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ABSTRACT

We introduce Vision as LoORA (VoRA), a novel paradigm for transforming an LLM
into an MLLM. Unlike prevalent MLLM architectures that rely on external vision
modules for vision encoding, VoRA internalizes visual capabilities by integrating
vision-specific LoRA layers directly into the LLM. This design allows the added
parameters to be seamlessly merged into the LLM during inference, eliminating
structural complexity and minimizing computational overhead. Moreover, inher-
iting the LLM’s ability of handling flexible context, VORA can process inputs at
arbitrary resolutions.

To further strengthen VoRA’s visual capabilities, we introduce a block-wise dis-
tillation method that transfers visual priors from a pre-trained ViT into the LoRA
layers, effectively accelerating training by injecting visual knowledge. Addition-
ally, we apply bi-directional attention masks to better capture the context informa-
tion of an image. We successfully demonstrate that with additional pre-training
data, VORA can perform comparably with conventional encode-based MLLMs.

All training data, codes, and model weights will be released.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) (Li et al.|
2023a; |Liu et al., |2023}; 2024a; |Alayrac et al., 2022; |Zhu
et al., |2023) have advanced significantly by integrating
pre-trained vision models with Large Language Models
(LLMs) (Chen et al., [2024a; |Touvron et al., 2023} |[Zheng
et al.,|2023; Brown et al.| 2020; Bai et al.| 2023) through
a modular design: visual features extracted by vision en-
coders to be aligned with LLMs via a connector, as shown
in Figure [[{a). While efficient in training, this approach
has key limitations derived from the external vision expert
models, i.e., extra computational costs and image resolu-
tion constraints. For instance, many vision encoders, par-
ticularly Vision Transformers (ViTs) (Zhai et al.l 2023
Radford et al.l 2021} |[Dosovitskiy et al., 2020), adhere
to a fixed-resolution training paradigm, limiting flexibil-
ity. Additionally, the modular design imposes a sequen-
tial workflow: the LLM cannot begin processing until the
vision encoder and connector have fully processed the im-
age. To overcome these issues, recent studies (RohanBav-
1shi & Tagsirlar, 2023} |Diao et al.l 2025a) have explored
unified, encoder-free architectures that process raw pixels
directly within a single Transformer (i.e., an LLM), elimi-
nating the need of external vision models. However, such
methods face challenges from modality conflicts between
vision and language, which would lead to new problems,
such as unstable training and catastrophic forgetting is-
sues.

Relevant research (Diao et al.| [2025b; [Luo et al., [2024)
has made attempts to address modality conflicts through
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Figure 1: Visual parameters are indi-
cated with an eye icon. Mainstream
MLLMs adopt a modular, sequential ar-
chitecture: raw pixels are first processed
by a pre-trained vision encoder to ex-
tract high-level visual features, which
are then aligned with the LLLM through a
modality connector for vision-language
tasks. In contrast, VoORA consists solely
of an LLM and a lightweight embed-
ding layer. The LoRA layers serve as
visual parameters that can be integrated
into the LLM without incurring addi-
tional computational costs or memory
burdens.
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parameter decoupling methods. For example, Mono-InternVL (Luo et al., |2024) introduced a
Mixture-of-Experts (MoE) framework (Shazeer et al., [2017), employing separate expert modules
for vision and language processing. Taking a step further, EVEv2 (Diao et al.,[2025b)) decoupled all
linear and normalization layers in the LLM. While these approaches helped mitigate modality con-
flicts, they doubled the LLM’s parameters, complicating the architecture and substantially increasing
memory overhead.

To address these challenges, we propose Vision as LoRA (VoRA), a method of transforming LLMs
into encoder-free MLLMs by integrating vision understanding abilities through Low-Rank Adapta-
tion (LoRA) (Hu et al.|[2022). While we acknowledge that decoupling vision and language parame-
ters is critical, we wish to avoid dependency on parameter expansion in inference. To this end, VoORA
applies trainable LoRA layers to LLMs, which encode the new modality, i.e., vision, while preserv-
ing the language knowledge of the original LLM by freezing its parameters, as shown in Figure[T{b).
Unlike previous approaches (Diao et al.,[2025bj |[Luo et al.| 2024)) that retain vision-specific param-
eters during inference, VoRA merges LoRA layers into the LLM after training, incurring near-zero
additional computational cost or memory overhead.

Furthermore, VORA leverages pre-trained vision models as teacher models to inject visual priors into
the LoRA layers. Specifically, we adopt the strategy of block-wise distillation (Hinton et al., [2015):
the intermediate visual representations of each LLM block are forced to align with the corresponding
block-level features extracted by the teacher model. With such a process, we can greatly accelerate
training and reduce the demand for massive data.

In addition, we replace the LLM’s causal attention mask with a bi-directional one for image process-
ing, which better captures contextual relations. Meanwhile, we have also found that, unlike most
conventional encoder-based MLLMs (Bai et al., 2023} |[L1u et al., [2023; 2024 a; |L1 et al., 2024 a; |[Zhu
et al.| 2023} |Chen et al.| 2023] [Wang et al., |2024c) which are constrained by fixed-resolution vi-
sion encoders, VORA naturally supports native image resolutions by exploiting the LLM’s inherent
ability to process variable-length sequences.

Our contributions are threefold:

* Framework innovation: VoRA converts LLMs into MLLMs via: (1) vision as LoRA, (2)
block-wise distillation, and (3) bi-directional attention for vision. Parameter decoupling
between vision and language pathways stabilizes training, while other components accel-
erate training and reduce data needs. Ablation studies confirm the effectiveness of each
element, establishing VORA as a new paradigm for encoder-free MLLMs.

* Performance validation: When trained with a proper scale of additional data, VORA
matches conventional encoder-based MLLMs in terms of performance while reducing com-
putational costs, demonstrating that LLMs can acquire native multimodal capabilities with-
out external vision models. This challenges the widely perceived necessity of encoder-
based architectures for multimodal tasks.

* Potential extensibility: Although we narrow down our scope to vision understanding tasks
in this paper, the modality-agnostic architecture of VoORA has the potential of generalizing
to other modalities (e.g., audio and point clouds) and tasks (e.g., image generation).

2 RELATED WORKS

2.1 ENCODER-BASED MLLMs

The dominant architecture of MLLMs has remained largely unchanged since its inception, compris-
ing three components: a ViT (Radford et al.l 2021} [Zhai et al., 2023} [Fini et al., 2024), an LLM
(Touvron et al.} [2023; Brown et al.}|2020; [Yang et al., 2024} [Zheng et al.| 2023)), and a connector to
bridge modality gaps. Previous research has focused primarily on connector design, ranging from
simple MLP layers (Liu et al.| [2023;2024a; [Zhu et al., |2023}; |Chen et al., 2023)) to hierarchical fea-
ture fusion modules (Alayrac et al., 2022} Team, 2024b) or other complex architectures (Wang et al.,
2024bza; (Chen et al., 2024bj [Tong et al., [2024)). Despite these innovations, fundamental limitations
persist due to their reliance on external vision encoders. First, computational and memory over-
head escalates dramatically when applying multiple vision encoders (Tong et al., [2024) or scaling
to larger ones (Wang et al.,|2024c). Second, fixed-resolution pre-training of ViTs forces MLLMs to
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Figure 2: The architecture of VoRA. Figure (a) shows the architecture of VoRA in pre-training: in
this stage, VORA only unfreezes the LoRA layers for vision and the visual embedding layer, i.e., a
shallow MLP layer with a positional embedding. Figure (b) shows VoRA in inference: the LoRA
layers are merged into the LLM, and thus the only added parameters are a shallow embedding layer
(about 6M parameters).

employ workarounds like image tiling (Liu et al.| [2024a 2024a)) or restricted square res-

olutions (Wang et al} [2024¢} Bai et al, 2023). Recent attempts (Agrawal et al, [2024; Wang et al;
2024) to train resolution-agnostic ViTs have remained impractical, in that they adopted

massive proprietary data and opaque training procedures. These challenges have spurred interest in
encoder-free architectures that could bypass ViTs entirely.

2.2 ENCODER-FREE MLLMsS

The pioneering work, Fuyu (RohanBavishi & Tagirlar} [2023)), demonstrated the feasibility of training
encoder-free models on interleaved image-text data, though at prohibitive computational costs with
limited technical transparency. Subsequent approaches, such as EVE (Diao et al., [20254), reduced
the vision encoder parameters to a single Transformer block, aligning its output features with a
ViT through distillation while updating all LLM parameters to learn about vision during the main
training stage. However, these methods still struggle with conflicts between the LLM’s inherent
language abilities and the new modality, i.e., vision. These conflicts arise from the coupled language
and vision parameters, which exacerbate unstable training and lead to catastrophic forgetting of the
original language abilities.

To overcome these problems, Mono-InternVL (Luo et al.} [2024) and EVEv2 (Diao et al.| [2025b)
proposed parameter decoupling strategies inspired by the MoE method (Shazeer et al.|[2017), dupli-

cating LLM parameters for vision-specific processing while freezing its original weights. Despite
successfully addressing forgetting issues and modality conflicts, these methods suffered from sub-
stantial memory overhead by doubling model parameters, compromising architectural simplicity.
Our work addresses this by applying LoRA, which encodes vision while maintaining the language
abilities of the LLLM, and can be merged into the LLM without causing additional memory overhead.

3  VISION AS LORA

In this section, we introduce three key components of VoRA: vision as LoRA, block-wise distilla-
tion, and bi-directional attention masks for vision.
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3.1 STABILIZE TRAINING: VISION AS LORA

As shown in Figure [J[a), we integrate LoRA layers into the LLM to enable vision understanding.
During pre-training, images are first converted into vision embeddings using a lightweight embed-
ding layer, i.e., a shallow MLP with positional encodings of about 6M parameters. Let Ny; and Ny
denote the number of blocks in the ViT and the LLM, respectively. We apply LoRA to all linear
layers within the first N,; blocks of the LLM, including query-key-value (QKV) projections and
feed-forward network (FFN) layers. Crucially, only the LoRA parameters and the vision embedding
layer are updated during training, while the original LLM parameters remain frozen. This design
decouples vision and language parameters, stabilizing training compared to full LLM training and
avoiding the training collapse observed in prior works (Diao et al., 2025al).

Figure 2[b) demonstrates that after pre-training, the LoORA parameters can be seamlessly merged
into the base LLM, thereby eliminating additional inference overhead.

3.2 BOOST TRAINING: BLOCK-WISE DISTILLATION

We introduce a block-wise distillation paradigm to align VoORA’s intermediate visual representations
with the block-wise features of a pre-trained ViT. This approach transfers visual knowledge from the
ViT via knowledge distillation (Hinton et al., 2015} [Fang et al. [2023), accelerating training while
reducing dependence on large-scale vision data. Unlike conventional distillation that updates entire
models, we only update the vision-specific LoRA layers within the LLM. Specifically, for each block
7 in the first Vy; layers of the LLM, we align its hidden states with those of block ¢ in the ViT. The
training objective combines the following two components.

Distillation loss. For each transformer block ¢ and vision token position s, we maximize cosine
similarity between projected LLM features and ViT embeddings via:

g . .
; 1 AuxHead(h)*)Th"?
distill = g Z 1- — (z Em) \;‘lte ’ (D
S [ AuxHead (hy )|z [y 12

s=1
where S is the ViT’s output sequence length (number of vision embeddings to represent one image),
hys, hy; € RM denote the hidden states for the s-th token in block i, and AuxHead(-) is a projec-
tion layer (RMSNorm (Zhang & Sennrich| |[2019) + linear layer) adapting LLM features to the ViT’s
embedding space. The loss is averaged across Ny blocks:

Niit

1 i
Lisiin = N ; Lisein- @)

Language modeling loss. For image-caption pairs, we optimize caption generation using cross-
entropy, which is consistent with the standard approach used in LLMs:

T
Liym=— Z log P(wt\w<t, mimage)a 3)

t=to

where 7' is the total sequence length, ;mae. represents vision inputs, and to indexes the first caption
token.
Final objective. The final loss combines both objectives:

Liotat = Laisin + Lim- 4

3.3 BI-DIRECTIONAL ATTENTION MASKS FOR VISION

While bi-directional attention masks is common in Transformer architectures in various fields
(Dosovitskiy et all 2020; [Radford et al., 2021} [Zhou et al.| [2024), few studies have explored re-
placing the causal mask of autoregressive LLMs with a bi-directional mask, especially in the field
of MLLMs.

As illustrated in Figure [3|, we have explored the use of a bi-directional attention mask for vision.
Our findings indicate that this attention mask positively impacts the final performance of VoRA,
which will be discussed in Section 5] In contrast to prior works (Diao et all [2025aib}; Luo
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Data Format |Dataset ‘# Sample| Total

Image Caption DataComp29M-recap (ours) 29M 30.4M
GLDv2-recap (ours) 1.4M
Infinity-Instruct-3M (BAAIL 2024) 3.5M
SmolTalk (Allal et al., 2025} 1.0M
OpenOrca (Lian et al., 2023 994.0K
MathlInstruct (Xiang Yue,2023) 262.0K

Text QA OrcaMath (IMltra et al.L_|2024 200.0K | o\
MagpiePro (L3 ST) (Li et al., [2024a 150.0K
WizardCoder (Luo et al., 2023 143.0K
OpenCodelnterpreter (Zheng et al.l, |2024I) 66.0K
MathQA (Amini et al. |2019[) 29.8K
Dolly (Conover et al.| 2023) 11.0K

Table 1: Data used in the pre-training stage of VORA. We use a mixture of both image and text data
to alleviate the forgetting issue in training.

et all}, 2024} RohanBavishi & Tagirlar, [2023)), which have relied on causal masking designed for
autoregressive text generation, we demonstrate that adopting bi-directional attention for vision
tokens while retaining causal masking for text, not only preserves language capabilities but also
enhances visual performance. This aligns with insights from image generation research
12024), highlighting VoRA’s potential as a unified architecture for multimodal generation and
understanding tasks.

As shown in Figure 3] we explored

three types of attention masks fOI‘ vi- UsER : o ) @B whatis it 2 UsER : o ) B what s i 2
sion: (a) causal mask, (b) bidirec- g, | user
tional mask, and (c) localized bidi- : P
rectional mask. While the bidirec- & &
tional mask demonstrates improved & ;-
)| . |
performance, we find that the local- - g
ized bidirectional mask outperforms | R
it by allowing tokens to focus exclu- s bk
sively on a single image without in- & Lo
terference from other text. ? p !
(a) Causal mask for vision (b) Bi-directional mask for vision
4 DATA . : . L
Figure 3: Attention masks for vision: (a) causal attention in-
herits the autoregressive mask from language modeling, en-
4.1 DATA

forcing sequential dependency between image patches; (b)
COLLECTION AND PREPROCESSING  pjdirectional attention offers full visibility between all im-
age patches within the same input, enabling global contex-

We claim that the primary focus of 41 awareness.

this work is not on data engineer-
ing or filtration; therefore, we adopt
a straightforward data collection and
processing strategy. Following previ-

ous studies (Diao et al.| 2025a3b}; [Luo et al.,[2024)), our pre-training framework utilized re-captioned

data. Given the limited availability of open-source, large-scale re-captioned datasets, we employed

Qwen2-VL-72B (Wang et al.) to generate captions for images sampled from DataComp-1B (Gadre|
2023). From this raw dataset, we selected approximately 29 million images with a longer edge

exceeding 448 pixels.

We recognize that this dataset lacks specific world knowledge, particularly regarding landmarks,
celebrities, and artworks. To address the deficiency in landmark data, we supplemented our dataset
with approximately 1.4 million images from the Google Landmarks Dataset v2 (GLDv2) (Weyand
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et al., 2020). For other categories, no suitable million-scale datasets were available. Furthermore,
due to potential ethical concerns, we chose not to collect such data. Consequently, we acknowledge
that our method may underperform in these domains. However, this limitation can be mitigated in
future works by integrating relevant datasets.

4.2 MULTIMODAL DATA MIXTURE

While VoRA decouples vision and language parameters, we have observed that extended caption-
only training slightly degrades the LLM’s instruction-following capability. To preserve this abil-
ity, we mixed text instruction data into the training data. As shown in Table |1} our final mixture
contained approximately 30M image-caption pairs and 6.4M text instruction samples. The text
data were obtained directly from: Infinity-Instruction (BAAIL 2024), SmolTalk (Allal et al.,|2025)),
Cambrian-1 (Tong et al.l 2024), and LLaVA-OneVison (Li et al.,[2024a).

5 EXPERIMENTS

Language Modeling Losses in Different Settings
—— LLM|Causal|N/A
LoRA-r1024|Causal|N/A
—— LoRA-r1024|Bidirectional|Block-wise

Average Distillation Loss Across All Blocks

—— LoRA-r1024|Ca
—— LoRA-r512|Bidire

~meazzzzo
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Training Steps

Figure 4: Language modeling losses in differ-
ent settings. Training the full LLM with a new
modality of data can lead to unrecoverable spike
in loss curve, i.e., loss collapse.

Training Steps

Figure 5: Average distillation loss across
all blocks under various settings. Our
LoRA-r1024|Bidirectional | Block-wise configu-
ration achieves the lowest average distillation

loss across all blocks. This indicates a closer
alignment with the ViT’s feature space, con-
firming that bi-directional attention masks and
a larger rank of LoRA layers also enhance vi-
sual knowledge transfer.

5.1 IMPLEMENTATION DETAILS

Training setup. Unless otherwise specified, we employed AIMv2-Huge-448p (Fini et al.,|2024)) as
the default vision encoder and Qwen2.5-7B-Instruct (Yang et al., 2024)) as the LLM across all exper-
iments. The pre-training learning rate was fixed at 0.0002 (held constant unless explicitly varied),
with 100 warm-up steps and a global batch size maintained at 256. All other hyperparameters and
optimizer configurations followed the defaults in (Liu et al., 2024a)).

For fine-tuning, all LoRA layers were merged into the LLM, while other components (e.g., distilla-
tion modules) were eliminated. The full LLM and 6M-parameter visual embedding layer were train-
able. For native-resolution variants (VORA-AnyRes in Table[?)), we retained the pre-trained weights
of the fixed-resolution version and adopted native-resolution strategy only during fine-tuning.
Benchmarks. As shown in Table [2] and Table 3] we evaluated the model on several benchmarks:
VQAV2: VQAV2 (Goyal et al., 2017); SQA-I: ScienceQA-Image (Lu et al.||2022); TQA: TextVQA
(Singh et al., |2019); POPE: POPE (Li et al., 2023b); MMP,,: MME Perception (Fu et al., [2023);
MME,: MME Cognition (Fu et al [2023); MMB: MMBench (Liu et al, [2024b); SEED-I: SEED-
Image (Li et al., 2024b); MM Vet: MM Vet (Yu et al.| 2023); AI2D: AI2D (Kembhavi et al. [2016);
RQA: Realworld-QA (Team, [2024a); MMMU: MMMU (Yue et al., [2024)).
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5.2 ABLATION STUDIES

Language Modeling Loss

Figure 6: Pre-training loss curves under differ-
ent configurations. Loss values are smoothed
(window=100) for visual clarity. The data sam-
pling order was fixed to ensure fair compar-
ison, as evidenced by the similar trajectories
of the loss curves in various settings. LoRA-
r1024|Bidirectional|Block-wise refers to the
setting: LoRA with rank 1024, bi-directional at-
tention masks for vision, and block-wise distil-

Relative Training Steps (%) vs. Loss (Baseline: LoRA-r1024|Causal|N/A=100%)

0Reh 984
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Figure 7: Data efficiency analysis.  Our
experiments demonstrate that combining bi-
directional attention masks for vision tokens
with block-wise knowledge distillation signifi-
cantly improves data efficiency compared to the
vanilla LoRA configuration. Furthermore, as
the target loss decreases (e.g., from 1.5 to 1.1),
the required data proportion relative to the base-
line diminishes progressively, indicating higher

lation. The configuration with the lowest loss  data efficiency.
was adopted as the default setting in our experi-

ments.

Vision Params  |Visual Att. Mask‘DiStill. type‘TQA POPEMME, MMB SEED-IMM Vet AI2D RQA|Avg.

LoRA-r1024 (2B) Causal N.A. |43.7 78.6 1137.7 47.7 57.8 20.6 49.9 49.7|50.6
LoRA-r1024 (2B)| Bidirectional N.A. |43.6 809 1132.8 49.1 587 179 472 51.5(50.7
LoRA-r1024 (2B) Causal Block-wise[45.1 82.7 11729 529 63.7 20.1 50.9 51.2|53.2
LoRA-r1024 (2B)| Bidirectional |Last-block [44.6 82.5 1197.5 51.8 63.8 179 499 52.8|52.9
LoRA-r512 (1B) | Bidirectional |Block-wise|47.2 83.3 1280.5 57.6 65.3 18.5 55.9 53.1(55.6
LoRA-r1024 (2B)| Bidirectional |Block-wise|50.1 83.8 1224.5 53.7 65.1 22.8 52.1 55.8|55.6

Table 2: The performance of various settings on standard benchmarks reveals that lower loss during
pre-training correlates with better performance. “LoRA-r1024 (2B)” indicates that the rank for the
LoRA layers is set to 1024, with approximately 2 billion parameters unfrozen for training in total.

Our ablation studies focused on three key components of VoRA: vision as LoRA, block-wise distil-
lation, and bi-directional attention masks for vision. We employed two primary methods to assess
performance in various settings: the pre-training loss on an 8M subset of our DataComp29M-recap
dataset, as illustrated in Figure[6] and metrics from eight benchmarks, presented in Table [2] Addi-
tionally, we visualized the average distillation loss across all blocks, as shown in Figure[3]
Ablation on vision as LoRA. Training the full-parameter LLM proved unstable due to modality
conflicts (Figure [)), consistent with findings in (Diao et all 2025a). While reducing the learning
rate to a lower value allowed us to observe successful training cases, the loss decreased more slowly
than that of LoRA-1024. Therefore, we have excluded it from our primary experiments.

Next, we analyzed different LoRA rank configurations in VoRA. Figure[6] shows that a rank of 512
resulted in a slightly higher loss (+0.006) compared to rank 1024. This trend continued in the dis-
tillation loss (Figure 5, where rank 512 showed a modestly higher average block-wise distillation
loss (+0.005) compared to rank 1024. Although both configurations ended up with the same average
score of 55.6 (Table 2, the consistent loss advantage suggested that higher ranks might have bet-
ter optimization potential. Furthermore, we experienced training instability with rank 1536, which
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prompted us to choose rank 1024 as the default configuration.

Ablation on bi-directional attention masks. As demonstrated in Figure[6] under fixed hyperparam-
eters (e.g., LoRA rank and distillation type), the bi-directional attention mask consistently achieved
lower training loss compared to causal masking. This empirical advantage was further supported by
the reduced average distillation loss across all Transformer blocks, as depicted in Figure[5] Quanti-
tatively, as evidenced in Table 2] replacing causal masking with bi-directional masks yielded signif-
icant performance improvements. For instance, switching from LoRA-r1024|Causal|Block-wise to
LoRA-r1024|Bidirectional |Block-wise led to a 2.4-point average score gain, while replacing LoRA-
r1024|Causal|[N/A with LoRA-r1024|Bidirectional[N/A yielded a gain of 0.1 points.

Block-wise distillation. As shown in Figure[6|and Table 2] applying distillation to the final Trans-
former block alone significantly improved training efficiency. For example, the transition from the
configuration LoRA-r1024|Bidirectional [N/A to LoRA-r1024|Bidirectional| Last-block yielded a
2.7-point score gain and a 0.016 reduction in loss. Extending distillation to all blocks via block-wise
supervision further enhanced performance: compared with LoRA-r1024|Bidirectional|Last-block,
LoRA-r1024|Bidirectional|Block-wise produced an additional 2.7-point gain and 0.016 loss reduc-
tion. These results indicated that the vanilla distillation method, i.e., last-block distillation, could
accelerate training, and block-wise distillation could even strengthen this effect.

Data efficiency analysis. We measured data efficiency by reporting the relative number of training
steps required to reach certain loss thresholds, using vanilla LoRA as the baseline. As illustrated
in Figure the bi-directional attention variant without distillation (LoRA-r1024|Bidirectional|[N/A)
required 102.2% of the baseline training steps to reach Loss=1.5, whereas adding block-wise dis-
tillation (LoRA-r1024|Bidirectional |Block-wise) reduced this to 95.7%. The efficiency gap became
more pronounced at lower loss: at Loss=1.1, the same configurations needed 84.3% and 64.5%
of the vanilla LoRA baseline steps, respectively. This demonstrated that our optimal configuration
achieved equivalent convergence with 35.5% fewer training steps than vanilla LoRA.

Furthermore, the ratio of data needed by our best configuration relative to vanilla LoRA decreased
over time, implying that comparable performance could be achieved with N x fewer training data.

5.3 STANDARD EVALUATION

To ensure a fair comparison between VoRA and existing methods, we deliberately restricted our
experimental design. While prior works (e.g., EVE, EVEv2 (Diao et al.| 2025b)), and Mono-
InternVL (Luo et al.l 2024)) have leveraged massive in-domain datasets (Table [3), such ap-
proaches complicated direct comparisons due to proprietary training data. Our goal is not to pur-
sue state-of-the-art performance on benchmarks but to validate a novel MLLM architecture. Thus,
we limited fine-tuning to the publicly available LLaVA-665K dataset without additional scaling.

To eliminate the.potential advagtages provided Method ‘Posters Celebrity LandmarkArtwork‘ Total
by LLMs and ViTs, we also trained a LLaVA-

1.5 model using Qwen-2.5-7B and AIMv2-  LLaVA-1.5 ‘156.1 1435 1735 1340 ‘607‘1

0.6B. As shown in Table 3] prior encoder-free
methods often adopted intricate multi-stage VoRA 117.3 1112 1393 1055 |473.3

pipelines involving module freezing strategies voRA-AnyRes| 1102 1047 1380  110.8 |[463.7
and proprietary datasets (e.g., l00M—1.2B sam-

ples). In contrast, our framework employed a
streamlined single-stage training process (pre-
training followed by fine-tuning), using about
30M image-text pairs.

Table 4: The performance of VoRA in world
knowledge tasks. We acknowledge its deficiency,
as expected, due to the lack of relevant in-domain
data in our pre-training dataset. This is the pri-
As shown in Table [3] VoRA achieved perfor- mary reason for our lower performance on the
mance comparable to both official and repro- MME Perception benchmark.

duced LLaVA-1.5 baselines on most bench-

marks when evaluated under strict LLaVA-1.5

protocols (Liu et al., [20244)), i.e., identical prompts/generation parameters. However, VoORA under-
performed on MME Perception, a gap we attribute to limited world knowledge in our pre-training
data. This was further quantified in Table [d where VoRA struggled with tasks demanding intensive
world-knowledge: 1) inferring movie details from posters, 2) identifying celebrities, 3) recognizing
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# Sampl
Method LLM ViT pe VQAV2SQA-ITQAPOPEMME;, MME:.MMBSEED-IMM Vet AI2DRQAMMMU

PretrainFinetune

Encoder-based

BLIP2 Vicuna-13B EVA-1B  129M - 65.0 61 425 853 12938 - - 497 224 -
InstructBLIP  Vicuna-7B EVA-1B  129M 1.2M - 60.5 50.1 - - - 36 588 262 -
InstructBLIP  Vicuna-13B  EVA-1B  129M 1.2M - 63.1 50.7 78.9 1212.8 - - - 256 -

LLaVA-1.5 Vicuna-7B CLIP-0.3B 558K 665K 78.5 66.8 58.2 859 1510.7 316.1 643 66.1 31.1 54.8 54.8 353
LLaVA-1.5 Qwen2.5-7TBAIMv2-0.6B 558K 665K 823 77.5 59.2 85.2 15823 313.0 663 70.6 33.7 63.7 60.0 353

Encoder-free

EVE Vicuna-7B  €HP-63B 49M(2) 665K 754 63.0 51.9 83.6 1217.3 266 49.5 613 256 485

EVE-HD Vicuna-7B  €HR-03B 49M(2) 1.8M 742 649 56.8 85.0 13057 322 523 646 257 61.0

EVEv2 Qwen2.5-7B - 87M(2) 665K - 72 57 - - - - - - -
Mono-InternVLIntern1.5-2B - 922M 665K - 57 49 - 1100 - - 42
Mono-InternVLIntern1.5-2B - 1.2B(2) 665K - 58 55 - 1110 - - - - 46

VoRA Qwen2.5-7TBAIMY2-6:6B 30M 665K  76.0 759 56.3 84.5 1363.4 311.1 642 675 337 656 57.7 322

VoRA-AnyRes Qwen2.5-7BAIM¥2-6:6B 30M 665K  76.0 72.0 58.7 85.5 1336.1 3193 61.3 689 33.7 61.1 60.1 32.0

Table 3: Comparison with previous methods on several benchmarks. Since this paper aims to
demonstrate that VoRA is a strong base model, we did not scale the fine-tuning data. Therefore,
we did not compare with recent state-of-the-art models that often require additional data engineer-
ing or involve proprietary datasets; methods that utilize extra fine-tuning data are grayed out. We
classified domain-specific VQA data as fine-tuning data rather than pre-training data for EVEv2 and
Mono-InternVL, which differs from their original classification in the respective papers. The nota-
tion “49M(2)” indicates that this method employs a two-stage training process using a total of 49M
image-text pairs. The strikethrough notation ¥AF means that ViT is excluded during inference.

landmarks, and 4) classifying artworks, as these tasks required external domain knowledge absent
in our training datasets.

6 LIMITATIONS

The most significant limitation of VoRA lies in its reliance on additional pre-training data to com-
pensate for the absence of an external vision model, because the LLM has to learn visual feature
extraction from scratch. While we hypothesize that scaling VORA could surpass encoder-based
MLLMs by avoiding information loss in the pre-trained ViT (as theorized in (Diao et al., |2025a;
Tong et al.| [2024)), we currently lack the empirical evidence to confirm this advantage. Limited
training data and computational resources have prevented us from observing a clear performance
crossover point. We leave this promising hypothesis for future exploration.

7 CONCLUSION

VoRA establishes a new paradigm for converting LLMs into MLLMs through three components:
(1) vision as LoRA, (2) Block-wise distillation, and (3) bi-directional attention masks for vision. By
integrating vision capabilities directly into the LLM via mergeable LoRA layers for visual encoding,
VoRA eliminates the need for a separate vision model. This unified approach reduces memory
overhead, lowers computational costs, and leverages the LLM’s inherent flexibility in context length
to process native-resolution images with minimal adaptation. This design bypasses the problems
brought by using ViT as an external vision model while still decoupling the vision and language
parameters to ensure stable training.
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