

000
001
002
003
004
005
006
007
VISION AS LORA008
009
010
011
012
013
014
015
016
Anonymous authors
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Paper under double-blind review
054055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
ABSTRACT100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
229
230
231
232
233
234
235
236
237
238
239
239
240
241
242
243
244
245
246
247
248
249
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
315
316
317
318
319
319
320
321
322
323
324
325
325
326
327
328
329
329
330
331
332
333
334
335
335
336
337
338
339
339
340
341
342
343
343
344
345
346
347
348
349
349
350
351
352
353
353
354
355
356
357
358
359
359
360
361
362
363
363
364
365
366
367
368
369
369
370
371
372
373
373
374
375
376
377
378
378
379
380
381
382
383
383
384
385
386
387
388
388
389
390
391
392
393
393
394
395
396
397
398
398
399
399
400
401
402
403
403
404
405
406
407
408
408
409
410
411
412
412
413
414
415
416
416
417
418
419
419
420
421
422
423
423
424
425
426
427
427
428
429
429
430
431
432
433
433
434
435
436
437
438
439
439
440
441
442
443
443
444
445
446
447
448
449
449
450
451
452
453
453
454
455
456
457
458
459
459
460
461
462
463
463
464
465
466
467
468
469
469
470
471
472
473
473
474
475
476
477
478
478
479
480
481
482
483
483
484
485
486
487
488
489
489
490
491
492
493
493
494
495
496
497
498
498
499
499
500
501
502
503
503
504
505
506
507
508
508
509
510
511
512
512
513
514
515
516
516
517
518
519
519
520
521
522
523
523
524
525
526
527
527
528
529
529
530
531
532
533
533
534
535
536
537
538
539
539
540
541
542
543
543
544
545
546
547
548
549
549
550
551
552
553
553
554
555
556
557
558
559
559
560
561
562
563
563
564
565
566
567
568
569
569
570
571
572
573
573
574
575
576
577
578
578
579
580
581
582
583
583
584
585
586
587
588
588
589
590
591
592
593
593
594
595
596
597
598
598
599
599
600
601
602
603
603
604
605
606
607
608
608
609
610
611
612
612
613
614
615
616
616
617
618
619
619
620
621
622
623
623
624
625
626
627
627
628
629
629
630
631
632
633
633
634
635
636
637
638
639
639
640
641
642
643
643
644
645
646
647
648
649
649
650
651
652
653
653
654
655
656
657
658
659
659
660
661
662
663
663
664
665
666
667
668
669
669
670
671
672
673
673
674
675
676
677
678
678
679
680
681
682
683
683
684
685
686
687
688
688
689
690
691
692
693
693
694
695
696
697
698
698
699
699
700
701
702
703
703
704
705
706
707
708
708
709
710
711
712
712
713
714
715
716
716
717
718
719
719
720
721
722
723
723
724
725
726
727
727
728
729
729
730
731
732
733
733
734
735
736
737
738
739
739
740
741
742
743
743
744
745
746
747
748
749
749
750
751
752
753
753
754
755
756
757
758
759
759
760
761
762
763
763
764
765
766
767
768
769
769
770
771
772
773
773
774
775
776
777
778
778
779
780
781
782
783
783
784
785
786
787
788
788
789
789
790
791
792
793
793
794
795
796
797
798
798
799
799
800
801
802
803
803
804
805
806
807
808
808
809
810
811
812
812
813
814
815
816
816
817
818
819
819
820
821
822
823
823
824
825
826
827
827
828
829
829
830
831
832
833
833
834
835
836
837
838
839
839
840
841
842
843
843
844
845
846
847
848
849
849
850
851
852
853
853
854
855
856
857
858
859
859
860
861
862
863
863
864
865
866
867
868
869
869
870
871
872
873
873
874
875
876
877
878
878
879
880
881
882
883
883
884
885
886
887
888
888
889
889
890
891
892
893
893
894
895
896
897
898
898
899
899
900
901
902
903
903
904
905
906
907
908
908
909
910
911
912
912
913
914
915
916
916
917
918
919
919
920
921
922
923
923
924
925
926
927
927
928
929
929
930
931
932
933
933
934
935
936
937
938
939
939
940
941
942
943
943
944
945
946
947
948
949
949
950
951
952
953
953
954
955
956
957
958
959
959
960
961
962
963
963
964
965
966
967
968
969
969
970
971
972
973
973
974
975
976
977
978
978
979
980
981
982
983
983
984
985
986
987
988
988
989
989
990
991
992
993
993
994
995
996
997
998
999
000
001
002
003
004
005
006
007
008
009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046

054 parameter decoupling methods. For example, Mono-InternVL (Luo et al., 2024) introduced a
 055 Mixture-of-Experts (MoE) framework (Shazeer et al., 2017), employing separate expert modules
 056 for vision and language processing. Taking a step further, EVEv2 (Diao et al., 2025b) decoupled all
 057 linear and normalization layers in the LLM. While these approaches helped mitigate modality
 058 conflicts, they doubled the LLM’s parameters, complicating the architecture and substantially increasing
 059 memory overhead.

060 To address these challenges, we propose Vision as LoRA (VoRA), a method of transforming LLMs
 061 into encoder-free MLLMs by integrating vision understanding abilities through Low-Rank Adapta-
 062 tion (LoRA) (Hu et al., 2022). While we acknowledge that decoupling vision and language parame-
 063 ters is critical, we wish to avoid dependency on parameter expansion in inference. To this end, VoRA
 064 applies trainable LoRA layers to LLMs, which encode the new modality, i.e., vision, while preserv-
 065 ing the language knowledge of the original LLM by freezing its parameters, as shown in Figure 1(b).
 066 Unlike previous approaches (Diao et al., 2025b; Luo et al., 2024) that retain vision-specific param-
 067 eters during inference, VoRA merges LoRA layers into the LLM after training, incurring near-zero
 068 additional computational cost or memory overhead.

069 Furthermore, VoRA leverages pre-trained vision models as teacher models to inject visual priors into
 070 the LoRA layers. Specifically, we adopt the strategy of block-wise distillation (Hinton et al., 2015):
 071 the intermediate visual representations of each LLM block are forced to align with the corresponding
 072 block-level features extracted by the teacher model. With such a process, we can greatly accelerate
 073 training and reduce the demand for massive data.

074 In addition, we replace the LLM’s causal attention mask with a bi-directional one for image process-
 075 ing, which better captures contextual relations. Meanwhile, we have also found that, unlike most
 076 conventional encoder-based MLLMs (Bai et al., 2023; Liu et al., 2023; 2024a; Li et al., 2024a; Zhu
 077 et al., 2023; Chen et al., 2023; Wang et al., 2024c) which are constrained by fixed-resolution vi-
 078 sion encoders, VoRA naturally supports native image resolutions by exploiting the LLM’s inherent
 079 ability to process variable-length sequences.

080 Our contributions are threefold:

081

- **Framework innovation:** VoRA converts LLMs into MLLMs via: (1) vision as LoRA, (2)
 082 block-wise distillation, and (3) bi-directional attention for vision. Parameter decoupling
 083 between vision and language pathways stabilizes training, while other components accel-
 084 erate training and reduce data needs. Ablation studies confirm the effectiveness of each
 085 element, establishing VoRA as a new paradigm for encoder-free MLLMs.
- **Performance validation:** When trained with a proper scale of additional data, VoRA
 086 matches conventional encoder-based MLLMs in terms of performance while reducing com-
 087 putational costs, demonstrating that LLMs can acquire native multimodal capabilities with-
 088 out external vision models. This challenges the widely perceived necessity of encoder-
 089 based architectures for multimodal tasks.
- **Potential extensibility:** Although we narrow down our scope to vision understanding tasks
 090 in this paper, the modality-agnostic architecture of VoRA has the potential of generalizing
 091 to other modalities (e.g., audio and point clouds) and tasks (e.g., image generation).

095 2 RELATED WORKS

096 2.1 ENCODER-BASED MLLMS

097 The dominant architecture of MLLMs has remained largely unchanged since its inception, comprising
 098 three components: a ViT (Radford et al., 2021; Zhai et al., 2023; Fini et al., 2024), an LLM
 099 (Touvron et al., 2023; Brown et al., 2020; Yang et al., 2024; Zheng et al., 2023), and a connector to
 100 bridge modality gaps. Previous research has focused primarily on connector design, ranging from
 101 simple MLP layers (Liu et al., 2023; 2024a; Zhu et al., 2023; Chen et al., 2023) to hierarchical fea-
 102 ture fusion modules (Alayrac et al., 2022; Team, 2024b) or other complex architectures (Wang et al.,
 103 2024b;a; Chen et al., 2024b; Tong et al., 2024). Despite these innovations, fundamental limitations
 104 persist due to their reliance on external vision encoders. First, computational and memory over-
 105 head escalates dramatically when applying multiple vision encoders (Tong et al., 2024) or scaling
 106 to larger ones (Wang et al., 2024c). Second, fixed-resolution pre-training of ViTs forces MLLMs to
 107

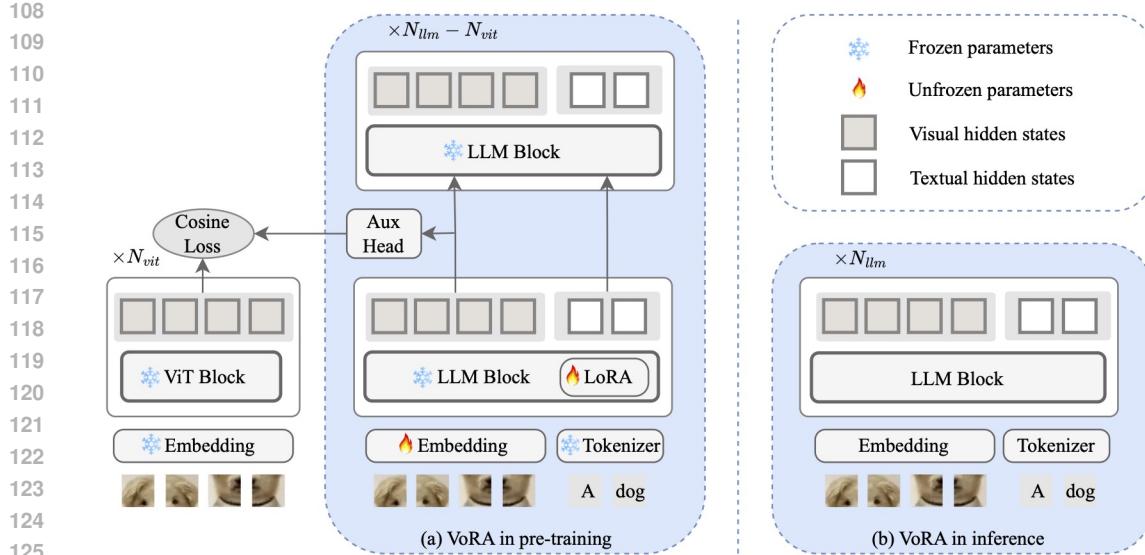


Figure 2: The architecture of VoRA. Figure (a) shows the architecture of VoRA in pre-training: in this stage, VoRA only unfreezes the LoRA layers for vision and the visual embedding layer, i.e., a shallow MLP layer with a positional embedding. Figure (b) shows VoRA in inference: the LoRA layers are merged into the LLM, and thus the only added parameters are a shallow embedding layer (about 6M parameters).

employ workarounds like image tiling (Liu et al., 2024a; Li et al., 2024a) or restricted square resolutions (Wang et al., 2024c; Bai et al., 2023). Recent attempts (Agrawal et al., 2024; Wang et al.; Fini et al., 2024) to train resolution-agnostic ViTs have remained impractical, in that they adopted massive proprietary data and opaque training procedures. These challenges have spurred interest in encoder-free architectures that could bypass ViTs entirely.

2.2 ENCODER-FREE MLLMs

The pioneering work, Fuyu (RohanBavishi & Taşırlar, 2023), demonstrated the feasibility of training encoder-free models on interleaved image-text data, though at prohibitive computational costs with limited technical transparency. Subsequent approaches, such as EVE (Diao et al., 2025a), reduced the vision encoder parameters to a single Transformer block, aligning its output features with a ViT through distillation while updating all LLM parameters to learn about vision during the main training stage. However, these methods still struggle with conflicts between the LLM’s inherent language abilities and the new modality, i.e., vision. These conflicts arise from the coupled language and vision parameters, which exacerbate unstable training and lead to catastrophic forgetting of the original language abilities.

To overcome these problems, Mono-InternVL (Luo et al., 2024) and EVEv2 (Diao et al., 2025b) proposed parameter decoupling strategies inspired by the MoE method (Shazeer et al., 2017), duplicating LLM parameters for vision-specific processing while freezing its original weights. Despite successfully addressing forgetting issues and modality conflicts, these methods suffered from substantial memory overhead by doubling model parameters, compromising architectural simplicity. Our work addresses this by applying LoRA, which encodes vision while maintaining the language abilities of the LLM, and can be merged into the LLM without causing additional memory overhead.

3 VISION AS LORA

In this section, we introduce three key components of VoRA: vision as LoRA, block-wise distillation, and bi-directional attention masks for vision.

162 3.1 STABILIZE TRAINING: VISION AS LORA
163

164 As shown in Figure 2(a), we integrate LoRA layers into the LLM to enable vision understanding.
165 During pre-training, images are first converted into vision embeddings using a lightweight embed-
166 ding layer, i.e., a shallow MLP with positional encodings of about 6M parameters. Let N_{vit} and N_{llm}
167 denote the number of blocks in the ViT and the LLM, respectively. We apply LoRA to all linear
168 layers within the first N_{vit} blocks of the LLM, including query-key-value (QKV) projections and
169 feed-forward network (FFN) layers. Crucially, only the LoRA parameters and the vision embedding
170 layer are updated during training, while the original LLM parameters remain frozen. This design
171 decouples vision and language parameters, stabilizing training compared to full LLM training and
172 avoiding the training collapse observed in prior works (Diao et al., 2025a).

173 Figure 2(b) demonstrates that after pre-training, the LoRA parameters can be seamlessly merged
174 into the base LLM, thereby eliminating additional inference overhead.

175 3.2 BOOST TRAINING: BLOCK-WISE DISTILLATION
176

177 We introduce a block-wise distillation paradigm to align VoRA’s intermediate visual representations
178 with the block-wise features of a pre-trained ViT. This approach transfers visual knowledge from the
179 ViT via knowledge distillation (Hinton et al., 2015; Fang et al., 2023), accelerating training while
180 reducing dependence on large-scale vision data. Unlike conventional distillation that updates entire
181 models, we only update the vision-specific LoRA layers within the LLM. Specifically, for each block
182 i in the first N_{vit} layers of the LLM, we align its hidden states with those of block i in the ViT. The
183 training objective combines the following two components.

184 **Distillation loss.** For each transformer block i and vision token position s , we maximize cosine
185 similarity between projected LLM features and ViT embeddings via:

$$186 \mathcal{L}_{\text{distill}}^i = \frac{1}{S} \sum_{s=1}^S \left(1 - \frac{\text{AuxHead}(\mathbf{h}_{\text{llm}}^{i,s})^\top \mathbf{h}_{\text{vit}}^{i,s}}{\|\text{AuxHead}(\mathbf{h}_{\text{llm}}^{i,s})\|_2 \|\mathbf{h}_{\text{vit}}^{i,s}\|_2} \right), \quad (1)$$

189 where S is the ViT’s output sequence length (number of vision embeddings to represent one image),
190 $\mathbf{h}_{\text{llm}}^{i,s}, \mathbf{h}_{\text{vit}}^{i,s} \in \mathbb{R}^M$ denote the hidden states for the s -th token in block i , and $\text{AuxHead}(\cdot)$ is a projec-
191 tion layer (RMSNorm (Zhang & Sennrich, 2019) + linear layer) adapting LLM features to the ViT’s
192 embedding space. The loss is averaged across N_{vit} blocks:

$$194 \mathcal{L}_{\text{distill}} = \frac{1}{N_{\text{vit}}} \sum_{i=1}^{N_{\text{vit}}} \mathcal{L}_{\text{distill}}^i. \quad (2)$$

197 **Language modeling loss.** For image-caption pairs, we optimize caption generation using cross-
198 entropy, which is consistent with the standard approach used in LLMs:

$$200 \mathcal{L}_{\text{LM}} = - \sum_{t=t_0}^T \log P(w_t | w_{<t}, \mathbf{x}_{\text{image}}), \quad (3)$$

203 where T is the total sequence length, $\mathbf{x}_{\text{image}}$ represents vision inputs, and t_0 indexes the first caption
204 token.

205 **Final objective.** The final loss combines both objectives:

$$206 \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{distill}} + \mathcal{L}_{\text{LM}}. \quad (4)$$

208 3.3 BI-DIRECTIONAL ATTENTION MASKS FOR VISION
209

210 While bi-directional attention masks is common in Transformer architectures in various fields
211 (Dosovitskiy et al., 2020; Radford et al., 2021; Zhou et al., 2024), few studies have explored re-
212 placing the causal mask of autoregressive LLMs with a bi-directional mask, especially in the field
213 of MLLMs.

214 As illustrated in Figure 3, we have explored the use of a bi-directional attention mask for vision.
215 Our findings indicate that this attention mask positively impacts the final performance of VoRA,
which will be discussed in Section 5. In contrast to prior works (Diao et al., 2025a;b; Luo

Data Format	Dataset	# Sample	Total
Image Caption	DataComp29M-recap (ours) GLDv2-recap (ours)	29M 1.4M	30.4M
Text QA	Infinity-Instruct-3M (BAAI, 2024)	3.5M	6.4M
	SmolTalk (Allal et al., 2025)	1.0M	
	OpenOrca (Lian et al., 2023)	994.0K	
	MathInstruct (Xiang Yue, 2023)	262.0K	
	OrcaMath (Mitra et al., 2024)	200.0K	
	MagpiePro (L3 ST) (Li et al., 2024a)	150.0K	
	WizardCoder (Luo et al., 2023)	143.0K	
	OpenCodeInterpreter (Zheng et al., 2024)	66.0K	
	MathQA (Amini et al., 2019)	29.8K	
	Dolly (Conover et al., 2023)	11.0K	

Table 1: Data used in the pre-training stage of VoRA. We use a mixture of both image and text data to alleviate the forgetting issue in training.

et al., 2024; RohanBavishi & Taşırlar, 2023), which have relied on causal masking designed for autoregressive text generation, we demonstrate that adopting bi-directional attention for vision tokens while retaining causal masking for text, not only preserves language capabilities but also enhances visual performance. This aligns with insights from image generation research (Zhou et al., 2024), highlighting VoRA’s potential as a unified architecture for multimodal generation and understanding tasks.

As shown in Figure 3, we explored three types of attention masks for vision: (a) causal mask, (b) bidirectional mask, and (c) localized bidirectional mask. While the bidirectional mask demonstrates improved performance, we find that the localized bidirectional mask outperforms it by allowing tokens to focus exclusively on a single image without interference from other text.

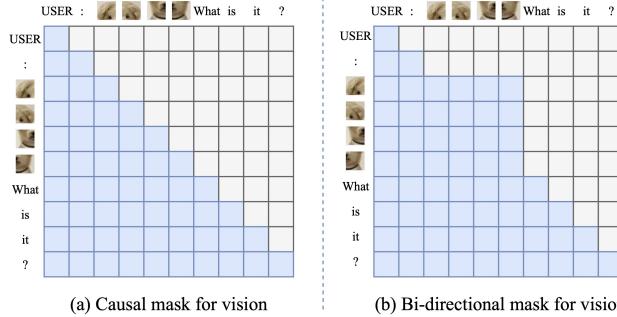


Figure 3: Attention masks for vision: (a) causal attention inherits the autoregressive mask from language modeling, enforcing sequential dependency between image patches; (b) bidirectional attention offers full visibility between all image patches within the same input, enabling global contextual awareness.

4 DATA

4.1 DATA COLLECTION AND PREPROCESSING

We claim that the primary focus of this work is not on data engineering or filtration; therefore, we adopt a straightforward data collection and processing strategy. Following previous studies (Diao et al., 2025a;b; Luo et al., 2024), our pre-training framework utilized re-captioned data. Given the limited availability of open-source, large-scale re-captioned datasets, we employed Qwen2-VL-72B (Wang et al.) to generate captions for images sampled from DataComp-1B (Gadre et al., 2023). From this raw dataset, we selected approximately 29 million images with a longer edge exceeding 448 pixels.

We recognize that this dataset lacks specific world knowledge, particularly regarding landmarks, celebrities, and artworks. To address the deficiency in landmark data, we supplemented our dataset with approximately 1.4 million images from the Google Landmarks Dataset v2 (GLDv2) (Weyand

et al., 2020). For other categories, no suitable million-scale datasets were available. Furthermore, due to potential ethical concerns, we chose not to collect such data. Consequently, we acknowledge that our method may underperform in these domains. However, this limitation can be mitigated in future works by integrating relevant datasets.

4.2 MULTIMODAL DATA MIXTURE

While VoRA decouples vision and language parameters, we have observed that extended caption-only training slightly degrades the LLM’s instruction-following capability. To preserve this ability, we mixed text instruction data into the training data. As shown in Table 1, our final mixture contained approximately 30M image-caption pairs and 6.4M text instruction samples. The text data were obtained directly from: Infinity-Instruction (BAAI, 2024), SmoTalk (Allal et al., 2025), Cambrian-1 (Tong et al., 2024), and LLaVA-OneVision (Li et al., 2024a).

5 EXPERIMENTS

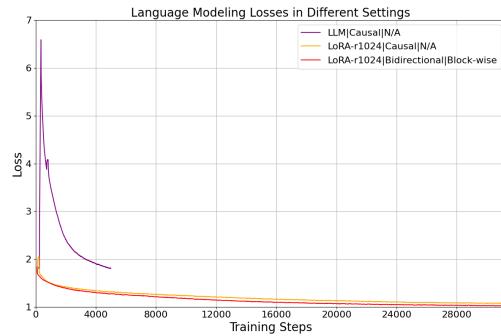


Figure 4: Language modeling losses in different settings. Training the full LLM with a new modality of data can lead to unrecoverable spike in loss curve, i.e., loss collapse.

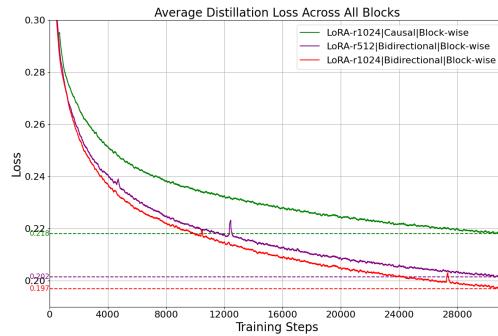


Figure 5: Average distillation loss across all blocks under various settings. Our LoRA-r1024|Bidirectional|Block-wise configuration achieves the lowest average distillation loss across all blocks. This indicates a closer alignment with the ViT’s feature space, confirming that bi-directional attention masks and a larger rank of LoRA layers also enhance visual knowledge transfer.

5.1 IMPLEMENTATION DETAILS

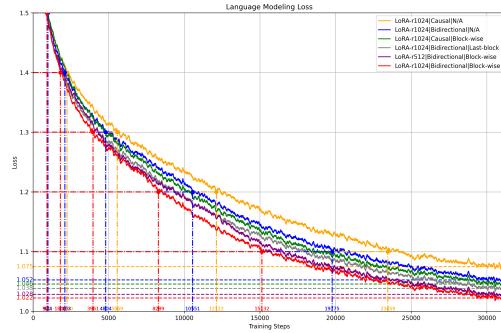
Training setup. Unless otherwise specified, we employed AIMv2-Huge-448p (Fini et al., 2024) as the default vision encoder and Qwen2.5-7B-Instruct (Yang et al., 2024) as the LLM across all experiments. The pre-training learning rate was fixed at 0.0002 (held constant unless explicitly varied), with 100 warm-up steps and a global batch size maintained at 256. All other hyperparameters and optimizer configurations followed the defaults in (Liu et al., 2024a).

For fine-tuning, all LoRA layers were merged into the LLM, while other components (e.g., distillation modules) were eliminated. The full LLM and 6M-parameter visual embedding layer were trainable. For native-resolution variants (VoRA-AnyRes in Table 2), we retained the pre-trained weights of the fixed-resolution version and adopted native-resolution strategy only during fine-tuning.

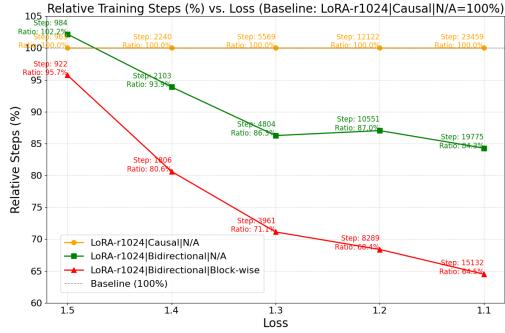
Benchmarks. As shown in Table 2 and Table 3, we evaluated the model on several benchmarks: VQAv2: VQAv2 (Goyal et al., 2017); SQA-I: ScienceQA-Image (Lu et al., 2022); TQA: TextVQA (Singh et al., 2019); POPE: POPE (Li et al., 2023b); MMP_p: MME Perception (Fu et al., 2023); MME_c: MME Cognition (Fu et al., 2023); MMB: MMBench (Liu et al., 2024b); SEED-I: SEED-Image (Li et al., 2024b); MMVet: MMVet (Yu et al., 2023); AI2D: AI2D (Kembhavi et al., 2016); RQA: Realworld-QA (Team, 2024a); MMMU: MMMU (Yue et al., 2024).

324

5.2 ABLATION STUDIES



338 Figure 6: Pre-training loss curves under different
 339 configurations. Loss values are smoothed
 340 (window=100) for visual clarity. The data
 341 sampling order was fixed to ensure fair com-
 342 parison, as evidenced by the similar trajecto-
 343 ries of the loss curves in various settings. LoRA-
 344 r1024|Bidirectional|Block-wise refers to the
 345 setting: LoRA with rank 1024, bi-directional
 346 attention masks for vision, and block-wise dis-
 347 tillation. The configuration with the lowest loss
 348 was adopted as the default setting in our ex-
 349 periments.



350 Figure 7: Data efficiency analysis. Our
 351 experiments demonstrate that combining bi-
 352 directional attention masks for vision tokens
 353 with block-wise knowledge distillation signifi-
 354 cantly improves data efficiency compared to the
 355 vanilla LoRA configuration. Furthermore, as
 356 the target loss decreases (e.g., from 1.5 to 1.1),
 357 the required data proportion relative to the base-
 358 line diminishes progressively, indicating higher
 359 data efficiency.

Vision Params	Visual Att. Mask	Distill. type	TQA	POPE	MME _p	MMB	SEED-IMM	VetAI2D	RQA	Avg.
LoRA-r1024 (2B)	Causal	N.A.	43.7	78.6	1137.7	47.7	57.8	20.6	49.9	49.7
LoRA-r1024 (2B)	Bidirectional	N.A.	43.6	80.9	1132.8	49.1	58.7	17.9	47.2	51.5
LoRA-r1024 (2B)	Causal	Block-wise	45.1	82.7	1172.9	52.9	63.7	20.1	50.9	51.2
LoRA-r1024 (2B)	Bidirectional	Last-block	44.6	82.5	1197.5	51.8	63.8	17.9	49.9	52.8
LoRA-r512 (1B)	Bidirectional	Block-wise	47.2	83.3	1280.5	57.6	65.3	18.5	55.9	53.1
LoRA-r1024 (2B)	Bidirectional	Block-wise	50.1	83.8	1224.5	53.7	65.1	22.8	52.1	55.6

360 Table 2: The performance of various settings on standard benchmarks reveals that lower loss during
 361 pre-training correlates with better performance. “LoRA-r1024 (2B)” indicates that the rank for the
 362 LoRA layers is set to 1024, with approximately 2 billion parameters unfrozen for training in total.
 363

364 Our ablation studies focused on three key components of VoRA: vision as LoRA, block-wise distil-
 365 lation, and bi-directional attention masks for vision. We employed two primary methods to assess
 366 performance in various settings: the pre-training loss on an 8M subset of our DataComp29M-recap
 367 dataset, as illustrated in Figure 6, and metrics from eight benchmarks, presented in Table 2. Addi-
 368 tionally, we visualized the average distillation loss across all blocks, as shown in Figure 5.

369 **Ablation on vision as LoRA.** Training the full-parameter LLM proved unstable due to modality
 370 conflicts (Figure 4), consistent with findings in (Diao et al., 2025a). While reducing the learning
 371 rate to a lower value allowed us to observe successful training cases, the loss decreased more slowly
 372 than that of LoRA-1024. Therefore, we have excluded it from our primary experiments.

373 Next, we analyzed different LoRA rank configurations in VoRA. Figure 6 shows that a rank of 512
 374 resulted in a slightly higher loss (+0.006) compared to rank 1024. This trend continued in the dis-
 375 tillation loss (Figure 5), where rank 512 showed a modestly higher average block-wise distillation
 376 loss (+0.005) compared to rank 1024. Although both configurations ended up with the same average
 377 score of 55.6 (Table 2), the consistent loss advantage suggested that higher ranks might have bet-
 378 ter optimization potential. Furthermore, we experienced training instability with rank 1536, which

378 prompted us to choose rank 1024 as the default configuration.

379 **Ablation on bi-directional attention masks.** As demonstrated in Figure 6, under fixed hyperparameters (e.g., LoRA rank and distillation type), the bi-directional attention mask consistently achieved 380 lower training loss compared to causal masking. This empirical advantage was further supported by 381 the reduced average distillation loss across all Transformer blocks, as depicted in Figure 5. Quantitatively, 382 as evidenced in Table 2, replacing causal masking with bi-directional masks yielded significant 383 performance improvements. For instance, switching from LoRA-r1024|Causal|Block-wise to 384 LoRA-r1024|Bidirectional|Block-wise led to a 2.4-point average score gain, while replacing LoRA- 385 r1024|Causal|N/A with LoRA-r1024|Bidirectional|N/A yielded a gain of 0.1 points.

386 **Block-wise distillation.** As shown in Figure 6 and Table 2, applying distillation to the final Transformer 387 block alone significantly improved training efficiency. For example, the transition from the 388 configuration LoRA-r1024|Bidirectional|N/A to LoRA-r1024|Bidirectional|Last-block yielded a 389 2.7-point score gain and a 0.016 reduction in loss. Extending distillation to all blocks via block-wise 390 supervision further enhanced performance: compared with LoRA-r1024|Bidirectional|Last-block, 391 LoRA-r1024|Bidirectional|Block-wise produced an additional 2.7-point gain and 0.016 loss reduction. 392 These results indicated that the vanilla distillation method, i.e., last-block distillation, could 393 accelerate training, and block-wise distillation could even strengthen this effect.

394 **Data efficiency analysis.** We measured data efficiency by reporting the relative number of training 395 steps required to reach certain loss thresholds, using vanilla LoRA as the baseline. As illustrated 396 in Figure 7, the bi-directional attention variant without distillation (LoRA-r1024|Bidirectional|N/A) 397 required 102.2% of the baseline training steps to reach Loss=1.5, whereas adding block-wise distillation 398 (LoRA-r1024|Bidirectional|Block-wise) reduced this to 95.7%. The efficiency gap became 399 more pronounced at lower loss: at Loss=1.1, the same configurations needed 84.3% and 64.5% 400 of the vanilla LoRA baseline steps, respectively. This demonstrated that our optimal configuration 401 achieved equivalent convergence with 35.5% fewer training steps than vanilla LoRA.

402 Furthermore, the ratio of data needed by our best configuration relative to vanilla LoRA decreased 403 over time, implying that comparable performance could be achieved with $N \times$ fewer training data.

405 5.3 STANDARD EVALUATION

406 To ensure a fair comparison between VoRA and existing methods, we deliberately restricted our 407 experimental design. While prior works (e.g., EVE, EVEv2 (Diao et al., 2025b), and Mono- 408 InternVL (Luo et al., 2024)) have leveraged massive in-domain datasets (Table 3), such 409 approaches complicated direct comparisons due to proprietary training data. Our goal is not to 410 pursue state-of-the-art performance on benchmarks but to validate a novel MLLM architecture. Thus, 411 we limited fine-tuning to the publicly available LLaVA-665K dataset without additional scaling.

412 To eliminate the potential advantages provided 413 by LLMs and ViTs, we also trained a LLaVA- 414 1.5 model using Qwen-2.5-7B and AIMv2- 415 0.6B. As shown in Table 3, prior encoder-free 416 methods often adopted intricate multi-stage 417 pipelines involving module freezing strategies 418 and proprietary datasets (e.g., 100M-1.2B 419 samples). In contrast, our framework employed a 420 streamlined single-stage training process (pre- 421 training followed by fine-tuning), using about 422 30M image-text pairs.

423 As shown in Table 3, VoRA achieved performance 424 comparable to both official and reproduced 425 LLaVA-1.5 baselines on most benchmarks 426 when evaluated under strict LLaVA-1.5 427 protocols (Liu et al., 2024a), i.e., identical 428 prompts/generation parameters. However, VoRA 429 underperformed on MME Perception, a gap we 430 attribute to limited world knowledge in our pre-training 431 data. This was further quantified in Table 4, where VoRA struggled with tasks demanding intensive 432 world-knowledge: 1) inferring movie details from posters, 2) identifying celebrities, 3) recognizing

Method	Posters	Celebrity	Landmark	Artwork	Total
LLaVA-1.5	156.1	143.5	173.5	134.0	607.1
VoRA	117.3	111.2	139.3	105.5	473.3
VoRA-AnyRes	110.2	104.7	138.0	110.8	463.7

Table 4: The performance of VoRA in world knowledge tasks. We acknowledge its deficiency, as expected, due to the lack of relevant in-domain data in our pre-training dataset. This is the primary reason for our lower performance on the MME Perception benchmark.

432	433	Method	LLM	ViT	# Sample	VQAv2SQA-ITQAPOPEMMEMME _p MME _c MMBSEED-IMMVetAI2DRQAMMMU											
						PretrainFinetune											
<i>Encoder-based</i>																	
437	BLIP2	Vicuna-13B	EVA-1B	129M	-	65.0	61	42.5	85.3	1293.8	-	-	49.7	22.4	-	-	-
438	InstructBLIP	Vicuna-7B	EVA-1B	129M	1.2M	-	60.5	50.1	-	-	-	36	58.8	26.2	-	-	-
439	InstructBLIP	Vicuna-13B	EVA-1B	129M	1.2M	-	63.1	50.7	78.9	1212.8	-	-	-	25.6	-	-	-
440	LLaVA-1.5	Vicuna-7B	CLIP-0.3B	558K	665K	78.5	66.8	58.2	85.9	1510.7	316.1	64.3	66.1	31.1	54.8	54.8	35.3
441	LLaVA-1.5	Qwen2.5-7BAIMv2-0.6B	558K	665K	82.3	77.5	59.2	85.2	1582.3	313.0	66.3	70.6	33.7	63.7	60.0	35.3	
<i>Encoder-free</i>																	
444	EVE	Vicuna-7B	CLIP-0.3B	49M(2)	665K	75.4	63.0	51.9	83.6	1217.3	266	49.5	61.3	25.6	48.5	-	-
445	EVE-HD	Vicuna-7B	CLIP-0.3B	49M(2)	1.8M	74.2	64.9	56.8	85.0	1305.7	322	52.3	64.6	25.7	61.0	-	-
446	EVEv2	Qwen2.5-7B	-	87M(2)	665K	-	72	57	-	-	-	-	-	-	-	-	-
447	Mono-InternVL	Intern1.5-2B	-	922M	665K	-	57	49	-	1100	-	-	-	-	42	-	-
448	Mono-InternVL	Intern1.5-2B	-	1.2B(2)	665K	-	58	55	-	1110	-	-	-	-	46	-	-
449	VoRA	Qwen2.5-7BAIMv2-0.6B	30M	665K	76.0	75.9	56.3	84.5	1363.4	311.1	64.2	67.5	33.7	65.6	57.7	32.2	
450	VoRA-AnyRes	Qwen2.5-7BAIMv2-0.6B	30M	665K	76.0	72.0	58.7	85.5	1336.1	319.3	61.3	68.9	33.7	61.1	60.1	32.0	

451
452 Table 3: Comparison with previous methods on several benchmarks. Since this paper aims to
453 demonstrate that VoRA is a strong base model, we did not scale the fine-tuning data. Therefore,
454 we did not compare with recent state-of-the-art models that often require additional data engineer-
455 ing or involve proprietary datasets; methods that utilize extra fine-tuning data are grayed out. We
456 classified domain-specific VQA data as fine-tuning data rather than pre-training data for EVEv2 and
457 Mono-InternVL, which differs from their original classification in the respective papers. The nota-
458 tion “49M(2)” indicates that this method employs a two-stage training process using a total of 49M
459 image-text pairs. The strikethrough notation ~~ViT~~ means that ViT is excluded during inference.

460
461 landmarks, and 4) classifying artworks, as these tasks required external domain knowledge absent
462 in our training datasets.

465 6 LIMITATIONS

466
467 The most significant limitation of VoRA lies in its reliance on additional pre-training data to com-
468 pensate for the absence of an external vision model, because the LLM has to learn visual feature
469 extraction from scratch. While we hypothesize that scaling VoRA could surpass encoder-based
470 MLLMs by avoiding information loss in the pre-trained ViT (as theorized in (Diao et al., 2025a;
471 Tong et al., 2024)), we currently lack the empirical evidence to confirm this advantage. Limited
472 training data and computational resources have prevented us from observing a clear performance
473 crossover point. We leave this promising hypothesis for future exploration.

475 7 CONCLUSION

476
477 VoRA establishes a new paradigm for converting LLMs into MLLMs through three components:
478 (1) vision as LoRA, (2) Block-wise distillation, and (3) bi-directional attention masks for vision. By
479 integrating vision capabilities directly into the LLM via mergeable LoRA layers for visual encoding,
480 VoRA eliminates the need for a separate vision model. This unified approach reduces memory
481 overhead, lowers computational costs, and leverages the LLM’s inherent flexibility in context length
482 to process native-resolution images with minimal adaptation. This design bypasses the problems
483 brought by using ViT as an external vision model while still decoupling the vision and language
484 parameters to ensure stable training.

486 REFERENCES
487

488 Pravesh Agrawal, Szymon Antoniak, Emma Bou Hanna, Baptiste Bout, Devendra Chaplot, Jes-
489 sica Chudnovsky, Diogo Costa, Baudouin De Moncault, Saurabh Garg, Theophile Gervet, et al.
490 Pixtral 12b. [arXiv preprint arXiv:2410.07073](https://arxiv.org/abs/2410.07073), 2024.

491 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
492 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
493 model for few-shot learning. *Advances in neural information processing systems*, 35:23716–
494 23736, 2022.

495 Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme Penedo,
496 Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček, Agustín Piqueres Lajarín, Vaibhav Srivastav,
497 Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo
498 Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and
499 Thomas Wolf. Smollm2: When smol goes big – data-centric training of a small language model,
500 2025. URL <https://arxiv.org/abs/2502.02737>.

501 Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
502 jishirzi. Mathqa: Towards interpretable math word problem solving with operation-based for-
503 malisms. [arXiv preprint arXiv:1905.13319](https://arxiv.org/abs/1905.13319), 2019.

504 BAAI. Infinity instruct. [arXiv preprint arXiv:2406.XXXX](https://arxiv.org/abs/2406.XXXX), 2024.

505 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
506 Yu Han, Fei Huang, et al. Qwen technical report. [arXiv preprint arXiv:2309.16609](https://arxiv.org/abs/2309.16609), 2023.

507 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
508 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
509 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

510 Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman
511 Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large
512 language model as a unified interface for vision-language multi-task learning. [arXiv preprint
513 arXiv:2310.09478](https://arxiv.org/abs/2310.09478), 2023.

514 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong,
515 Kongzhi Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to
516 commercial multimodal models with open-source suites. *Science China Information Sciences*, 67
(12):220101, 2024a.

517 Zhe Chen, Jannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
518 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
519 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer
520 vision and pattern recognition*, pp. 24185–24198, 2024b.

521 Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick
522 Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly open
523 instruction-tuned llm, 2023. URL <https://www.databricks.com/blog/2023/04/12/dolly-first-commercially-viable-instruction-tuned-llm>.

524 Haiwen Diao, Yufeng Cui, Xiaotong Li, Yueze Wang, Huchuan Lu, and Xinlong Wang. Unveiling
525 encoder-free vision-language models. *Advances in Neural Information Processing Systems*, 37:
526 52545–52567, 2025a.

527 Haiwen Diao, Xiaotong Li, Yufeng Cui, Yueze Wang, Haoge Deng, Ting Pan, Wenxuan Wang,
528 Huchuan Lu, and Xinlong Wang. Evev2: Improved baselines for encoder-free vision-language
529 models. [arXiv preprint arXiv:2502.06788](https://arxiv.org/abs/2502.06788), 2025b.

530 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
531 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
532 image is worth 16x16 words: Transformers for image recognition at scale. [arXiv preprint
533 arXiv:2010.11929](https://arxiv.org/abs/2010.11929), 2020.

540 Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang, Xinlong
 541 Wang, and Yue Cao. Eva: Exploring the limits of masked visual representation learning at scale.
 542 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 543 19358–19369, 2023.

544 Enrico Fini, Mustafa Shukor, Xiujun Li, Philipp Dufter, Michal Klein, David Haldimann, Sai
 545 Aitharaju, Victor Guilherme Turrisi da Costa, Louis Béthune, Zhe Gan, et al. Multimodal au-
 546 toregressive pre-training of large vision encoders. *arXiv preprint arXiv:2411.14402*, 2024.

547 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
 548 Zheng, Ke Li, Xing Sun, et al. Mme: A comprehensive evaluation benchmark for multimodal
 549 large language models. *arXiv preprint arXiv:2306.13394*, 2023.

550 Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao
 551 Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, et al. Datacomp: In
 552 search of the next generation of multimodal datasets. *Advances in Neural Information Processing
 553 Systems*, 36:27092–27112, 2023.

554 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
 555 matter: Elevating the role of image understanding in visual question answering. In *Proceedings
 556 of the IEEE conference on computer vision and pattern recognition*, pp. 6904–6913, 2017.

557 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv
 558 preprint arXiv:1503.02531*, 2015.

559 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 560 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

561 Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
 562 Farhadi. A diagram is worth a dozen images. In *Computer Vision–ECCV 2016: 14th European
 563 Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14*, pp.
 564 235–251. Springer, 2016.

565 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 566 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint
 567 arXiv:2408.03326*, 2024a.

568 Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan.
 569 Seed-bench: Benchmarking multimodal large language models. In *Proceedings of the IEEE/CVF
 570 Conference on Computer Vision and Pattern Recognition*, pp. 13299–13308, 2024b.

571 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 572 pre-training with frozen image encoders and large language models. In *International conference
 573 on machine learning*, pp. 19730–19742. PMLR, 2023a.

574 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 575 object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023b.

576 Wing Lian, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and "Teknium".
 577 Openorca: An open dataset of gpt augmented flan reasoning traces. <https://huggingface.co/datasets/Open-Orca/OpenOrca>, 2023.

578 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances
 579 in neural information processing systems*, 36:34892–34916, 2023.

580 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual in-
 581 struction tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 582 Recognition*, pp. 26296–26306, 2024a.

583 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 584 Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
 585 player? In *European conference on computer vision*, pp. 216–233. Springer, 2024b.

594 Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 595 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
 596 science question answering. *Advances in Neural Information Processing Systems*, 35:2507–2521,
 597 2022.

598 Gen Luo, Xue Yang, Wenhan Dou, Zhaokai Wang, Jifeng Dai, Yu Qiao, and Xizhou Zhu. Mono-
 599 internvl: Pushing the boundaries of monolithic multimodal large language models with endoge-
 600 nous visual pre-training. *arXiv preprint arXiv:2410.08202*, 2024.

602 Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
 603 Ma, Qingwei Lin, and Dixin Jiang. Wizardcoder: Empowering code large language models with
 604 evol-instruct. *arXiv preprint arXiv:2306.08568*, 2023.

605 Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking
 606 the potential of slms in grade school math, 2024.

608 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 609 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 610 models from natural language supervision. In *International conference on machine learning*, pp.
 611 8748–8763. PMLR, 2021.

612 Curtis Hawthorne Maxwell Nye Augustus Odena Arushi Somani RohanBavishi, Erich Elsen and
 613 Sağnak Taşırlar. Introducing our multimodal models. 2023. URL <https://www.adept.ai/blog/fuyu-8b>.

616 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
 617 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
 618 *arXiv preprint arXiv:1701.06538*, 2017.

619 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
 620 and Marcus Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF*
 621 *conference on computer vision and pattern recognition*, pp. 8317–8326, 2019.

623 Grok Team. Grok-1.5 vision preview, 2024a. URL <https://x.ai/blog/grok-1.5v>.

624 Llama Team. Llama 3.2: Revolutionizing edge ai and vision with open,
 625 customizable models, 2024b. URL <https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/>.

628 Peter Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Adithya Jairam Vedagiri IYER, Sai Charitha
 629 Akula, Shusheng Yang, Jihan Yang, Manoj Middepogu, Ziteng Wang, et al. Cambrian-1: A fully
 630 open, vision-centric exploration of multimodal llms. *Advances in Neural Information Processing*
 631 *Systems*, 37:87310–87356, 2024.

632 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 633 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 634 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

636 Han Wang, Yuxiang Nie, Yongjie Ye, Deng GuanYu, Yanjie Wang, Shuai Li, Haiyang Yu, Jinghui
 637 Lu, and Can Huang. Dynamic-vlm: Simple dynamic visual token compression for videollm.
 638 *arXiv preprint arXiv:2412.09530*, 2024a.

639 Han Wang, Yongjie Ye, Yanjie Wang, Yuxiang Nie, and Can Huang. Elysium: Exploring object-
 640 level perception in videos via mllm. In *European Conference on Computer Vision*, pp. 166–185.
 641 Springer, 2024b.

642 P Wang, S Bai, S Tan, S Wang, Z Fan, J Bai, K Chen, X Liu, J Wang, W Ge, et al. Qwen2-
 643 v1: Enhancing vision-language model’s perception of the world at any resolution, 2024. URL
 644 <https://arxiv.org/abs/2409.12191>.

646 Weihang Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
 647 Lei Zhao, Song XiXuan, et al. Cogvilm: Visual expert for pretrained language models. *Advances*
 648 *in Neural Information Processing Systems*, 37:121475–121499, 2024c.

648 Tobias Weyand, Andre Araujo, Bingyi Cao, and Jack Sim. Google landmarks dataset v2-a large-
 649 scale benchmark for instance-level recognition and retrieval. In Proceedings of the IEEE/CVF
 650 conference on computer vision and pattern recognition, pp. 2575–2584, 2020.

651

652 Ge Zhang Yao Fu Wenhao Huang Huan Sun Yu Su Wenhua Chen Xiang Yue, Xingwei Qu.
 653 Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
 654 arXiv:2309.05653, 2023.

655

656 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 657 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
 658 arXiv:2412.15115, 2024.

659

660 Weihsiao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
 661 and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. arXiv
 662 preprint arXiv:2308.02490, 2023.

663

664 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens,
 665 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
 666 modal understanding and reasoning benchmark for expert agi. In Proceedings of the IEEE/CVF
 667 Conference on Computer Vision and Pattern Recognition, pp. 9556–9567, 2024.

668

669 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 670 image pre-training. In Proceedings of the IEEE/CVF international conference on computer vision,
 671 pp. 11975–11986, 2023.

672

673 Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural
 674 Information Processing Systems, 32, 2019.

675

676 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 677 Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
 678 Judging Ilm-as-a-judge with mt-bench and chatbot arena, 2023.

679

680 Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhua Chen, and
 681 Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement.
 682 arXiv preprint arXiv:2402.14658, 2024.

683

684 Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob
 685 Kahn, Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next token and
 686 diffuse images with one multi-modal model. arXiv preprint arXiv:2408.11039, 2024.

687

688 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
 689 hancing vision-language understanding with advanced large language models. arXiv preprint
 690 arXiv:2304.10592, 2023.

691

692

693

694

695

696

697

698

699

700

701