∑
i=1

∑H
h′=h

∑
k,j,m ωk,j,m

h′,i (h)Y k,j,m
h′

2iϵ

≲
H5SAι

ϵ2
+

N∑
i=1

∑H
h′=1

∑
k,j,m Y k,j,m

h′

2iϵ

≲
H5SAι

ϵ2
+

MH4SA+M
√
H5SA

√
ι

ϵ
. (44)

Here, the second inequality is because 0 ≤ ωk,j,m
h′,i (h) < 27 by Equation (40) and Y k,j,m

h′ ≥ 0. The last inequality is because
of Equation (42). Combing the results of Equation (43) and Equation (44), we reach

H∑
h=1

∑
k,j,m

I
[
Qk

h(s
k,j,m
h , ak,j,mh )−Q∗

h(s
k,j,m
h , ak,j,mh ) ≥ ϵ

]
≲

H6SAι

ϵ2
+

MH5SA+M
√
H7SA

√
ι

ϵ
.

Now we finish the proof of the first conclusion. Further, we can prove the second conclusion by noting that

H∑
h=1

∑
k,j,m

(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh )I

[(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh ) ≥ ϵ

]

≤
H∑

h=1

N∑
i=1

2iϵ∥ω∥(i)1,h

≲
H∑

h=1

N∑
i=1

H5SAι

2iϵ
+

H∑
h=1

H∑
h′=h

∑
k,j,m

(
N∑
i=1

ωk,j,m
h′,i (h)

)
Y k,j,m
h′

≲
H6SAι

ϵ
+

H∑
h=1

H∑
h′=h

∑
k,j,m

Y k,j,m
h′

≲
H6SAι

ϵ
+MH5SA+M

√
H7SA

√
ι.

Here, the second inequality is by Equation (41). The second last inequality is because
∑N

i=1 ω
k,j,m
h′,i (h) < 27 by Equation (40)

and the last inequality is because of Equation (42). Next, we only need to prove Equation (42).
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Proof of Equation (42): By definition of Y k,m,j
h′ , we have the following equation∑

k,m,j

Y k,j,m
h′ =

∑
k,j,m

η
Nk

h′
0 H +H

∑
k,m,j

I
[
Nk

h′(s
k,j,m
h′ , ak,j,mh′ ) < i0

]
+
∑
k,m,j

√
H3ι

Nk
h′
I
[
0 < Nk

h′(s
k,j,m
h′ , ak,j,mh′ ) < M

]
.

(45)
For the first term of Equation (45), we have∑

k,j,m

η
Nk

h′
0 H ≤ H

∑
s,a

∑
k,j,m

I[Nk
h′(s, a) = 0, (sk,j,mh′ , ak,j,mh′ ) = (s, a)] ≤MHSA. (46)

The inequality here is because if we let k0(s, a) be the round index such that Nk0

h′ (s, a) = 0 and Nk0+1
h′ (s, a) > 0, then∑

k,j,m

I[Nk
h′(s, a) = 0, (sk,j,mh′ , ak,j,mh′ ) = (s, a)] =

∑
j,m

I[(sk0,j,m
h′ , ak0,j,m

h′ ) = (s, a)] = nk0

h′ (s, a) ≤M.

Let k1(s, a) = max{k | 1 ≤ k ≤ K,Nk
h′(s, a) < i0}. Then for the second term of Equation (45), it holds that∑

k,j,m

HI
[
0 < Nk

h′(s
k,j,m
h′ , ak,j,mh′ ) < i0

]
= H

∑
s,a

∑
k,j,m

I
[
0 < Nk

h′(s, a) < i0, (s
k,j,m
h′ , ak,j,mh′ ) = (s, a)

]

= H
∑
s,a

k1∑
k=1

∑
j,m

I
[
(sk,j,mh′ , ak,j,mh′ ) = (s, a)

]
= H

∑
s,a

Nk1+1
h′ (s, a)

= H
(∑

s,a

Nk1

h′ (s, a) +
∑
s,a

nk1

h′ (s, a)
)

≤ HSAi0 +MHSA ≤ 5MH3SA. (47)

Here, the first inequality is because Nk1

h′ (s, a) < i0 and then nk1

h′ (s, a) ≤M by (c) of Lemma E.1. Finally, for the last term
of Equation (45), by Equation (20) with α = 1/2 and ωk,j,m

h = 1, we have∑
k,m,j

√
H3ι

Nk
h′
I
[
0 < Nk

h′(s
k,j,m
h′ , ak,j,mh′ ) < M

]
≤ 2M

√
H3SA

√
ι. (48)

Applying Equation (46), Equation (47) and Equation (48) to Equation (45), we know
H∑

h′=1

∑
k,m,j

Y k,j,m
h′ ≲

H∑
h′=1

(MH3SA+M
√
H3SA

√
ι) = MH4SA+M

√
H5SA

√
ι.

F.3. Proof of Lemma 4.2

Proof. The following proof holds for both FedQ-Hoeffding algorithm and FedQ-Bernstein algorithm.

To begin, note that(
V ∗
1 − V πk

1

)
(sk,j,m1 ) = V ∗

1 (s
k,j,m
1 )−Q∗

1(s
k,j,m
1 , ak,j,m1 ) +

(
Q∗

1 −Qπk

1

)
(sk,j,m1 , ak,j,m1 )

= ∆1(s
k,j,m
1 , ak,j,m1 ) + E

[(
V ∗
2 − V πk

2

)
(sk,j,m2 ) | sk,j,m2 ∼ P1(· | sk,j,m1 , ak,j,m1 )

]
= E

[
∆1(s

k,j,m
1 , ak,j,m1 ) + ∆2(s

k,j,m
2 , ak,j,m2 ) | sk,j,m2 ∼ P1(· | sk,j,m1 , ak,j,m1 )

]
+ E

[(
Q∗

2 −Qπk

2

)
(sk,j,m2 , ak,j,m2 ) | sk,j,m2 ∼ P1(· | sk,j,m1 , ak,j,m1 )

]
= · · · = E

[
H∑

h=1

∆h

(
sk,j,mh , ak,j,mh

) ∣∣∣∣∣sk,j,mh+1 ∼ Ph(· | sk,j,mh , ak,j,mh ), h ∈ [H − 1]

]
.
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Here the second equation is by Bellman equation and Bellman optimality equation Equation (3). Therefore, we can get
another expression of the regret

E (Regret(T )) = E

∑
k,j,m

(
V ∗
1 − V πk

1

)
(sk,j,m1 )

 = E

∑
k,j,m

H∑
h=1

∆h(s
k,j,m
h , ak,j,mh )

 .

By event G1 in Lemma F.1 (or G2 in Lemma F.2 for FedQ-Bernstein algorithm),

Qk
h(s

k,j,m
h , ak,j,mh ) = max

a
{Qk

h(s
k,j,m
h , a)} ≥ max

a
{Q∗

h(s
k,j,m
h , a)} = V ∗

h (s
k,j,m
h ).

Thus, for any episode-step pair (k, h)

∆h(s
k,j,m
h , ak,j,mh ) = clip

[
V ∗
h (s

k,j,m
h )−Q∗

h(s
k,j,m
h , ak,j,mh ) | ∆min

]
≤ clip

[(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh ) | ∆min

]
.

which further implies

E (Regret(T )) ≤ E

 H∑
h=1

∑
k,j,m

clip
[(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh ) | ∆min

] .

F.4. Bounding the Gap-Dependent Regret

The following proof holds for both FedQ-Hoeffding algorithm and FedQ-Bernstein algorithm (substituting G1 by G2).

Let δ = 1/T1, we have:

E (Regret(T )) ≤ E

 H∑
h=1

∑
k,j,m

clip
[(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh ) | ∆min

] ∣∣∣∣G1
P(G1)

+ E

 H∑
h=1

∑
k,j,m

clip
[(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh ) | ∆min

] ∣∣∣∣Gc1
P(Gc1)

≤ O

(
H6SAι

∆min
+M

√
H7SA

√
ι+MH5SA

)
+

1

T1
·HT1

= O

(
H6SAι

∆min
+M

√
H7SA

√
ι+MH5SA

)
.

The last inequality is because under the event G1 , we have

H∑
h=1

∑
k,j,m

clip
[(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh ) | ∆min

]
≤ O

(
H6SAι

∆min
+MH5SA+M

√
H7SA

√
ι

)
.

by Lemma 4.1 with ϵ = ∆min and under the event Gc1,

H∑
h=1

∑
k,j,m

clip
[(
Qk

h −Q∗
h

)
(sk,j,mh , ak,j,mh ) | ∆min

]
≤ HT1.

Since ι = log( 2SAHT1

δ ) = log(2SAHT 2
1 ), by (e) of Lemma E.1, we have

ι ≤ 2 log(2SAHT1) ≤ 2 log
(
2SAH(2T̂ +MHSA)

)
≤ O

(
log(SAHT̂ ) + log(MHSA)

)
= O

(
log(SAT̂ )

)
. (49)
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The last inequality is because M,H ≤ T̂ . Therefore, applying Equation (49), we have

E (Regret(T )) ≤ O

(
H6SAι

∆min
+M

√
H7SA

√
ι+MH5SA

)
≤ O

(
H6SA log(MSAT )

∆min
+M

√
H7SA

√
log(MSAT ) +MH5SA

)
.

G. Proofs of Theorem 3.3
G.1. Probability Events

Lemma G.1. Let ι′ = log( 2MSAHT1

δ ) with δ ∈ (0, 1). Then we have the following conclusion:

(a) With probability at least 1− δ, the following event holds:

E1 =


H∑

h=1

∑
k,j,m

I
[
(Qk

h −Q⋆
h)(s

k,m,j
h , ak,m,j

h ) ≥ ∆min

]
≲ Cmin

 .

(b) For any given deterministic optimal policy π∗, with probability at least 1− δ, the following event holds:

E2 =


k′∑

k=1

∑
j,m

P
(
ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
≤ 3

k′∑
k=1

∑
j,m

I
[
ak,j,mh ̸= π∗

h(s
k,j,m
h )

]
+ 2ι, ∀h ∈ [H], k′ ∈ [K]

 .

(c) For any k′ ∈ [K], let Rk′ =
∑k′

k=1

∑
j,m 1, which is the total number of episodes in the first k′ rounds. Then with

probability at least 1− δ, the following event holds:

E3 =


∣∣∣∣∣∣

k′∑
k=1

∑
j,m

{
I
[
sk,j,mh = s

]
− P

(
sk,j,mh = s|πk

)}∣∣∣∣∣∣
≤

√√√√√24

 k′∑
k=1

∑
j,m

P
(
sk,j,mh = s|πk

) ι+ 9ι, ∀s′ ∈ S, h ∈ [H], k′ ∈ [K]

 .

(d) With probability at least 1− δ, the following event holds:

E4 =


∣∣∣∣∣∣
Jk∑
j=1

{
I
[
sk,j,mh = s

]
− P

(
sk,j,mh = s|πk

)}∣∣∣∣∣∣
≤

√√√√√24

 Jk∑
j=1

P
(
sk,j,mh = s|πk

) ι′ + 9ι′, ∀s ∈ S, h ∈ [H], k ∈ [K],m ∈ [M ]

 .

Here, under the full synchronization assumption, we can assume in k-th round, each agent will generate Jk episodes.
Note that given the round k and the policy πk, the probability P(sk,j,mh = s|πk) is independent of the index m, j. Let
Pk
s,h = P(sk,j,mh = s|πk), then E4 can be written as

E4 =


∣∣∣∣∣∣
Jk∑
j=1

I
[
sk,j,mh = s

]
− JkPk

s,h

∣∣∣∣∣∣ ≤
√

24JkPk
s,hι

′ + 9ι′, ∀s ∈ S, h ∈ [H], k ∈ [K],m ∈ [M ]

 .
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Proof. (a) It is proved by Lemma 4.1.

(b) We order all the episodes in the sequence following the rule: first by round index, second by episode index, and third by
agent index. Let n(k, j,m) denote the position of the j-th episode of the m-th agent in the k-th round of the sequence. The
filtration Fn(k,j,m) is the σ-field generated by all the random variables until the first n(k, j,m)− 1 episodes. When there is
no ambiguity, we will abbreviate n(k, j,m) as n and Fn(k,j,m) as Fn. Then we have:

P
(
ak,j,mh′ ̸= π∗

h′(s
k,j,m
h′ ) | πk

)
= P

(
ak,j,mh′ ̸= π∗

h′(s
k,j,m
h′ ) | Fn

)
.

According to Lemma D.2, with probability at least 1− δ/T 2
1 , the following inequality holds for any given h = h′ ∈ [H],

k′ = k′0 ∈ [T1

H ] and Rk′
0
=
∑k′

0

k=1

∑
j,m 1 ∈ [T1] :

k′
0∑

k=1

∑
j,m

P
(
ak,j,mh′ ̸= π∗

h′(s
k,j,m
h′ ) | πk

)
≤ 3I

(
ak,j,mh′ ̸= π∗

h′(s
k,j,m
h′ )

)
+ 2ι, ∀k′ ∈ [K].

Considering all the possible values of h = h′ ∈ [H], k′ = k′0 ∈ [T1

H ] and Rk′
0
=
∑k′

0

k=1

∑
j,m 1 ∈ [T1], with probability at

least 1− δ, it holds simultaneously for all h ∈ [H], k′ ∈ [T1

H ] and Rk′ =
∑k′

k=1

∑
j,m 1 ∈ [T1] that

k′∑
k=1

∑
j,m

P
(
ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
≤ 3

k′∑
k=1

∑
j,m

I
(
ak,j,mh ̸= π∗

h(s
k,j,m
h )

)
+ 2ι.

(c) According to Lemma D.1, with probability at least 1 − δ/ST 2
1 , the following inequality holds for any given s′ ∈ S,

h = h′ ∈ [H], k′ = k′0 ∈ [T1

H ] and Rk′
0
=
∑k′

0

k=1

∑
j,m 1 ∈ [T1] :∣∣∣∣∣∣

k′
0∑

k=1

∑
j,m

{
I
[
sk,j,mh′ = s′

]
− P

(
sk,j,mh′ = s′|πk

)}∣∣∣∣∣∣ ≤
√√√√√24

 k′
0∑

k=1

∑
j,m

P
(
sk,j,mh′ = s′|πk

) ι+ 9ι.

Here, we let σ2 = T1, m = ⌈log2(T1)⌉ in Lemma D.1 and

Wn =

k′
0∑

k=1

∑
j,m

P
(
sk,j,mh′ = s′|πk

)(
1− P

(
sk,j,mh′ = s′|πk

))
≤

k′
0∑

k=1

∑
j,m

P
(
sk,j,mh′ = s′|πk

)
.

Considering all the possible values of s = s′ ∈ S, h = h′ ∈ [H], k′ = k′0 ∈ [T1

H ], T̂ = T ′ ∈ [T1], with probability at least
1− δ, it holds simultaneously for all s ∈ S, h ∈ [H], k′ ∈ [T1

H ] and T̂ ∈ [T1] that∣∣∣∣∣∣
k′∑

k=1

∑
j,m

{
I
[
sk,j,mh = s

]
− P

(
sk,j,mh = s|πk

)}∣∣∣∣∣∣ ≤
√√√√√24

 k′∑
k=1

∑
j,m

P
(
sk,j,mh = s|πk

) ι+ 9ι.

(d) The proof is similar to (c) by considering all the combinations of (s, h,m, k,Rk) ∈ S × [H]× [M ]× [T1

H ]× [T1].

G.2. Proof of Lemma 5.1

Proof. The event G1 ∩ E1 ∩ E2 holds with probability at least 1 − 3δ. Next we will prove Lemma 5.1 under the event
G1 ∩ E1 ∩ E2. (For FedQ-Bernstein algorithm, we will prove Lemma 5.1 under the event G2 ∩ E1 ∩ E2.)

For any h ∈ [H], let set Dh be all triples of (s, a, h) such that a /∈ A⋆
h(s), that is:

Dh = {(s, a, h)|a /∈ A⋆
h(s)}.
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We also let the set D =
⋃H

h=1 Dh and the set

Dopt = {(s, a, h)|a ∈ A⋆
h(s)}.

Then we have |D|+ |Dopt| = SAH .

If for given (h, k, j,m), (sk,m,j
h , ak,m,j

h , h) ∈ Dh, we have ∆h(s
k,m,j
h , ak,m,j

h ) ≥ ∆min. By event G1 in Lemma F.1 (or G2
in Lemma F.2 for FedQ-Bernstein algorithm),

Qk
h(s

k,j,m
h , ak,j,mh ) = max

a
{Qk

h(s
k,j,m
h , a)} ≥ max

a
{Q∗

h(s
k,j,m
h , a)} = V ∗

h (s
k,j,m
h ).

Therefore, it holds that

Qk
h(s

k,m,j
h , ak,m,j

h )−Q⋆
h(s

k,m,j
h , ak,m,j

h ) ≥ ∆h(s
k,m,j
h , ak,m,j

h ) ≥ ∆min.

Then we have

I
[
ak,j,mh /∈ A∗

h(s
k,j,m
h )

]
= I

[
(sk,m,j

h , ak,m,j
h , h) ∈ Dh

]
≤ I

[
Qk

h(s
k,m,j
h , ak,m,j

h )−Q⋆
h(s

k,m,j
h , ak,m,j

h ) ≥ ∆min

]
,

and thus by the event E1 in Lemma G.1, it holds that

H∑
h=1

∑
k,j,m

I
[
ak,j,mh /∈ A∗

h(s
k,j,m
h )

]
≤

H∑
h=1

∑
k,j,m

I
[
Qk

h(s
k,m,j
h , ak,m,j

h )−Q⋆
h(s

k,m,j
h , ak,m,j

h ) ≥ ∆min

]
≤ Cmin. (50)

Next we prove the second conclusion. Let S0h = {s | P∗
s,h = 0}. For any given deterministic optimal policy π∗, we have

I
[
ak,j,mh ̸= π∗

h(s
k,j,m
h )

]
= I

[
ak,j,mh ̸= π∗

h(s
k,j,m
h ), sk,j,mh /∈ S0h

]
+ I
[
ak,j,mh ̸= π∗

h(s
k,j,m
h ), sk,j,mh ∈ S0h

]
. (51)

For sk,j,mh /∈ S0h, we have P∗
sk,j,m
h ,h

> 0 and |A∗
h(s

k,j,m
h )| = 1 by condition (b) of Definition 3.2. This means π∗

h(s
k,j,m
h ) is

the only element in A∗
h(s

k,j,m
h ). Therefore, we have

I
[
ak,j,mh ̸= π∗

h(s
k,j,m
h ), sk,j,mh /∈ S0h

]
≤ I

[
ak,j,mh /∈ A∗

h(s
k,j,m
h )

]
. (52)

For the second term in Equation (51), if h = 1, because of the randomness of the selection of sk,j,m1 , we have P(s1 =

sk,j,m1 |π∗) = P(s1 = sk,j,m1 ) > 0 and then

I
[
ak,j,m1 ̸= π∗

1(s
k,j,m
1 ), sk,j,m1 ∈ S01

]
= 0. (53)

To bound the second term in Equation (51) for h > 1, we first prove a lemma.

Lemma G.2. For any h ∈ [H] and the trajectory {(sk,j,mh , ak,j,mh , rk,j,mh )}Hh=1 in j-th episode of agent m in round k, if
P∗
sk,j,m
h ,h

> 0 and ak,j,mh is the unique optimal action for state sk,j,mh at step h, then P∗
sk,j,m
h+1 ,h+1

> 0

Proof. For any given optimal policy π∗, it holds that

P∗
sk,j,m
h+1 ,h+1

= P
(
sh+1 = sk,j,mh+1 | π

∗
)

≥ P
(
sh+1 = sk,j,mh+1 | sh = sk,j,mh , ah = ak,j,mh , π∗

)
× P

(
sh = sk,j,mh , ah = ak,j,mh | π∗

)
(I)
= P

(
sh+1 = sk,j,mh+1 | sh = sk,j,mh , ah = ak,j,mh

)
× P∗

sk,j,m
h ,h

> 0

The equation (I) is by Markov property and P(sh = sk,j,mh , ah = ak,j,mh | π∗) = P(sh = sk,j,mh | π∗) = P∗
sk,j,m
h ,h

.
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For every initial state sk,j,m1 , we know P∗
sk,j,m
1 ,1

> 0. Therefore, if for h > 1, P∗
sk,j,m
h ,h

= 0 and sk,j,mh ∈ S0h, by

Lemma G.2, we know there exists h′ < h such that ak,m,j
h′ is not an optimal action for state sk,m,j

h′ at step h′, otherwise we
have P∗

sk,j,m
h ,h

> 0. Therefore, for the second term in Equation (51), we have

I
[
ak,j,mh ̸= π∗

h(s
k,j,m
h ), sk,j,mh ∈ S0h

]
≤ I

[
sk,j,mh ∈ S0h

]
≤

h−1∑
h′=1

I
[
ak,j,mh′ /∈ A∗

h′(s
k,j,m
h′ )

]
. (54)

By combining the results of Equation (52), Equation (53) and Equation (54), we can bound the Equation (51) as follows:

I
[
ak,j,mh ̸= π∗

h(s
k,j,m
h )

]
≤

h∑
h′=1

I
[
ak,j,mh′ /∈ A∗

h′(s
k,j,m
h′ )

]
≤

H∑
h′=1

I
[
ak,j,mh′ /∈ A∗

h′(s
k,j,m
h′ )

]
.

Therefore, using the first conclusion, Equation (50), we reach

∑
k,j,m

I
[
ak,j,mh ̸= π∗

h(s
k,j,m
h )

]
≤
∑
k,j,m

H∑
h′=1

I
[
ak,j,mh′ /∈ A∗

h′(s
k,j,m
h′ )

]
≤ Cmin

By combining this inequality with the event E2 in Lemma G.1, we can conclude that for any h ∈ [H] and k′ ∈ [K],

k′∑
k=1

∑
j,m

P
(
ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
≤ 4Cmin.

G.3. Proof of Lemma 5.2

Proof. The event G1 ∩ (
⋂4

i=1 Ei) holds with probability at least 1 − 5δ. Next we will prove Lemma 5.1 under the event
G1 ∩ (

⋂4
i=1 Ei). (For FedQ-Bernstein algorithm, we will prove Lemma 5.1 under the event G2 ∩ (

⋂4
i=1 Ei).)

Under the event G1 ∩ (
⋂4

i=1 Ei) (or G2 ∩ (
⋂4

i=1 Ei)), we have already proved the Lemma 5.1 in Appendix G.2.

Because Nk
h (s0, a0) > i1 + i2 > Cmin, by Lemma 5.1, we know a0 ∈ A∗

h(s0). Next we prove the second conclusion.

Using the law of total probability, for any 0 ≤ h ≤ H − 1, s ∈ S and any given deterministic optimal policy π∗, we have
the following relationship

P
(
sk,j,mh+1 = s | πk

)
=
∑
s′

P
(
sk,j,mh+1 = s|sk,j,mh = s′, ak,j,mh = π∗

h(s
′), πk

)
P
(
sk,j,mh = s′, ak,j,mh = π∗

h(s
′) | πk

)
+ P

(
sk,j,mh+1 = s, ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
=
∑
s′

Pk,j,m
s,s′,h · P

(
sk,j,mh = s′, ak,j,mh = π∗

h(s
′) | πk

)
+ P

(
sk,j,mh+1 = s, ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
,

(55)

where

Pk,j,m
s,s′,h = P

(
sk,j,mh+1 = s|sk,j,mh = s′, ak,j,mh = π∗

h(s
′), πk

)
= P

(
sk,j,mh+1 = s|sk,j,mh = s′, ak,j,mh = π∗

h(s
′)
)
.

The last equality is because of Markov property. We also have

P
(
sk,j,mh+1 = s|π∗

)
=
∑
s′

P
(
sk,j,mh+1 = s|sk,j,mh = s′, π∗

)
P
(
sk,j,mh = s′|π∗

)
=
∑
s′

Pk,j,m
s,s′,h · P

(
sk,j,mh = s′|π∗

)
, (56)

where the last equation is because

P
(
sk,j,mh+1 = s|sk,j,mh = s′, π∗

)
= P

(
sk,j,mh+1 = s|sk,j,mh = s′, ak,j,mh = π∗

h(s
′)
)
= Pk,j,m

s,s′,h.
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Combining the results of Equation (55) and Equation (56), then it holds

P
(
sk,j,mh+1 = s|πk

)
− P

(
sk,j,mh+1 = s|π∗

)
=
∑
s′

Pk,j,m
s,s′,h

[
P
(
sk,j,mh = s′, ak,j,mh = π∗

h(s
′)|πk

)
− P

(
sk,j,mh = s′|π∗

)]
+ P

(
sk,j,mh+1 = s, ak,j,mh ̸= π∗

h(s
k,j,m
h )|πk

)
=
∑
s′

Pk,j,m
s,s′,h

[
P
(
sk,j,mh = s′ | πk

)
− P

(
sk,j,mh = s′|π∗

)]
−
∑
s′

Pk,j,m
s,s′,h · P

(
sk,j,mh = s′, ak,j,mh ̸= π∗

h(s
′) | πk

)
+ P

(
sk,j,mh+1 = s, ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
.

Therefore for any 0 ≤ h ≤ H − 1 and s ∈ S, by the triangle inequality, it holds that∣∣∣P(sk,j,mh+1 = s | πk
)
− P

(
sk,j,mh+1 = s|π∗

)∣∣∣ ≤∑
s′

Pk,j,m
s,s′,h

∣∣∣P(sk,j,mh = s′ | πk
)
− P

(
sk,j,mh = s′|π∗

)∣∣∣
+
∑
s′

Pk,j,m
s,s′,h · P

(
sk,j,mh = s′, ak,j,mh ̸= π∗

h(s
′) | πk

)
+ P

(
sk,j,mh+1 = s, ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
. (57)

Summing Equation (57) for all s ∈ S, since
∑

s Ps,s′,h = 1, then we can derive the following recursive relationship:∑
s

∣∣∣P(sk,j,mh+1 = s | πk
)
− P

(
sk,j,mh+1 = s|π∗

)∣∣∣
≤
∑
s′

∣∣∣P(sk,j,mh = s′ | πk
)
− P

(
sk,j,mh = s′|π∗

)∣∣∣+ 2P
(
ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
.

Since P(sk,j,m1 = s | πk)− P(sk,j,m1 = s|π∗) = 0, by recursion, for any h′ ∈ [H] we can get the following conclusion

∑
s

∣∣∣P(sk,j,mh′ = s | πk
)
− P

(
sk,j,mh′ = s|π∗

)∣∣∣ ≤ 2

h′−1∑
h=1

P
(
ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
≤ 2

H∑
h=1

P
(
ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
. (58)

Applying Equation (10) in Lemma 5.1 to Equation (58), then for any h ∈ [H] and k′ ∈ [K], it holds that:

∑
s

k′∑
k=1

∑
j,m

∣∣∣P(sk,j,mh = s | πk
)
− P

(
sk,j,mh = s|π∗

)∣∣∣ ≤ 2

H∑
h=1

k′∑
k=1

∑
j,m

P
(
ak,j,mh ̸= π∗

h(s
k,j,m
h ) | πk

)
≤ 8HCmin.

Based on the property (b) of Definition 3.2, we have P(sk,j,mh = s|π∗) = P∗
s,h, then for any s ∈ S, h ∈ [H] and k′ ∈ [K],

we also have∣∣∣∣∣∣
k′∑

k=1

∑
j,m

P
(
sk,j,mh = s | πk

)
−Rk′P∗

s,h

∣∣∣∣∣∣ ≤
k′∑

k=1

∑
j,m

∣∣∣P(sk,j,mh = s | πk
)
− P

(
sk,j,mh = s|π∗

)∣∣∣ ≤ 8HCmin. (59)

and thus by the triangle inequality

k′∑
k=1

∑
j,m

P
(
sk,j,mh = s | πk

)
≤ Rk′P∗

s,h + 8HCmin. (60)

Applying Equation (60) to E3 in Lemma G.1, for any s ∈ S, h ∈ [H] and k′ ∈ [K], we have∣∣∣∣∣∣
k′∑

k=1

∑
j,m

{
I
[
sk,j,mh = s

]
− P

(
sk,j,mh = s|πk

)}∣∣∣∣∣∣ ≤
√
24
(
Rk′P∗

s,h + 8HCmin

)
ι+ 9ι

≤ 5
√
Rk′P∗

s,hι+ 23HCmin. (61)
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Combining the results of Equation (59) and Equation (61), by triangle inequality, we can derive the following relationship
for any s ∈ S, h ∈ [H] and k′ ∈ [K]∣∣∣∣∣∣

k′∑
k=1

∑
j,m

I
[
sk,j,mh = s

]
−Rk′P∗

s,h

∣∣∣∣∣∣ ≤ 5
√
Rk′P∗

s,hι+ 31HCmin. (62)

Then by triangle inequality, it holds for any s ∈ S, h ∈ [H] and k′ ∈ [K] that∣∣∣∣∣∣
k′∑

k=1

∑
j,m

I
[
sk,j,mh = s, ak,j,mh ∈ A∗

h(s)
]
−Rk′P∗

s,h

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
k′∑

k=1

∑
j,m

I
[
sk,j,mh = s

]
−Rk′P∗

s,h

∣∣∣∣∣∣+
k′∑

k=1

∑
j,m

I
[
sk,j,mh = s, ak,j,mh /∈ A∗

h(s)
]

≤ 5
√
Rk′P∗

s,hι+ 32HCmin.

Here, the last inequality is by Equation (62) and also the fact that

k′∑
k=1

∑
j,m

I
[
sk,j,mh = s, ak,j,mh /∈ A∗

h(s)
]
≤

k′∑
k=1

∑
j,m

I
[
ak,j,mh /∈ A∗

h(s
k,j,m
h )

]
≤ Cmin

due to Equation (9) in Lemma 5.1.

G.4. Proof of Lemma 5.3

Proof. The event E4 holds with probability at least 1− δ. Next we will prove Lemma 5.3 under the event E4.

If the trigger condition is met by the triple (s, a, h) in round k, then we have a = πk
h(s). For such (s, a, h), by E4 in

Lemma G.1, it holds for any s ∈ S, h ∈ [H], k ∈ [K] and m ∈ [M ] that

Jk∑
j=1

I
[
sk,j,mh = s, ak,j,mh = a

]
=

Jk∑
j=1

I
[
sk,j,mh = s

]
∈
[
JkPk

s,h −
√
24JkPk

s,hι
′ − 9ι′, JkPk

s,h +
√
24JkPk

s,hι
′ + 9ι′

]
.

(63)

Since (s, a, h) satisfies the trigger condition in round k, there exists an agent m0 such that nk,m0

h (s, a) = ckh(s, a). Then we
reach

JkPk
s,h +

√
24JkPk

s,hι
′ + 9ι′

(I)

≥ Nk
h (s, a)

MH(H + 1)
− 1

△
= CN > 199ι′.

The last inequality is because Nk
h (s, a) > i1. Solving the inequality (I), we can get the following relationship√

JkPk
s,h ≥

√
CN − 3ι′ −

√
6ι′.

Then by Equation (63), for any other agent m,

Jk∑
j=1

I
[
sk,j,mh = s, ak,j,mh = a

]
≥ JkPk

s,h −
√
24JkPk

s,hι
′ − 9ι′ =

(√
JkPk

s,h −
√
6ι′
)2
− 15ι′

≥
(√

CN − 3ι′ − 2
√
6ι′
)2
− 15ι′ ≥ CN + 1

3
.

The last inequality is because CN > 199ι′. Therefore, we have

nk
h(s, a) =

M∑
m=1

nm,k
h (s, a) =

M∑
m=1

Jk∑
j=1

I
[
sk,j,mh = s, ak,j,mh = a

]
≥ M(CN + 1)

3
=

Nk
h (s, a)

3H(H + 1)
,
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and thus

Nk+1
h (s, a) = Nk

h (s, a) + nk
h(s, a) ≥

(
1 +

1

3H(H + 1)

)
Nk

h (s, a).

G.5. Proof of Lemma 5.4

Proof. The event G1 ∩ (
⋂4

i=1 Ei) holds with probability at least 1 − 5δ. Next we will prove Lemma 5.4 under the event
G1 ∩ (

⋂4
i=1 Ei). (For FedQ-Bernstein algorithm, we will prove Lemma 5.4 under the event G2 ∩ (

⋂4
i=1 Ei).)

Under the event G1 ∩ (
⋂4

i=1 Ei) (or G2 ∩ (
⋂4

i=1 Ei)), we have already proved the Lemma 5.1, Lemma 5.2 and Lemma 5.3.

For P ∗
s,h > 0, the optimal action is unique. Then for any (s, a, h) such that a = π∗

h(s) and P ∗
s,h > 0, we can simplify the

results of Lemma 5.2 to the following equation

Rk′P∗
s,h − 5

√
Rk′P∗

s,hι− 32HCmin ≤ Nk′+1
h (s, a) ≤ Rk′P∗

s,h + 5
√
Rk′P∗

s,hι+ 32HCmin. (64)

By Equation (64), for any s′ ∈ S and h′ ∈ [H] such that P∗
s′,h′ > 0, we have

RkP∗
s′,h′ − 5

√
RkP∗

s′,h′ι− 32HCmin

Rk−1P∗
s′,h′ + 5

√
Rk−1P∗

s′,h′ι+ 32HCmin

≤
Nk+1

h′ (s′, π∗
h′(s′))

Nk
h′(s′, π∗

h′(s′))
.

To prove the second conclusion, we only need to prove that, for any s′ ∈ S and h′ ∈ [H] such that P∗
s′,h′ > 0,

RkP∗
s′,h′ − 5

√
RkP∗

s′,h′ι− 32HCmin

Rk−1P∗
s′,h′ + 5

√
Rk−1P∗

s′,h′ι+ 32HCmin

≥ 1 +
1

6H(H + 1)
. (65)

Next, we will prove the Equation (65). For the triple (s0, a0, h0), by Equation (64), we know that

6500H3Cmin

Cst
< Nk

h0
(s0, a0) ≤ Rk−1P∗

s0,h0
+ 5
√

Rk−1P∗
s0,h0

ι+ 32HCmin.

Solving the inequality, we have

√
Rk−1P∗

s0,h0
>

√
6500H3Cmin

Cst
− 32HCmin +

25ι

4
− 5
√
ι

2

(I)
>

√
6468H3Cmin

Cst
−

√
H3Cmin

Cst

> 79

√
H3Cmin

Cst
> 79

√
H3Cmin. (66)

and then √
RkP∗

s0,h0
>
√

Rk−1P∗
s0,h0

> 79
√
H3Cmin. (67)

Here, the inequality (I) is because 25ι
4 < H3Cmin for H ≥ 2 and 0 < Cst ≤ 1. Therefore, for any s′ ∈ S and h′ ∈ [H]

such that P∗
s′,h′ , we have

√
Rk−1P∗

s′,h′ =
√
Rk−1P∗

s0,h0
·

√
P∗
s′,h′

P∗
s0,h0

≥
√
Rk−1P∗

s0,h0
·
√
Cst = 79

√
H3Cmin, (68)
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and thus √
RkP∗

s′,h′ >
√
Rk−1P∗

s′,h′ > 79
√
H3Cmin. (69)

For X > 6241H3Cmin = 792H3Cmin, note that

5
√
Xι+ 32HCmin ≤

√
CminX

H
+ 32HCmin ≤

X

56H2
. (70)

Here, the first inequality is because 5
√
ι <

√
Cmin
H for H ≥ 2. Therefore, based on Equation (66), Equation (67),

Equation (68) and Equation (69), we can apply Equation (70) for Rk−1P∗
s0,h

and RkP∗
s0,h

, Rk−1P∗
s′,h and RkP∗

s′,h

respectively:

5
√
Rk−1P∗

s0,h0
ι+ 32HCmin ≤

Rk−1P∗
s0,h0

56H2
, 5
√
RkP∗

s0,h0
ι+ 32HCmin ≤

RkP∗
s0,h0

56H2
. (71)

and

5
√

Rk−1P∗
s′,h′ι+ 32HCmin ≤

Rk−1P∗
s′,h′

56H2
, 5
√
RkP∗

s′,h′ι+ 32HCmin ≤
RkP∗

s′,h′

56H2
(72)

Since Nk
h (s0, a0) > i1 and the trigger condition is satisfied by (s, a, h) in round k, by Lemma 5.3, we have:

Nk+1
h0

(s0, a0)

Nk
h0
(s0, a0)

≥ 1 +
1

3H(H + 1)
.

Together with Equation (64), it holds that

RkP∗
s0,h0

+ 5
√

RkP∗
s0,h0

ι+ 32HCmin

Rk−1P∗
s0,h0

− 5
√
Rk−1P∗

s0,h0
ι− 32HCmin

≥
Nk+1

h0
(s0, a0)

Nk
h0
(s0, a0)

≥ 1 +
1

3H(H + 1)
. (73)

Applying Equation (71) to Equation (73), we have

1 +
1

3H(H + 1)
≤

RkP∗
s0,h0

+ 5
√
RkP∗

s0,h0
ι+ 32HCmin

Rk−1P∗
s0,h0

− 5
√
Rk−1P∗

s0,h0
ι− 32HCmin

≤
(1 + 1

56H2 )Rk

(1− 1
56H2 )Rk−1

.

Therefore, we know

Rk

Rk−1
≥
(
1 +

1

3H(H + 1)

)
1− 1

56H2

1 + 1
56H2

. (74)

Using Equation (72), we have

RkP∗
s′,h′ − 5

√
RkP∗

s′,h′ι− 32HCmin

Rk−1P∗
s′,h′ + 5

√
Rk−1P∗

s′,h′ι+ 32HCmin

≥
(1− 1

56H2 )Rk

(1 + 1
56H2 )Rk−1

≥
(
1 +

1

3H(H + 1)

)(
1− 1

56H2

1 + 1
56H2

)2

. (75)

The last inequality is by Equation (74). Let

c =
1−

√
6H2+6H+1
6H2+6H+2

1 +
√

6H2+6H+1
6H2+6H+2

.

Then we have

c =
1

6H2 + 6H + 2
·

 1

1 +
√

6H2+6H+1
6H2+6H+2

2

>
1

4(6H2 + 6H + 2)
≥ 1

56H2
,
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and thus
1 + 1

6H(H+1)

1 + 1
3H(H+1)

=
6H2 + 6H + 1

6H2 + 6H + 2
=

(
1− c

1 + c

)2

≤
(
1− 1

56H2

1 + 1
56H2

)2

.

Applying this inequality to Equation (75) completes the proof of Equation (65), thereby proving the second conclusion.

G.6. Details of Final Discussion

The event G1 ∩ (
⋂4

i=1 Ei) (or G2 ∩ (
⋂4

i=1 Ei)) holds with probability at least 1− 5δ. Under the event G1 ∩ (
⋂4

i=1 Ei) (or
G2 ∩ (

⋂4
i=1 Ei)), we have proved Lemma 5.3 and Lemma 5.4. Next, we will discuss the number of communication rounds

and consider four different situations:

1. In round k, the trigger condition is satisfied by (s, a, h) when Nk
h (s, a) ≤ i1. We will refer to this as a Type-I trigger.

For each time the trigger condition is met for (s, a, h) , the number of visits to (s, a, h) increases by at least
1/(2MH(H + 1)) times. Specifically, when the trigger condition is first satisfied, the visit number increases from 0 to
at least 1. Therefore, the maximum number of Type-I triggers for each triple (s, a, h), denoted t2(s, a, h), satisfies(

1 +
1

2MH(H + 1)

)t1(s,a,h)−2

≤ i1.

Therefore, we have

t1(s, a, h) ≤
log(i1)

log(1 + 1
2MH(H+1) )

+ 2 = O(MH2 log(i1)).

and thus the number of rounds with Type-I triggers is bounded by∑
s,a,h

t1(s, a, h) ≤ O
(
MH3SA log (i1)

)
. (76)

2. In round k, the triple (s, a, h) satisfies the trigger condition when i1 < Nk
h (s, a) < i1 + i2. We will refer to this as a

Type-II trigger if a /∈ A∗
h(s) or a ∈ A∗

h(s) and P∗
s,h = 0, and as a Type-III trigger if a ∈ A∗

h(s) and P∗
s,h > 0.

By Lemma 5.3, for each time the trigger condition is satisfied by (s, a, h) , the number of visits to (s, a, h) increases
by at least 1/3H(H + 1) times.

For (s, a, h) satisfying the type-II trigger, by Equation (9) in Lemma 5.1 and Lemma 5.2, we know that the maximum
visit number to (s, a, h) is 32HCmin. Therefore, the maximum number of Type-II triggers for each triple (s, π∗

h(s), h),
denoted t2(s, a, h), satisfies(

1 +
1

3H(H + 1)

)t2(s,a,h)−1

≤ 32HCmin

i1
≤ O

(
MH7SAι

MH2ι′∆2
min

)
= O

(
H5SA

∆2
min

)
.

Therefore, we have

t2(s, a, h) ≤
log
(

H5SA
∆2

min

)
log
(
1 + 1

3H(H+1)

) + 1 = O

(
H2 log

(
H5SA

∆2
min

))
.

and thus the number of rounds with Type-II triggers is bounded by∑
s,a,h

t2(s, a, h) ≤ O

(
H3SA log

(
H5SA

∆2
min

))
. (77)

3. By condition (b) of Definition 3.2, we know a = π∗
h(s) for a Type-III trigger. Therefore, the maximum number of

Type-III triggers for each triple (s, π∗
h(s), h), denoted t3(s, π

∗
h(s), h), satisfies(

1 +
1

3H(H + 1)

)t3(s,π
∗
h(s),h)−1

≤ i1 + i2
i1

≤ i2.
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Therefore, we have

t3(s, π
∗
h(s), h) ≤

log(i2)

log
(
1 + 1

3H(H+1)

) + 1 = O(H2 log(i2)).

Because we only have HS triples of (s, π∗
h(s), h), the number of rounds with Type-III triggers is bounded by∑

s,P∗
s,h>0

t3(s, π
∗
h(s), h) ≤ O

(
H3S log (i2)

)
. (78)

4. The trigger condition is satisfied by (s, a, h) in round k when Nk
h (s, a) > i1 + i2.

By Lemma 5.3, in this case, for each time the trigger condition is satisfied by (s, a, h) , we have a ∈ A∗
h(s). we

will first prove the trigger condition cannot be satisfied by (s, a, h) in round k when a ∈ A∗
h(s), P∗

s,h = 0 and
Nk

h (s, a) > i1 + i2.

Let S0 = {(s, a, h) | a ∈ A∗
h(s), P∗

s,h = 0}. By Lemma 5.2, we know for (s, a, h) ∈ S0, NK+1
h (s, a) ≤ 32HCmin <

i1 + i2. However, when the trigger condition is satisfied by (s, a, h) in round k, we have Nk
h (s, a) > i1 + i2, which

is contradicts the fact that NK+1
h (s, a) < i1 + i2. Therefore the triple (s, a, h) satisfies that P∗

s,h > 0. Then by
Lemma 5.4, for any s′ ∈ S and h′ ∈ [H] such that P∗

s′,h′ > 0, it holds that

Nk+1
h′ (s′, π∗

h′(s′)) ≥
(
1 +

1

6H(H + 1)

)
Nk

h′(s′, π∗
h′(s′)),

indicating that the number of visits to (s′, π∗
h(s

′), h′) with P∗
s′,h′ > 0 simultaneously increases by at least 1/6H(H+1)

times. We refer to this type of trigger as Type-IV trigger. Therefore, the maximum number of Type-IV triggers, denoted
t4, satisfies (

1 +
1

6H(H + 1)

)t4

≤ T̂

i1 + i2
≤ T

HSA
.

The last inequality is because i2 > MHSA. Therefore, the number of rounds with Type-III triggers is bounded by

t4 ≤
log( T

HSA )

log
(
1 + 1

6H(H+1)

) = O

(
H2 log

(
T

HSA

))
. (79)

By Equation (76), Equation (77), Equation (78) and Equation (79), the number of rounds is no more than∑
s,a,h

t1(s, a, h) +
∑
s,a,h

t2(s, a, h) +
∑

s,P∗
s,h>0

t3(s, π
∗
h(s), h) + t4

≤ O

(
MH3SA log (i1) +H3SA log

(
H5SA

∆2
min

)
+H3S log (i2) +H2 log

(
T

HSA

))
≤ O

(
MH3SA log

(
MH2ι′

)
+H3SA log

(
H5SA

∆2
min

)
+H3S log

(
MH9SAι

∆2
minCst

)
+H2 log

(
T

HSA

))
.

The last inequality is because i2 ≲ MH9SAι
∆2

minCst
. By (e) of Lemma E.1, we have

ι′ = log

(
2MSAHT1

δ

)
≤ O

(
log

(
2MSAHT̂

δ

)
+ log

(
2MSAH

δ

))
= O

(
log

(
SAT̂

δ

))
. (80)

Let δ = p/5 and ι0 = log
(

MSAT
p

)
. Since ι ≤ ι′ ≤ O(ι0) by Equation (80), then with probability at least 1 − p, the

number of rounds of communication is no more than

O

(
MH3SA log

(
MH2ι0

)
+H3SA log

(
H5SA

∆2
min

)
+H3S log

(
MH9SAι

∆2
minCst

)
+H2 log

(
T

HSA

))
.
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