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Abstract

Data-sparse settings such as robotic manipulation, and molecular physics, and galaxy mor-
phology classification are some of the hardest domains for deep learning. For these prob-
lems, equivariant networks can help improve modeling across undersampled parts of the
input space, and uncertainty estimation can guard against overconfidence. However, un-
til now, the relationships between equivariance and model confidence, and more generally
equivariance and model calibration, has yet to be studied. In this work, we present the
first theory relating invariance to uncertainty estimation. By proving lower and upper
bounds on uncertainty calibration errors under various invariance conditions, we elucidate
the generalization limits of invariant models.

Keywords: Approximation Error Bound, Group Invariance, Uncertainty Estimation

1. Introduction

Equivariant neural networks are a class of neural networks that encode group symmetries
into the structure of the network architecture such that the symmetries do not need to be
learned from data. Understanding both model calibration and confidence is particularly
useful in data-sparse settings where equivariant neural networks tend to thrive, such as
pick-and-place robotics tasks (Kalashnikov et al., 2018; Wang et al., 2022b,a; Fu et al.,
2023; Huang et al., 2023, 2024b,a; Wang, 2025), galaxy morphology classification (Pandya
et al., 2023, 2025), and molecular physics (Zou et al., 2023; Ramakrishnan et al., 2014).
While equivariance has proved invaluable in these scenarios, it does have some drawbacks,
including fairly limited benefits at scale (Wang et al., 2023b; Klee et al., 2023; Gruver et al.,
2023; Brehmer et al., 2024; Abramson et al., 2024), provable degradation on model perfor-
mance in cases of symmetry mismatch (Wang et al., 2024), more complex architectures,
and higher compute costs. Despite these drawbacks, a surprising result of Wang et al.
(2023a) is that equivariant neural networks can still be effective even in cases of mismatch
between the model and the data symmetry. This finding motivated the work of Wang et al.
(2024), which explored how equivariance can affect model accuracy, both positively and
negatively. However, it is not yet understood how equivariance impacts model calibration,
loosely defined as the disagreement between a model’s accuracy and predicted confidence.
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To help understand the tradeoffs associated with the inductive bias of equivariance,
we seek to quantify the impact of equivariance on expected calibration error. While no
previous works are using the generalization limits of equivariant models, it is apparent that
previous results on the subject can be applied to the study of calibration error. This is
because calibration errors contain expressions corresponding to classification or regression
errors themselves. In this work, we extend the error bounds given by Wang et al. (2024) to
a broader class of calibration losses. In this way, we can quantify the effect of invariance
not just on accuracy, but also on calibration. In particular, we show that calibration
error is related to typical classification errors over the fibers of each confidence prediction.
These classification errors have known bounds for invariant functions, which we use to
provide lower and upper calibration error bounds. This study illustrates that the effect of
invariance on model calibration is dependent on where we are in the equivariance taxonomy
(i.e. correct, incorrect, or extrinsic equivariance), supporting the previous line of work in
Wang et al. (2023a, 2024).

2. Background

2.1. Invariance and Equivariance

Here, we give precise definitions of equivariance and invariance. Let G be a group with rep-
resentations ρX and ρY which transform vectors in the vector spaces X and Y respectively.
Representations map group elements to invertible linear transformations. When clear, we
omit the representation map and write gx for ρX (g)x. A map ϕ : X → Y is equivariant if
ρY(g)[ϕ(x)] = ϕ(ρX (g)[x]) for all g ∈ G, x ∈ X . Invariance is a special case of equivariance
in which ρY = IdY for all g ∈ G. That is, a map ϕ : X → Y is invariant if it satisfies
ϕ(x) = ϕ(ρX (g)[x]) for all g ∈ G, x ∈ X .

Fundamental Domain. This paper will use iterated integration over orbits and a set
of orbit representatives. We call the set of orbit representatives the fundamental domain,
denoted F . A precise definition is given in Appendix A.

2.2. Equivariant Learning

Consider a function f : X → Y . Let p : X → R be the probability density function of the
domain X. We assume there is no distribution shift during testing – that is, p is always the
underlying distribution during training and testing. The goal for a model class {h : X → Y }
is to fit the function f by minimizing an error function err(h). We assume the model class
{h} is arbitrarily expressive except that it is constrained to be equivariant with respect to a
group G. Let 1(I(x)) be an indicator function that equals to 1 if the condition I is satisfied
and 0 otherwise. The classification error is given by errcls(h) = Ex∼p [1(f(x) ̸= h(x))].

2.3. Error Bounds for Invariant Classifiers

Our goal is to generalize the bounds from Wang et al. (2024) to a calibration objective. We
briefly review the main classification result fromWang et al. (2024). Given that equivariance
is not always correct, the following definition and theorem detail how symmetry mismatch
can harm model fitting for invariant classification.
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Definition 1 (Majority Label Total Dissent) For the orbit Gx of x ∈ X, the total
dissent k(Gx) is the integrated probability density of the elements in the orbit Gx having a
different label than the majority label: k(Gx) = min

y∈Y

∫
Gx p(z)1(f(z) ̸= y)dz.

Theorem 2 (Theorem 4.3 in Wang et al. (2024)) The error errcls(h) is bounded be-
low by

∫
F k(Gx)dx.

Additional background on misspecified equivariance is given in Appendix B.

3. Invariant Classification Bounds

We first note that the expected calibration error from Guo et al. (2017) is bounded in the
interval [0, 1], and that under the hypothesis of an invariant model class both the lower and
upper bounds can be tightened. We present complete proofs in Appendix F.

Classification Problem. Consider a function f : X → Y where Y is a finite set of
labels. Let q : X → R be a probability density on the domain X. We define a model class
{h : X → Y × [0, 1]}. Let h(x) = (hY , hP ) where hP represents the probability estimate
associated with the predicted label hY .The goal is for h to fit the function f and to properly
predict its own confidence by minimizing the expected calibration error (Equation 1, and
Equation 2 in Guo et al. (2017)). Following Wang et al. (2024), we assume that the class
{h} is arbitrarily expressive except that it is constrained to be equivariant with respect to
a group G. In the classification setting, we specifically assume h to be G−invariant, which,
although not strictly necessary, is the case in most classification problems considered in the
literature. Let r(p) be the probability density such that P(p1 ≤ hP (x) ≤ p2) =

∫ p2
p1

r(p)dp.
This is the push-forward of q over hP . The expected calibration error is nominally defined

ECE(h) = EhP

[∣∣∣∣ P (f = hY |hP = p)− p

∣∣∣∣] (1)

as in Guo et al. (2017). Intuitively, if a model has confidence p, then it should be ac-
curate with probability p. This metric penalizes the discrepancy between accuracy and
confidence averaged over all of confidences weighted by the push-forward density r. We
abbreviate P(f(x) = hY (x)|hP (x) = p) with Accp(h), which denotes the true accuracy of
the model when the predicted confidence is p. Hence h is well calibrated at confidence p
when Accp(h) = p, underconfident when Accp(h) > p, and overconfident when Accp(h) < p.

We briefly comment on the well-definedness of Equation 1 in Appendix C.

ECE Upper Bounds. We first note that ECE is a bounded between 0 and 1, since it
is bounded below by 0 and bounded above by 1. The upper bound of 1 is generally loose
without any further assumptions. Therefore, we now show that the assumption of invariance
on the model class allows us to tighten the upper bound. We start with the following
assumption on a fundamental domain F and orbit Gx that ensures iterated integration on
the fibers of hP is well defined.

Assumption 3 For a group G acting on a domain X, we assume the union of all pair-
wise intersections ∪g1 ̸=g2(g1F ∩ g2F ) have measure 0 and that F and Gx are differentiable
manifolds for all x ∈ X. This holds for domains Fp = h−1

P (p) ⊆ X on which G also acts.
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Proposition 4 Denote the fiber Fp = h−1
P (p). Denote the total density on a fiber Fp by

q(Fp) =
∫
Fp

q(x)dx and the renormalized density by qp(x) = q(x)/q(Fp). Let k(Gx, p) be the

total dissent of an orbit on Fp with the renormalized probability qp(x). Denote a fundamental
domain of G in Fp as Fp. Let P1 = {p : Accp(h) ≤ 1

2} and P2 = {p : Accp(h) ≥ 1
2}. Let

Gx∗ be the orbit with the smallest nonzero total dissent k(Gx∗), i.e. x∗ = argmin
x∈X

{k(Gx)}.

ECE is bounded above by 1
2 +

∫ 1
0 r(p)|12 − p|dp− k(Gx∗)

∫
P2

r(p)dp.

Proof Sketch 1 We observe that |Accp(h)− p| ≤ |Accp(h)− 1/2|+ |1/2− p|. The upper
bound on ECE is determined by the upper bound of |Accp(h)− 1/2|, and we observe that
the accuracy on each fiber is constrained by invariance. By considering the orbit with the
lowest nonzero total dissent, we can compute an upper bound that is tighter than 1 even
without knowing the error lower bound on each fiber, i.e.

∫
Fp

k(Gx, p)dx, or the fibers

themselves Fp.

This upper bound is tighter than 1 since it accounts for the error caused by incorrect
invariance along the subset of fibers where accuracy is at least 50%. In other words, if we
consider all of the orbits with incorrect invariance, then ECE is only as bad as the best of
those orbits. One tradeoff this bound makes is that it is in terms of k(Gx∗), which only
considers error along one orbit. If we know which data points are in each fiber of hP , then
we can tighten the bound. In Appendix D, we introduce further assumptions that allow us
to tighten the bound and provide examples on how the bound may be computed.

We can similarly derive an ECE lower bound using invariance. We start by defining
the minority label total dissent κ(Gx), which is the integrated density of the elements
in the orbit Gx having a different label than the minority label (see Appendix E for a
formal definition). In Appendix E, we prove that errcls(h) is bounded above by

∫
F κ(Gx)dx.

Leveraging this, we can now prove the ECE invariant lower bound.

Theorem 5 We will denote the fundamental domain of G in Fp as Fp, where Fp is as
defined in Proposition 4. As in Proposition 4, the total dissent on an orbit in a fiber Fp is
denoted κ(Gx, p) and is defined in terms of the renormalized density qp(x) = q(x)/q(Fp).
Define the minimum fiberwise classification accuracy as m = min

p∈[0,1]
1−
∫
Fp

κ(Gx, p)dx. ECE

is bounded below by
∫m
0 r(p)(m− p)dp.

Proof Sketch 2 If an orbit contains each label in |Y |, then an invariant model will be
correct at least once (i.e. a broken clock is right twice a day). We find the accuracy
lower bound for each orbit and then bound using the smallest one, m. We integrate the
discrepancy between accuracy and confidence in the region where the confidence is less than
the accuracy lower bound.

Special cases that tighten and exemplify the bound are provided in Appendix E.

4. Conclusion

This work proves upper and lower bounds for ECE for invariant functions, elucidating the
generalization limits of invariant functions in cases of symmetry mismatch between the
model and the data.
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L. Hörmander. The Analysis of Linear Partial Differential Operators I: Distribution Theory
and Fourier Analysis. Classics in Mathematics. Springer Berlin Heidelberg, 2015. ISBN
9783642614972. URL https://books.google.com/books?id=aaLrCAAAQBAJ.

Haojie Huang, Dian Wang, Xupeng Zhu, Robin Walters, and Robert Platt. Edge grasp
network: A graph-based se (3)-invariant approach to grasp detection. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pages 3882–3888. IEEE,
2023.

Haojie Huang, Owen Howell, Dian Wang, Xupeng Zhu, Robin Walters, and Robert
Platt. Fourier transporter: Bi-equivariant robotic manipulation in 3d. arXiv preprint
arXiv:2401.12046, 2024a.

Haojie Huang, Dian Wang, Arsh Tangri, Robin Walters, and Robert Platt. Leveraging
symmetries in pick and place. The International Journal of Robotics Research, 43(4):
550–571, 2024b.

E. T. Jaynes. Probability theory. Cambridge University Press, Cambridge, 2003. ISBN
0-521-59271-2. doi: 10.1017/CBO9780511790423. URL https://doi.org/10.1017/

CBO9780511790423. The logic of science, Edited and with a foreword by G. Larry Bret-
thorst.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang,
Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Qt-
opt: scalable deep reinforcement learning for vision-based robotic manipulation. corr
abs/1806.10293 (2018). arXiv preprint arXiv:1806.10293, 2018.

5

https://openreview.net/forum?id=JL7Va5Vy15J
https://openreview.net/forum?id=JL7Va5Vy15J
https://books.google.com/books?id=aaLrCAAAQBAJ
https://doi.org/10.1017/CBO9780511790423
https://doi.org/10.1017/CBO9780511790423


Berman Ginesin Pacini Walters

David Klee, Jung Yeon Park, Robert Platt, and Robin Walters. A comparison of equivariant
vision models with imagenet pre-training. In NeurIPS 2023 Workshop on Symmetry and
Geometry in Neural Representations, 2023.

Andrey Kolmogorov. Grundbegriffe der wahrscheinlichkeitsrechnung (in german), berlin:
Julius springer. 1933.

Sneh Pandya, Purvik Patel, Jonathan Blazek, et al. E (2) equivariant neural networks for
robust galaxy morphology classification. arXiv preprint arXiv:2311.01500, 2023.

Sneh Pandya, Purvik Patel, Brian D Nord, Mike Walmsley, and Aleksandra Ciprijanovic.
Sidda: Sinkhorn dynamic domain adaptation for image classification with equivari-
ant neural networks. Machine Learning: Science and Technology, 2025. URL http:

//iopscience.iop.org/article/10.1088/2632-2153/adf701.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld.
Quantum chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):
1–7, 2014.

Dian Wang. Equivariant Policy Learning for Robotic Manipulation. PhD
thesis, Northeastern University, 2025. URL https://link.ezproxy.

neu.edu/login?url=https://www.proquest.com/dissertations-theses/

equivariant-policy-learning-robotic-manipulation/docview/3224180630/se-2.
Copyright - Database copyright ProQuest LLC; ProQuest does not claim copyright in
the individual underlying works; Last updated - 2025-07-16.

Dian Wang, Mingxi Jia, Xupeng Zhu, Robin Walters, and Robert Platt. On-robot learning
with equivariant models. arXiv preprint arXiv:2203.04923, 2022a.

Dian Wang, Robin Walters, Xupeng Zhu, and Robert Platt. Equivariant q learning in
spatial action spaces. In Conference on Robot Learning, pages 1713–1723. PMLR, 2022b.

Dian Wang, Jung Yeon Park, Neel Sortur, Lawson L.S. Wong, Robin Walters, and Robert
Platt. The surprising effectiveness of equivariant models in domains with latent symmetry.
In The Eleventh International Conference on Learning Representations, 2023a. URL
https://openreview.net/forum?id=P4MUGRM4Acu.

Dian Wang, Xupeng Zhu, Jung Yeon Park, Mingxi Jia, Guanang Su, Robert Platt, and
Robin Walters. A general theory of correct, incorrect, and extrinsic equivariance. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Yuyang Wang, Ahmed AA Elhag, Navdeep Jaitly, Joshua M Susskind, and Miguel Ángel
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Appendix A. Fundamental Domain

Here, we give a precise definition for the fundamental domain.

Definition 6 (Definition 4.1 in Wang et al. (2024)) Let d be the dimension of a generic
orbit of G in X and n the dimension of X. Let ν be the (n − d) dimensional Hausdorff
measure in X. A closed subset F of X is called a fundamental domain of G in X if X is
the union of conjugates of F , i.e., X = ∪g∈GgF , and the intersection of any two conjugates
has 0 measure under ν.

Appendix B. Equivariance Taxonomy: Correct, Incorrect, and Extrinsic.

Wang et al. (2024) establish a taxonomy which describes the relationship of the symmetry
of the model class to the symmetry in the data. We review the definitions of correct,
incorrect, and extrinsic equivariance from Wang et al. (2024) . These definitions help us
understand the ability of equivariant functions to approximate datasets that may or may
not have the same symmetries. A key inclusion here is extrinsic symmetry, which describes
the case where the action of the group moves data points out of the support of their original
distribution.

Definition 7 (Equivariance Taxonomoy, Definitions 3.1-3.3 in Wang et al. (2024))
For all x ∈ X, g ∈ G where p(x) > 0, if p(gx) > 0 and f(gx) = gf(x), h has correct equiv-
ariance with respect to f . For all x ∈ X, g ∈ G where p(x) > 0, if p(gx) > 0 and
f(gx) ̸= gf(x), h has incorrect equivariance with respect to f . For all x ∈ X, g ∈ G where
p(x) > 0, if p(gx) = 0, h has extrinsic equivariance with respect to f .

An important nuance is that different subsets of a dataset can belong to different classes
of the taxonomy, e.g. the data set can be 1

3 correct, 1
3 incorrect, and 1

3 extrinsic. We can
add specificity to Definition 7 by considering the type of equivariance at each point in the
dataset.

Definition 8 (Pointwise Equivariance, Definitions 3.5-3.7 in Wang et al. (2024))
For g ∈ G and x ∈ X where p(x) ̸= 0, if p(gx) ̸= 0 and f(gx) = gf(x), h has correct equiv-
ariance with respect to f at x under transformation g. For g ∈ G and x ∈ X where p(x) ̸= 0,
if p(gx) ̸= 0 and f(gx) ̸= gf(x), h has incorrect equivariance with respect to f at x under
transformation g. For g ∈ G and x ∈ X where p(x) ̸= 0, if p(gx) = 0, h has extrinsic
equivariance with respect to f at x under transformation g.
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Appendix C. Well-definedness of ECE

In this section, we commented on the requirements of Equation 2 in order for it to be
well defined. The definition in Guo et al. (2017) abuses notation slightly, in that the
probability of any event drawn from a continuous random variable has probability zero, i.e.
p(hP = p) = 0 for all p. We can rectify this by defining ECE as

ECE(h) = lim
ε→0

Ep∼r(p)

[∣∣∣∣ P (f = hY |p− ε < hP < p+ ε)− p

∣∣∣∣] , (2)

however, we drop the limits for brevity throughout. First, P (f = hY |p− ε < hP < p+ ε)
is well defined when r(p) ̸= 0 for all p ∈ [0, 1]. Moreover, we note that in general, if
B = {C = c}, it is not always permissible to define P (A|B) = lim

ε→0
P (A|c− ε < C < c+ ε).

This is because we face contradictions when {D = d} = B = {C = c}, but the random
variables C and D have different densities defined with respect to different measures. This
results in contradictions where P (A|B) = lim

ε→0
P (A|c − ε < C < c + ε) and P (A|B) =

lim
ε→0

P (A|d− ε < D < d+ ε) but lim
ε→0

P (A|c− ε < C < c+ ε) ̸= lim
ε→0

P (A|d− ε < D < d+ ε),

see for example the Borel-Kolmogorov Paradox (Kolmogorov, 1933; Jaynes, 2003)1. In
other words, the probability density conditioned on an event with zero probability can
only be specified with respect to a given reference measure that determines the probability
density function being conditioned on. Therefore, we specify a measure on X so that the
random variable hp has push-forward density r(p) defined with respect to the push-forward
measure. In particular, let H be the |X| dimensional Hausdorff measure in X that defines
q(x). r(p) is the push-forward density of q over hP , meaning it is defined with respect to
the accompanying push-forward measure hP#H on [0, 1]. This is sufficient for Equation 2
to be uniquely defined. We also note that we don’t need these well-definedness properties
to hold in the special case where r(p) is discrete or when we are computing approximations
that treat hP as discrete. In each case, we average over the confidences (or confidence bins)
with non-zero probability.

Appendix D. Computing the Upper Bound

Corollary 9 Define m = min
p∈[0,1]

∫
Fp

k(Gx, p). Then ECE ≤ 1
2+
∫ 1
0 r(p)|12−p|dp−m

∫
P2

r(p)dp.

A key subtlety in the proof of Corollary 9 is that m is a minimum over error lower
bounds defined on fibers of [0, 1] and not orbits. This is stated formally in Remark 10.

Remark 10 By assumption of invariance on hP , the fibers of [0, 1] contain entire orbits.
The integrated total dissent

∫
Fp

k(Gx, p)dx is defined on the collection of orbits where the

confidence is always given by hp(xp) = p, but the label hY (xp) itself may very. This is
possible because points xp1 and xp2 may belong to distinct orbits which map to different
distinct labels y1 and y2 under hY but map to the same confidence p under hP .

1. This paradox is most easily exemplified with the Great Circle Puzzle.
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We note that for the special case of binary classification, an accuracy of 50% is essentially
the minimum accuracy on each fiber. If the accuracy of a classifier is less than 50% on each
fiber, we can construct a classifier that simply chooses the opposite label to improve its
accuracy so that it is accurate over 50% of the time.

Corollary 11 Assume |Y | = 2. ECE is bounded above by 1 − k(Gx∗), or 1 − m in the
special case of Corollary 9.

Improving the Unconstrained ECE Upper Bound. In our proof of Proposition 4,
we used the fact that we could bound |Accp(h)− 1

2 | on P2 using invariance. However, we also
could have made a simplication without that assumption, noting that |Accp(h) − 1

2 | ≤
1
2 .

We refer to this as the upper bound in the unconstrained case.

Proposition 12 ECE is bounded from above by 1
2 +

∫ 1
0 r(p)|12 − p|dp.

Comparing with Proposition 4, we see that the assumption of invariance decreases the
upper bound by k(Gx∗)

∫
P2

r(p)dp.

Reparameterizing the Distributions. Notice that both of the upper bounds in Propo-
sitions 4 and 12 are expressed in terms of r(p). The density r(p) is not in general easily
derivable from q(x). In order to express each bound in terms of q(x), we introduce extra
assumptions on hP , which we will now examine.

From Hörmander (2015), we have that

r(p) =

∫
X
q(x)δ(p− hP (x))dx =

∫
Fp

1

|∇hP (x)|
q(x)dxp

where δ is the Dirac-Delta distribution. This is valid if we assume that hP (x) is contin-
uously differentiable and has gradient nowhere 0. Now, to attain our upper bound on ECE
independent of h, we must find the upper bound on 1

|∇hP (x)| . This is achievable if hP (x) is
bi-Lipschitz. Let us define.

Definition 1 Given metric spaces (X, dX) and (Y, dY ), a function f : X → Y is Lipschitz
continuous if there exists a constant K ≥ 0 such that for all x1, x2 ∈ X we have

dY (f(x1), f(x2)) ≤ KdX(x1, x2).

Furthermore, a function is (K1,K2)-Bi-Lipschitz continuous if

1

K2
dX(x1, x2) ≤ dY (f(x1), f(x2)) ≤ K1dX(x1, x2).

The Lipschitz constant K further serves as a bound for the gradient of f , since we can
consider the limit as x1 → x2. If the function is bi-lipschitz, then K1 bounds the gradient
and K2 bounds the reciprocal of the gradient.

Proposition 13 We assume hP (x) is differentiable, has gradient nowhere 0, and is (K1,K2)
bi-Lipschitz continuous. Let Gx̃ be the orbit with the least integrated probability den-

sity. The upper bound on ECE in the incorrectly invariant case becomes
2+K2

∫
Gx̃ q(x)dx

4 −
k(Gx∗)K2

∫
Gx̃ q(x)dx and in the unconstrained case

2+
∫
Gx̃ q(x)dxK2

4 .
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r 1 - r
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Figure 1: Binary Classification on a Unit Square with Translation Invariance. Blue and
green represent true labels.

Comparing the Unconstrained and Invariant Upper Bounds. A natural question
now arises, how much tighter is the upper bound on ECE than the bound in the uncon-
strained case? In the special case where hP (x) is bi-Lipschitz with known lipschitz constants
K1 and K2, we are able to compute an exact number for each upper bound. Still, being
bi-Lipschitz is a massive constraint, and so we would like to compare the bounds without
this assumption. We do this by using test functions for r(p). Specifically, Example 1 consid-
ers a binary classification task where r(p) is a Truncated Normal Distribution with various
means. We choose means µ that roughly correspond to the model has wavering confidence,
the model is not confident, and the model is very confident.

Example 1 (Binary Classification on the Unit Square) This example takes place on
a unit square in R2 with a uniform density p(x, y) = 1 if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 and
p(x, y) = 0 otherwise. The function h is invariant to translations in the x−direction. Let
us now consider the unconstrained bound for three different test functions r(p).

Unconstrained Bound with Truncated Normal Density: Recall that the Trun-
cated Normal Distribution with mean µ, variance σ2, and bounds (a, b) has a probability
density

f(x;µ, σ, a, b) =
1

σ

φ
(x−µ

σ

)
Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

)
for a ≤ x ≤ b and f(x) = 0 otherwise and where

φ(ξ) =
1√
2π

e−
1
2
ξ2 , Φ(z) =

1

2

(
1 + erf

(
z√
2

))
.
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In all cases, we consider σ = 0.1 and of course a = 0, b = 1. For µ = 0.5 the upper
bound is

1

2
+

∫ 1

0

1

0.1

φ
(
p−0.5
0.1

)
Φ(5)− Φ(−5)

|0.5− p|dp ≈ 0.58.

Similarly, for µ = 0.25 or for µ = 0.75 the upper bound is ≈ 0.75.
Invariant Bound with Truncated Normal Density: As seen in Figure 1, the orbit

with the smallest integrated total dissent is the one on the x−axis, k(Gx∗) = 1 − r. Since
this task is binary classification, we have P2 = [0, 1] and

∫
p2
r(p)dp = 1. The upper bound

on ECE, using the assumption of incorrect invariance, decreases by (1− r).
Conclusion: In the unconstrained case, the upper bound is tighter when the confidence

is concentrated around 50%, which can be interpreted as the model “hedging its bet.” The
same is true in the invariant case, and the bound is always tightened according to accuracy
of the best performing orbit, regardless of the distribution r(p).

The following example illustrates the utility of our bound in the special case when we
know the fibers Fp.

Example 2 (Reflection Invariance Upper Bound) Consider the unit circle S1 em-
bedded in R2. Along S1 we have 20 points that are each assigned either a blue or orange
label. The cyclic group C2 acts on elements of S1 by reflecting them over the x−axis and
trivially on the labels. As indicated in Figure 2, we have pointwise incorrect invariance on
each half of the circle, though the model is still able to correctly classify 90% of its labels on
right half . We assume that on the right half where x > 0, each of the 5 orbits map to the
same confidence p1 under hP but may map to different labels under hY . Similarly, each of
the 5 orbits where x < 0 map to the same confidence p2.

If p1 ̸= p2, or the confidence of the model h on the left half is not equal to its confidence
on the right half, then we have two fibers to consider. This is indicated by the right half
of the circle having diagonal lines in the first panel of Figure 2. On the left half, the error∫
Fp

k(Gx, p)dx ≥ 0.5, and on the right half,
∫
Fp

k(Gx, p)dx ≥ 0.1. Taking the minimum, we

find that m = 0.1 and ECE is bounded above by 1− 0.1 = 0.9.
If instead p1 = p2, or the confidence of the model is the same on each orbit, then

we have one fiber to consider. In the second panel of Figure 2, this is indicated by the
circle having no shaded regions. The error over the whole dataset is bounded from below by
0.5(0.1 + 0.5) = 0.3, and ECE is bounded above by 1 − 0.3 = 0.7. This concludes the first
example.

Having two fibers may be reasonable in a real world setting if there is a prevailing noise
(e.g., shadow, camera artifacts, background patterns) on just one side of the field of view of
a camera, leading to approximately two different confidence regions in our model output.
This example serves as the ECE analogue to Figure 2 in Wang et al. (2023a).

Example 3 (Rotation Invariance Upper Bound) The setup is as before with our dataset.
However, now we consider rotation invariance instead of reflection invariance. In this case,
we have only one orbit where we will predict one label and one confidence. Accordingly there

11
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Confidence Fibers of Reflection Invariant Model (a)

Confidence Fiber of Reflection Invariant Model (b)

Confidence Fiber of Rotation Invariant Model (c)

Figure 2: The first two panels indicate that the model is invariant C2 reflections over the
x-axis. The presence of diagonal lines in the first panel depicts that the model
has 2 confidence fibers. The last panel indicates that the model has rotation
invariance. Colors represent labels in all panels.

is only one fiber to consider, which is the entire dataset, as illustrated in the last panel of
Figure 2. We minimize error when we predict each circle to be blue, since there are more
blue labels then orange labels in our dataset. This gives us an error lower bound of 0.3, and
our ECE upper bound is 0.7. We see that this is the same result for reflection invariance
in the special case where the confidences are the same across each fiber. This concludes the
example.

12
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Appendix E. ECE Invariant Lower Bound

ECE Invariant Model Lower Bound. The assumption of invariance can also be used
to obtain an ECE lower bound. In the näıve case, the lower bound is 0 because we can
have that Accp(h) = p for all p. However, if we have an accuracy lower bound m, then
Accp(h) ̸= p for p < m. Let us now derive this accuracy lower bound.

To start, we define the minority label, the label that causes the maximal error on a
given orbit Gx (analogous to the majority label that minimizes error on a given orbit in
Wang et al. (2024)). We define the error on this orbit as the minority label total dissent.

Definition 2 (Minority Label Total Dissent) For an orbit Gx of x ∈ X, the minority
label total dissent κ(Gx) is the integrated probability density of the elements in the orbit Gx
having a different label than the minority label:

κ(Gx) = max
y∈Y

∫
Gx

q(z)1(f(z) ̸= y))dz.

We prove in Proposition 14 that the total classification error is upper bounded by the
integrated minority label total dissent.

Proposition 14 errcls(h) is upper bounded by
∫
F κ(Gx)dx.

Accordingly, the accuracy is lower bounded by 1−
∫
F κ(Gx)dx. We now use this accuracy

lower bound derived from the minority label total dissent to lower bound ECE. We restate
the theorem for convenience here.

Theorem 15 We will denote the fundamental domain of G in Fp as Fp, where Fp is as
defined in Proposition 4. As in Proposition 4, the total dissent on an orbit in a fiber Fp is de-
noted κ(Gx, p) and is defined in terms of the renormalized density qp(x) = q(x)/

∫
Fp

q(x)dx.

Define the minimum fiberwise classification accuracy as m = min
p∈[0,1]

1−
∫
Fp

κ(Gx, p)dx. ECE

is lower bounded by
∫m
0 r(p)(m− p)dp.

Recall that for ECE to be well defined we assumed that r(p) is supported everywhere
on [0, 1]. Therefore, r(p) ̸= 0 anywhere on [0,m] and the lower bound is strictly greater
than 0.

Again, it is ideal for our lower bound to be stated as using q(x) instead of r(p), since q(x)
is more likely to be known. We would also like to find an accuracy lower bound m′ that does
not depend on on the fibers Fp, which implicitly depend on hP . The following Propositions
build up the necessary conditions needed to express the lower bound independently of hP .
We start by finding the accuracy lower bound m′.

Proposition 16 Assume that hP is a continuously differentiable function and that its
gradient is nowhere 0. Define x∗ = argmin

x∈X

∫
z∈Gx q(z)dz so that the orbit with the small-

est integrated density is Gx∗. Let p∗ = argmin
p∈[0,1]

(1 −
∫
Fp

κ(Gx, p)dx) and let m′ = 1 −

1∫
Gx∗ q(z)dz

∫
F κ(Gx)dx. m is as defined in Theorem 15. ECE is lower bounded by∫ m′

0

∫
Fp

1

|∇hP (x)|
q(x)dxp(m

′ − p)dp.

13
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This proof indicates that the accuracy lower bound on the entire dataset, inversely
weighted by the integrated probability of the least likely orbit, is less than the accuracy
lower bound on any given fiber. This allows us to derive an accuracy lower bound m′

independent of the fibers Fp.

As with the upper bound, the lower bound on ECE is related to how quickly the function
hP changes as a function of x. We can get a precise lower bound independent of |∇hP | if
we have knowledge of the Lipschitz constant.

Proposition 17 Assume hP is differentiable, has gradient nowhere 0, and has Lipschitz
constant of K. Gx∗ and m′ are the same as in Proposition 16. Then, ECE is lower bounded
by ∫ m′

0

∫
Gx∗

1

K
q(x)dx(m′ − p)dp.

Proof The ECE lower bound from Proposition 16 is minimized when 1
|∇hP (x)| is mini-

mized, so we are interested in when |∇hP (x)| is maximized. This upper bound is given by
the Lipschitz constant K. The integral

∫
Fp

1
K q(x)dxP =

∫
Fp

∫
z∈Gx q(z)

1
K dzp. If Gx∗p is the

orbit with the smallest integrated probability density in Fp, then
∫
Fp

∫
z∈Gx q(z)

1
K dxP ≥∫

z∈Gx∗
p
q(z) 1

K dxP . Now, we remove the dependence on p by considering the orbit with

the smallest integrated probability density, including orbits not on Fp. This gives us∫
z∈Gx∗

p
q(z) 1

K dzp ≥
∫
Gx∗ q(x)

1
K dx. Therefore, our ECE lower bound becomes

ECE(h) ≥
∫ m′

0

∫
z∈Gx∗

q(z)
1

K
dx(m′ − p)dp.

With this in hand, we now give an example of a Lipschitz and invariant network where
a precise lower bound independent of hP can be obtained.

Example 4 (ECE lower bound for a 2−layer Sn invariant network) In this exam-
ple, we consider a 2−layer network that is permutation invariant for h. For this, we
use a modified version of Deep Sets linear layers (Zaheer et al., 2017) of the form W =
tanh(λ1)I+tanh(λ2)11

T where λ1, λ2 ∈ R are learnable parameters, I is the m×m identity
matrix, and 1 = [1, . . . , 1]T is a vector in Rm. The layer acts on m×n matrices, where m is
the “set dimension.” Following W , we apply the ReLU nonlinearity. These layers are per-
mutation equivariant, meaning they satisfy f(

[
xπ(1), . . . , xπ(M)

]
=
[
fπ(1)(x), . . . , fπ(M)(x)

]
.

To get strict invariance, we use a final readout layer of tanh(λ3)1
T where λ3 ∈ R is also

a learnable parameter. λ31
T performs mean pooling over the set dimension. All together,

hP (x) = tanh(λ3)1
TReLU((tanh(λ1)I + tanh(λ2)11

T ))x. (3)

For Lipschitz functions f and g with Lipschitz constants L1 and L2, it is known that
the Lipschitz constant for the composition f(g(x)) has Lipschitz constant L2L1 and that the
Lipschitz constant for the sum f(x) + g(x) is the average Lipschitz constant 1

2(L1 + L2).

14
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Moreover, the Lipschitz constant for a linear map is given by its maximum singular value
σmax. Finally, note that ReLU is 1−Lipschitz. Thus, the Lipschitz constant for Equation 3
is σmax(1

T )12(σmax(I) + σmax(11
T )) which simplifies to σmax(1

T )(12)(1 + σmax(11
T )).

Applying Proposition 17 the lower bound on ECE becomes∫ m′

0

∫
Gx∗

1

σmax(1T )(
1
2)(1 + σmax(11T ))

q(x)dx(m′ − p)dp.

Now, the lower bound doesn’t depend on the size of the fibers, and we have eliminated
all dependence on |∇hP | in the lower bound. This concludes the example.

Appendix F. Proofs

Proof [Theorem ??] Since ECE is the expectation of a random variable bounded between
0 and 1, ECE is bounded by 0 and 1.

Proof [Proposition 4]
We start by the revisiting the bound on ECE from Theorem ??. Observe that∣∣∣∣ Accp(h)− p

∣∣∣∣ =∣∣∣∣ Accp(h)− 1

2
+

1

2
− p

∣∣∣∣
≤
∣∣∣∣ Accp(h)− 1

2

∣∣∣∣ + ∣∣∣∣ 12 − p

∣∣∣∣
Integrating over [0, 1],∫ p=1

p=0
r(p)

∣∣∣∣ Accp(h)− p

∣∣∣∣ dp ≤
∫ p=1

p=0
r(p)

(∣∣∣∣ Accp(h)− 1

2

∣∣∣∣ + ∣∣∣∣ 12 − p

∣∣∣∣) dp

=

∫ p=1

p=0
r(p)

(∣∣∣∣ Accp(h)− 1

2

∣∣∣∣) dp+

∫ p=1

p=0
r(p)

∣∣∣∣ 12 − p

∣∣∣∣ dp.
Note P1 and P2 partition [0, 1]. By definition of P1 and P2,∫ p=1

p=0
r(p)

(∣∣∣∣ Accp(h)− 1

2

∣∣∣∣) dp =

∫
P1

r(p)

(
1

2
−Accp(h)

)
dp+

∫
P2

r(p)

(
Accp(h)−

1

2

)
dp

(4)

=
1

2

(∫
P1

r(p)dp−
∫
P2

r(p)dp

)
−
∫
P1

r(p)Accp(h)dp+

∫
P2

r(p)Accp(h)dp.

(5)

By Theorem 2, the accuracy Accp(h) on any fiber of p is bounded above by 1 −∫
Fp

k(Gx, p)dx. Combining this bound with the bounds defining P1 and P2 yields,

0 < Accp(h) < min

(
1−

∫
Fp

k(Gx, p)dx,
1

2

)
∀p ∈ P1.

1

2
< Accp(h) <

(
1−

∫
Fp

k(Gx, p)dx

)
∀p ∈ P2.

15



Berman Ginesin Pacini Walters

Observe that the upper bound for ECE is determined by the upper bound of Equations
4 and 5 and is related to the accuracy of h by the last two integrals in Equation 5. In
particular, the model h that maximizes ECE satisfies Accp(h) = 0 on P1 and Accp(h) =
1−

∫
Fp

k(Gx, p)dx on P2. Substituting these values into Equation 5 gives upper bound

[
1

2

(∫
P1

r(p)dp−
∫
P2

r(p)dp

)
+

∫
P2

r(p)dp−
∫
P2

r(p)

∫
Fp

k(Gx, p)dxdp

]
+

∫ p=1

p=0
r(p)|1

2
−p|dp

which simplifies to

1

2
+

∫ p=1

p=0
r(p)|1

2
− p|dp−

∫
P2

r(p)

∫
Fp

k(Gx, p)dxdp.

Finally,

−
∫
P2

r(p)

∫
Fp

k(Gx, p)dxdp = −
∫
P2

r(p)

∫
Fp

min
y∈Y

∫
Gx

qp(z)1(f(z) ̸= y)dzdxdp

≤ −
∫
P2

r(p)

∫
Fp

min
y∈Y

∫
Gx

q(z)1(f(z) ̸= y)dzdxdp

≤ −
∫
P2

r(p)min
y∈Y

∫
Gx∗

q(z)1(f(z) ̸= y)dzdp

= −k(Gx∗)

∫
P2

r(p)dp

and so ECE ≤ 1
2 +

∫ 1
0 r(p)|12 − p|dp− k(Gx∗)

∫
P2

r(p)dp. This completes the proof.

Proof [Corollary 9] We compute 1
2 +

∫ 1
0 r(p)|12 − p|dp −

∫
p2
r(p)

∫
Fp

k(Gx, p)dxdp ≤ 1
2 +∫ 1

0 r(p)|12 − p|dp−m
∫
p2
r(p)dp.

Proof [Corollary 11] Note that
∫ 1
0 r(p)|12−p|dp is bounded above by 1

2 . We have
∫
P2

r(p)dp =∫ 1
0 r(p)dp = 1 by assumption. Substituting these values into Proposition 4 and Corollary 9
completes the proof.

Proof [Proposition 12] See that |Accp(h) − p| = |Accp(h) − p + 1
2 − 1

2 | ≤ |Accp(h) − 1
2 | +

|12 − p| ≤ |12 − p| + 1
2 . Therefore,

∫ 1
0 r(p)(|Accp(h) − p|dp ≤

∫ 1
0 r(p)

(
|12 − p|+ 1

2

)
dp =

1
2 +

∫ 1
0 r(p)|12 − p|dp.

Proof [Proposition 13] Substituting our expression for r(p), we have that the upper bound
on ECE in the incorrectly invariant case becomes 1

2+
∫ 1
0

∫
Fp

K2q(x)dxp|12−p|dp−k(Gx∗)
∫
p2

∫
Fp

K2q(x)dxpdp

and in the unconstrained case 1
2 +

∫ 1
0

∫
Fp

K2q(x)dxp|12 − p|dp. For the unconstrained case,

note that
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1

2
+

∫ 1

0

∫
Fp

K2q(x)dxp|
1

2
− p|dp ≤ 1

2
+

∫ 1

0

∫
Gx̃

K2q(x)dx|
1

2
− p|dp

=
1

2
+K2

∫
Gx̃

q(x)dx
1

4

=
2 +K2

∫
Gx̃ q(x)dx

4
.

For the invariant case, see that

−k(Gx∗)

∫
P2

∫
Fp

K2q(x)dxpdp ≤ −k(Gx∗)

∫
P2

∫
Gx̃

K2q(x)dxdp ≤ −k(Gx∗)K2

∫
Gx̃

q(x)dx

so the upper bound becomes
2+K2

∫
Gx̃ q(x)dx

4 − k(Gx∗)K2

∫
Gx̃ q(x)dx .

Proof [Proposition 14] See that

errcls(h) =

∫
X
q(x)1(f(x) ̸= h(x))dx

=

∫
F

∫
Gx

q(z)1(f(z) ̸= h(z))dzdx

≤
∫
F
max
y∈Y

∫
Gx

q(z)1(f(z) ̸= y))dx =

∫
F
κ(Gx)dx.

Proof [Theorem 15] By Proposition 14, the classification accuracy on each fiber is lower
bounded by 1 −

∫
Fp

κ(Gx, p)dx. Accp(h) is therefore lower bounded by m. See that∫ 1
0 r(p)|Accp(h)−p|dp ≥

∫m
0 r(p)|Accp(h)−p|dp ≥

∫m
0 r(p)(m−p)dp since Accp(h) ≥ m > p

when integrating p on [0,m].

Proof [Proposition 16] As before, we have that r(p) =
∫
X q(x)δ(p−hP (x))dx =

∫
Fp

1
|∇hP (x)|q(x)dxp.

As in Proposition 4, we note that the accuracy lower bound for each fiber must be computed
in terms of the renormalized probabilities. See that

m = min
p∈[0,1]

1−
∫
Fp

κ(Gx, p)dx = 1−
∫
F ∗
p

κ(Gx, p)dx = 1−
∫
F ∗
p

max
y∈Y

∫
Gx

q(z)∫
Fp∗

q(z)dz
1(f(z) ̸= y)dzdx

≥ 1−
∫
F ∗
p

max
y∈Y

∫
Gx

q(z)∫
Gx∗ q(z)dz

1(f(z) ̸= y)dzdx

= 1− 1∫
Gx∗ q(z)dz

∫
Fp∗

max
y∈Y

∫
Gx

q(z)1(f(z) ̸= y)dzdx

≥ 1− 1∫
Gx∗ q(z)dz

∫
F
max
y∈Y

∫
Gx

q(z)1(f(z) ̸= y)dzdx

= 1− 1∫
Gx∗ q(z)dz

∫
F
κ(Gx)dx = m′.
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So, ECE is lower bounded by
∫m′

0

∫
Fp

1
|∇hP (x)|q(x)dxp(m

′ − p)dp.
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