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Abstract

Likelihood-based, or explicit, deep generative models use neural networks to construct
flexible high-dimensional densities. This formulation directly contradicts the manifold
hypothesis, which states that observed data lies on a low-dimensional manifold embedded in
high-dimensional ambient space. In this paper we investigate the pathologies of maximum-
likelihood training in the presence of this dimensionality mismatch. We formally prove
that degenerate optima are achieved wherein the manifold itself is learned but not the
distribution on it, a phenomenon we call manifold overfitting. We propose a class of
two-step procedures consisting of a dimensionality reduction step followed by maximum-
likelihood density estimation, and prove that they recover the data-generating distribution
in the nonparametric regime, thus avoiding manifold overfitting. We also show that these
procedures enable density estimation on the manifolds learned by implicit models, such
as generative adversarial networks, hence addressing a major shortcoming of these models.
Several recently proposed methods are instances of our two-step procedures; we thus unify,
extend, and theoretically justify a large class of models.

1 Introduction

We consider the standard setting for generative modelling, where samples {xn}N
n=1 ⊂ RD of high-dimensional

data from some unknown distribution P∗ are observed, and the task is to estimate P∗. Many deep generative
models (DGMs) (Bond-Taylor et al., 2021), including variational autoencoders (VAEs) (Kingma & Welling,
2014; Rezende et al., 2014; Ho et al., 2020; Kingma et al., 2021) and variants such as adversarial variational
Bayes (AVB) (Mescheder et al., 2017), normalizing flows (NFs) (Dinh et al., 2017; Kingma & Dhariwal, 2018;
Behrmann et al., 2019; Chen et al., 2019; Durkan et al., 2019; Cornish et al., 2020), energy-based models
(EBMs) (Du & Mordatch, 2019), and continuous autoregressive models (ARMs) (Uria et al., 2013; Theis &
Bethge, 2015), use neural networks to construct a flexible density trained to match P∗ by maximizing either
the likelihood or a lower bound of it. This modelling choice implies the model has D-dimensional support,1
thus directly contradicting the manifold hypothesis (Bengio et al., 2013), which states that high-dimensional
data is supported on M, an unknown d-dimensional embedded submanifold of RD, where d < D.

1This is indeed true of VAEs and AVB, even though both use low-dimensional latent variables, as the observational model
being fully dimensional implies every point in RD is assigned strictly positive density, regardless of what the latent dimension is.
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There is strong evidence supporting the manifold hypothesis. Theoretically, the sample complexity of kernel
density estimation is known to scale exponentially with ambient dimension D when no low-dimensional
structure exists (Cacoullos, 1966), and with intrinsic dimension d when it does (Ozakin & Gray, 2009). These
results suggest the complexity of learning distributions scales exponentially with the intrinsic dimension of
their support, and the same applies for manifold learning (Narayanan & Mitter, 2010). Yet, if estimating
distributions or manifolds required exponentially many samples in D, these problems would be impossible to
solve in practice. The success itself of deep-learning-based methods on these tasks thus supports the manifold
hypothesis. Empirically, Pope et al. (2021) estimate d for commonly-used image datasets and find that,
indeed, it is much smaller than D.

A natural question arises: how relevant is the aforementioned modelling mismatch? We answer this question
by proving that when P∗ is supported on M, maximum-likelihood training of a flexible D-dimensional density
results in M itself being learned, but not P∗. Our result extends that of Dai & Wipf (2019) beyond VAEs to
all likelihood-based models and drops the empirically unrealistic assumption that M is homeomorphic to Rd

(e.g. one can imagine the MNIST (LeCun, 1998) manifold as having 10 connected components, one per digit).
This phenomenon – which we call manifold overfitting – has profound consequences for generative modelling.
Maximum-likelihood is indisputably one of the most important concepts in statistics, and enjoys well-studied
theoretical properties such as consistency and asymptotic efficiency under seemingly mild regularity conditions
(Lehmann & Casella, 2006). These conditions can indeed be reasonably expected to hold in the setting of
“classical statistics” under which they were first considered, where models were simpler and available data
was of much lower ambient dimension than by modern standards. However, in the presence of d-dimensional
manifold structure, the previously innocuous assumption that there exists a ground truth D-dimensional
density cannot possibly hold. Manifold overfitting thus shows that DGMs do not enjoy the supposed
theoretical benefits of maximum-likelihood, which is often regarded as a principled objective for training
DGMs, because they will recover the manifold but not the distribution on it. We highlight that manifold
overfitting is a problem with maximum-likelihood itself, and thus universally affects all explicit DGMs.

Figure 1: Depiction of our two-step procedures. In the
first step, we learn to map from M to Rd through g, and
to invert this mapping through G. In the second step,
we perform density estimation (green density on the
right) on the dataset encoded through g. Our learned
distribution on M (shades of green on the spiral) is
given by pushing forward the density from the second
step through G.

In order to address manifold overfitting, we propose
a class of two-step procedures, depicted in Fig. 1.
The first step, which we call generalized autoencod-
ing, 2 reduces the dimension of the data through an
encoder g : RD → Rd while also learning how to
map back to M through a decoder G : Rd → RD.
In the second step, maximum-likelihood estimation
is performed on the low-dimensional representations
{g(xn)}N

n=1 using a DGM. Intuitively, the first step
removes the dimensionality mismatch in order to
avoid manifold overfitting in the second step. This
intuition is confirmed in a second theoretical result
where we prove that, given enough capacity, our two-
step procedures indeed recover P∗ in the infinite data
limit while retaining density evaluation. Just as man-
ifold overfitting pervasively affects likelihood-based
DGMs, our proposed two-step procedures address
this issue in an equally broad manner. We also iden-
tify DGMs that are instances of our procedure class. Our methodology thus results in novel models, and
provides a unifying perspective and theoretical justification for all these related works.

We also show that some implicit models (Mohamed & Lakshminarayanan, 2016), e.g. generative adversarial
networks (GANs) (Goodfellow et al., 2014), can be made into generalized autoencoders. Consequently,
in addition to preventing manifold overfitting on explicit models, our two-step procedures enable density
evaluation for implicit models, thus addressing one of their main limitations. We show that this newly obtained
ability of implicit models to perform density estimation can be used empirically to perform out-of-distribution

2Our generalized autoencoders are unrelated to those of Wang et al. (2014).
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(OOD) detection, and we obtain very promising results. To the best of our knowledge principled density
estimation with implicit models was previously considered impossible.

Finally, we achieve significant empirical improvements in sample quality over maximum-likelihood, strongly
supporting our theoretical findings. We show these improvements persist even when accounting for the
additional parameters of the second-step model, or when adding Gaussian noise to the data as an attempt to
remove the dimensionality mismatch that causes manifold overfitting.

2 Related Work and Motivation

Manifold mismatch It has been observed in the literature that RD-supported models exhibit undesirable
behaviour when the support of the target distribution has complicated topological structure. For example,
Cornish et al. (2020) show that the bi-Lipschitz constant of topologically-misspecified NFs must go to infinity,
even without dimensionality mismatch, explaining phenomena like the numerical instabilities observed by
Behrmann et al. (2021). Mattei & Frellsen (2018) observe VAEs can have unbounded likelihoods and are
thus susceptible to similar instabilities. Dai & Wipf (2019) study dimensionality mismatch in VAEs and
its effects on posterior collapse. These works motivate the development of models with low-dimensional
support. Goodfellow et al. (2014) and Nowozin et al. (2016) model the data as the pushforward of a
low-dimensional Gaussian through a neural network, thus making it possible to properly account for the
dimension of the support. However, in addition to requiring adversarial training – which is more unstable
than maximum-likelihood (Chu et al., 2020) – these models minimize the Jensen-Shannon divergence or
f -divergences, respectively, in the nonparametric setting (i.e. infinite data limit with sufficient capacity),
which are ill-defined due to dimensionality mismatch. Attempting to minimize Wasserstein distance has
also been proposed (Arjovsky et al., 2017; Tolstikhin et al., 2018) as a way to remedy this issue, although
estimating this distance is hard in practice (Arora et al., 2017) and unbiased gradient estimators are not
available. In addition to having a more challenging training objective than maximum-likelihood, these implicit
models lose a key advantage of explicit models: density evaluation. Our work aims to both properly account
for the manifold hypothesis in likelihood-based DGMs while retaining density evaluation, and endow implicit
models with density evaluation.

NFs on manifolds Several recent flow-based methods properly account for the manifold structure of
the data. Gemici et al. (2016), Rezende et al. (2020), and Mathieu & Nickel (2020) construct flow models
for prespecified manifolds, with the obvious disadvantage that the manifold is unknown for most data of
interest. Brehmer & Cranmer (2020) propose injective NFs, which model the data-generating distribution
as the pushforward of a d-dimensional Gaussian through an injective function G : Rd → RD, and avoid
the change-of-variable computation through a two-step training procedure; we will see in Sec. 5 that this
procedure is an instance of our methodology. Caterini et al. (2021) and Ross & Cresswell (2021) endow
injective flows with tractable change-of-variable computations, the former through automatic differentiation
and numerical linear algebra methods, and the latter with a specific construction of injective NFs admitting
closed-form evaluation. We build a general framework encompassing a broader class of DGMs than NFs
alone, giving them low-dimensional support without requiring injective transformations over Rd.

Adding noise Denoising approaches add Gaussian noise to the data, making the D-dimensional model
appropriate at the cost of recovering a noisy version of P∗ (Vincent et al., 2008; Vincent, 2011; Alain &
Bengio, 2014; Meng et al., 2021; Chae et al., 2021; Horvat & Pfister, 2021a;b; Cunningham & Fiterau, 2021).
In particular, Horvat & Pfister (2021b) show that recovering the true manifold structure in this case is only
guaranteed when adding noise orthogonally to the tangent space of the manifold, which cannot be achieved in
practice when the manifold itself is unknown. In the context of score-matching (Hyvärinen, 2005), denoising
has led to empirical success (Song & Ermon, 2019; Song et al., 2021). In Sec. 3.2 we show that adding small
amounts of Gaussian noise to a distribution supported on a manifold results in highly peaked densities, which
can be hard to learn. Zhang et al. (2020b) also make this observation, and propose to add the same amount
of noise to the model itself. However, their method requires access to the density of the model after having
added noise, which in practice requires a variational approximation and is thus only applicable to VAEs. Our
first theoretical result can be seen as a motivation for any method based on adding noise to the data (as
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Figure 2: Left panel: P∗ (green); pt(x) = 0.3 · N (x; −1, 1/t) + 0.7 · N (x; 1, 1/t) (orange, dashed) for t = 5,
which converges weakly to P∗ as t → ∞; and p′

t(x) = 0.8 · N (x; −1, 1/t) + 0.2 · N (x; 1, 1/t) (purple, dotted)
for t = 5, which converges weakly to P† = 0.8δ−1 + 0.2δ1 while getting arbitrarily large likelihoods under
P∗, i.e. p′

t(x) → ∞ as t → ∞ for x ∈ M; Gaussian VAE density (blue, solid). Right panel: Analogous
phenomenon with D = 2 and d = 1, with the blue density “spiking” around M in a manner unlike P∗ (green)
while achieving large likelihoods.

attempting to address manifold overfitting), and our two-step procedures are applicable to all likelihood-based
DGMs. We empirically verify that simply adding Gaussian noise to the data and fitting a maximum-likelihood
DGM as usual is not enough to avoid manifold overfitting in practice. Our results highlight that manifold
overfitting can manifest itself empirically even when the data is close to a manifold rather than exactly on
one, and that naïvely adding noise does not fix it. We hope that our work will encourage further advances
aiming to address manifold overfitting, including ones based on adding noise.

3 Manifold Overfitting

3.1 An Illustrative Example

Consider the simple case where D = 1, d = 0, M = {−1, 1}, and P∗ = 0.3δ−1 + 0.7δ1, where δx denotes a
point mass at x. Suppose the data is modelled with a mixture of Gaussians p(x) = λ · N (x; m1, σ2) + (1 −
λ) · N (x; m2, σ2) parameterized by a mixture weight λ ∈ [0, 1], means m1, m2 ∈ R, and a shared variance
σ2 ∈ R>0, which we will think of as a flexible density. This model can learn the correct distribution in
the limit σ2 → 0, as shown on the left panel of Fig. 2 (dashed line in orange). However, arbitrarily large
likelihood values can be achieved by other densities – the one shown with a purple dotted line approximates
a distribution P† on M which is not P∗ but nonetheless has large likelihoods. The implication is simple:
maximum-likelihood estimation will not necessarily recover the data-generating distribution P∗. Our choice of
P† (see figure caption) was completely arbitrary, hence any distribution on M other than δ−1 or δ1 could be
recovered with likelihoods diverging to infinity. Recovering P∗ is then a coincidence which we should not expect
to occur when training via maximum-likelihood. In other words, we should expect maximum-likelihood to
recover the manifold (i.e. m1 = ±1, m2 = ∓1 and σ2 → 0), but not the distribution on it (i.e. λ /∈ {0.3, 0.7}).
We also plot the density learned by a Gaussian VAE (see App. C.2) in blue to show this issue empirically.
While this model assigns some probability outside of {−1, 1} due to limited capacity, the probabilities assigned
around −1 and 1 are far off from 0.3 and 0.7, respectively; even after quantizing with the sign function, the
VAE only assigns probability 0.53 to x = 1.

The underlying issue here is that M is “too thin in RD” (it has Lebesgue measure 0), and thus p(x) can
“spike to infinity” at every x ∈ M. If the dimensionalities were correctly matched this could not happen, as
the requirement that p integrate to 1 would be violated. We highlight that this issue is not only a problem
with data having intrinsic dimension d = 0, and can happen whenever d < D. The right panel of Fig. 2
shows another example of this phenomenon with d = 1 and D = 2, where a distribution P∗ (green curve) is
poorly approximated with a density p (blue surface) which nonetheless would achieve high likelihoods by
“spiking around M”. Looking ahead to our experiments, the middle panel of Fig. 4 shows a 2-dimensional
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EBM suffering from this issue, spiking around the ground truth manifold on the left panel, but not correctly
recovering the distribution on it. The intuition provided by these examples is that if a flexible D-dimensional
density p is trained with maximum-likelihood when P∗ is supported on a low-dimensional manifold, it is
possible to simultaneously achieve large likelihoods while being close to any P†, rather than close to P∗. We
refer to this phenomenon as manifold overfitting, as the density will concentrate around the manifold, but
will do so in an incorrect way, recovering an arbitrary distribution on the manifold rather than the correct
one. Note that the problem is not that the likelihood can be arbitrarily large (e.g. intended behaviour in
Fig. 2), but that large likelihoods can be achieved while not recovering P∗. Manifold overfitting thus calls
into question the validity of maximum-likelihood as a training objective in the setting where the data lies on
a low-dimensional manifold.

3.2 The Manifold Overfitting Theorem

We now formalize the intuition developed so far. We assume some familiarity with measure theory (Billingsley,
2008) and with smooth (Lee, 2013) and Riemannian manifolds (Lee, 2018). Nonetheless, we provide a
measure theory primer in App. A, where we informally review relevant concepts such as absolute continuity of
measures (≪), densities as Radon-Nikodym derivatives, weak convergence, properties holding almost surely
with respect to a probability measure, and pushforward measures. We also use the concept of Riemannian
measure (Pennec, 2006), which plays an analogous role on manifolds to that of the Lebesgue measure on
Euclidean spaces. We briefly review Riemannian measures in App. B.1, and refer the reader to Dieudonné
(1973) for a thorough treatment.3 We begin by defining a useful condition on probability distributions for the
following theorems, which captures the intuition of “continuously spreading mass all around M”.

Definition 1 (Smoothness of Probability Measures): Let M be a finite-dimensional C1 manifold,
and let P be a probability measure on M. Let g be a Riemannian metric on M and µ

(g)
M the corresponding

Riemannian measure. We say that P is smooth if P ≪ µ
(g)
M and it admits a continuous density p : M → R>0

with respect to µ
(g)
M .

Note that smoothness of P is independent of the choice of Riemannian metric g (see App. B.1). We emphasize
that this is a weak requirement, corresponding in the Euclidean case to P admitting a continuous and positive
density with respect to the Lebesgue measure, and that it is not required of P∗ in our first theorem below.
Denoting the Lebesgue measure on RD as µD, we now state our first result.

Theorem 1 (Manifold Overfitting): Let M ⊂ RD be an analytic d-dimensional embedded submanifold
of RD with d < D, and P† a smooth probability measure on M. Then there exists a sequence of probability
measures (Pt)∞

t=1 on RD such that:

1. Pt → P† weakly as t → ∞.

2. For every t ≥ 1, Pt ≪ µD and Pt admits a density pt : RD → R>0 with respect to µD such that:
(a) lim

t→∞
pt(x) = ∞ for every x ∈ M.

(b) lim
t→∞

pt(x) = 0 for every x /∈ cl(M), where cl(·) denotes closure in RD.

Proof sketch: We construct Pt by convolving P† with 0 mean, σ2
t ID covariance Gaussian noise for a sequence

(σ2
t )∞

t=1 satisfying σ2
t → 0 as t → ∞, and then carefully verify that the stated properties of Pt indeed hold.

See App. B.2 for the full formal proof.

Informally, part 1 says that Pt can get arbitrarily close to P†, and part 2 says that this can be achieved
with densities diverging to infinity on all M. The relevance of this statement is that large likelihoods of a
model do not imply it is adequately learning the target distribution P∗, showing that maximum-likelihood is
not a valid objective when data has low-dimensional manifold structure. Maximizing 1

N

∑N
n=1 log p(xn), or

EX∼P∗ [log p(X)] in the nonparametric regime, over a D-dimensional density p need not recover P∗: since P∗

is supported on M, it follows by Theorem 1 that not only can the objective be made arbitrarily large, but
that this can be done while recovering any P†, which need not match P∗. The failure to recover P∗ is caused

3See especially Sec. 22 of Ch. 16. Note Riemannian measures are called Lebesgue measures in this reference.
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by the density being able to take arbitrarily large values on all of M, thus overfitting to the manifold. When
p is a flexible density, as for many DGMs with universal approximation properties (Hornik, 1991; Koehler
et al., 2021), manifold overfitting becomes a key deficiency of maximum-likelihood – which we fix in Sec. 4.

Note also that the proof of Theorem 1 applied to the specific case where P† = P∗ formalizes the intuition that
adding small amounts of Gaussian noise to P∗ results in highly peaked densities, suggesting that the resulting
distribution, which denoising methods aim to estimate, might be empirically difficult to learn. More generally,
even if there exists a ground truth D-dimensional density which allocates most of its mass around M, this
density will be highly peaked. In other words, even if Theorem 1 does not technically apply in this setting, it
still provides useful intuition as manifold overfitting might still happen in practice. Indeed, we empirically
confirm in Sec. 6 that even if P∗ is only “very close” to M, manifold overfitting remains a problem.

Differences from regular overfitting Manifold overfitting is fundamentally different from regular
overfitting. At its core, regular overfitting involves memorizing observed datapoints as a direct consequence
of maximizing the finite-sample objective 1

N

∑N
n=1 log p(xn). This memorization can happen in different ways,

e.g. the empirical distribution P̂N = 1
N

∑N
n=1 δxn

could be recovered.4 Recovering P̂N requires increased
model capacity as N increases, as new data points have to be memorized. In contrast, manifold overfitting
only requires enough capacity to concentrate mass around the manifold. Regular overfitting can happen
in other ways too: a classical example (Bishop, 2006) being p(x) = 1

2 N (x; 0, ID) + 1
2 N (x; x1, σ2ID), which

achieves arbitrarily large likelihoods as σ2 → 0 and only requires memorizing x1. On the other hand, manifold
overfitting does not arise from memorizing datapoints, and unlike regular overfitting, can persist even when
maximizing the nonparametric objective EX∼P∗ [log p(X)]. Manifold overfitting is thus a more severe problem
than regular overfitting, as it does not disappear in the infinite data regime. This property of manifold
overfitting also makes detecting it more difficult: an unseen test datapoint xN+1 ∈ M will still be assigned
very high likelihood – in line with the training data – under manifold overfitting, yet very low likelihood
under regular overfitting. Comparing train and test likelihoods is thus not a valid way of detecting manifold
overfitting, once again contrasting with regular overfitting, and highlighting that manifold overfitting is the
more acute problem of the two.

A note on divergences Maximum-likelihood is often thought of as minimizing the KL divergence KL(P∗||P)
over the model distribution P. Naïvely one might believe that this contradicts the manifold overfitting theorem,
but this is not the case. In order for KL(P∗||P) < ∞, it is required that P∗ ≪ P, which does not happen
when P∗ is a distribution on M and P ≪ µD. For example, KL(P∗||Pt) = ∞, for every t ≥ 1 even if
EX∼P∗ [log pt(X)] varies in t. In other words, minimizing the KL divergence is not equivalent to maximizing
the likelihood in the setting of dimensionality mismatch, and the manifold overfitting theorem elucidates the
effect of maximum-likelihood training in this setting. Similarly, other commonly considered divergences – such
as f -divergences – cannot be meaningfully minimized. Arjovsky et al. (2017) propose using the Wasserstein
distance as it is well-defined even in the presence of support mismatch, although we highlight once again that
estimating and/or minimizing this distance is difficult in practice.

Non-convergence of maximum-likelihood The manifold overfitting theorem shows that any smooth
distribution P† on M can be recovered through maximum-likelihood, even if it does not match P∗. It does not,
however, guarantee that some P† will even be recovered. It is thus natural to ask whether it is possible to have
a sequence of distributions achieving arbitrarily large likelihoods while not converging at all. The result below
shows this to be true: in other words, training a D-dimensional model could result in maximum-likelihood
not even converging.

Corollary 1: Let M ⊂ RD be an analytic d-dimensional embedded submanifold of RD with more than a
single element, and d < D. Then, there exists a sequence of probability measures (Pt)∞

t=1 on RD such that:

1. (Pt)∞
t=1 does not converge weakly.

2. For every t ≥ 1, Pt ≪ µD and Pt admits a density pt : RD → R>0 with respect to µD such that:
(a) lim

t→∞
pt(x) = ∞ for every x ∈ M.

4For example, the flexible model p(x) = 1
N

∑N

n=1N (x; xn, σ2ID) with σ2 → 0 recovers P̂N .
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(b) lim
t→∞

pt(x) = 0 for every x /∈ cl(M).

Proof: Let P†1 and P†2 be two different smooth probability measures on M, which exist since M has
more than a single element. Let (P1

t )∞
t=1 and (P2

t )∞
t=1 be the corresponding sequences from Theorem 1. The

sequence (Pt)∞
t=1, given by Pt = P1

t if t is even and Pt = P2
t otherwise, satisfies the above requirements.

4 Fixing Manifold Overfitting

4.1 The Two-Step Correctness Theorem

The previous section motivates the development of likelihood-based methods which work correctly even in
the presence of dimensionality mismatch. Intuitively, fixing the mismatch should be enough, which suggests
(i) first reducing the dimension of the data to some d-dimensional representation, and then (ii) applying
maximum-likelihood density estimation on the lower-dimensional dataset. The following theorem, where µd

denotes the Lebesgue measure on Rd, confirms that this intuition is correct.

Theorem 2 (Two-Step Correctness): Let M ⊆ RD be a C1 d-dimensional embedded submanifold of RD,
and let P∗ be a distribution on M. Assume there exist measurable functions G : Rd → RD and g : RD → Rd

such that G(g(x)) = x, P∗-almost surely. Then:

1. G#(g#P∗) = P∗, where h#P denotes the pushforward of measure P through the function h.

2. Moreover, if P∗ is smooth, and G and g are C1, then:
(a) g#P∗ ≪ µd.
(b) G(g(x)) = x for every x ∈ M, and the functions g̃ : M → g(M) and G̃ : g(M) → M given by

g̃(x) = g(x) and G̃(z) = G(z) are diffeomorphisms and inverses of each other.

Proof: See App. B.3.

We now discuss the implications of Theorem 2.

Assumptions and correctness The condition G(g(x)) = x, P∗-almost surely, is what one should expect
to obtain during the dimensionality reduction step, for example through an autoencoder (AE) (Rumelhart
et al., 1985) where EX∼P∗[∥G(g(X)) − X∥2

2] is minimized over G and g, provided these have enough capacity
and that population-level expectations can be minimized. We do highlight however that we allow for a much
more general class of procedures than just autoencoders, nonetheless we still refer to g and G as the “encoder”
and “decoder”, respectively. Part 1, G#(g#P∗) = P∗, justifies using a first step where g reduces the dimension
of the data, and then having a second step attempting to learn the low-dimensional distribution g#P∗: if a
model PZ on Rd matches the encoded data distribution, i.e. PZ = g#P∗, it follows that G#PZ = P∗. In other
words, matching the distribution of encoded data and then decoding recovers the target distribution.

Part 2a guarantees that maximum-likelihood can be used to learn g#P∗: note that if the model PZ is such
that PZ ≪ µd with density (i.e. Radon-Nikodym derivative) pZ = dPZ/dµd, and g#P∗ ≪ µd, then both
distributions are dominated by µd. Their KL divergence can then be expressed in terms of their densities:

KL(g#P∗||PZ) =
∫

g(M)
p∗

Z log p∗
Z

pZ
dµd, (1)

where p∗
Z = dg#P∗/dµd is the density of the encoded ground truth distribution. Assuming that

|
∫

g(M) p∗
Z log p∗

Zdµd| < ∞, the usual decomposition of KL divergence into expected log-likelihood and
entropy applies, and it thus follows that maximum-likelihood over pZ is once again equivalent to minimizing
KL(g#P∗||PZ) over PZ . In other words, learning the distribution of encoded data through maximum-likelihood
with a flexible density approximator such as a VAE, AVB, NF, EBM, or ARM, and then decoding the result
is a valid way of learning P∗ which avoids manifold overfitting.

Density evaluation Part 2b of the two-step correctness theorem bears some resem-
blance to injective NFs. However, note that the theorem does not imply G is injec-
tive: it only implies its restriction to g(M), G|g(M), is injective (and similarly for g).
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Figure 3: Illustration of how g and G can biject between
M (spiral) and g(M) (line segment) while not being
fully bijective between RD and Rd.

Fig. 3 exemplifies how this can happen even if g
and G are not injective. As with injective NFs, the
density pX of G#PZ for a model PZ on g(M) is
given by the injective change-of-variable formula:5

pX(x) = pZ(g(x))
∣∣det J⊤

G (g(x))JG(g(x))
∣∣− 1

2 , (2)

for x ∈ M, where JG(g(x)) ∈ RD×d is the Jaco-
bian matrix of G evaluated at g(x). Practically, this
observation enables density evaluation of a trained
two-step model, for example for OOD detection.
Implementation-wise, we use the approach proposed
by Caterini et al. (2021) in the context of injective NFs, which uses forward-mode automatic differentiation
(Baydin et al., 2018) to efficiently construct the Jacobian in (2). We highlight that, unlike Caterini et al.
(2021), we do not train our models through (2). Furthermore, injectivity is not enforced in G, but rather
achieved at optimality of the encoder/decoder pair, and only on g(M).

4.2 Generalized Autoencoders

We now explain different approaches for obtaining G and g. As previously mentioned, a natural choice would
be an AE minimizing EX∼P∗ [∥G(g(X)) − X∥2

2] over G and g. However, many other choices are also valid.
We call a generalized autoencoder (GAE) any procedure in which both (i) low-dimensional representations
zn = g(xn) are recovered for n = 1, . . . , N , and (ii) a function G is learned with the intention that G(zn) = xn

for n = 1, . . . , N .

As alternatives to an AE, some DGMs can be used as GAEs, either because they directly provide G and
g or can be easily modified to do so. These methods alone might obtain a G which correctly maps to M,
but might not be correctly recovering P∗. From the manifold overfitting theorem, this is what we should
expect from likelihood-based models, and we argue it is not unreasonable to expect from other models as well.
For example, the high quality of samples generated from adversarial methods (Brock et al., 2019) suggests
they are indeed learning M, but issues such as mode collapse (Che et al., 2017) suggest they might not be
recovering P∗ (Arbel et al., 2021). Among other options (Wang et al., 2020), we can use the following explicit
DGMs as GAEs: (i) VAEs or (ii) AVB, using the mean of the encoder as g and the mean of the decoder as G.
We can also use the following implicit DGMs as GAEs: (iii) Wasserstein autoencoders (WAEs) (Tolstikhin
et al., 2018) or any of its follow-ups (Kolouri et al., 2018; Patrini et al., 2020), again using the decoder as
G and the encoder as g, (iv) bidirectional GANs (BiGANs) (Donahue et al., 2017; Dumoulin et al., 2017),
taking G as the generator and g as the encoder, or (v) any GAN, by fixing G as the generator and then
learning g by minimizing reconstruction error EX∼P∗ [∥G(g(X)) − X∥2

2].

Note that explicit construction of g can be avoided as long as the representations {zn}N
n=1 are learned, which

could be achieved through non-amortized models (Gershman & Goodman, 2014; Kim et al., 2018), or with
optimization-based GAN inversion methods (Xia et al., 2021).

We summarize our two-step procedure class once again:

1. Learn G and {zn}N
n=1 from {xn}N

n=1 with a GAE.

2. Learn pZ from {zn}N
n=1 with a likelihood-based DGM.

The final model is then given by pushing pZ forward through G. Any choice of GAE and likelihood-based
DGM gives a valid instance of a two-step procedure. Note that G, and g if it is also explicitly constructed,
are fixed throughout the second step.

5The density pX is with respect to the Riemannian measure on M corresponding to the Riemannian metric inherited from
RD. This measure can be understood as the volume form on M in that integrating against them yields the same results.
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5 Towards Unifying Deep Generative Models

Making implicit models explicit As noted above, some DGMs are themselves GAEs, including some
implicit models for which density evaluation is not typically available, such as WAEs, BiGANs, and GANs.
Ramesh & LeCun (2018) use (2) to train implicit models, but they do not train a second-step DGM and thus
have no mechanism to encourage trained models to satisfy the change-of-variable formula. Dieng et al. (2019)
aim to provide GANs with density evaluation, but add D-dimensional Gaussian noise in order to achieve this,
resulting in an adversarially-trained explicit model, rather than truly making an implicit model explicit. The
two-step correctness theorem not only fixes manifold overfitting for explicit likelihood-based DGMs, but also
enables density evaluation for these implicit models through (2) once a low-dimensional likelihood model
has been trained on g(M). We highlight the relevance of training the second-step model pZ for (2) to hold:
even if G mapped some base distribution on Rd, e.g. a Gaussian, to P∗, it need not be injective to achieve
this, and could map distinct inputs to the same point on M (see Fig. 3). Such a G could be the result of
training an implicit model, e.g. a GAN, which correctly learned its target distribution. Training g, and pZ on
g(M) ⊆ Rd, is still required to ensure G|g(M) is injective and (2) can be applied, even if the end result of
this additional training is that the target distribution remains properly learned. Endowing implicit models
with density evaluation addresses a significant downside of these models, and we show in Sec. 6.3 how this
newfound capability can be used for OOD detection.

Two-step procedures Several methods can be seen through the lens of our two-step approach, and can be
interpreted as addressing manifold overfitting thanks to Theorem 2. Dai & Wipf (2019) use a two-step VAE,
where both the GAE and DGM are taken as VAEs. Xiao et al. (2019) use a standard AE along with an NF.
Brehmer & Cranmer (2020), and Kothari et al. (2021) use an AE as the GAE where G is an injective NF and
g its left inverse and use an NF as the DGM. Ghosh et al. (2020) use an AE with added regularizers along
with a Gaussian mixture model. Rombach et al. (2022) use a VAE along with a diffusion model (Ho et al.,
2020) and obtain highly competitive empirical performance, which is justified by our theoretical results.

Other methods, while not exact instances, are philosophically aligned. Razavi et al. (2019) first obtain
discrete low-dimensional representations of observed data and then train an ARM on these, which is similar
to a discrete version of our own approach. Arbel et al. (2021) propose a model which they show is equivalent
to pushing forward a low-dimensional EBM through G. The design of this model fits squarely into our
framework, although a different training procedure is used.

The methods of Zhang et al. (2020c), Caterini et al. (2021), and Ross & Cresswell (2021) simultaneously
optimize G, g, and pZ rather than using a two-step approach, combining in their loss a reconstruction term
with a likelihood term as in (2). The validity of these methods however is not guaranteed by the two-step
correctness theorem, and we believe a theoretical understanding of their objectives to be an interesting
direction for future work.

6 Experiments

We now experimentally validate the advantages of our proposed two-step procedures across a variety of
settings. We use the nomenclature A+B to refer to the two-step model with A as its GAE and B as its DGM.
All experimental details are provided in App. C, including a brief summary of the losses of the individual
models we consider. For all experiments on images, we set d = 20 as a hyperparameter,6 which we did not
tune. We chose this value as it was close to the intrinsic dimension estimates obtained by Pope et al. (2021).
Our code7 provides baseline implementations of all our considered GAEs and DGMs, which we hope will be
useful to the community even outside of our proposed two-step methodology.

6We slightly abuse notation when talking about d for a given model, since d here does not refer to the true intrinsic dimension
anymore, but rather the dimension over which pZ is defined (and which G maps from and g maps to), which need not match the
true and unknown intrinsic dimension.

7https://github.com/layer6ai-labs/two_step_zoo

9

https://github.com/layer6ai-labs/two_step_zoo


Published in Transactions on Machine Learning Research (07/2022)

Figure 4: Results on simulated data: von Mises ground truth (left), EBM (middle), and AE+EBM (right).

6.1 Simulated Data

We consider a von Mises distribution on the unit circle in Fig. 4. We learn this distribution both with an
EBM and a two-step AE+EBM model. While the EBM indeed concentrates mass around the circle, it assigns
higher density to an incorrect region of it (the top, rather than the right), corroborating manifold overfitting.
The AE+EBM model not only learns the manifold more accurately, it also assigns higher likelihoods to the
correct part of it. We show additional results on simulated data in App. D.1, where we visually confirm that
the reason two-step models outperform single-step ones trained through maximum-likelihood is the data
being supported on a low-dimensional manifold.

6.2 Comparisons Against Maximum-Likelihood

Table 1: FID scores (lower is better). Means ± stan-
dard errors across 3 runs are shown. The superscript
“+” indicates a larger model, and the subscript “σ” in-
dicates added Gaussian noise. Unreliable FID scores
are highlighted in red (see text for description).

MODEL MNIST FMNIST SVHN CIFAR-10
AVB 219.0 ± 4.2 235.9 ± 4.5 356.3 ± 10.2 289.0 ± 3.0
AVB+ 205.0 ± 3.9 216.2 ± 3.9 352.6 ± 7.6 297.1 ± 1.1
AVB+

σ 205.2 ± 1.0 223.8 ± 5.4 353.0 ± 7.2 305.8 ± 8.7
AVB+ARM 86.4 ± 0.9 78.0 ± 0.9 56.6 ± 0.6 182.5 ± 1.0
AVB+AVB 133.3 ± 0.9 143.9 ± 2.5 74.5 ± 2.5 183.9 ± 1.7
AVB+EBM 96.6 ± 3.0 103.3 ± 1.4 61.5 ± 0.8 189.7 ± 1.8
AVB+NF 83.5 ± 2.0 77.3 ± 1.1 55.4 ± 0.8 181.7 ± 0.8
AVB+VAE 106.2 ± 2.5 105.7 ± 0.6 59.9 ± 1.3 186.7 ± 0.9
VAE 197.4 ± 1.5 188.9 ± 1.8 311.5 ± 6.9 270.3 ± 3.2
VAE+ 184.0 ± 0.7 179.1 ± 0.2 300.1 ± 2.1 257.8 ± 0.6
VAE+

σ 185.9 ± 1.8 183.4 ± 0.7 302.2 ± 2.0 257.8 ± 1.7
VAE+ARM 69.7 ± 0.8 70.9 ± 1.0 52.9 ± 0.3 175.2 ± 1.3
VAE+AVB 117.1 ± 0.8 129.6 ± 3.1 64.0 ± 1.3 176.7 ± 2.0
VAE+EBM 74.1 ± 1.0 78.7 ± 2.2 63.7 ± 3.3 181.7 ± 2.8
VAE+NF 70.3 ± 0.7 73.0 ± 0.3 52.9 ± 0.3 175.1 ± 0.9

ARM+ 98.7 ± 10.6 72.7 ± 2.1 168.3 ± 4.1 162.6 ± 2.2
ARM+

σ 34.7 ± 3.1 23.1 ± 0.9 149.2 ± 10.7 136.1 ± 4.2
AE+ARM 72.0 ± 1.3 76.0 ± 0.3 60.1 ± 3.0 186.9 ± 1.0

EBM+ 84.2 ± 4.3 135.6 ± 1.6 228.4 ± 5.0 201.4 ± 7.9
EBM+

σ 101.0 ± 12.3 135.3 ± 0.9 235.0 ± 5.6 200.6 ± 4.8
AE+EBM 75.4 ± 2.3 83.1 ± 1.9 75.2 ± 4.1 187.4 ± 3.7

We now show that our two-step methods empirically
outperform maximum-likelihood training. Conve-
niently, some likelihood-based DGMs recover low-
dimensional representations and hence are GAEs
too, providing the opportunity to compare two-step
training and maximum-likelihood training directly.
In particular, AVB and VAEs both maximize a lower
bound of the log-likelihood, so we can train a first
model as a GAE, recover low-dimensional representa-
tions, and then train a second-step DGM. Any perfor-
mance difference compared to maximum-likelihood
is then due to the second-step DGM rather than the
choice of GAE.

We show the results in Table 1 for MNIST, FMNIST
(Xiao et al., 2017), SVHN (Netzer et al., 2011), and
CIFAR-10 (Krizhevsky, 2009). We use Gaussian de-
coders with learnable scalar variance for both mod-
els, even for MNIST and FMNIST, as opposed to
Bernoulli or other common choices (Loaiza-Ganem
& Cunningham, 2019) in order to properly model
the data as continuous and allow for manifold over-
fitting to happen. While ideally we would compare
models based on log-likelihood, this is only sensible
for models sharing the same dominating measure;
here this is not the case as the single-step models are D-dimensional, while our two-step models are not. We
thus use the FID score (Heusel et al., 2017) as a measure of how well models recover P∗. Table 1 shows
that our two-step procedures consistently outperform single-step maximum-likelihood training, even when
adding Gaussian noise to the data, thus highlighting that manifold overfitting is still an empirical issue even
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when the ground truth distribution is D-dimensional but highly peaked around a manifold. We emphasize
that we did not tune our two-step models, and thus the takeaway from Table 1 should not be about which
combination of models is the best performing one, but rather how consistently two-step models outperform
single-step models trained through maximum-likelihood. We also note that some of the baseline models are
significantly larger, e.g. the VAE+ on MNIST has approximately 824k parameters, while the VAE model
has 412k, and the VAE+EBM only 416k. The parameter efficiency of two-step models highlights that our
empirical gains are not due to increasing model capacity but rather from addressing manifold overfitting. We
show in App. C.4.3 a comprehensive list of parameter counts, along with an accompanying discussion.

Table 1 also shows comparisons between single and two-step models for ARMs and EBMs, which unlike AVB
and VAEs, are not GAEs themselves; we thus use an AE as the GAE for these comparisons. Although FID
scores did not consistently improve for these two-step models over their corresponding single-step baselines,
we found the visual quality of samples was significantly better for almost all two-step models, as demonstrated
in the first two columns of Fig. 5, and by the additional samples shown in App. D.2. We thus highlight
with red the corresponding FID scores as unreliable in Table 1. We believe these failures modes of the FID
metric itself, wherein the scores do not correlate with visual quality, emphasize the importance of further
research on sample-based scalar evaluation metrics for DGMs (Borji, 2022), although developing such metrics
falls outside our scope. We also show comparisons using precision and recall (Kynkäänniemi et al., 2019) in
App. D.4, and observe that two-step models still outperform single-step ones.

We also point out that one-step EBMs exhibited training difficulties consistent with maximum-likelihood
non-convergence (App. D.3). Meanwhile, Langevin dynamics (Welling & Teh, 2011) for AE+EBM exhibit
better and faster convergence, yielding good samples even when not initialized from the training buffer (see
Fig. 13 in App. D.3), and AE+ARM speeds up sampling over the baseline ARM by a factor of O(D/d), in
both cases because there are fewer coordinates in the sample space. All of the 44 two-step models shown
in Table 1 visually outperformed their single-step counterparts (App. D.2), empirically corroborating our
theoretical findings.

Finally, we have omitted some comparisons verified in prior work: Dai & Wipf (2019) show VAE+VAE
outperforms VAE, and Xiao et al. (2019) that AE+NF outperforms NF. We also include some preliminary
experiments where we attempted to improve upon a GAN’s generative performance on high resolution images
in App. D.5. We used an optimization-based GAN inversion method, but found the reconstruction errors
were too large to enable empirical improvements from adding a second-step model.

6.3 OOD Detection with Implicit Models

Having verified that, as predicted by Theorem 2, two-step models outperform maximum-likelihood training,
we now turn our attention to the other consequence of this theorem, namely endowing implicit models
with density evaluation after training a second-step DGM. We demonstrate that our approach advances
fully-unsupervised likelihood-based out-of-distribution detection. Nalisnick et al. (2019) discovered the
counter-intuitive phenomenon that likelihood-based DGMs sometimes assign higher likelihoods to OOD
data than to in-distribution data. In particular, they found models trained on FMNIST and CIFAR-10
assigned higher likelihoods to MNIST and SVHN, respectively. While there has been a significant amount
of research trying to remedy and explain this situation (Choi et al., 2018; Ren et al., 2019; Zisselman &
Tamar, 2020; Zhang et al., 2020a; Kirichenko et al., 2020; Le Lan & Dinh, 2020; Caterini & Loaiza-Ganem,
2021), there is little work achieving good OOD performance using only likelihoods of models trained in a
fully-unsupervised way to recover P∗ rather than explicitly trained for OOD detection. Caterini et al. (2021)
achieve improvements in this regard, although their method remains computationally expensive and has
issues scaling (e.g. no results are reported on the CIFAR-10 → SVHN task).

We train several two-step models where the GAE is either a BiGAN or a WAE, which do not by themselves
allow for likelihood evaluation, and then use the resulting log-likelihoods (or lower bounds/negative energy
functions) for OOD detection. Two-step models allow us to use either the high-dimensional log pX from (2)
or low-dimensional log pZ as metrics for this task. We conjecture that the latter is more reliable, since (i)
the base measure is always µd, and (ii) the encoder-decoder is unlikely to exactly satisfy the conditions of
Theorem 2. Hence, we use log pZ here, and show results for log pX in App. D.6.
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Figure 5: Uncurated samples from single-step models (first row, showing ARM+
σ , EBM+, AVB+

σ , and
VAE) and their respective two-step counterparts (second row, showing AE+ARM, AE+EBM, AVB+NF,
and VAE+AVB), for MNIST (first column), FMNIST (second column), SVHN (third column), and
CIFAR-10 (fourth column).

Table 2: OOD (balanced) classification accuracy as
a percentage (higher is better). Means ± standard
errors across 3 runs are shown. Arrows point from
in-distribution to OOD data.

MODEL FMNIST → MNIST CIFAR-10 → SVHN

ARM+ 9.9 ± 0.6 15.5 ± 0.0
BiGAN+ARM 81.9 ± 1.4 38.0 ± 0.2
WAE+ARM 69.8 ± 13.9 40.1 ± 0.2

AVB+ 96.0 ± 0.5 23.4 ± 0.1
BiGAN+AVB 59.5 ± 3.1 36.4 ± 2.0
WAE+AVB 90.7 ± 0.7 43.5 ± 1.9

EBM+ 32.5 ± 1.1 46.4 ± 3.1
BiGAN+EBM 51.2 ± 0.2 48.8 ± 0.1
WAE+EBM 57.2 ± 1.3 49.3 ± 0.2

NF+ 36.4 ± 0.2 18.6 ± 0.3
BiGAN+NF 84.2 ± 1.0 40.1 ± 0.2
WAE+NF 95.4 ± 1.6 46.1 ± 1.0

VAE+ 96.1 ± 0.1 23.8 ± 0.2
BiGAN+VAE 59.7 ± 0.2 38.1 ± 0.1
WAE+VAE 92.5 ± 2.7 41.4 ± 0.2

Table 2 shows the (balanced) classification accuracy
of a decision stump given only the log-likelihood; we
show some corresponding histograms in App. D.6.
The stump is forced to assign large likelihoods as in-
distribution, so that accuracies below 50% indicate it
incorrectly assigned higher likelihoods to OOD data.
We correct the classification accuracy to account for
datasets of different size (details in App. D.6), result-
ing in an easily interpretable metric which can be
understood as the expected classification accuracy if
two same-sized samples of in-distribution and OOD
data were compared. Not only did we enable im-
plicit models to perform OOD detection, but we also
outperformed likelihood-based single-step models in
this setting. To the best of our knowledge, no other
model achieves nearly 50% (balanced) accuracy on
CIFAR-10→SVHN using only likelihoods. Although
admittedly the problem is not yet solved, we have
certainly made progress on a challenging task for
fully-unsupervised methods.

For completeness, we show samples from these models in App. D.2 and FID scores in App. D.4. Implicit
models see less improvement in FID from adding a second-step DGM than explicit models, suggesting that
manifold overfitting is a less dire problem for implicit models. Nonetheless, we do observe some improvements,
particularly for BiGANs, hinting that our two-step methodology not only endows these models with density
evaluation, but that it can also improve their generative performance. We further show in App. D.6 that
OOD improvements obtained by two-step models apply to explicit models as well.

Interestingly, whereas the VAEs used in Nalisnick et al. (2019) have Bernoulli likelihoods, we find that our
single-step likelihood-based Gaussian-decoder VAE and AVB models perform quite well on distinguishing
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FMNIST from MNIST, yet still fail on the CIFAR-10 task. Studying this is of future interest but is outside
the scope of this work.

7 Conclusions, Scope, and Limitations

In this paper we diagnosed manifold overfitting, a fundamental problem of maximum-likelihood training with
flexible densities when the data lives in a low-dimensional manifold. We proposed to fix manifold overfitting
with a class of two-step procedures which remedy the issue, theoretically justify a large group of existing
methods, and endow implicit models with density evaluation after training a low-dimensional likelihood-based
DGM on encoded data.

Our two-step correctness theorem remains nonetheless a nonparametric result. In practice, the reconstruction
error will be positive, i.e. EX∼P∗ [∥G(g(X)) − X∥2

2] > 0. Note that this can happen even when assuming
infinite capacity, as M needs to be diffeomorphic to g(M) for some C1 function g : RD → Rd for the
reconstruction error to be 0. We leave a study of learnable topologies of M for future work. The density in
(2) might then not be valid, either if the reconstruction error is positive, or if pZ assigns positive probability
outside of g(M). However, we note that our approach at least provides a mechanism to encourage our trained
encoder-decoder pair to invert each other, suggesting that (2) might not be too far off. We also believe that a
finite-sample extension of our result, while challenging, would be a relevant direction for future work. We
hope our work will encourage follow-up research exploring different ways of addressing manifold overfitting,
or its interaction with the score-matching objective.

Finally, we treated d as a hyperparameter, but in practice d is unknown and improvements can likely be had
by estimating it (Levina & Bickel, 2004), as overspecifying it should not fully remove manifold overfitting, and
underspecifying it would make learning M mathematically impossible. Still, we observed significant empirical
improvements across a variety of tasks and datasets, demonstrating that manifold overfitting is not just a
theoretical issue in DGMs, and that two-step methods are an important class of procedures to deal with it.

Broader Impact Statement

Generative modelling has numerous applications besides image generation, including but not limited to:
audio generation (van den Oord et al., 2016a; Engel et al., 2017), biology (Lopez et al., 2020), chemistry
(Gómez-Bombarelli et al., 2018), compression (Townsend et al., 2019; Ho et al., 2019; Golinski & Caterini,
2021; Yang et al., 2022), genetics (Riesselman et al., 2018), neuroscience (Sussillo et al., 2016; Gao et al.,
2016; Loaiza-Ganem et al., 2019), physics (Otten et al., 2021; Padmanabha & Zabaras, 2021), text generation
(Bowman et al., 2016; Devlin et al., 2019; Brown et al., 2020), text-to-image generation (Zhang et al., 2017;
Ramesh et al., 2022; Saharia et al., 2022), video generation (Vondrick et al., 2016; Weissenborn et al., 2020),
and weather forecasting (Ravuri et al., 2021). While each of these applications can have positive impacts on
society, it is also possible to apply deep generative models inappropriately, or create negative societal impacts
through their use (Brundage et al., 2018; Urbina et al., 2022). When datasets are biased, accurate generative
models will inherit those biases (Steed & Caliskan, 2021; Humayun et al., 2022). Inaccurate generative models
may introduce new biases not reflected in the data. Our paper addresses a ubiquitous problem in generative
modelling with maximum likelihood estimation – manifold overfitting – that causes models to fail to learn
the distribution of data correctly. In this sense, correcting manifold overfitting should lead to more accurate
generative models, and representations that more closely reflect the data.
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A Informal Measure Theory Primer

Before stating Theorems 1 and 2, and studying their implications, we provide a brief tutorial on some aspects
of measure theory that are relevant to follow our discussion. This review is not meant to be comprehensive,
and we prioritize intuition over formalism. Readers interested in the topic may consult textbooks such as
Billingsley (2008).

A.1 Probability Measures

Let us first motivate the need for measure theory in the first place and consider the question: what is a
density? Intuitively, the density pX of a random variable X is a function having the property that integrating
pX over any set A gives back the probability that X ∈ A. This density characterizes the distribution of X, in
that it can be used to answer any probabilistic question about X. It is common knowledge that discrete
random variables are not specified through a density, but rather a probability mass function. Similarly, in
our setting, where X might always take values in M, such a density will not exist. To see this, consider the
case where A = M, so that the integral of pX over M would have to be 1, which cannot happen since M
has volume 0 in RD (or more formally, Lebesgue measure 0). Measure theory provides the tools necessary
to properly specify any distribution, subsuming as special cases probability mass functions, densities of
continuous random variables, and distributions on manifolds.

A measure µ on RD is a function mapping subsets A ⊆ RD to R≥0, obeying the following properties: (i)
µ(A) ≥ 0 for every A, (ii) µ(∅) = 0, where ∅ denotes the empty set, and (iii) µ(∪∞

k=1Ak) =
∑∞

k=1 µ(Ak) for
any sequence of pairwise disjoint sets A1, A2, . . . (i.e. Ai ∩ Aj = ∅ whenever i ≠ j). Note that most measures
of interest are only defined over a large class of subsets of RD (called σ-algebras, the most notable one being
the Borel σ-algebra) rather than for every possible subset due to technical reasons, but we omit details in the
interest of better conveying intuition. A measure is called a probability measure if it also satisfies µ(RD) = 1.
To any random variable X corresponds a probability measure µX , having the property that µX(A) is the
probability that X ∈ A for any A. Analogously to probability mass functions or densities of continuous
random variables, µX allows us to answer any probabilistic question about X. The probability measure µX

is often called the distribution or law of X. Throughout our paper, P∗ is the distribution from which we
observe data.

Let us consider two examples to show how probability mass functions and densities of continuous random
variables are really just specifying distributions. Given a1, . . . , aK ∈ RD, consider the probability mass
function of a random variable X given by pX(x) = 1/K for x = a1, a2, . . . , aK and 0 otherwise. This
probability mass function is simply specifying the distribution µX(A) = 1/K ·

∑K
k=1 1(ak ∈ A), where

1(· ∈ A) denotes the indicator function for A, i.e. 1(a ∈ A) is 1 if a ∈ A, and 0 otherwise. Now consider
a standard Gaussian random variable X in RD with density pX(x) = N (x; 0, ID). Similarly to how the
probability mass function from the previous example characterized a distribution, this density does so as
well through µX(A) =

∫
A

N (x; 0, ID)dx. We will see in the next section how these ideas can be extended to
distributions on manifolds.

The concept of integrating a function h : RD → R with respect to a measure µ on RD is fundamental in
measure theory, and can be thought of as “weighting the inputs of h according to µ”. In the case of the
Lebesgue measure µD (which assigns to subsets A of RD their “volume” µD(A)), integration extends the
concept of Riemann integrals commonly taught in calculus courses, and in the case of random variables
integration defines expectations, i.e. EX∼µX

[h(X)] =
∫

hdµX . In the next section we will talk about the
interplay between integration and densities.

We finish this section by explaining the relevant concept of a property holding almost surely with respect to
a measure µ. A property is said to hold µ-almost surely if the set A over which it does not hold is such that
µ(A) = 0. For example, if µX is the distribution of a standard Gaussian random variable X in RD, then we
can say that X ̸= 0 holds µX -almost surely, since µX({0}) = 0. The assumption that G(g(x)) = x, P∗-almost
surely in Theorem 2 thus means that P∗({x ∈ RD : G(g(x)) ̸= x}) = 0.
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A.2 Absolute Continuity

So far we have seen that probability measures allow us to talk about distributions in full generality, and that
probability mass functions and densities of continuous random variables can be used to specify probability
measures. A distribution on a manifold M embedded in RD can simply be thought of as a probability
measure µ such that µ(M) = 1. We would like to define densities on manifolds in an analogous way to
probability mass functions and densities of continuous random variables, in such a way that they allow us to
characterize distributions on the manifold. Absolute continuity of measures is a concept that allows us to
formalize the concept of density with respect to a dominating measure, and encompasses probability mass
functions, densities of continuous random variables, and also allows us to define densities on manifolds. We
will see that our intuitive definition of a density as a function which, when integrated over a set gives back its
probability, is in fact correct, just as long as we specify the measure we integrate with respect to.

Given two measures µ and ν, we say that µ is absolutely continuous with respect to ν if for every A such
that ν(A) = 0, it also holds that µ(A) = 0. If µ is absolutely continuous with respect to ν, we also say that
ν dominates µ, and denote this property as µ ≪ ν. The Radon-Nikodym theorem states that, under some
mild assumptions on µ and ν which hold for all the measures considered in this paper, µ ≪ ν implies the
existence of a function h such that µ(A) =

∫
A

hdν for every A. This result provides the means to formally
define densities: h is called the density or Radon-Nikodym derivative of µ with respect to ν, and is often
written as dµ/dν.

Before explaining how this machinery allows us to talk about densities on manifolds, we first continue
our examples to show that probability mass functions and densities of continuous random variables are
Radon-Nikodym derivatives with respect to appropriate measures. Let us reconsider the example where
pX(x) = 1/K for x = a1, a2, . . . , aK and 0 otherwise, and µX(A) = 1/K ·

∑K
k=1 1(ak ∈ A). Consider

the measure ν(A) =
∑K

k=1 1(ak ∈ A), which essentially just counts the number of aks in A. Clearly
µX ≪ ν, and so it follows that µX admits a density with respect to ν. This density turns out to be
pX , since µX(A) =

∫
A

pXdν. In other words, the probability mass function pX can be thought of as a
Radon-Nikodym derivative, i.e. pX = dµX/dν. Let us now go back to the continuous density example where
pX(x) = N (x; 0, ID) and µX is given by the Riemann integral µX(A) =

∫
A

N (x; 0, ID)dx. In this case,
ν = µD, and since the Lebesgue integral extends the Riemann integral, it follows that µX(A) =

∫
A

pXdµD,
so that the density pX is actually also a density in the formal sense of being a Radon-Nikodym derivative,
so that pX = dµX/dµD. We can thus see that the formal concept of density or Radon-Nikodym derivative
generalizes both probability mass functions and densities of continuous random variables as we usually think
of them, allowing to specify distributions in a general way.

The concept of Radon-Nikodym derivative also allows us to obtain densities on manifolds, the only missing
ingredient being a dominating measure on the manifold. Riemannian measures (App. B.1) play this role on
manifolds, in the same way that the Lebesgue measure plays the usual role of dominating measure to define
densities of continuous random variables on RD.

A.3 Weak Convergence

A key point in Theorem 1 is weak convergence of the sequence of probability measures (Pt)∞
t=1 to P†. The

intuitive interpretation that this statement simply means that “Pt converges to P†” is correct, although
formally defining convergence of a sequence of measures is still required. Weak convergence provides such a
definition, and Pt is said to converge weakly to P† if the sequence of scalars Pt(A) converges to P†(A) for
every A satisfying a technical condition (for intuitive purposes, one can think of this property as holding for
every A). In this sense weak convergence is a very natural way of defining convergence of measures: in the
limit, Pt will assign the same probability to every set as P†.

A.4 Pushforward Measures

We have seen that to a random variable X in RD corresponds a distribution µX . Applying a function
h : RD → Rd to X will result in a new random variable, h(X) in Rd, and it is natural to ask what its
distribution is. This distribution is called the pushforward measure of µX through h, which is denoted as
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h#µX , and is defined as h#µX(B) = µX(h−1(B)) for every subset B of Rd. A way to intuitively understand
this concept is that if one could sample X from µX , then sampling from h#µX can be done by simply
applying h to X. Note that here h#µX is a measure on Rd.

The concept of pushforward measure is relevant in Theorem 2 as it allows us to formally reason about e.g.
the distribution of encoded data, g#P∗. Similarly, for a distribution PZ corresponding to our second-step
model, we can reason about the distribution obtained after decoding, i.e. G#PZ .

B Proofs

B.1 Riemannian Measures

We begin with a quick review of a Riemannian measures. Let M be a d-dimensional Riemannian manifold
with Riemannian metric g, and let (U, ϕ) be a chart. The local Riemannian measure µ

(g)
M,ϕ on M (with its

Borel σ-algebra) is given by:

µ
(g)
M,ϕ(A) =

∫
ϕ(A∩U)

√
det
(
g

(
∂

∂ϕi
,

∂

∂ϕj

))
dµd (3)

for any measurable A ⊆ M. The Riemannian measure µ
(g)
M on M is such that:

µ
(g)
M (A ∩ U) = µ

(g)
M,ϕ(A) (4)

for every measurable A ⊆ M and every chart (U, ϕ).

If g1 and g2 are two Riemannian metrics on M, then µ
(g1)
M ≪ µ

(g2)
M and µ

(g1)
M admits a continuous and

positive density with respect to µ
(g2)
M . Thus, as mentioned in the main manuscript, smoothness of probability

measures is indeed independent of the choice of Riemannian metric.

Below we prove a lemma which we will later use, showing that much like the Lebesgue measure, Riemannian
measures assign positive measure to nonempty open sets. While we are sure this is a known property, we
could not find a proof and thus provide one.

Lemma 1: Let M be a d-dimensional Riemannian manifold, and µ
(g)
M a Riemannian measure on it. Let

A ⊆ M be a nonempty open set in M. Then µ
(g)
M (A) > 0.

Proof: Let (U, ϕ) be a chart such that U ∩ A ̸= ∅, which exists because A ̸= ∅. Clearly U ∩ A is open, and
since ϕ is a diffeomorphism onto its image, it follows that ϕ(U ∩ A) ⊆ Rd is also open and nonempty, and
thus µd(ϕ(U ∩ A)) > 0. As a result,

µ
(g)
M (A) ≥ µ

(g)
M (U ∩ A) =

∫
ϕ(U∩A)

√
det
(
g

(
∂

∂ϕi
,

∂

∂ϕj

))
dµd > 0, (5)

where the last inequality follows since the integrand is positive and the integration set has positive measure.

B.2 Manifold Overfitting Theorem

We restate the manifold overfitting theorem below for convenience:

Theorem 1 (Manifold Overfitting): Let M ⊂ RD be an analytic d-dimensional embedded submanifold
of RD with d < D, and P† a smooth probability measure on M. Then there exists a sequence of probability
measures (Pt)∞

t=1 on RD such that:

1. Pt → P† weakly as t → ∞.
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2. For every t ≥ 1, Pt ≪ µD and Pt admits a density pt : RD → R>0 with respect to µD such that:

(a) lim
t→∞

pt(x) = ∞ for every x ∈ M.

(b) lim
t→∞

pt(x) = 0 for every x /∈ cl(M), where cl(·) denotes closure in RD.

Before proving the theorem, note that P† is a distribution on M and Pt is a distribution on RD, with their
respective Borel σ-algebras. Weak convergence is defined for measures on the same probability space, and
so we slightly abuse notation and think of P† as a measure on RD assigning to any measurable set A ⊆ RD

the probability P†(A ∩ M), which is well-defined as M is an embedded submanifold of RD. We do not
differentiate between P† on M and P† on RD to avoid cumbersome notation.

Proof: Let Y be a random variable whose law is P†, and let (Zt)∞
t=1 be a sequence of i.i.d. standard Gaussians

in RD, independent of Y . We assume all the variables are defined on the same probability space (Ω, F ,P).
Let Xt = Y + σtZt where (σt)∞

t=1 is a positive sequence converging to 0. Let Pt be the law of Xt.

First we prove 1. Clearly σtZt → 0 in probability and Y → Y in distribution as t → ∞. Since σtZt converges
in probability to a constant, it follows that Xt → Y in distribution, and thus Pt → P† weakly.

Now we prove that Pt ≪ µD. Let A ⊆ RD be a measurable set such that µD(A) = 0. We denote the law
of σtZt as Gt and the Gaussian density in RD with mean m and covariance matrix Σ evaluated at w as
N (w; m, Σ). Let B = {(w, y) ∈ RD × M : w + y ∈ A}. By Fubini’s theorem:

Pt(A) = P(Y + σtZt ∈ A) =
∫

B

dGt × P†(w, y) =
∫

B

N (w; 0, σ2
t ID) dµD × P†(w, y) (6)

=
∫

A×M
N (x − y; 0, σ2

t ID) dµD × P†(x, y) =
∫

M

∫
A

N (x − y; 0, σ2
t ID) dµD(x) dP†(y) (7)

=
∫

M
0 dP†(y) = 0. (8)

Then, Pt ≪ µD, proving the first part of 2. Note also that:

pt(x) =
∫

M
N (x − y; 0, σ2

t ID) dP†(y) (9)

is a valid density for Pt with respect to µD, once again by Fubini’s theorem since, for any measurable set
A ⊆ RD:

∫
A

pt(x) dµD(x) =
∫

A

∫
M

N (x − y; 0, σ2
t ID) dP†(y) dµD(x) (10)

=
∫

A×M
N (x − y; 0, σ2

t ID)dµD × P†(x, y) = Pt(A). (11)

We now prove 2a. Since P† being smooth is independent of the choice of Riemannian measure, we can assume
without loss of generality that the Riemannian metric g on M is the metric inherited from thinking of M
as a submanifold of RD, and we can then take a continuous and positive density p† with respect to the
Riemannian measure µ

(g)
M associated with this metric.
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Take x ∈ M and let BM
r (x) = {y ∈ M : d

(g)
M (x, y) ≤ r} denote the geodesic ball on M of radius r centered

at x, where d
(g)
M is the geodesic distance. We then have:

pt(x) =
∫

M
N (x − y; 0, σ2

t ID) dP†(y) ≥
∫

BM
σt

(x)
N (x − y; 0, σ2

t ID) dP†(y) (12)

=
∫

BM
σt

(x)
p†(y) · N (x − y; 0, σ2

t ID) dµ
(g)
M (y) ≥

∫
BM

σt
(x)

inf
y′∈BM

σt
(x)

p†(y′)N (x − y′; 0, σ2
t ID) dµ

(g)
M (y) (13)

= µ
(g)
M (BM

σt
(x)) · inf

y′∈BM
σt

(x)
p†(y′)N (x − y′; 0, σ2

t ID) (14)

≥ µ
(g)
M (BM

σt
(x)) · inf

y′∈BM
σt

(x)
N (x − y′; 0, σ2

t ID) · inf
y′∈BM

σt
(x)

p†(y′). (15)

Since BM
σt

(x) is compact in M for small enough σt and p† is continuous in M and positive, it follows that
infy′∈BM

σt
(x) p†(y′) is bounded away from 0 as t → ∞. It is then enough to show that as t → ∞,

µ
(g)
M (BM

σt
(x)) · inf

y′∈BM
σt

(x)
N (x − y′; 0, σ2

t ID) → ∞ (16)

in order to prove that 2a holds. Let Bd
r (0) denote an L2 ball of radius r in Rd centered at 0 ∈ Rd, and let

µd denote the Lebesgue measure on Rd, so that µd(Bd
r (0)) = Cdrd, where Cd > 0 is a constant depending

only on d. It is known that µ
(g)
M (BM

r (x)) = µd(Bd
r (0)) · (1 + O(r2)) for analytic d-dimensional Riemannian

manifolds (Gray, 1974), and thus:

µ
(g)
M (BM

σt
(x)) · inf

y′∈BM
σt

(x)
N (x − y′; 0, σ2

t ID)

= Cdσd
t

(
1 + O(σ2

t )
)

· inf
y′∈BM

σt
(x)

1
σD

t (2π)D/2 exp
{

−∥x − y′∥2
2

2σ2
t

}
(17)

= Cd

(2π)D/2 ·
(
1 + O(σ2

t )
)

· σd−D
t · exp

−

sup
y′∈BM

σt
(x)

∥x − y′∥2
2

2σ2
t

 . (18)

The first term is a positive constant, and the second term converges to 1. The third term goes to infinity since
d < D, which leaves only the last term. Thus, as long as the last term is bounded away from 0 as t → ∞,
we can be certain that the product of all four term goes to infinity. In particular, verifying the following
equation would be enough:

sup
y′∈BM

σt
(x)

∥x − y′∥2
2 ≤ σ2

t . (19)

This equation holds, since for any x, y′ ∈ M, it is the case that ∥x − y′∥2 ≤ d
(g)
M (x, y′) as g is inherited from

M being a submanifold of RD.

Now we prove 2b for pt. Let x ∈ RD \ cl(M). We have:

pt(x) =
∫

M
N (x − y; 0, σ2

t ID) dP†(y) ≤
∫

M
sup

y′∈M
N (x − y′; 0, σ2

t ID) dP†(y) = sup
y′∈M

N (x − y′; 0, σ2
t ID) (20)

= sup
y′∈M

1
σD

t (2π)D/2 exp
{

−∥x − y′∥2
2

2σ2
t

}
= 1

σD
t (2π)D/2 · exp

−
inf

y′∈M
∥x − y′∥2

2

2σ2
t

 t→∞−−−→ 0, (21)

where convergence to 0 follows from x /∈ cl(M) implying that infy′∈M ∥x − y′∥2
2 > 0.
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B.3 Two-Step Correctness Theorem

We restate the two-step correctness theorem below for convenience:

Theorem 2 (Two-Step Correctness): Let M ⊆ RD be a C1 d-dimensional embedded submanifold of RD,
and let P∗ be a distribution on M. Assume there exist measurable functions G : Rd → RD and g : RD → Rd

such that G(g(x)) = x, P∗-almost surely. Then:

1. G#(g#P∗) = P∗, where h#P denotes the pushforward of measure P through the function h.

2. Moreover, if P∗ is smooth, and G and g are C1, then:

(a) g#P∗ ≪ µd.

(b) G(g(x)) = x for every x ∈ M, and the functions g̃ : M → g(M) and G̃ : g(M) → M given by
g̃(x) = g(x) and G̃(z) = G(z) are diffeomorphisms and inverses of each other.

Similarly to the manifold overfitting theorem, we think of P∗ as a distribution on RD, assigning to any Borel
set A ⊆ RD the probability P∗(A∩M), which once again is well-defined since M is an embedded submanifold
of RD.

Proof: We start with part 1. Let A = {x ∈ RD : G(g(x)) ̸= x}, which is a null set under P∗ by assumption.
By applying the definition of pushforward measure twice, for any measurable set B ⊆ M:

G#(g#P∗)(B) = g#P∗(G−1(B)) = P∗(g−1(G−1(B))) = P∗ (g−1 (G−1 ((B \ A) ∪ (A ∩ B))
))

(22)
= P∗ (g−1 (G−1 (B \ A)

)
∪ g−1 (G−1 (A ∩ B)

))
= P∗(g−1 (G−1 (B \ A)

)
) (23)

= P∗(B \ A) = P∗(B), (24)

where we used that g−1(G−1(A ∩ B)) ⊆ A, and thus G#(g#P∗) = P∗. Note that this derivation requires
thinking of P∗ as a measure on RD to ensure that A and g−1(G−1(A ∩ B)) can be assigned 0 probability.

We now prove 2b. We begin by showing that G(g(x)) = x for all x ∈ M. Consider RD × M endowed
with the product topology. Clearly RD × M is Hausdorff since both RD and M are Hausdorff (M is
Hausdorff by the definition of a manifold). Let E = {(x, x) ∈ RD × M : x ∈ M}, which is then closed in
RD × M (since diagonals of Hausdorff spaces are closed). Consider the function H : M → RD × M given
by H(x) = (G(g(x)), x), which is clearly continuous. It follows that H−1(E) = {x ∈ M : G(g(x)) = x}
is closed in M, and thus M \ H−1(E) = {x ∈ M : G(g(x)) ̸= x} is open in M, and by assumption
P∗(M \ H−1(E)) = 0. It follows by Lemma 1 in App. B.1 that M \ H−1(E) = ∅, and thus G(g(x)) = x for
all x ∈ M.

We now prove that g̃ is a diffeomorphism. Clearly g̃ is surjective, and since it admits a left inverse (namely
G), it is also injective. Then g̃ is bijective, and since it is clearly C1 due to g being C1 and M being an
embedded submanifold of RD, it only remains to show that its inverse is also C1. Since G(g(x)) = x for every
x ∈ M, it follows that G(g(M)) = M, and thus G̃ is well-defined (i.e. the image of its domain is indeed
contained in its codomain). Clearly G̃ is a left inverse to g̃, and by bijectivity of g̃, it follows G̃ is its inverse.
Finally, G̃ is also C1 since G is C1, so that g̃ is indeed a diffeomorphism.

Now, we prove 2a. Let K ⊂ Rd be such that µd(K) = 0. We need to show that g#P∗(K) = 0 in order to
complete the proof. We have that:

g#P∗(K) = P∗ (g−1(K)
)

= P∗ (g−1(K) ∩ M
)

. (25)

Let g be a Riemannian metric on M. Since P∗ ≪ µ
(g)
M by assumption, it is enough to show that µ

(g)
M (g−1(K)∩

M) = 0. Let {Uα}α be an open (in M) cover of g−1(K) ∩ M. Since M is second countable by definition, by
Lindelöf’s lemma there exists a countable subcover {Vβ}β∈N. Since g|M is a diffeomorphism onto its image,
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(Vβ , g|Vβ
) is a chart for every β ∈ N. We have:

µ
(g)
M
(
g−1(K) ∩ M

)
= µ

(g)
M

g−1(K) ∩ M ∩
⋃

β∈N
Vβ

 = µ
(g)
M

⋃
β∈N

g−1(K) ∩ M ∩ Vβ

 (26)

≤
∑
β∈N

µ
(g)
M (g−1(K) ∩ M ∩ Vβ) (27)

=
∑
β∈N

∫
g|Vβ

(g−1(K)∩M∩Vβ)

√√√√det
(
g

(
∂

∂g|iVβ

,
∂

∂g|jVβ

))
dµd = 0, (28)

where the final equality follows from g|Vβ
(g−1(K) ∩ M ∩ Vβ) ⊆ K for every β ∈ N and µd(K) = 0.

C Experimental Details

C.1 Model Losses

Throughout this section we use L to denote the loss of different models. We use notation that assumes
all of these are first-step models, i.e. datapoints are denoted as xn, but we highlight that when trained as
second-step models, the datapoints actually correspond to zn. Similarly, whenever a loss includes D, this
should be understood as d for second-step models. The description of these losses here is meant only for
reference, and we recommend that any reader unfamiliar with these see the relevant citations in the main
manuscript. Unlike our main manuscript, measure-theoretic notation is not needed to describe these models,
and we thus drop it.

AEs As mentioned in the main manuscript, we train autoencoders with a squared reconstruction error:

L(g, G) = 1
N

N∑
n=1

∥G(g(xn)) − xn∥2
2. (29)

ARMs The loss of autoregressive models is given by the negative log-likelihood:

L(p) = − 1
N

N∑
n=1

(
log p(xn,1) +

D∑
m=2

log p(xn,m|xn,1, . . . , xn,m−1)
)

, (30)

where xn,m denotes the mth coordinate of xn.

AVB Adversarial variational Bayes is highly related to VAEs (see description below), except the approximate
posterior is defined implicitly, so that a sample U from q(·|x) can be obtained as U = g̃(x, ϵ), where ϵ ∼ pϵ(·),
which is often taken as a standard Gaussian of dimension d̃, and g̃ : RD × Rd̃ → Rd. Since q(·|x) cannot be
evaluated, the ELBO used to train VAEs becomes intractable, and thus a discriminator T : RD × Rd → R is
introduced, and for fixed q(·|x), trained to minimize:

L(T ) = −
N∑

n=1

(
EU∼q(·|xn)[log s(T (xn, U))] + EU∼pU (·)[log(1 − s(T (xn, U)))]

)
, (31)

where s(·) denotes the sigmoid function. Denoting the optimal T as T ∗, the rest of the model components
are trained through:

L(G, σX) = 1
N

N∑
n=1

EU∼q(·|xn)[T ∗(xn, U) − log p(xn|U)], (32)
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where p(xn|U) depends on G and σX in an identical way as in VAEs (see below). Analogously to VAEs,
this training procedure maximizes a lower bound on the log-likelihood, which is tight when the approximate
posterior matches the true one. Finally, zn can either be taken as:

zn = EU∼q(·|xn)[U ] = Eϵ∼pϵ(·)[g̃(xn, ϵ)], or zn = g̃(xn, 0). (33)

We use the former, and approximate the expectation through a Monte Carlo average. Note that both options
define g through g̃ in such a way that zn = g(xn). Finally, in line with Goodfellow et al. (2014), we found
that using the “log trick” to avoid saturation in the adversarial loss further improved performance.

BiGAN Bidirectional GANs model the data as X = G(Z), where Z ∼ p̃Z , and p̃Z is taken as a d-
dimensional standard Gaussian. Note that this p̃Z is different from pZ in the main manuscript (which
corresponds to the density of the second-step model), hence why we use different notation. BiGANs also
aim to recover the zn corresponding to each xn, and so also use an encoder g, in addition to a discriminator
T : RD × Rd → R. All the components are trained through the following objective:

L(g, G; T ) = EZ∼p̃Z (·)[T (G(Z), Z)] − 1
N

N∑
n=1

T (xn, g(xn)), (34)

which is minimized with respect to g and G, but maximized with respect to T . We highlight that this
objective is slightly different than the originally proposed BiGAN objective, as we use the Wasserstein loss
(Arjovsky et al., 2017) instead of the original Jensen-Shannon. In practice we penalize the gradient of T
as is often done for the Wasserstein objective (Gulrajani et al., 2017). We also found that adding a square
reconstruction error as an additional regularization term helped improve performance.

EBM Energy-based models use an energy function E : RD → R, which implicitly defines a density on RD

as:
p(x) = e−E(x)∫

RD

e−E(x′)dµD(x′)
. (35)

These models attempt to minimize the negative log-likelihood:

L(E) = − 1
N

N∑
n=1

log p(xn), (36)

which is seemingly intractable due to the integral in (35). However, when parameterizing E with θ as a
neural network Eθ, gradients of this loss can be obtained thanks to the following identity:

−∇θ log pθ(xn) = ∇θEθ(xn) − EX∼pθ
[∇θEθ(X)] , (37)

where we have also made the dependence of p on θ explicit. While it might seem that the expectation in (37)
is just as intractable as the integral in (35), in practice approximate samples from pθ are obtained through
Langevin dynamics and are used to approximate this expectation.

NFs Normalizing flows use a bijective neural network h : RD → RD, along with a base density pU on
RD, often taken as a standard Gaussian, and model the data as X = h(U), where U ∼ pU . Thanks to the
change-of-variable formula, the density of the model can be evaluated:

p(x) = pU (h−1(x))| det Jh−1(x)|, (38)

and flows can thus be trained via maximum-likelihood:

L(h) = − 1
N

N∑
n=1

(
log pU (h−1(xn)) + log | det Jh−1(xn)|

)
. (39)

In practice h is constructed in such a way that not only ensures it is bijective, but also ensures that
log | det Jh−1(xn)| can be efficiently computed.
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VAEs Variational autoencoders define the generative process for the data as U ∼ pU , X|U ∼ p(·|U).
Typically, pU is a standard d-dimensional Gaussian (although a learnable prior can also be used), and in our
case, p(·|u) is given by a Gaussian:

p(x|u) = N (x; G(u), σ2
X(u)ID), (40)

where σX : Rd → R is a neural network. Maximum-likelihood is intractable since the latent variables un

corresponding to xn are unobserved, so instead an approximate posterior q(u|x) is introduced. We take q to
be Gaussian:

q(u|x) = N (u; g(x), diag(σ2
U (x))), (41)

where σ2
U : RD → Rd

>0 is a neural network, and diag(σ2
U (x)) denotes a diagonal matrix whose nonzero

elements are given by σ2
U (x). An objective called the negative ELBO is then minimized:

L(g, G, σU , σX) = 1
N

N∑
n=1

(
KL(q(·|xn)|pU (·)) − EU∼q(·|xn) [log p(xn|U)]

)
. (42)

The ELBO can be shown to be a lower bound to the log-likelihood, which becomes tight as the approximate
posterior matches the true posterior. Note that zn corresponds to the mean of the unobserved latent un:

zn = EU∼q(·|xn)[U ] = g(xn). (43)

We highlight once again that the notation we use here corresponds to VAEs when used as first-step models.
When used as second-step models, as previously mentioned, the observed datapoint xn becomes zn, but in
this case the encoder and decoder functions do not correspond to g and G anymore. Similarly, for second-step
models, the unobserved variables un become “irrelevant” in terms of the main contents of our paper, and
are not related to zn in the same way as in first-step models. For second-step models, we keep the latent
dimension as d still.

WAEs Wasserstein autoencoders, similarly to BiGANs, model the data as X = G(Z), where Z ∼ p̃Z , which
is taken as a d-dimensional standard Gaussian, and use a discriminator T : Rd → R. The WAE objective is
given by:

L(g, G; T ) = 1
N

N∑
n=1

(
∥G(g(xn)) − xn∥2

2 + λ log(1 − s(T (g(xn))))
)

+ λEZ∼p̃Z (·)[log s(T (Z))], (44)

where s(·) denotes the sigmoid function, λ > 0 is a hyperparameter, and the objective is minimized with
respect to g and G, and maximized with respect to T . Just as in AVB, we found that using the “log trick” of
Goodfellow et al. (2014) in the adversarial loss further improved performance.

C.2 VAE from Fig. 2

We generated N = 1000 samples from P∗ = 0.3δ−1 + 0.7δ1, resulting in a dataset containing 1 a total of 693
times. The Gaussian VAE had d = 1, D = 1, and both the encoder and decoder have a single hidden layer
with 25 units and ReLU activations. We use the Adam optimizer (Kingma & Ba, 2015) with learning rate
0.001 and train for 200 epochs. We use gradient norm clipping with a value of 10.

C.3 Simulated Data

For the ground truth, we use a von Mises distribution with parameter κ = 1, and transform to Cartesian
coordinates to obtain a distribution on the unit circle in RD = R2. We generate N = 1000 samples from this
distribution. For the EBM model, we use an energy function with two hidden layers of 25 units each and
Swish activations (Ramachandran et al., 2017). We use the Adam optimizer with learning rate 0.01, and
gradient norm clipping with value of 1. We train for 100 epochs. We follow Du & Mordatch (2019) for the
training of the EBM, and use 0.1 for the objective regularization value, iterate Langevin dynamics for 60
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iterations at every training step, use a step size of 10 within Langevin dynamics, sample new images with
probability 0.05 in the buffer, use Gaussian noise with standard deviation 0.005 in Langevin dynamics, and
truncate gradients to (−0.03, 0.03) in Langevin dynamics. For the AE+EBM model, we use an AE with
d = 1 and two hidden layers of 20 units each with ELU activations (Clevert et al., 2016). We use the Adam
optimizer with learning rate 0.001 and train for 200 epochs. We use gradient norm clipping with a value of
10. For the EBM of this model, we use an energy function with two hidden layers of 15 units each, and all
the other parameters are identical to the single step EBM. We observed some variability with respect to the
seed for both the EBM and the AE+EBM models; the manuscript shows the best performing versions.

For the additional results of Sec. D.1, the ground truth is given by a Gaussian whose first coordinate has mean
0 and variance 2, while the second coordinate has mean 1 and variance 1, and they have a covariance of 0.5.
The VAEs are identical to those from Fig. 2, except their input and output dimensions change accordingly.

C.4 Comparisons Against Maximum-Likelihood and OOD Detection with Implicit Models

For all experiments, we use the Adam optimizer, typically with learning rate 0.001. For all experiments we
also clip gradient entries larger than 10 during optimization. We also set d = 20 in all experiments.

C.4.1 Single and First-Step Models

For all single and first-step models, unless specified otherwise, we pre-process the data by scaling it, i.e.
dividing by the maximum absolute value entry. All convolutions have a kernel size of 3 and stride 1. For all
versions with added Gaussian noise, we tried standard deviation values σ ∈ {1, 0.1, 0.01, 0.001, 0.0001} and
kept the best performing one (σ = 0.1, as measured by FID) unless otherwise specified.

AEs For MNIST and FMNIST, we use MLPs for the encoder and decoder, with ReLU activations. The
encoder and decoder have each a single hidden layer with 256 units. For SVHN and CIFAR-10, we use
convolutional networks. The encoder and decoder have 4 convolutional layers with (32, 32, 16, 16) and
(16, 16, 32, 32) channels, respectively, followed by a flattening operation and a fully-connected layer. The
convolutional networks also use ReLU activations, and have kernel size 3 and stride 1. We perform early
stopping on reconstruction error with a patience of 10 epochs, for a maximum of 100 epochs.

ARMs We use an updated version of RNADE (Uria et al., 2013), where we use an LSTM (Hochreiter
& Schmidhuber, 1997) to improve performance. More specifically, every pixel is processed sequentially
through the LSTM, and a given pixel is modelled with a mixture of Gaussians whose parameters are given by
transforming the hidden state obtained from all the previous pixels through a linear layer. The dimension
of a pixel is given by the number of channels, so that MNIST and FMNIST use mixtures of 1-dimensional
Gaussians, whereas SVHN and CIFAR-10 use mixtures of 3-dimensional Gaussians. We also tried a continuous
version of the PixelCNN model (van den Oord et al., 2016b), where we replaced the discrete distribution over
pixels with a mixture of Gaussians, but found this model highly unstable – which is once again consistent
with manifold overfitting – and thus opted for the LSTM-based model. We used 10 components for the
Gaussian mixtures, and used an LSTM with 2 layers and hidden states of size 256. We train for a maximum
of 100 epochs, and use early stopping on log-likelihood with a patience of 10. We also use cosine annealing on
the learning rate. For the version with added Gaussian noise, we used σ = 1.0. We observed some instabilities
in training these single step models, particularly when not adding noise, where the final model was much
worse than average (over 100 difference in FID score). We treated these runs as failed runs and excluded
them from the averages and standard errors reported in our paper.

AVB We use the exact same configuration for the encoder and decoder as in AEs, and use an MLP with 2
hidden layers of size 256 each for the discriminator, which also uses ReLU activations. We train the MLPs
for a maximum of 50 epochs, and CNNs for 100 epochs, using cosine annealing on the learning rates. For the
large version, AVB+, we use two hidden layers of 256 units for the encoder and decoder MLPs, and increase
the encoder and decoder number of hidden channels to (64, 64, 32, 32) and (32, 32, 64, 64), respectively, for
convolutional networks. In all cases, the encoder takes in 256-dimensional Gaussian noise with covariance
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9 · ID. We also tried having the decoder output per-pixel variances, but found this parameterization to be
numerically unstable, which is again consistent with manifold overfitting.

BiGAN As mentioned in Sec. C.1, we used a Wasserstein-GAN (W-GAN) objective (Arjovsky et al., 2017)
with gradient penalties (Gulrajani et al., 2017) where both the data and latents are interpolated between
the real and generated samples. The gradient penalty weight was 10. The generator-encoder loss includes
the W-GAN loss, and the reconstruction loss (joint latent regressor from Donahue et al. (2017)), equally
weighted. For both small and large versions, we use the exact same configuration for the encoder, decoder,
and discriminator as for AVB. We used learning rates of 0.0001 with cosine annealing over 200 epochs. The
discriminator was trained for two steps for every step taken with the encoder/decoder.

EBMs For MNIST and FMNIST, our energy functions use MLPs with two hidden layers with 256 and 128
units, respectively. For SVHN and CIFAR-10, the energy functions have 4 convolutional layers with hidden
channels (64, 64, 32, 32). We use the Swish activation function and spectral normalization in all cases. We set
the energy function’s output regularization coefficient to 1 and the learning rate to 0.0003. Otherwise, we use
the same hyperparameters as on the simulated data. At the beginning of training, we scale all the data to
between 0 and 1. We train for 100 epochs without early stopping, which tended to halt training too early.

NFs We use a rational quadratic spline flow (Durkan et al., 2019) with 128 hidden units, 4 layers, and
3 blocks per layer. We train using early stopping on validation loss with a patience of 30 epochs, up to a
maximum of 100 epochs. We use a learning rate of 0.0005, and use a whitening transform at the start of
training to make the data zero-mean and marginally unit-variance, whenever possible (some pixels, particularly
in MNIST, were only one value throughout the entire training set); note that this affine transformation does
not affect the manifold structure of the data.

VAEs The settings for VAEs were largely identical to those of AVB, except we did not do early stopping
and always trained for 100 epochs, in addition to not needing a discriminator. For large models a single
hidden layer of 512 units was used for each of the encoder and decoder MLPs. We also tried the same decoder
per-pixel variance parameterization that we attempted with AVB and obtained similar numerical instabilities,
once again in line with manifold overfitting.

WAEs We use the adversarial variant rather than the maximum mean discrepancy (Gretton et al., 2012)
one. We weight the adversarial loss with a coefficient of 10. The settings for WAEs were identical to those
of AVB, except (i) we used a patience of 30 epochs, trained for a maximum of 300 epochs, (ii) we used no
learning rate scheduling, with a discriminator learning rate of 2.5 × 10−4 and an encoder-decoder learning rate
of 5×10−4, and (iii) we used only convolutional encoders and decoders, with (64, 64, 32, 32) and (32, 32, 64, 64)
hidden channels, respectively. For large models the number of hidden channels was increased to (96, 96, 48, 48)
and (48, 48, 96, 96) for the encoder and decoder, respectively.

C.4.2 Second-Step Models

All second-step models, unless otherwise specified, pre-process the encoded data by standardizing it (i.e.
subtracting the mean and dividing by the standard deviation).

ARMs We used the same configuration for second-step ARMs as for the first-step version, except the
LSTM has a single hidden layer with hidden states of size 128.

AVB We used the same configuration for second-step AVB as we did for the first-step MLP version of AVB,
except that we do not do early stopping and train for 100 epochs. The latent dimension is set to d (i.e. 20).

EBMs We used the same configuration that we used for single-step EBMs, except we use a learning rate of
0.001, we regularize the energy function’s output by 0.1, do not use spectral normalization, take the energy
function to have two hidden layers with (64, 32) units, and scale the data between −1 and 1.
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NFs We used the same settings for second-step NFs as we did for first-step NFs, except (i) we use 64 hidden
units, (ii) we do not do early stopping, training for a maximum of 100 epochs, and (iii) we use a learning
rate of 0.001.

VAEs We used the same settings for second-step VAEs as we did for first-step VAEs. The latent dimension
is also set to d (i.e. 20).

C.4.3 Parameter Counts

Table 3 includes parameter counts for all the models we consider in Table 1. Two-step models have either
fewer parameters than the large one-step model versions, or a roughly comparable amount, except for some
exceptions which we now discuss. First, when using normalizing flows as second-step models, we used
significantly more complex models than with other two-step models. We did this for added variability in
the number of parameters, not because using fewer parameters makes two-step models not outperform their
single-step counterparts. Two-step models with an NF as the second-step model outperform other two-step
models (see Table 1), but there is a much more drastic improvement from single to two-step models. This
difference in improvements further highlights that the main cause for empirical gains is the two-step nature of
our models, rather than increased number of parameters. Second, the AE+EBM models use more parameters
than their single-step baselines. This was by design, as the architecture of the energy functions mimics that
of the encoders of other larger models, except it outputs scalars and thus has fewer parameters, and hence we
believe this remains a fair comparison. We also note that AE+EBM models have most of their parameters
assigned to the AE, and the second-step EBM contributes only 4k additional parameters. AE+EBM models
also train and sample much faster then their single-step EBM+ counterparts. Finally, we finish with the
observation that measuring capacity is difficult, and parameter counts simply provide a proxy.

Table 3: Approximate parameter counts in thousands.

MODEL MNIST/FMNIST SVHN/CIFAR-10
AVB 750 980
AVB+ / AVB+

σ 882 1725
AVB+ARM 1021 1251
AVB+AVB 913 1143
AVB+EBM 754 984
AVB+NF 5756 5986
AVB+VAE 771 1001
VAE 412 703
VAE+ / VAE+

σ 824 1448
VAE+ARM 683 974
VAE+AVB 575 866
VAE+EBM 416 707
VAE+NF 5418 5709

ARM+ / ARM+
σ 797 799

AE+ARM 683 974

EBM+ / EBM+
σ 236 99

AE+EBM 416 707

D Additional Experimental Results

D.1 Simulated Data

As mentioned in the main manuscript, we carry out additional experiments where we have access to the
ground truth P∗ in order to further verify that our improvements from two-step models indeed come from
mismatched dimensions. Fig. 6 shows the results of running VAE and VAE+VAE models when trying to
approximate a nonstandard 2-dimensional Gaussian distribution. First, we can see that when setting the
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intrinsic dimension of the models to d = 2, the VAE and VAE+VAE models have very similar performance,
with the VAE being slightly better. Indeed, there is no reason to suppose the second-step VAE will have
an easier time learning encoded data than the first-step VAE learning the actual data. This result visually
confirms that two-step models do not outperform single-step models trained with maximum likelihood when
the dimension of maximum-likelihood is correctly specified. Second, we can see that both the VAE and the
VAE+VAE models with intrinsic dimension d = 1 underperform their counterparts with d = 2. However,
while the VAE model still manages to approximate its target distribution, the VAE+VAE completely fails.
This result visually confirms that two-step models significantly underperform single-step models trained
with maximum-likelihood if the data has no low-dimensional structure and the two-step model tries to
enforce such structure anyway. Together, these results highlight that the reason two-step models outperform
maximum-likelihood so strongly in the main manuscript is indeed the dimensionality mismatch caused by not
heeding to the manifold hypothesis.

Figure 6: Results on simulated data: Gaussian ground truth (top left), VAE with d = 1 (top middle),
VAE with d = 2 (top right), VAE+VAE with d = 1 (bottom left), and VAE+VAE with d = 2 (bottom
right).

D.2 Samples

We show samples obtained by the VAE, VAE+, VAE+
σ , and VAE+ARM models in Fig. 7. In addition to

the FID improvements shown in the main manuscript, we can see a very noticeable qualitative improvement
obtained by the two-step models. Note that the VAE in the VAE+ARM model is the same as the single-step
VAE model. Similarly, we show samples from AVB+

σ , AVB+NF, AVB+EBM, and AVB+VAE in Fig. 8
where two-step models greatly improve visual quality. We also show samples from the ARM+, ARM+

σ , and
AE+ARM from the main manuscript in Fig. 9; and for the EBM+, EBM+

σ , and AE+EBM models in Fig. 10.
We can see that FID score is indeed not always indicative of image quality, and that our AE+ARM and
AE+EBM models significantly outperform their single-step counterparts (except AE+EBM on MNIST).
Finally, the BiGAN and WAE samples shown in Fig. 11 and Fig. 12 respectively are not consistently better for
two-step models, but neither BiGANs nor WAEs are trained via maximum likelihood so manifold overfitting
is not necessarily implied by Theorem 1. Other two-step combinations not shown gave similar results.
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Figure 7: Uncurated samples from models trained on MNIST (first row), FMNIST (second row), SVHN
(third row), and CIFAR-10 (fourth row). Models are VAE (first column), VAE+ (second column),
VAE+

σ (third column), and VAE+ARM (fourth column).
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Figure 8: Uncurated samples from models trained on MNIST (first row), FMNIST (second row), SVHN
(third row), and CIFAR-10 (fourth row). Models are AVB+

σ (first column), AVB+EBM (second
column), AVB+NF (third column), and AVB+VAE (fourth column).

37



Published in Transactions on Machine Learning Research (07/2022)

Figure 9: Uncurated samples from models trained on MNIST (first row), FMNIST (second row), SVHN
(third row), and CIFAR-10 (fourth row). Models are ARM+ (first column), ARM+

σ (second column),
and AE+ARM (third column).
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Figure 10: Uncurated samples with Langevin dynamics run for 60 steps initialized from training buffer on
MNIST (first row), FMNIST (second row), SVHN (third row), and CIFAR-10 (fourth row). Models
are EBM+ (first column), EBM+

σ (second column), and AE + EBM (third column).
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Figure 11: Uncurated samples from models trained on MNIST (first row), FMNIST (second row),
SVHN (third row), and CIFAR-10 (fourth row). Models are BiGAN (first column), BiGAN+ (second
column), BiGAN+AVB (third column), and BiGAN+NF (fourth column). BiGANs are not trained via
maximum-likelihood, so Theorem 1 does not imply that manifold overfitting should occur.
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Figure 12: Uncurated samples from models trained on MNIST (first row), FMNIST (second row), SVHN
(third row), and CIFAR-10 (fourth row). Models are WAE+ (first column), WAE+ARM (second
column), WAE+NF (third column), and WAE+VAE (fourth column). WAEs are not trained via
maximum-likelihood, so Theorem 1 does not imply that manifold overfitting should occur.
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D.3 EBM Improvements

Following Du & Mordatch (2019), we evaluated the single-step EBM’s sample quality on the basis of samples
initialized from the training buffer. However, when MCMC samples were initialized from uniform noise, we
observed that all samples would converge to a small collection of low-quality modes (see Fig. 13). Moreover,
at each training epoch, these modes would change, even as the loss value decreased.

The described non-convergence in the EBM’s model distribution is consistent with Corollary 1. On the other
hand, when used as a low-dimensional density estimator in the two-step procedure, this problem vanished:
MCMC samples initialized from random noise yielded diverse images. See Fig. 13 for a comparison.

Figure 13: Uncurated samples with Langevin dynamics initialized from random noise (with no buffer) trained
on MNIST (first row), FMNIST (second row), SVHN (third row), and CIFAR-10 (fourth row). Models
are EBM+ with 60 steps (first column), EBM+ with 200 steps (second column), EBM+ with 500 steps
(third column), and AE + EBM with 60 steps, (fourth column).
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D.4 FID, Precision, and Recall Scores

We show in Tables 4 and 5 precision and recall (along with FID) of all the models used in Sec. 6.2. We opt for
the precision and recall scores of Kynkäänniemi et al. (2019) rather than those of Sajjadi et al. (2018) as the
former aim to improve on the latter. We also tried the density and coverage metrics proposed by Naeem et al.
(2020), but found these metrics to correlate with visual quality less than FID. Similarly, we also considered
using the inception score (Salimans et al., 2016), but this metric is known to have issues (Barratt & Sharma,
2018), and the FID is widely preferred over it. We can see in Tables 4 and 5 that two-step models consistently
outperform single-step models in recall, while either also outperforming or not underperforming in precision.
Much like with FID score, some instances of AE+ARM have worse scores on both precision and recall than
their corresponding single-step model. Given the superior visual quality of those two-step models, we also
consider these as failure cases of the evaluation metrics themselves, which we highlight in red in Tables 4 and
5. We believe that some non-highlighted results do not properly reflect the magnitude by which the two-step
models outperformed single-step models, and encourage the reader to see the corresponding samples.

We show in Table 6 the FID scores of models involving BiGANs and WAEs. These methods are not trained
via maximum likelihood, so Theorem 1 does not apply. In contrast to the likelihood-based models from Table
1, there is no significant improvement in FID for BiGANs and WAEs from using a two-step approach, and
sometimes two-step models perform worse. However, for BiGANs we observe similar visual quality in samples
(see Fig. 11), once again highlighting a failure of the FID score as a metric. We show these failures with red
in Table 6.

Table 4: FID (lower is better) and Precision, and Recall scores (higher is better). Means ± standard errors
across 3 runs are shown. Unreliable scores are highlighted in red.

MODEL MNIST FMNIST
FID Precision Recall FID Precision Recall

AVB 219.0 ± 4.2 0.0000 ± 0.0000 0.0008 ± 0.0007 235.9 ± 4.5 0.0006 ± 0.0000 0.0086 ± 0.0037
AVB+ 205.0 ± 3.9 0.0000 ± 0.0000 0.0106 ± 0.0089 216.2 ± 3.9 0.0008 ± 0.0002 0.0075 ± 0.0052
AVB+

σ 205.2 ± 1.0 0.0000 ± 0.0000 0.0065 ± 0.0032 223.8 ± 5.4 0.0007 ± 0.0002 0.0034 ± 0.0009
AVB+ARM 86.4 ± 0.9 0.0012 ± 0.0003 0.0051 ± 0.0011 78.0 ± 0.9 0.1069 ± 0.0055 0.0106 ± 0.0011
AVB+AVB 133.3 ± 0.9 0.0001 ± 0.0000 0.0093 ± 0.0027 143.9 ± 2.5 0.0151 ± 0.0015 0.0093 ± 0.0019
AVB+EBM 96.6 ± 3.0 0.0006 ± 0.0000 0.0021 ± 0.0007 103.3 ± 1.4 0.0386 ± 0.0016 0.0110 ± 0.0013
AVB+NF 83.5 ± 2.0 0.0009 ± 0.0001 0.0059 ± 0.0015 77.3 ± 1.1 0.1153 ± 0.0031 0.0092 ± 0.0004
AVB+VAE 106.2 ± 2.5 0.0005 ± 0.0000 0.0088 ± 0.0005 105.7 ± 0.6 0.0521 ± 0.0035 0.0166 ± 0.0007
VAE 197.4 ± 1.5 0.0000 ± 0.0000 0.0035 ± 0.0004 188.9 ± 1.8 0.0030 ± 0.0006 0.0270 ± 0.0048
VAE+ 184.0 ± 0.7 0.0000 ± 0.0000 0.0036 ± 0.0006 179.1 ± 0.2 0.0025 ± 0.0003 0.0069 ± 0.0012
VAE+

σ 185.9 ± 1.8 0.0000 ± 0.0000 0.0070 ± 0.0012 183.4 ± 0.7 0.0027 ± 0.0002 0.0095 ± 0.0036
VAE+ARM 69.7 ± 0.8 0.0008 ± 0.0000 0.0041 ± 0.0001 70.9 ± 1.0 0.1485 ± 0.0037 0.0129 ± 0.0011
VAE+AVB 117.1 ± 0.8 0.0002 ± 0.0000 0.0123 ± 0.0002 129.6 ± 3.1 0.0291 ± 0.0040 0.0454 ± 0.0046
VAE+EBM 74.1 ± 1.0 0.0007 ± 0.0001 0.0015 ± 0.0006 78.7 ± 2.2 0.1275 ± 0.0052 0.0030 ± 0.0002
VAE+NF 70.3 ± 0.7 0.0009 ± 0.0000 0.0067 ± 0.0011 73.0 ± 0.3 0.1403 ± 0.0022 0.0116 ± 0.0016

ARM+ 98.7 ± 10.6 0.0471 ± 0.0098 0.3795 ± 0.0710 72.7 ± 2.1 0.2005 ± 0.0059 0.4349 ± 0.0143
ARM+

σ 34.7 ± 3.1 0.0849 ± 0.0112 0.3349 ± 0.0063 23.1 ± 0.9 0.3508 ± 0.0099 0.5653 ± 0.0092
AE+ARM 72.0 ± 1.3 0.0006 ± 0.0001 0.0038 ± 0.0003 76.0 ± 0.3 0.0986 ± 0.0038 0.0069 ± 0.0005

EBM+ 84.2 ± 4.3 0.4056 ± 0.0145 0.0008 ± 0.0006 135.6 ± 1.6 0.6550 ± 0.0054 0.0000 ± 0.0000
EBM+

σ 101.0 ± 12.3 0.3748 ± 0.0496 0.0013 ± 0.0008 135.3 ± 0.9 0.6384 ± 0.0027 0.0000 ± 0.0000
AE+EBM 75.4 ± 2.3 0.0007 ± 0.0001 0.0008 ± 0.0002 83.1 ± 1.9 0.0891 ± 0.0046 0.0037 ± 0.0009
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Table 5: FID (lower is better) and Precision, and Recall scores (higher is better). Means ± standard errors
across 3 runs are shown. Unreliable scores are highlighted in red.

MODEL SVHN CIFAR-10
FID Precision Recall FID Precision Recall

AVB 356.3 ± 10.2 0.0148 ± 0.0035 0.0000 ± 0.0000 289.0 ± 3.0 0.0602 ± 0.0111 0.0000 ± 0.0000
AVB+ 352.6 ± 7.6 0.0088 ± 0.0018 0.0000 ± 0.0000 297.1 ± 1.1 0.0902 ± 0.0192 0.0000 ± 0.0000
AVB+

σ 353.0 ± 7.2 0.0425 ± 0.0293 0.0000 ± 0.0000 305.8 ± 8.7 0.1304 ± 0.0460 0.0000 ± 0.0000
AVB+ARM 56.6 ± 0.6 0.6741 ± 0.0090 0.0206 ± 0.0011 182.5 ± 1.0 0.4670 ± 0.0037 0.0003 ± 0.0001
AVB+AVB 74.5 ± 2.5 0.5765 ± 0.0157 0.0224 ± 0.0008 183.9 ± 1.7 0.4617 ± 0.0078 0.0006 ± 0.0003
AVB+EBM 61.5 ± 0.8 0.6809 ± 0.0092 0.0162 ± 0.0020 189.7 ± 1.8 0.4543 ± 0.0094 0.0006 ± 0.0002
AVB+NF 55.4 ± 0.8 0.6724 ± 0.0078 0.0217 ± 0.0007 181.7 ± 0.8 0.4632 ± 0.0024 0.0009 ± 0.0001
AVB+VAE 59.9 ± 1.3 0.6698 ± 0.0105 0.0214 ± 0.0010 186.7 ± 0.9 0.4517 ± 0.0046 0.0006 ± 0.0001
VAE 311.5 ± 6.9 0.0098 ± 0.0030 0.0018 ± 0.0012 270.3 ± 3.2 0.0805 ± 0.0016 0.0000 ± 0.0000
VAE+ 300.1 ± 2.1 0.0133 ± 0.0014 0.0000 ± 0.0000 257.8 ± 0.6 0.1287 ± 0.0183 0.0001 ± 0.0000
VAE+

σ 302.2 ± 2.0 0.0086 ± 0.0018 0.0004 ± 0.0003 257.8 ± 1.7 0.1328 ± 0.0152 0.0000 ± 0.0000
VAE+ARM 52.9 ± 0.3 0.7004 ± 0.0016 0.0234 ± 0.0005 175.2 ± 1.3 0.4865 ± 0.0055 0.0004 ± 0.0001
VAE+AVB 64.0 ± 1.3 0.6234 ± 0.0110 0.0273 ± 0.0006 176.7 ± 2.0 0.5140 ± 0.0123 0.0007 ± 0.0002
VAE+EBM 63.7 ± 3.3 0.6983 ± 0.0071 0.0163 ± 0.0008 181.7 ± 2.8 0.4849 ± 0.0098 0.0002 ± 0.0001
VAE+NF 52.9 ± 0.3 0.6902 ± 0.0059 0.0243 ± 0.0011 175.1 ± 0.9 0.4755 ± 0.0095 0.0007 ± 0.0002

ARM+ 168.3 ± 4.1 0.1425 ± 0.0086 0.0759 ± 0.0031 162.6 ± 2.2 0.6093 ± 0.0066 0.0313 ± 0.0061
ARM+

σ 149.2 ± 10.7 0.1622 ± 0.0210 0.0961 ± 0.0069 136.1 ± 4.2 0.6585 ± 0.0116 0.0993 ± 0.0106
AE+ARM 60.1 ± 3.0 0.5790 ± 0.0275 0.0192 ± 0.0014 186.9 ± 1.0 0.4544 ± 0.0073 0.0008 ± 0.0002

EBM+ 228.4 ± 5.0 0.0955 ± 0.0367 0.0000 ± 0.0000 201.4 ± 7.9 0.6345 ± 0.0310 0.0000 ± 0.0000
EBM+

σ 235.0 ± 5.6 0.0983 ± 0.0183 0.0000 ± 0.0000 200.6 ± 4.8 0.6380 ± 0.0156 0.0000 ± 0.0000
AE+EBM 75.2 ± 4.1 0.5739 ± 0.0299 0.0196 ± 0.0035 187.4 ± 3.7 0.4586 ± 0.0117 0.0006 ± 0.0001

Table 6: FID scores (lower is better) for non-likelihood based GAEs and two-step models. These GAEs are
not trained to maximize likelihood, so Theorem 1 does not apply. Means ± standard errors across 3 runs are
shown. Unreliable scores are shown in red. Samples for unreliable scores are provided in Fig. 11.

MODEL MNIST FMNIST SVHN CIFAR-10
BiGAN 150.0 ± 1.5 139.0 ± 1.0 105.5 ± 5.2 170.9 ± 4.3
BiGAN+ 135.2 ± 0.2 113.0 ± 0.6 114.4 ± 4.9 152.9 ± 0.6
BiGAN+ARM 112.6 ± 1.6 94.9 ± 0.7 60.8 ± 1.6 210.7 ± 1.6
BiGAN+AVB 149.9 ± 3.3 141.5 ± 1.7 67.2 ± 2.6 215.7 ± 1.0
BiGAN+EBM 120.7 ± 4.7 108.1 ± 2.4 66.5 ± 1.3 217.5 ± 1.8
BiGAN+NF 112.4 ± 1.4 95.0 ± 0.8 60.2 ± 1.5 211.6 ± 1.7
BiGAN+VAE 127.9 ± 1.6 115.5 ± 1.4 63.6 ± 1.4 216.3 ± 1.2
WAE 19.8 ± 1.6 45.1 ± 0.8 52.7 ± 0.6 187.4 ± 0.4
WAE+ 16.7 ± 0.4 45.2 ± 0.2 53.2 ± 0.4 179.7 ± 1.3
WAE+ARM 15.2 ± 0.5 46.1 ± 0.3 73.1 ± 1.8 182.3 ± 1.7
WAE+AVB 17.6 ± 0.3 47.7 ± 0.9 60.2 ± 3.8 157.6 ± 0.8
WAE+EBM 23.7 ± 1.0 60.2 ± 1.4 70.6 ± 1.5 161.0 ± 4.7
WAE+NF 20.7 ± 2.2 52.1 ± 2.9 57.6 ± 3.8 178.2 ± 2.8
WAE+VAE 16.4 ± 0.6 50.9 ± 0.5 72.2 ± 1.9 178.3 ± 2.6

D.5 High Resolution Image Generation

As mentioned in the main manuscript, we attempted to use our two-step methodology to improve upon a
high-performing GAN model: a StyleGAN2 (Karras et al., 2020b). We used the PyTorch (Paszke et al., 2019)
code of Karras et al. (2020a), which implements the optimization-based projection method of Karras et al.
(2020b). That is, we did not explicitly construct g, and used this optimization-based GAN inversion method
to recover {zn}N

n=1 on the FFHQ dataset (Karras et al., 2019), with the intention of training low-dimensional
DGMs to produce high resolution images. This method projects into the intermediate 512-dimensional
space referred to as W by default (Karras et al., 2020b). We also adapted this method to the GAN’s true
latent space, referred to as Z, during which we decreased the initial learning rate to 0.01 from the default
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of 0.1. In experiments with optimization-based inversion into the latent spaces g(M) = W and g(M) = Z,
reconstructions {G(zn)}N

n=1 yielded FIDs of 13.00 and 25.87, respectively. In contrast, the StyleGAN2
achieves an FID score of 5.4 by itself, which is much better than the scores achieved by the reconstructions
(perfect reconstructions would achieve scores of 0).

The FID between the reconstructions and the ground truth images represents an approximate lower-bound
on the FID score attainable by the two-step method, since the second step estimates the distribution of the
projected latents {zn}N

n=1. Since reconstructing the entire FFHQ dataset of 70000 images would be expensive
(for instance, W-space reconstructions take about 90 seconds per image), we computed the FID (again using
the code of Karras et al. (2020a)) between the first 10000 images of FFHQ and their reconstructions.

We also experimented with the approach of Huh et al. (2020), which inverts into Z-space, but it takes about
10 minutes per image and was thus prohibitively expensive. Most other GAN inversion work (Xia et al.,
2021) has projected images into the extended 512 × 18-dimensional W+ space, which describes a different
intermediate latent input w for each layer of the generator. Since this latent space is higher in dimension than
the true model manifold, we did not pursue these approaches. The main obstacle to improving StyleGAN2’s
FID using the two-step procedure appears to be reconstruction quality. Since the goal of our experiments
is to highlight the benefits of two-step procedures rather than proposing new GAN inversion methods, we
did not further pursue this direction, although we hope our results will encourage research improving GAN
inversion methods and exploring their benefits within two-step models.

D.6 OOD Detection

OOD Metric We now precisely describe our classification metric, which properly accounts for datasets
of imbalanced size and ensures correct directionality, in that higher likelihoods are considered to be in-
distribution. First, using the in- and out-of-sample training likelihoods, we train a decision stump – i.e.
a single-threshold-based classifier. Then, calling that threshold T , we count the number of in-sample test
likelihoods which are greater than T , nI>T , and the number of out-of-sample test likelihoods which are
greater than T , nO>T . Then, calling the number of in-sample test points nI , and the number of OOD test
points nO, our final classification rate acc is given as:

acc =
nI>T + nI

nO
· (nO − nO>T )
2nI

. (45)

Intuitively, we can think of this metric as simply the fraction of correctly-classified points (i.e. acc′ =
nO>T +(nO−nI>T )

nI +nO
), but with the contributions from the OOD data re-weighted by a factor of nI

nO
to ensure

both datasets are equally weighted in the metric. Note that this metric is sometimes referred to as balanced
accuracy, and can also be understood as the average between the true positive and true negative rates.

We show further OOD detection results using log pZ in Table 7, and using log pX in Table 8. Note that, for
one-step models, we record results for log pX , the log-density of the model, in place of log pZ (which is not
defined).
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Table 7: OOD classification accuracy as a percentage (higher is better), using log pZ . Means ± standard
errors across 3 runs are shown. Arrows point from in-distribution to OOD data.

MODEL FMNIST → MNIST CIFAR-10 → SVHN

AVB+ 96.0 ± 0.5 23.4 ± 0.1
AVB+ARM 89.9 ± 2.4 40.6 ± 0.2
AVB+AVB 74.4 ± 2.2 45.2 ± 0.2
AVB+EBM 49.5 ± 0.1 49.0 ± 0.0
AVB+NF 89.2 ± 0.9 46.3 ± 0.9
AVB+VAE 78.4 ± 1.5 40.2 ± 0.1

VAE+ 96.1 ± 0.1 23.8 ± 0.2
VAE+ARM 92.6 ± 1.0 39.7 ± 0.4
VAE+AVB 80.6 ± 2.0 45.4 ± 1.1
VAE+EBM 54.1 ± 0.7 49.2 ± 0.0
VAE+NF 91.7 ± 0.3 47.1 ± 0.1

ARM+ 9.9 ± 0.6 15.5 ± 0.0
AE+ARM 86.5 ± 0.9 37.4 ± 0.2

EBM+ 32.5 ± 1.1 46.4 ± 3.1
AE+EBM 50.9 ± 0.2 49.4 ± 0.6

Table 8: OOD classification accuracy as a percentage (higher is better), using log pX . Means ± standard
errors across 3 runs are shown. Arrows point from in-distribution to OOD data.

MODEL FMNIST → MNIST CIFAR-10 → SVHN

AVB+ 96.0 ± 0.5 23.4 ± 0.1
AVB+ARM 90.8 ± 1.8 37.7 ± 0.5
AVB+AVB 75.0 ± 2.2 43.7 ± 2.0
AVB+EBM 53.3 ± 7.1 39.1 ± 0.9
AVB+NF 89.2 ± 0.8 43.9 ± 1.3
AVB+VAE 78.7 ± 1.6 40.2 ± 0.2

VAE+ 96.1 ± 0.1 23.8 ± 0.2
VAE+ARM 93.7 ± 0.7 37.6 ± 0.4
VAE+AVB 82.4 ± 2.4 42.2 ± 1.0
VAE+EBM 63.7 ± 1.7 42.4 ± 0.9
VAE+NF 91.7 ± 0.3 42.4 ± 0.3

ARM+ 9.9 ± 0.6 15.5 ± 0.0
AE+ARM 89.5 ± 0.2 33.8 ± 0.3

EBM+ 32.5 ± 1.1 46.4 ± 3.1
AE+EBM 56.9 ± 14.4 34.5 ± 0.1
BiGAN+ARM 81.5 ± 1.4 35.7 ± 0.4
BiGAN+AVB 59.6 ± 3.2 34.3 ± 2.3
BiGAN+EBM 57.4 ± 1.7 47.7 ± 0.7
BiGAN+NF 83.7 ± 1.2 39.2 ± 0.3
BiGAN+VAE 59.3 ± 2.1 35.6 ± 0.4
WAE+ARM 89.0 ± 0.5 38.1 ± 0.6
WAE+AVB 74.5 ± 1.3 43.1 ± 0.7
WAE+EBM 36.5 ± 1.6 36.8 ± 0.4
WAE+NF 85.7 ± 2.8 40.2 ± 1.8
WAE+VAE 87.7 ± 0.7 38.3 ± 0.4
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Figure 14: Comparison of the distribution of log-likelihood values between in-distribution (green) and
out-of-distribution (blue) data. In both cases, the two-step models push the in-distribution likelihoods further
to the right than the NF+ model alone. N.B.: The absolute value of the likelihoods in the NF+ model on its
own are off by a constant factor because of the aforementioned whitening transform used to scale the data
before training. However, the relative value within a single plot remains correct.

Figure 15: Comparison of the distribution of log-likelihood values between in-distribution (green) and out-of-
distribution (blue) data for VAE-based models. While the VAE+ model does well on FMNIST→MNIST, its
performance is poor for CIFAR-10→SVHN. The two-step model VAE+NF improves on the CIFAR-10→SVHN
task.
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Figure 16: Comparison of the distribution of log-likelihood values between in-distribution (green) and out-of-
distribution (blue) data for AVB-based models. While the AVB+ model does well on FMNIST→MNIST, its
performance is poor for CIFAR-10→SVHN. The two-step model AVB+NF improves on the CIFAR-10→SVHN
task.
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