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ABSTRACT

Convolutional Neural Networks (CNNs) are vulnerable to unseen noise on input
images at the test time, and thus improving the robustness is crucial. In this pa-
per, we propose DJMix, a data augmentation method to improve the robustness
by mixing each training image and its discretized one. Discretization is done in
an unsupervised manner by an autoencoder, and the mixed images are nearly im-
possible to distinguish from the original images. Therefore, DJMix can easily
be adapted to various image recognition tasks. We verify the effectiveness of our
method using classification, semantic segmentation, and detection using clean and
noisy test images.

1 INTRODUCTION

CNNs are the de facto standard components of image recognition tasks and achieve excellent per-
formance. However, CNNs are vulnerable to unseen noise on input images. Such harmful noise
includes not only adversarially generated noise (Szegedy et al., 2014; Goodfellow et al., 2014),
but also naturally possible noise such as blur by defocusing and artifacts generated by JPEG com-
pression (Vasiljevic et al., 2016; Hendrycks & Dietterich, 2019). Natural noise on input images is
inevitable in the real world; therefore, making CNNs robust to natural noise is crucial for practition-
ers.

A simple approach to solving this problem is adding noise to training images, but this does not
make models generalize to unseen corruptions and perturbations (Vasiljevic et al., 2016; Geirhos
et al., 2018; Gu et al., 2019). For example, even if Gaussian noise of a certain variance is added
during training, models fail to generalize to Gaussian noise of other variances. Nonetheless, some
data augmentation methods are effective for improving robustness. For example, Yin et al. reported
that extensive augmentation, such as AutoAugment (Cubuk et al., 2019), improves the robust-
ness. Similarly, Hendrycks et al. proposed to mix differently augmented images during training to
circumvent the vulnerability. We will further review previous approaches in Section 2.

Despite the effectiveness of these data augmentation and mixing approaches, these methods require
handcrafted image transformations, such as rotation and solarizing. Particularly when geometrical
transformations are used, the mixed images cannot have trivial targets in non classification tasks, for
instance, semantic segmentation and detection. This lack of applicability to other tasks motivates us
to introduce robust data augmentation without such transformations.

In this paper, we propose Discretizing and Joint Mixing (DJMix) which mixes original and dis-
cretized training images to improve the robustness. The difference between the original and ob-
tained images is nearly imperceptible, as shown in Figure 1, which enables the use of DJMix in
various image recognition tasks. In Section 3, we will introduce DJMix and analyze it empirically
and theoretically. We show that DJMix reduces mutual information between inputs and internal
representations to ignore harmful features and improve CNNs’ resilience to test-time noise.

To benchmark the robustness of CNNs to unseen noise, Hendrycks & Dietterich (2019) introduced
ImageNet-C as a corrupted counterpart of the ImageNet validation set (Russakovsky et al.,
2015). CNN models are evaluated using this dataset on the noisy validation set, whereas they are
trained without any prior information on the corruptions on the original training set. Similarly,
Geirhos et al. created noisy ImageNet and compared different behaviors between humans and
CNN models with image noise. In addition to these datasets designed for classification, we cre-
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Figure 1: Schematic view of DJMix. In DJMix, CNN models are trained to minimize divergence
between the features of each input image fθ(x) and its discretized image fθ(x̂), as well as the task-
specific loss between fθ(x̂) and the label y. This pipeline barely affects the appearance of input
images, and thus, can be used for various image recognition tasks, e.g., classification, (semantic)
segmentation, and detection.

ated Segmentation-C and Detection-C datasets, which are corrupted counterparts of the
PASCAL-VOC validation sets (Everingham et al., 2015).

We demonstrate the robustness of CNN models trained with DJMix on various tasks using these
benchmark datasets in Section 4. Additionally, we perform experimental analyses, including ab-
lation studies, to verify DJMix in Section 5. In summary, our contributions are summarized as
follows:

1. We introduce DJMix, a simple task-agnostic data augmentation method for improving
robustness. DJMix mixes the original and discretized training images and can be straight-
forwardly adapted to various image recognition tasks. We empirically demonstrate the
effectiveness of this approach.

2. We analyze DJMix theoretically from the Information Bottleneck perspective, which could
help analyze other robust methods. We also investigate DJMix from the Fourier sensitivity
perspective.

3. We create datasets, Segmentation-C and Detection-C, to benchmark the robust-
ness of CNN models on semantic segmentation and detection tasks.

2 RELATED WORK

Small corruptions or perturbations on images can drastically change the predictions of CNN models.
While adversarially generated noise, i.e., adversarial examples (Szegedy et al., 2014; Goodfellow
et al., 2014), can be thought of as the worst case, natural noise also harms the performance of
CNNs. Such natural noise includes blurs and artifacts generated by JPEG compression (Vasiljevic
et al., 2016; Hendrycks & Dietterich, 2019). Because of this vulnerability, CNN models sometimes
predict inconsistently among adjacent video frames (Gu et al., 2019; Hendrycks & Dietterich, 2019).
For the real-world application of CNNs, this vulnerability needs to be overcome. A strong defense
against adversarial examples is adversarial training, where CNN models are trained with adversarial
examples (Goodfellow et al., 2014; Madry et al., 2018). Unfortunately, this approach fails in natural
noise, because CNNs trained on a specific type of noise do not generalize to other types of noise
(Geirhos et al., 2018; Vasiljevic et al., 2016). Instead, we need robust methods that are agnostic to
test-time noise a priori (Hendrycks & Dietterich, 2019).

Data augmentation is a practical approach to improving the generalization ability on clean data,
e.g., by randomly flipping and cropping (Krizhevsky et al., 2012; He et al., 2016), mixing different
images (Zhang et al., 2018; Tokozume et al., 2018), or erasing random regions (DeVries & Taylor;
Zhong et al., 2020). Some types of data augmentation are also reported to improve robustness. For
example, strong data augmentation, namely, AutoAugment (Cubuk et al., 2019), can improve the
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robustness (Yin et al., 2019). Similarly, AugMix is a data augmentation method to alleviate the
problem by mixing images that are differently augmented from each input image. CNNs exploit the
texture or higher-frequency domains of images (Jo & Bengio, 2017; Ilyas et al., 2019; Wang et al.,
2020), and thus, CNNs trained on detextured ImageNet images by style transfer show robustness
to noise on input images (Geirhos et al., 2019).

Orthogonal to manipulating input images, enhancing CNN architectures or components is also a
possible direction. Larger CNN models with feature aggregation used in DenseNet (Huang et al.,
2017) and ResNeXt (Xie et al., 2017) show better robustness to natural noise (Gu et al., 2019;
Hendrycks & Dietterich, 2019). MaxBlur has been proposed to improve the shift invariance of
subsampling operations used in pooling operations, e.g., MaxPooling, and enhance the robust per-
formance (Zhang, 2019).

Our approach, DJMix, belongs to the first ones, which use data augmentation to enhance robustness.
Unlike previous methods, DJMix applies imperceptible and task-agnostic augmentation to images.
This property allows us to use DJMix for various image recognition tasks.

3 DJMIX FOR ROBUST DATA AUGMENTATION

A CNN model fθ : RD → RD′
is usually trained to minimize the task loss ℓ(fθ(x),y), where

x ∈ RD is an input image, and y ∈ RD′
is its target. When the task is a D′-category classification

task, y is a one-hot vector and ℓ is cross-entropy.

DJMix uses a pair of loss functions, the task loss ℓ(fθ(x̂),y) and the consistency loss
d(fθ(x̂), fθ(x)). Then, CNN models are trained to minimize

ℓ(fθ(x̂),y) + γd(fθ(x̂), fθ(x)), (1)

where γ is a positive coefficient. x̂ ∈ RD is a discretized image of an input image x, which we will
describe in Section 3.1, and d is a divergence, such as the Jensen–Shannon divergence (Section 3.2).
We will discuss why DJMix improves robustness in Sections 3.3 and 3.4, both theoretically and
empirically.

3.1 DISCRETIZATION OF IMAGES

DJMix discretizes each input image x into g(x), where g : RD → RD is a discretizing autoencoder
(DAE), whose bottleneck is discretized. Specifically, we used the Vector-Quantized Variational
AutoEncoder used by van den Oord et al. (2017) and Razavi et al. (2019). This DAE g has a
bottleneck of dimension C and discretizes the features by vector quantization with the codebook
size of 2K . DAE is pretrained on training data to minimize Ex‖g(x) − x‖22 in an unsupervised
manner.

As we will show in Section 5, mixing each input image and its discretized one improves the robust-
ness. More precisely, instead of using x̂ = g(x), we use

x̂ = βx+ (1− β)g(x), (2)

where β ∈ [0, 1] is sampled from a random distribution. Following Zhang et al. (2018), we adopt
Beta distribution. Although this mixing strategy is similar to that of AugMix, some differences
exist. A major difference is the discrepancy between x and x̂. Because AugMix applies geometric
and color-enhancing operations to obtain x̂, its appearance is different from x, whereas DJMix
yields a nearly identical x̂ from x. A minor difference is the task loss: DJMix uses ℓ(fθ(x̂),y),
whereas AugMix uses ℓ(fθ(x),y). We will analyze this difference in Section 5.

3.2 CONSISTENCY LOSS

The consistency loss d(fθ(x̂), fθ(x)) forces a CNN model to map x and x̂ closely and make these
representations indistinguishable. Following Hendrycks et al. (2020), we use the Jensen–Shannon
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(JS) divergence as the divergence d. We compare other divergences and distances with the JS diver-
gence in Section 5.

DJMix appears similar to AugMix (Hendrycks et al., 2020), as both use the mixing of images and
the consistency loss. However, the details of the mixing processes are different: whereas AugMix
yields a different looking x̂ from x, DJMix augments a similar x̂ to x. Owing to this property,
DJMix can be used in various image recognition tasks, as we will show in Section 4. Additionally,
the task loss of DJMix uses mixed images as ℓ(fθ(x̂),y), whereas that of AugMix uses the original
image as ℓ(fθ(x),y). Empirically, we found that ℓ(fθ(x̂),y) improves the robustness compared
with ℓ(fθ(x),y), which we will show in Section 5.1.

3.3 FROM INFORMATION BOTTLENECK PERSPECTIVE

The Information Bottleneck objective (Tishby et al., 2000) can be written with an intermedi-
ate feature z of a model fθ as maxθ I(z,y;θ) s.t. I(x, z;θ) ≤ I , where I(w, v) :=
DKL(p(w, v)||p(w)p(v)) is mutual information between w and v, and I is a positive constraint.
Supervised training is expected to maximize I(z,y;θ). However, without the constraint, z highly
likely contains unnecessary details of the input; then the models learn vulnerable representation
(Alemi et al., 2017; Fisher & Alemi, 2020). Importantly, DJMix introduces this constraint to im-
prove the robustness by ignoring task-irrelevant details. For the following theorem, we assume that
β in Equation (2) is 0, and fθ and g have enough capacities to achieve training losses being 0.

Theorem 1. Let z be fθ(x). After convergence of the model fθ trained with DJMix, mutual infor-
mation is constrained by the logarithm of the codebook size, i.e.,

I(x, z;θ) ≤ K. (3)

Proof. After convergence, d(fθ(x̂), fθ(x)) becomes 0, or equivalently, fθ(x̂) = fθ(x) from the
assumption. x is quantized into a codeword x̂ ∈ {1, 2, . . . , 2K} in the DAE g. Therefore, we obtain

K = H(Uniform{1, 2, . . . , 2K}) (H: entropy)
= H(x̂)

≥ H(x̂)−H(x̂ | fθ(x̂))
= I(fθ(x̂), x̂)
≥ I(fθ(x),x) (from Data Processing Inequality)
= I(x, z)

3.4 FROM FOURIER SENSITIVITY PERSPECTIVE

Figure 2 presents the sensitivity of CNN models trained with and without DJMix to additive noise
of Fourier-basis vectors (Yin et al., 2019). Here, we used WideResNet trained on CIFAR10. As
can be seen, DJMix improves robustness to a wide range of frequencies: from lower frequencies,
depicted in the center area, to higher frequencies, which appearing in the edges. These results imply
why CNN models trained with DJMix show robustness to input images with noise. The experiments
discussed in Section 4 further demonstrate more empirical robustness of DJMix.

4 EXPERIMENTS AND RESULTS

In this section, we present experimental results. We first introduce experimental settings and new
datasets, Segmentation-C, and Detection-C, whose input images are artificially corrupted to
measure the robustness. Then, we present empirical results and comparisons with other methods in
Section 4.1 for classification, Section 4.2 for semantic segmentation, and Section 4.3 for detection.
We conducted the experiments three times with different random seeds for each setting and reported
the averaged values, except for ImageNet experiments. We describe the additional details of the
experiments in Appendix B.
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Figure 2: DJMix reduces the sensitivity of CNN models to additive noise. Fourier-basis vectors
whose L2 norm is 4 are added to 2,048 randomly sampled test samples of CIFAR10 whose image
size is 32 × 32, and pixels present the averaged error rates. Each pixel corresponds to a certain
Fourier basis, e.g., the center area of lower frequencies and the edges of higher frequencies. The
leftmost images are examples of images with additive noise enhanced for visualization.

IMPLEMENTATION

We implemented DJMix as well as CNN models using PyTorch (Paszke et al., 2019) and used
FAISS (Johnson et al., 2017) to make the nearest neighbor search in DAE faster. We used clas-
sification models used by Hendrycks et al. (2020) 1. For segmentation and detection tasks, we
used DeepLab-v3 and Faster-RCNN from torchvision2, whose backbone networks are
ResNet-50 (He et al., 2016) pretrained on ImageNet (Russakovsky et al., 2015).

DAE is pretrained on each dataset for the classification task and on ImageNet for other tasks. We
set a dictionary size to 512, i.e., K = 9, following Razavi et al. (2019). We set the parameters
of Beta distribution (β0,β1) for mixing in Equation (2) to (1.0, 0.5), and the coefficient for the
consistency loss γ to 1.0.

DJMix is a task-agnostic method and can improve robustness by itself. Additionally, DJMix can
be incorporated with task-specific data augmentation. We introduce a DJMix variant that applies
random data augmentation (DJMix+RA), consisting of AugMix’s augmentation operations. We
describe more details of RA in Appendix B.5.

DATASETS

For classification, we used three datasets, CIFAR10, CIFAR100 (Krizhevsky, 2009), and
ImageNet (Russakovsky et al., 2015), consisting of 10, 100, and 1,000 categories, respectively.
We trained CNN models on clean training sets and evaluated the models using the accompanying
clean test sets. We also evaluated the models on corrupted test sets (CIFAR10-C, CIFAR100-C,
and ImageNet-C) proposed by Hendrycks & Dietterich (2019), which are created to measure the
behavior of CNN models with 15 common corruptions.

To benchmark the robustness in segmentation and detection tasks, we created Segmentation-C
and Detection-C datasets from PASCAL VOC-2012 (Everingham et al., 2015). Namely, we
degenerated images of the test set of PASCAL VOC-2012 for segmentation and the validation set
of PASCAL VOC-2012 for detection using 10 degeneration operations used in ImageNet-C:
gaussian_noise, shot_noise, impulse_noise, snow, frost, fog, brightness,
contrast, pixelate, and jpeg_compression. We omitted five blur operations, namely
defocus_blur, glass_blur, motion_blur, zoom_blur, and gaussian_blur, be-
cause the expected outputs for segmentation and detection under corruption are not trivial. Ex-
amples of Segmentation-C are presented in Figure 3. Following the convention, we trained
models on the augmented dataset of PASCAL-VOC (Hariharan et al., 2011) for segmentation and
the union of train and validation datasets of VOC-2007 and VOC-2012 for detection. Similar to

1https://github.com/google-research/augmix
2https://github.com/pytorch/vision/tree/v0.7.0.
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Figure 3: Examples of the Segmentation-C dataset with the severest noise of each corruption
type. We created this dataset to benchmark the robustness of segmentation networks by degenerating
validation images with 10 operations, such as Gaussian noise. Similarly, we created Detection-C
as a detection counterpart of Segmentation-C.

Detection-C, Michaelis et al. (2019) also created corrupted test images of detection datasets for
autonomous driving.

METRICS

For the classification task, we use the error rates as the metric on the original test sets. On the
corrupted data, we measure the corrupted error rate Ec,s, where c is the corruption type, e.g.,
Gaussian noise, and s is the severity level, and report the statistics. Precisely, we use the aver-
aged scores Ec,sEc,s for CIFAR10-C and CIFAR100-C, and Corruption Error EsEc,s/EsE

AlexNet
c,s

for ImageNet-C, following Hendrycks & Dietterich (2019), where EAlexNet
c,s is the error rate of

AlexNet (Krizhevsky et al., 2012). For the segmentation task, we report the mean intersection over
union (mIoU) on the clean data. On Segmentation-C, we use corrupted mIoU Ic,s and report
averaged mIoU EsIc,s. Similarly, for the detection task, we report mean average precision (mAP)
on the clean data and averaged corrupted mAP EsAc,s of corrupted mAP Ac,s on Detection-C.

4.1 CLASSIFICATION

We trained models on CIFAR10, CIFAR100, and ImageNet. For CIFAR10 and CIFAR100, we
used DenseNet-BC (k = 12, d = 100) (Huang et al., 2017), WideResNet-28-2 (Zagoruyko
& Komodakis, 2016), and ResNeXt-29 (Xie et al., 2017). For ImageNet, we used ResNet-50
(He et al., 2016).

The results on CIFAR10 and CIFAR100 are presented in Table 1 with comparison with the base-
line, mixup (Zhang et al., 2018), AugMix, and AugMix without geometric transformations (GT).
Table 1 shows that AugMix without GTs degenerates performance both on clean and corrupted data
from AugMix, indicating that the robustness of AugMix heavily depends on GTs. DJMix shows
balanced performance between clean and corrupted data, without such GTs. DJMixwith RA further
decreases error rates on corrupted datasets, as well as on clean datasets. We present the results on
ImageNet in Table 2. Again, DJMix decreases Corruption Errors, particularly when strong data
augmentation is introduced (DJMix+RA).

4.2 SEMANTIC SEGMENTATION

We trained DeepLab-v3 (Chen et al., 2017) on PASCAL-VOC. The logits before upsampling are
used for the consistency loss.

Table 3 shows the mIoU comparison of baseline, AugMix without GTs (AugMix∗), DJMix, and
DJMixwith random augmentation without GTs (DJMix+RA∗). We omitted GTs, because defining
the targets for mixed images that differently applied GTs are not trivial for segmentation and detec-
tion tasks. AugMix w/o GT uses pairs of original and augmented images, i.e., the width is set to 2.
As can be seen, DJMix improves the robustness, especially when combined with extra data augmen-
tation. In some cases, such as Gaussian noise, shot noise, and impulse noise, DJMix+RA markedly
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Table 1: Test error rates (↓) comparison on clean test sets (CIFAR10 and CIFAR100) and corrupted
sets (CIFAR10-C and CIFAR100-C). AugMix w/o GT is a variant of AugMix without using
GTs. DJMix+RA is a variant of DJMix with random data augmentation.

Baseline mixup AugMix AugMix w/o GT DJMix DJMix+RA

CIFAR10 WideResNet 4.65 4.45 5.07 6.14 5.02 4.74
DenseNet 5.12 5.03 5.55 6.54 5.45 4.98
ResNeXt 4.13 3.66 4.17 5.42 4.82 4.31

CIFAR10-C WideResNet 29.6 23.4 11.1 18.4 15.7 11.5
DenseNet 32.7 27.3 12.1 19.0 17.6 12.9
ResNeXt 30.6 26.1 10.7 18.4 14.4 11.1

CIFAR100 WideResNet 24.3 24.2 25.6 27.6 25.7 24.4
DenseNet 25.4 25.4 26.3 27.8 26.2 24.7
ResNeXt 22.0 21.0 22.3 24.5 25.1 23.2

CIFAR100-C WideResNet 56.4 51.6 36.4 46.0 44.3 38.3
DenseNet 59.3 54.4 37.7 47.3 47.2 39.9
ResNeXt 56.2 50.8 34.1 44.4 42.1 35.9

Table 2: Test error rates (↓) on ImageNet and Corruption Error (↓) on ImageNet-C using
ResNet-50. DJMix works on ImageNet and improves the robustness.

Clean Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Pixel JPEG Average

Baseline 23.2 76.0 77.7 78.8 78.1 88.9 80.7 81.0 80.4 78.4 70.7 61.7 73.9 72.5 76.3 76.8
DJMix 23.6 72.6 74.4 74.7 76.1 86.2 79.9 80.8 77.0 76.0 68.6 60.9 70.2 71.1 76.1 74.6
DJMix+RA 23.8 66.8 67.5 68.9 71.6 85.1 73.8 73.1 73.2 72.1 62.4 59.2 67.8 70.6 73.9 70.4

enhances the performance from DJMix and AugMix w/o GT, which implies the importance of the
combination of task-specific and task-agnostic augmentation in practice.

4.3 DETECTION

We trained Faster-RCNN (Ren et al., 2015) on PASCAL-VOC. The consistency loss between
the output logits of the backbone network is used for training. Table 4 shows that DJMix yields
better performance on almost all corruption types. As semantic segmentation, we compare base-
line, AugMix∗, DJMix, and DJMix+RA∗. Similarly to semantic segmentation, DJMix markedly
improves the robustness in the detection task.

5 ANALYSIS

5.1 ABLATION STUDIES

DESIGN OF TASK LOSS: The task loss of DJMix presented in Equation (1) is ℓ(fθ(x̂),y), but
ℓ(fθ(x),y), as AugMix, is also a possible choice. We compare these choices in Table 5 (a, b).
ℓ(fθ(x̂),y) improves the robustness compared with ℓ(fθ(x),y).

CHOICE OF CONSISTENCY LOSS: DJMix uses JS divergence as the consistency loss, but other
divergences can also be used as the loss function. Here, we compare the performance when JS
divergence is replaced with KL divergence and L2 distance. As can be seen from Table 5 (a, c), JS
and KL show similar performance, whereas L2 shows performance degeneration on corrupted data.

EFFECT OF DISCRETIZATION: We verify the effect of the discretization of DJMix using DAE by
substituting the standard autoencoder for DAE. Namely, we removed vector quantization modules
of DAE and pretrained the AE on the training data to minimize the reconstruction error as DAE.
Table 5 (a, d) shows that discretization improves CNNs’ robustness as expected from the Information
Bottleneck perspective presented in Section 3.3.

EFFECT OF MIXING: Table 5 (e) shows test error rates of DJMix without mixing, i.e., β = 0 in
Equation (2) where only discretized images are used. The results show that mixing is indispensable
to retain the performance on clean data. We present further experiments on betas in Appendix B.
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Table 3: DJMix improves the performance of semantic segmentation when input images are cor-
rupted. We present mIoU (↑) on PASCAL-VOC (Clean) and Segmentation-C (the rest).
∗ indicates that augmentation without geometric transformations is used.

Clean Gauss Shot Impulse Snow Frost Fog Bright Contrast Pixel JPEG Average

Baseline 73.3 29.5 30.6 26.5 22.2 36.4 58.8 65.4 39.8 58.6 58.8 42.7
AugMix∗ 74.7 39.0 40.3 37.6 21.8 38.6 63.1 68.3 46.7 60.9 62.9 47.9

DJMix 73.5 34.7 35.3 30.3 23.5 38.8 59.2 66.5 40.2 62.3 63.3 45.4
DJMix+RA∗ 74.4 46.9 47.7 45.3 22.6 41.9 63.6 69.7 46.9 64.6 66.3 51.6

Table 4: DJMix improves the performance of detection when input images are corrupted. We
present mAP (↑) on PASCAL-VOC (Clean) and Detection-C (the rest). ∗ indicates that augmen-
tation without geometric transformations is used.

Clean Gauss Shot Impulse Snow Frost Fog Bright Contrast Pixel JPEG Average

Baseline 76.5 37.9 39.7 33.8 46.4 51.7 64.6 70.1 47.3 47.4 51.1 49.0
AugMix∗ 76.8 38.1 40.0 35.8 45.6 51.1 64.9 70.4 48.0 47.2 52.1 49.3

DJMix 76.8 40.8 43.1 37.5 45.8 51.9 64.8 71.1 47.6 46.2 47.6 49.6
DJMix+RA∗ 76.2 45.6 48.5 44.7 46.8 52.8 65.3 72.2 48.6 47.4 54.7 52.7

5.2 COMPUTATIONAL OVERHEAD OF DJMIX

We find that the computational overhead by the DAE is negligible. However, the number of for-
ward passes affects the training time. For instance, the standard training on CIFAR10 using
WideResNet for 200 epoch requires approximately 1 hour in our environment. DJMix with two
forward passes per update takes about 2 hours, and AugMix with three forward passes per update
takes about 3 hours. Importantly, DJMix does not modify the components of CNNs as AugMix;
therefore, these methods do not affect the test-time speed, which is preferable for the real-world
applications.

6 CONCLUSION

In this paper, we have proposed DJMix, a novel task-agnostic approach to make CNN models robust
to test-time corruption. To achieve task-agnostic robustness, we have used an autoencoder with a
discretization bottleneck. Unlike previous approaches, the image modification of DJMix does not
affect the appearance of images, which is useful for non classification tasks. Experiments have
shown that DJMix improves the robustness of CNN models to input noise in semantic segmentation
and detection, in addition to classification. We have found that combining task-specific and task-
agnostic augmentation methods further improves performance on noisy images. We hope that data
augmentation for robustness, including DJMix, bridges research and the real-world practice of deep
learning.

Table 5: Test error rates (average / standard deviation, ↓) on CIFAR10 and CIFAR10-C with
various ablation settings.

CIFAR10 CIFAR10-C

(a) DJMix 5.02± 0.22 15.7± 0.2

(b) DJMix w/ ℓ(fθ(x),y) 4.54± 0.14 17.8± 0.5

(c) DJMix w/ KL 4.88± 0.13 15.3± 0.2
DJMix w/ L2 4.70± 0.25 20.5± 0.5

(d) DJMix w/o discretization 4.44± 0.09 28.9± 0.4

(e) DJMix w/o mixing 7.71± 0.19 15.3± 0.0

Baseline 4.65± 0.12 29.6± 0.3
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Figure 4: Schematic comparison of DJMix (ours) and AugMix of mixing two examples (Hendrycks
et al., 2020). Both methods use mixing strategies, but the details are different. Notably, a recon-
structed image of DJMix x̂ is almost indistinguishable from the original image x.

A ADDITIONAL ABLATION STUDIES

A.1 THE EFFECT OF BETA DISTRIBUTION PARAMETERS

Main experiments used (β0,β1) = (1.0, 0.5) of Beta distribution for mixing x̂ = βx + (1 −
β)g(x), where β ∼ Beta(β0,β1). Figure 5 shows test error rates on different combinations of
the parameters using WideResNet. Larger β0 and smaller β1 yield x̂ close to x, and vice versa,
which is reflected in the results on CIFAR10, i.e., clean data. We used (β0,β1) = (1.0, 0.5), which
balances performance on clean and corrupted data.

Figure 5: Test error rates on different combinations of (β0,β1) of Beta distribution used for mixing.
We used (β0,β1) = (1.0, 0.5) in the main experiments.

B EXPERIMENTAL SETTINGS DETAILS

This section describes additional experimental settings.

B.1 DISCRETIZING AUTOENCODER

We trained the autoencoder for 200 epochs to minimize the reconstruction error, and its codebook is
updated by exponential moving average. The hyperparameters are identical to Razavi et al. (2019).

B.2 CLASSIFICATION

We trained models on CIFAR10, CIFAR100, and ImageNet. For CIFAR10 and CIFAR100, we
used DenseNet-BC (k = 12, d = 100) (Huang et al., 2017), WideResNet-28-2 (Zagoruyko
& Komodakis, 2016) and ResNeXt-29 (Xie et al., 2017). We trained these networks for 200
epochs using stochastic gradient descent with a momentum of 0.9 and setting an initial learning rate
to 0.1 that decays by cosine annealing with warm restart (Loshchilov & Hutter, 2016). We set a
weight decay to 1× 10−4 and a batch size to 128. We used data augmentation of random horizontal
flipping, random cropping, and random erasing (Zhong et al., 2020) by default. For ImageNet, we
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used ResNet-50 (He et al., 2016) and trained it for 100 epochs using SGD with a momentum of
0.9 and a weight decay of 1 × 10−4 . We set the batch size to 1,024 and an initial learning rate to
0.4 that decays at 30, 60, and 90th epochs. We used random cropping and horizontal flipping as the
base data augmentation.

When training ResNet-50 on ImageNet, we used automatic mixed precision (AMP) imple-
mented in PyTorch v1.6 to save the GPU memory consumption. We also used AMP for seman-
tic segmentation and detection tasks.

B.3 SEMANTIC SEGMENTATION

We trained DeepLab-v3 (Chen et al., 2017) for 30 epochs with a batch size of 32 and a learning
rate of 1.0×10−3. We used SGD with a momentum of 0.9 and set its initial learning rate to 0.02. The
learning rate is multiplied by a factor of (1 − iteration

total iteration )
0.9 as Chen et al. (2017). See https://

github.com/pytorch/vision/tree/master/references/segmentation for fur-
ther details.

B.4 DETECTION

We trained Faster-RCNN (Ren et al., 2015) for 26 epochs with a batch size of 32 and a learning
rate of 1.0× 10−3. The learning rate is divided by 10 at 16th and 22nd epochs, while the first 1,000
iterations are the warmup period. See https://github.com/pytorch/vision/tree/
master/references/detection for further details.

B.5 RANDOM AUGMENTATION

We used random augmentation (RA) as task-specific data augmentation, which is orthogonal to
DJMix. Basically, we followed the data augmentation module of AugMix, and the only difference
is the width. Whereas AugMix sets the width to 3, DJMix uses the width of 1, i.e., only a single
stream of operations is applied to each input image. Each image augmented by RA is used as an
input x to DJMix.
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