MAT: Unlocking KV Cache Efficiency via Managing Anchor Tokens

Anonymous ACL submission

Abstract

Large language models (LLMs) are power-
ful but require massive memory to cache the
key/value vectors (KV cache) for efficient in-
ference. To reduce the memory burden, we
propose MAT, a novel KV cache eviction strat-
egy tailored to heterogeneous attention patterns
observed in shallow and deep layers of LLMs.
Through a detailed analysis of attention pat-
terns in LLMs, we observe that, for deeper
layers, the anchor tokens, which consistently
receive high attention logits from subsequent
tokens, exhibit notably low attention logits be-
tween one another. These observations mo-
tivate us to prioritize retaining anchor tokens
based on their attention logits to the first to-
ken for deep layers. For shallow layers, we
retain the first few tokens of inputs as well as a
sliding window to preserve local context. Ex-
tensive experiments conducted on end-to-end,
language modeling, and open-ended generation
tasks demonstrate that MAT achieves superior
performance compared with existing methods
when using the same memory budgets.

1 Introduction

Large Language Models (LLMs) have achieved
great success in various domains, e.g., text gener-
ation, machine translation, and question answer-
ing (Touvron et al., 2023a,b; Achiam et al., 2023).
Despite their effectiveness, they require substantial
computational resources to recompute the key and
value vectors (KV) for all previous tokens at every
generation step. To avoid redundant computation,
KV cache technique (Pope et al., 2023) stores pre-
vious key/value vectors in the memory and thus
speeds up the decoding efficiency. However, the
additional memory required by KV cache grows lin-
early with the length of the input prompt (Fu, 2024),
causing a heavy burden for memory-sensitive de-
vices like smartphones or laptops.

To reduce memory usage during generation
progress, many KV cache compression methods, in-

cluding KV cache quantization (Sheng et al., 2023;
Liu et al., 2024b; Hooper et al., 2024) and KV
cache eviction (Xiao et al., 2024; Zhang et al.,
2023; Han et al., 2023; Cai et al., 2024), have been
proposed. Cache quantization methods reduce the
bit-width used for each key and value stored in the
memory, but still require a large cache size. This
work focuses on the KV cache eviction technique.

Cache eviction methods retain important tokens
and evict redundant tokens in the decoding process
to reduce the memory footprint of storing key/value
vectors. For example, the recent state-of-the-art
StreaminglLLM (Xiao et al., 2024), identifies the
first few tokens as important tokens (called sink
tokens), which, together with the tokens in the
sliding window, are retained in the cache. How-
ever, intermediate tokens can also be important
in the generation progress (Sun et al., 2024a),
evicting them leads to performance degradation
in StreamingLLM. A crucial question in KV cache
eviction is how to identify the important intermedi-
ate tokens to be retained.

We start with a property (Xiao et al., 2024;
Zhang et al., 2023) in various LLMs where atten-
tion is consistently concentrated on a few tokens for
deeper layers. These tokens, called anchor tokens
in this work, consistently receive significant atten-
tion scores from the subsequent tokens. Building
on this, we further analyze the attention patterns
and reach two key observations.

(1) Attention logits between anchor tokens are low.
We empirically find that the attention logits from
anchor tokens to other anchor tokens are signifi-
cantly lower than the attention logits from normal
tokens to anchor tokens. This property is useful
for seeking intermediate anchor tokens based on
existing anchor tokens.

(i1) Attention shows diffused patterns for shallow
layers. The attention logits in shallow layers are
relatively sparse and diffused; that is, no few tokens
dominate the attention scores. This observation

aligns with recent findings (Chen et al., 2024) that
LLM:s need to gather diverse information in shallow
layers.

Using the above observations, we propose a
novel method called MAT to unlock the KV cache
efficiency via Managing Anchor Tokens. We di-
vide the KV cache into two parts: an anchor cache
to store anchor tokens and a window cache to store
tokens within the sliding window. For deep layers,
to identify the anchor tokens, based on the above
Observation (i), we select the tokens with low at-
tention logits to the first token (which is definitely
an anchor token). For shallow layers, since no in-
termediate token has a dominant influence on the
layer’s output, the anchor cache stores the first few
tokens of inputs.

Extensive experiments conducted on various
tasks, including end-to-end generation, language
modeling, and open-ended generation, demonstrate
that MAT consistently achieves state-of-the-art per-
formance for different models. Specifically, MAT
outperforms StreamingLLM (Xiao et al., 2024) by
a large margin of 1.93% on the average accuracy of
eight zero-shot tasks, while maintaining the same
throughput and retaining only 30% of the cache in
LLaMA-2 (7B) (Touvron et al., 2023b). Moreover,
MAT performs comparably to LLM with full cache
within less than 70% cache budgets, validating the
effectiveness of caching anchor tokens.

Our contributions are summarized as follows:

* We empirically delve into the attention pat-
terns of LL.Ms, revealing an important prop-
erty that the attention logits between anchor
tokens are relatively smaller compared with
those between anchor tokens and normal to-
kens. To the best of our knowledge, we are
the first to observe this property and leverage
it to improve the KV cache efficiency.

* Building on this property, we propose a novel
method called MAT to manage the KV cache
by seeking and retaining anchor tokens while
evicting redundant tokens.

* Extensive experimental results on various
tasks for different models demonstrate that
MAT is effective in preserving performance
while reducing memory usage of KV cache.

2 Related Work

Interpretation of Attention Patterns. LLMs have
achieved great success in natural language pro-

cessing based on attention mechanisms (Vaswani,
2017). Many prior works (Chen et al., 2025; Xiao
et al., 2024; Zhang et al., 2023) have shown that
attention matrices in LLMs are typically sparse, fo-
cusing disproportionately on a few special tokens.
For instance, Xiao et al. (2024) and Zhao et al.
(2023) show that LLMs assign most of the atten-
tion to the starting word token. Some works (Clark,
2019; Kovaleva, 2019; Bondarenko et al., 2021) dis-
cover that attention in BERT (Devlin, 2018) tends
to focus on “separate” tokens. Ge et al. (2023) finds
that high attention scores are usually allocated to-
wards a set of fixed tokens. To explore the reason
behind sparsity attention, Sun et al. (2024a) iden-
tifies the “massive activation" phenomenon to pro-
vide an in-depth analysis. Different from these ex-
isting findings, we concentrate on the relationships
between tokens that are consistent with massive
attention logit values.

KV Cache Compression. Many recent efforts
have been devoted to reducing the running-time
memory of LLM by compressing the KV cache.
They can mainly be classified into two categories:
(i) Reducing memory requirement for storing each
KV embedding and (ii) Introducing sparsity to dis-
card redundant tokens during the decoding process.

To reduce the memory footprint of KV embed-
dings, Cache Quantization (Sheng et al., 2023; Liu
et al., 2024b; Hooper et al., 2024) converts higher-
precision representations (such as 32-bit floating-
point) of cache to lower-precision ones (such as
8-bit integers). For example, FlexGen (Sheng et al.,
2023) and KIVI (Liu et al., 2024b) propose to quan-
tize keys per channel and values per token. More-
over, Chang et al. (2024) reduces inference-time
memory usage by low-rank techniques.

For the second category, recent works like
Streamingl.LLM (Xiao et al., 2024) and LM-Infinite
(Han et al., 2023) propose to retain initial tokens as
“sink tokens”, suggesting the removal of KV caches
for intermediate tokens. H20 (Zhang et al., 2023)
and Scissorhands (Liu et al., 2024a) identify the im-
portant tokens based on high passed attention score
and remove the lowest one for each step. In addi-
tion to selecting which tokens to be evicted, Pyra-
midKV (Cai et al., 2024) allocates different KV
cache budgets across different layers. CaM (Zhang
et al., 2024b) merges the to-be-evicted caches into
the remaining ones. Our proposed MAT falls into
the second category. However, unlike existing ap-
proaches, we introduce a novel method for evicting
tokens based on the behavior of anchor tokens.

Layer 24, Head 8

5

]
~
I = > Low Logits oo

Layer 8, Head 8

~
SA -
_ » Low Logits

= gits

Layer 0, Head 8

o
0
®

5

=8
--7 l | =]
b} o - m-" 5 o i 10 3 o~ NS EEE =
10
EH B EH Er—(4.0
s | | 20 g * o ———
] $9 $9
& ¢4 u 30 O 20
= I 30 Y NN I . e
o | a0 2 40 I = ‘l _| m I 0o
5.0 u
I I . T I . -2y
i = | 6o 9a]
0 5 10 15 20 25 10 15 20 25 N 0 5 10 15 20 25
Key Index Key Index Key Index
(a) Layer 24. (b) Layer 8. (c) Layer O.

Figure 1: Attention patterns for different layers in LLaMA-2(7B).

3 Observations

To gain a deeper understanding of the attention
mechanism in large language models (LLMs), we
study the attention patterns they exhibit. Figure 1
visualizes the attention logits (i.e., the raw scores
before the application of softmax) of LLaMA2-7B
for an illustrative input example from the ARC-
Challenge dataset (Clark et al., 2018): “Ques-
tion: Plants and animals need food for growth.
What happens to most of the food that plants pro-
duceN\nAnswer:". Due to the page limit, additional
visualizations of attention logits for diverse inputs
are provided in Appendix A.

Figure 1(b) and Figure 1(a) show the attention
logits in two deeper layers, i.e., layer 8 and layer 24,
respectively. As shown, we can observe a similar
phenomenon as mentioned in (Zhang et al., 2023;
Xiao et al., 2024) that most queries have a much
higher attention logit on a small set of specific to-
kens than on other tokens. For example, O-th and
10-th tokens consistently attract significant atten-
tion logits for all subsequent queries. We define the
type of tokens that consistently receive massive at-
tention logits from the subsequent tokens as anchor
tokens. Figure 2 compares the testing accuracy be-
tween LLaMA2-7B and versions without random
tokens and anchor tokens. We can see that the per-
formance significantly drops when anchor tokens
are removed, demonstrating that these tokens play
an important role in shaping the generation of the
final output. Moreover, Figure 7 in Appendix A
shows the attention patterns of different prompts,
we find that the first token is consistently an an-
chor token. Then, we introduce two interesting
observations for these anchor tokens.

3.1 Attention Logits Between Anchor Tokens
are Low

We observe that the attention logits from anchor to-

kens to other anchor tokens are significantly lower

[LLaMA2-7B [w.o. Random Tokens [ZZ] w.o. Anchor Tokens

Accuracy (%)

g
Q

Figure 2: Performance comparison between the
LLaMAZ2-7B model with full KV cache, the model w.o.
random tokens and the model w.o. anchor tokens.

Table 1: Average attention logits between anchor tokens
and other tokens. Rows correspond to queries, while
columns correspond to keys. The values are average at-
tention logits from the query (row) to the key (column).

Anchor token 1 ~ Anchor token 2
Anchor token 1 0.4266 -
Anchor token 2 1.3677 0.0792
Other Tokens 2.3608 1.2246

than the attention logits from normal tokens to an-
chor tokens. For example, consider an anchor token
(column 0) in Figures 1(b) and 1(a). The attention
logits from query O-th and 10-th tokens are consis-
tently lower than those from other tokens across
different layers. To further validate this observa-
tion, for each sample in ARC-C dataset, we extract
two anchor tokens sorted by their indices. Then,
we compute two types of attention logits including
(i) anchor tokens to anchor tokens, and (ii) other
tokens to anchor tokens. These attention logits are
averaged for all the samples and reported in Table 1.
As shown, the attention logits from anchor tokens
(first two rows) are significantly lower than those
from other tokens (last row).

Our observation reveals the relationship between
anchor tokens and provides a potential to find other
anchor tokens based on the existing anchor tokens.
This observation will motivate us to design a KV
cache management strategy in Section 4.

3.2 Attention Shows Diffused Patterns for
Shallow Layers

While anchor tokens play a crucial role in gen-
eration within deep layers, we observe that they
are less influential in shallow layers. Figure. 1(c)
shows the attention patterns for different heads in
layer 0. Additional experiments for the other shal-
low layer (i.e. layer 1) can be found in Figure 8
in the Appendix. As can be seen, the attention
logits appear relatively sparse and diffused, with
no clear dominant focus. This indicates that the
model broadly attends to a wide range of tokens
without strong preferences. Interestingly, differ-
ent heads demonstrate subtle but distinct patterns.
For instance, head 8 displays weak diagonal struc-
tures, indicating a slight preference for attending
to nearby tokens, which reflects a focus on local
context. In contrast, head 16 exhibits a more dis-
tributed attention pattern, with attention spread
across a wider range of tokens. This may indi-
cate an early attempt to capture broader semantic
relationships within the input. Overall, the diffuse
attention patterns observed in layer O align with
the model’s need to gather diverse contextual infor-
mation during the initial stages of processing (Sun
et al., 2024a; Cai et al., 2024).

These attributes are also supported by other mod-
els (i.e., LLaMA-1 (Touvron et al., 2023a), Mis-
tral (Jiang et al., 2023)), the details can be found
in the Appendix A.

4 Methodology

Building on the insights discussed above, we pro-
pose MAT, a novel method to unlock KV cache effi-
ciency via Managing Anchor Tokens. An overview
is illustrated in Figure 3. We formally introduce
the problem of KV cache eviction in Section 4.1
and present MAT in Section 4.2.

4.1 Problem Formulation

For simplicity of presentation, we focus on one
attention head with weight matrices W € R%*4,
Wi € R%%d and Wy, € R%*? where d; and d
are the input and hidden dimension, respectively.
At each decoding step ¢, the LLM generates the
next token based on the current KV cache stored in
the memory. Specifically, an input x; € R% of the
attention module is mapped into query, key, and
value vectors respectively by:

qQ = ngukt = WIT(Xt, Vi = W‘Ixt. (1)

Let K € R™™ and V € R%™ be the current
cached key and value matrices, where n is the cache
size. During inference, the cache size may exceed
the memory limit c either in the pre-filling stage
or during autoregressive generation. To tackle this
problem, many KV cache methods (Xiao et al.,
2024; Zhang et al., 2023; Liu et al., 2024a) have
been proposed to update the KV cache by inserting
the latest token and evicting redundantly cached
tokens, whose update rule generally follows:

K < update(K, k¢), V < update(V,vy). (2)

Evicting redundant tokens ensures that the key
and value caches remain within the memory limit.
Based on the updated KV cache, the attention score
a; € R" between the query vector q; and the key

¢
matrix K is computed as a; = softmax (q\t/?>,

while the corresponding attention output o; =
a/ V € R% The output o; is expected to approx-
imate the output when using the full KV cache.
Hence, the keys and values of tokens that contribute
to higher attention scores for future tokens should
be retained, while those with lower attention scores
should be evicted. Since future tokens are inher-
ently unavailable when performing KV cache at
step ¢, determining which tokens are irrelevant for
future generations remains a challenging problem.

4.2 Managing Anchor Tokens

In this section, we propose a novel method called
MAT to unlock KV cache efficiency via Managing
Anchor Tokens. The goal is to manage the KV
cache by identifying and retaining tokens that sig-
nificantly influence the model’s output during the
generation process while evicting redundant ones.

In our proposed MAT, the KV cache consists
of two parts: an anchor cache contains 3 anchor
tokens which receive massive attention logits from
the subsequent tokens, and a window cache that
contains the tokens within the sliding window. As
discussed in Section 3, the performance of LLM
drops significantly when removing the anchor to-
kens. Hence, retaining these tokens in the cache
is crucial for preserving the original capabilities
of LLMs. As the first token of any input always
receives high attention logits from all the following
tokens, it is an anchor token and is always kept in
the anchor cache.

To seek other anchor tokens in the cache, we use
the property discovered in Section 3.1: attention
logits between anchor tokens are particularly low.

Sliding Window

[:] Anchor Tokens

Sliding Windows

. D Sink Tokens

77 ‘ Decoding Step 5

. 7
% 2 7%
VA ‘ [Cls }”q ku/v(d)

Decodlng Step 7

§ /‘ VA Decodmg Step 6
o N

g ///

W/

I

<

7/
7%

- [
ﬂ ako/y/(@) V‘ VA

T

©o o ~ o w S w N -
dajys Buipodag

w/ @»wx fu

NAN
\\n

=
o

(a) Update for Deep Layers

" (b) Update for Shallow Layers

Figure 3: Illustration of the proposed MAT method. (a) For deep layers, we retain the tokens with Bottom-/3
attention logits (here, 5 = 2) to the first token as anchor tokens, and a sliding window keeps the last ¢ — (3 token
in the cache. (b) For shallow layers, the KV cache includes the initial s (here, s = 2) tokens as sink tokens and a

sliding window with size ¢ — s (here, ¢ = 5).

Let q; be the query value of the i-th token in the
AT

cacheand m; = & X0 be the attention logit between
the i-th token and the first token. We define an

attention logit cache A as:

A={m:i=1,...

,n}. 3)

Since the first token is an anchor token and atten-
tion logits between anchor tokens are relatively
lower, tokens in the cache with lower attention log-
its to the first token (i.e., lower value in A) are
more likely to be anchor tokens. In other words,
tokens with higher attention logits to the first token
are less important. Hence, we update the KV cache
by selecting and evicting the token with the highest
value in A when the cache exceeds memory limit:

-
r=arg %lzagxﬂ m, A+ A_, U {qt ko/\/g})

K + [K:,fmkt]y \ A [V:’,T,Vt], (4)

where A_,. means removing the r-th element from
A, and K_, (resp. V_,.) means the matrix K (resp.
V) with the ¢-th column vector removed. The r-th
token has the highest attention logit to ko, making
it less likely to serve as an anchor token. Hence,
removing this token has a minor impact on over-
all performance. As the first token is an anchor
token that exhibits low attention logits to itself, it
is always retained. Due to the strong local depen-
dencies and interactions of language tasks, tokens
within the sliding window are always retained in
the cache. Selecting the r-th tokens is computa-
tionally efficient as storing the attention logits from
cached tokens to the first token is very cheap.
According to Observation (ii) in Section 3.2, at-
tention logits in the shallow layers of LLMs tend to

Algorithm 1 MAT.

Require: KV cache K, V, #shallow layers L,
attention logits cache A, attention weight ma-
trices Wq, W, Wy, anchor cache size f,
sink cache size s, input prompt x;;

1: compute the key vector of the first token k;
2: Q= ngt, k; = W}r(Xt, Vi = ngt;
a/ k
+ KO

3 L A Au{m

4: if t < c then

50 K+ Kk, V< [V,v];

6: else if [is a deep layer (i.e., [> L) then
7

8

9

DTy =

select index r = arg maxi<;<g m;,;

o K+ [K. k| ,V[V. ., vi], A A_,;
. else if [is a shallow layer (i.e., [< L) then
100 K+ [K. 5. k], V[V, _5,v¢], A A_;.

11: end if

be relatively sparse and diffused. No single token
consistently exhibits large attention logits across all
subsequent tokens, meaning no token has a dom-
inant influence on the layer’s output. Hence, in-
termediate anchor tokens are unavailable for the
shallow layers. Following StreaminglLLM (Xiao
et al., 2024), we retain the first s tokens of inputs
in the cache, as these initial tokens remain accessi-
ble to all subsequent tokens and thus are important.
When exceeding the memory limit, we update the
KV cache for the shallow layers by moving the
sliding window:

K — [K:,—S)kt]7 V — [V:,—Savt]) (5)

When the KV cache has not exceeded the mem-
ory limits (i.e., n < c), we add the current key and
value vector to the cache as: K < [K, k|, V «

ARC-Easy, LLaMA2-7B

ARC-Challenge, LLaMA2-7B

CommonsenseQA, LLaMA2-7B

PubMedQa, LLaMA2-7B

44

75 E = 34| _a—3
32
70 40 70
Ses 8 g 268
oo s S Se6
S S S S
<55 <32 < <64
--- Full Cache --- Full Cache 24| ——- Full Cache --- Full Cache
50 Stream LLM Stream LLM 22 Stream LLM 62 Stream LLM
45| ™ MAT (Ours) 28| —+— MAT (Ours) —+— MAT (Ours) —+— MAT (Ours)
20
100 90 80 70 60 50 40 30 20 100 90 80 70 60 50 40 30 20 100 90 80 70 60 50 40 30 20 100 90 80 70 60 50 40 30 20
KV Cache Budget (%) KV Cache Budget (%) KV Cache Budget (%) KV Cache Budget (%)
Winogrande, LLaMA2-7B 2 MathQA, LLaMA2-7B COPA, LLaMA2-7B PiQA, LLaMA2-7B
A . 78
68 28
85
27 76
g 64 g 26 g 80 g
> > > >74
g2
360 3 375 S
E g2 ¢ in
56| ~== Full Cache 23| --- Full Cache --- Full Cache --- Full Cache
Stream LLM 22 Stream LLM 70 Stream LLM 70 Stream LLM
—*— MAT (Ours) —+— MAT (Ours) —+— MAT (Ours) —+— MAT (Ours)
52
100 90 80 70 60 50 40 30 20 100 90 80 70 60 50 40 30 20 100 90 80 70 60 50 40 30 20 100 90 80 70 60 50 40 30 20
KV Cache Budget (%) KV Cache Budget (%) KV Cache Budget (%) KV Cache Budget (%)
ARC-Easy, LLaMA1-7B ARC-Challenge, LLaMA1-7B CommonsenseQA, LLaMA1-7B PubMedQA, LLaMA1-7B
75 25| A A | A~
70 40 7a
24
Zes 236 2 g
3 3 52 3
£ 60 g g g7
3 332 322 3
<55 < < <68
--- Full Cache --- Full Cache Prl i Full Cache 66| " Full Cache
50 Stream LLM 28 Stream LLM Stream LLM Stream LLM
45| ™ MAT (Ours) —*— MAT (Ours) 20 —*— MAT (Ours) 64 | —— MAT (Ours)
100 90 80 70 60 50 40 30 20 100 90 80 70 60 50 40 30 20 100 90 80 70 60 50 40 30 20 100 90 80 70 60 50 40 30 20
KV Cache Budget (%) KV Cache Budget (%) KV Cache Budget (%) KV Cache Budget (%)
Winogrande, LLaMA1-7B MathQA, LLaMA1-7B COPA, LLaMA1-7B PiQA, LLaMA1-7B
27| T~ -
8 85 78
26
- - - ~76
Lo g2s g% g
> > > >
g2 g7 gra
3 60 3 3 3
S 023 o o
< < <70 <72
--- Full Cache 22| =" Full Cache --- Full Cache --- Full Cache
56 Stream LLM Stream LLM 65 Stream LLM 7 Stream LLM
—=*— MAT (Ours) 21| —*— MAT (Ours) —*— MAT (Ours) —#*— MAT (Ours)

100 90 80 70 60 50 40 30 20
KV Cache Budget (%)

100 90 80 70 60 50 40 30 20
KV Cache Budget (%)

100 90 80 70 60 50 40 30 20
KV Cache Budget (%)

100 90 80 70 60 50 40 30 20
KV Cache Budget (%)

Figure 4: Performance comparison between full KV cache memory, Streaming LLLM, and our proposed MAT for
compressing KV cache of mainstream LLMs on multiple language tasks.

[V, v{], The overall update pipeline of MAT at step
t for layer [is provided in Algorithm 1.

5 Experiments

5.1 End-to-End Tasks

Setup. Following (Zhang et al., 2023, 2024b), we
evaluate MAT on the LLaMA family of models,
i.e., LLaMA-1 (7B) (Touvron et al., 2023a) and
LLaMA-2 (7B) (Touvron et al., 2023b). The evalu-
ation is conducted on eight end-to-end tasks from
the popular evaluation framework Im-eval-harness
(Gao et al., 2024), including: ARC-Easy/Challenge
(Clark et al., 2018), CommensenseQA (Talmor
etal., 2019), PubMedQA (Jin et al., 2019), Wino-
grande (Sakaguchi et al., 2021), MathQA (Amini
etal., 2019), COPA (Roemmele et al., 2011), PiQA
(Bisk et al., 2020). We compare MAT with (i)
Full Cache, which has no limit on cache size, (ii)
StreaminglLLM (Xiao et al., 2024), which caches

the sink tokens together with the tokens within the
sliding window. For a specific KV cache budget
of ¢, we use a grid search to determine the optimal
size (3 of the anchor cache, and the size of the slid-
ing window is ¢— 3. All experiments are conducted
on an NVIDIA DGX A100 (80G) GPUs.

Results. Figure 4 shows the testing accuracy
when compressing KV cache memory at ratios
ranging from 20% to 100%. As can be seen,
MAT consistently achieves higher accuracies than
StreaminglLLLM for different tasks, models, and KV
cache budgets. Moreover, with less than 70% KV
cache budget, MAT performs comparably to the
full KV cache. With 90% KV cache budget, MAT
can outperform full KV cache for all the tasks,
demonstrating that removing some redundant to-
kens can improve the model generalization ability.

Table 2 shows the testing accuracy for MAT and
StreamingL.LLLM under a constrained 30% KV cache

Table 2: Accuracy (%) on eight zero-shot tasks under 30% KV cache budget. The best is in bold.

Model Method ARC-E ARC-C C.QA PM.QA Winogrande MathQA COPA PiQA | AVG
LLaMA-1 (7B) StreamingLLM | 60.40 31.83 2056 69.80 58.41 22.04 74.00 72.80 | 51.23
MAT 63.30 3319 2170 69.00 58.72 22.45 78.00 74.59 | 52.62

LLaMA-2 (7B) StreaminglL.LM | 61.57 3225 20.80 65.40 59.12 22.01 74.00 71.70 | 50.86
a MAT 65.74 3532 2170 66.80 59.43 22.14 77.00 74.16 | 52.79

budget. As can be seen, MAT consistently out-
performs StreaminglL.LM across nearly all evalu-
ated zero-shot tasks for both LLaMA-1 (7B) and
LLaMA-2 (7B) models. For LLaMA-1 (7B), MAT
achieves superior performance on 7 out of 8 tasks,
with only PubMedQA showing a slight decrease (-
0.8%) compared to StreamingL.LM. Overall, MAT
improves the average accuracy by 1.39% (from
51.23% to 52.62%). For LLaMA-2 (7B), the per-
formance gains are even more substantial, with
MAT outperforming StreamingLLLM on all eight
tasks and achieving an average improvement of
1.93% (from 50.86% to 52.79%). The most sig-
nificant improvements are observed on ARC-Easy
(+4.17%) and ARC-Challenge (+3.07%) tasks, sug-
gesting that MAT’s anchor token management strat-
egy is especially effective for complex reasoning
tasks. These consistent improvements across dif-
ferent model architectures and diverse task types
demonstrate the effectiveness of MAT’s approach
to KV cache management, which intelligently pri-
oritizes anchor tokens based on their attention pat-
terns.

5.2 Language Modeling Task

Setup. Following (Zhang et al., 2023), we con-
duct language modeling experiments on WikiText-
2 (Merity et al., 2016) to evaluate the perplexity per-
formance of MAT. Since the pre-training window
size for LLaMA-2 models is 4096, we report the
average perplexity for both in-window sequences
(input sequence length equals 4096) and out-of-
window sequences (input sequence length equals
10,000). To handle infinite-length inputs, follow-
ing Streamingl.LLM (Xiao et al., 2024), we adopt
position rolling for the updated KV cache. MAT
is compared with Full Cache and Streamingl.LLM
under cache limit of 256 and 512.

Results. Table 3 shows the average perplexity for
LLaMA-2 (7B) model. As can be seen, MAT con-
sistently outperforms StreamingLLM in both in-
window and out-of-window settings. For example,
when ¢ = 256, MAT achieves a perplexity improve-
ment of 0.35 and 0.08 for input sequence lengths

Table 3: Average perplexity on the WikiText-2 dataset
for LLaMA-2(7B) under in-window (PPL-4096) and
out-of-window (PPL-10000) settings.

Cache Size (c) Method PPL-4096 PPL-10000
Full Cache 5.05 230.76
256 StreamingLLM 6.60 6.33
MAT 6.25 6.25
512 StreamingLLM 5.89 5.64
MAT 5.74 5.53

of 4096 and 10000, respectively. Note that the Full
Cache performs poorly in the out-of-window set-
ting due to the constraint of the pretraining window
size. Compared with Full Cache, MAT significantly
reduces the perplexity by over 97%, demonstrating
its effectiveness in handling infinite-length inputs.

5.3 Open-Ended Generation Tasks

Setup. We evaluate MAT on open-ended
generation tasks using the popular dataset
GSMS8K (Cobbe et al., 2021), which is a math-
ematical benchmark with diverse grade school
math word problems. Following chain-of-thought
prompting (Wei et al., 2022), we use the 8-shot
prompting to guide the LLM to generate interme-
diate natural language reasoning steps that lead to
the final answer.

Results. Table 4 shows the testing accuracy and
runtime KV cache usage for the GSM8K task under
different configurations. As shown, MAT consis-
tently outperforms StreamingLLLM across all set-
tings, achieving higher accuracy while maintaining
comparable running time KV caches. For exam-
ple, under ¢ = 256 with LLaMA-2(7B), MAT im-
proves accuracy by a margin of 0.91, while keep-
ing roughly the same KV cache usage. These re-
sults further demonstrate the effectiveness of MAT
in tackling complex generation tasks that demand
multi-step logical reasoning.

5.4 Ablation Study

We conduct experiments on language modeling
tasks to compare our MAT with two possible vari-
ants: (i) MAT (with sink), which applies the update

Table 4: Accuracy and average runtime KV cache usage
on GSMB8K. KV (%) here represents the ratio of KV
cache usage at runtime compared with the full generated
sequence length. The best is in bold.

Method LLaMA-2 (7B) LLaMA-1(7B)
Acc(%) KV(%) Acc(%) KV(%)
Full Cache 14.56 100 9.48 100
2 | StreamingLLM | 1274 27.07 272 27.23
i MAT 13.65 27.12 416 2687
% | StreamingLLM | 1394 4097 500 40.85
U MAT 1592 4090 584 40.56

Table 5: Comparison between MAT and two variants on
the perplexity of WikiText-2.

Cache Size (¢) Method PPL-4096 PPL-10000
- Full Cache 5.05 230.7
MAT (w. sink) 6.60 6.33
256 MAT (w. anchor) 6.27 6.32
MAT 6.25 6.25
MAT (w. sink) 5.89 5.64
512 MAT (w. anchor) 5.74 5.54
MAT 5.74 5.53

rule Eq. (5) for both shallow and deep layers. In
this case, MAT degenerates into StreamingLLLM.
(ii)) MAT (with anchor), which applies the update
rule Eq. (4) to both shallow and deep layers. Ta-
ble 5 shows the perplexity. We can see that using
the default strategy (i.e., MAT) achieves the lowest
perplexity across different cache sizes. Moreover,
MAT (with anchor) is consistently better than MAT
(with sink), showing that retaining anchor tokens
is more effective than retaining sink tokens used in
StreamingLLM.

Effects of 5. To study the effect of the size of
the anchor cache (i.e., 3), we evaluate MAT on
the language modeling task using various values
of 3, while keeping the total cache limit fixed at
c = 256. Figure 5 shows the average perplexity on
the WikiText-2 dataset. As can be seen, MAT is in-
sensitive to a wide range of 5 € [32, 96], achieving
an improvement of approximately 0.3 compared to
StreaminglL.LM. Moreover, increasing 3 reduces
the average perplexity when (3 is small. However,
excessively large values of (3 lead to a decline in
performance.

5.5 Efficiency Analysis

We evaluate the efficiency of MAT by measuring
generation throughput and peak GPU memory us-
age on an NVIDIA A100 (80GB) GPU. All in-
put sequences used for evaluation were sampled
from WikiText-2 and had a length of 50,000 tokens.

6.7 —¥— MAT StreamingLLM
ool L
>
£
& 6.5
=
Lea
6.3 I /
6.2
2816 32 48 64 80 96 128

B
Figure 5: Average perplexity w.r.t. 5 on the language
modeling task.

Table 6: Average generation throughput (tokens per sec-
ond) and GPU memory consumption on the WikiText-2
dataset for LLaMA-2(7B).

Cache Size (c) Method Throughput ~ GPU memory
Full Cache 22.68 tokens/s 56.55 GB
256 StreamingLLM | 29.05 tokens/s 25.96 GB
MAT 29.21 tokens/s 25.96 GB
512 StreamingLLM | 28.62 tokens/s 26.35 GB
MAT 28.61 tokens/s 26.35 GB

As shown in Table 6, MAT demonstrates signifi-
cant efficiency gains compared to the standard Full
Cache baseline, particularly for processing long
sequences. For instance, compared to Full Cache
(22.68 tokens/s, 56.55 GB), MAT with a cache size
(c) of 256 achieves a higher throughput of 29.21
tokens/s (a 1.29x speedup) while drastically reduc-
ing peak GPU memory usage by 54% to 25.96 GB.
Furthermore, MAT exhibits throughput and mem-
ory consumption comparable to Streamingl.LLM but
performs significantly better than StreamingL.LM
(as shown in Tables 2 and 4), due to its efficient
reuse of attention scores computed during genera-
tion for its token selection metric.

6 Conclusion

In this paper, we propose a novel approach to en-
hance the performance of LLMs under memory
constraints through KV cache eviction. Through a
detailed analysis of attention patterns in LLMs, we
observe the anchor tokens, which attract high atten-
tion logits from subsequent tokens, exhibit particu-
larly low attention logits between themselves. In-
spired by these observations, we propose MAT (un-
locking KV cache Efficiency via Managing Anchor
Tokens) to recognize and retain the important an-
chor tokens in the cache based on their attention
logits to the first anchor token during the generation
process. Experimental results across a variety of
tasks show that MAT outperforms existing methods
and preserves the original capability of LLM.

7 Limitations

Due to the limited computational resources, we
only evaluate MAT using LLMs with a relatively
small number of parameters, such as the 7B models
from the LLaMA family. However, there are many
publicly available LLLMs with more parameters and
greater capabilities (e.g., LLaMA-2(70B). Thus, it
is reasonable to apply MAT to these more advanced,
albeit costly, models. We leave the investigation of
such scenarios to future work.

8 Ethical Consideration

This paper presents work whose goal is to advance
the field of natural language processing. There
are many potential societal consequences of our
work, none of which we feel must be specifically
highlighted here.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. Preprint arXiv:2303.08774.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
2019. Mathga: Towards interpretable math word
problem solving with operation-based formalisms.
In Conference of the North American Chapter of the
Association for Computational Linguistics.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
and 1 others. 2020. Piga: Reasoning about physical
commonsense in natural language. In Proceedings
of the AAAI conference on artificial intelligence, vol-
ume 34, pages 7432-7439.

Yelysei Bondarenko, Markus Nagel, and Tijmen
Blankevoort. 2021. Understanding and overcoming
the challenges of efficient transformer quantization.
Preprint arXiv:2109.12948.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu
Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao
Chang, Junjie Hu, and 1 others. 2024. PyramidKV:
Dynamic KV cache compression based on pyramidal
information funneling. Preprint arXiv:2406.02069.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-
Yan Chen, Yu-Fang Hu, Pei-Shuo Wang, Ning-
Chi Huang, Luis Ceze, Mohamed S Abdelfattah,
and Kai-Chiang Wu. 2024. Palu: Compress-
ing KV-cache with low-rank projection. Preprint
arXiv:2407.21118.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Jun-
yang Lin, Chang Zhou, and Baobao Chang. 2025.

An image is worth 1/2 tokens after layer 2: Plug-and-
play inference acceleration for large vision-language
models. In European Conference on Computer Vi-
sion. Springer.

Tianxiang Chen, Zhentao Tan, Tao Gong, Yue Wu,
Qi Chu, Bin Liu, Jieping Ye, and Nenghai Yu. 2024.
Llama SLayer 8B: Shallow layers hold the key to
knowledge injection. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
5991-6002, Miami, Florida, USA. Association for
Computational Linguistics.

Kevin Clark. 2019. What does BERT look at? an analy-
sis of bert’s attention. Preprint arXiv:1906.04341.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try ARC, the AI2 reasoning challenge.
Preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Hesse Christopher, and Schulman John.
2021. Training verifiers to solve math word prob-
lems. Preprint arXiv:2110.14168.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. GPT3.Int8 (): 8-bit matrix multi-
plication for transformers at scale. In Neural Infor-
mation Processing Systems.

Jacob Devlin. 2018. Bert: Pre-training of deep bidi-
rectional transformers for language understanding.
Preprint arXiv:1810.04805.

Elias Frantar and Dan Alistarh. 2022. Optimal brain
compression: A framework for accurate post-training
quantization and pruning. In Neural Information
Processing Systems.

Yao Fu. 2024. Challenges in deploying long-context
transformers: A theoretical peak performance analy-
sis. Preprint arXiv:2405.08944.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024. A framework for few-shot language
model evaluation. Technical report.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,
Jiawei Han, and Jianfeng Gao. 2023. Model tells you
what to discard: Adaptive KV cache compression for
IIms. (arXiv preprint arXiv:2310.01801).

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng
Ji, and Sinong Wang. 2023. Lm-infinite: Simple
on-the-fly length generalization for large language
models. Preprint arXiv:2308.16137.

https://doi.org/10.18653/v1/2024.findings-emnlp.347
https://doi.org/10.18653/v1/2024.findings-emnlp.347
https://doi.org/10.18653/v1/2024.findings-emnlp.347

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. In Nneural Information
Processing Systems.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,
Michael W Mahoney, Yakun Sophia Shao, Kurt
Keutzer, and Amir Gholami. 2024. KVQuant: To-
wards 10 million context length 1lm inference with
KV cache quantization. Preprint arXiv:2401.18079.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7B. Preprint
arXiv:2310.06825.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William
Cohen, and Xinghua Lu. 2019. Pubmedqa: A dataset
for biomedical research question answering. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-1IJCNLP).

Olga Kovaleva. 2019. Revealing the dark secrets of bert.
Preprint arXiv:1908.08593.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2024.
AWQ: Activation-aware weight quantization for on-
device LLM compression and acceleration. In Pro-
ceedings of Machine Learning and Systems.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-
lidis, and Anshumali Shrivastava. 2024a. Scis-
sorhands: Exploiting the persistence of importance
hypothesis for Ilm KV cache compression at test time.
In Neural Information Processing Systems.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and
Xia Hu. 2024b. Kivi: Plug-and-play 2bit KV cache
quantization with streaming asymmetric quantization.
Preprint arXiv:2402.02750.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. Preprint arXiv:1609.07843.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. 2023. Effi-
ciently scaling transformer inference. Proceedings
of Machine Learning and Systems, 5:606—-624.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In AAAI spring symposium: logical formal-
izations of commonsense reasoning.

10

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. WinoGrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM.

Wengqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng
Xu, Lirui Zhao, Zhiqgian Li, Kaipeng Zhang, Peng
Gao, Yu Qiao, and Ping Luo. 2024. OmniQuant:
Omnidirectionally calibrated quantization for large
language models. In International Conference on
Learning Representations.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo-
pher Ré, Ton Stoica, and Ce Zhang. 2023. Flexgen:
High-throughput generative inference of large lan-
guage models with a single gpu. In International
Conference on Machine Learning. PMLR.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang
Liu. 2024a. Massive activations in large language
models. Preprint arXiv:2402.17762.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter.
2024b. A simple and effective pruning approach for
large language models. In International Conference
on Learning Representations.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. In Proceedings of the Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. LLAMA:
Open and efficient foundation language models.
Preprint arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Can-
ton Ferrer, Moya Chen, Guillem Cucurull, David
Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, and
49 others. 2023b. LLaMA 2: Open foundation and
fine-tuned chat models. Preprint arXiv:2307.09288.

A Vaswani. 2017. Attention is all you need. In Neural
Information Processing Systems.

Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long,
Zhengkai Lin, Liye Zhang, Binbin Lin, Deng Cai,
and Xiaofei He. 2024. Model compression and effi-
cient inference for large language models: A survey.
Preprint arXiv:2402.09748.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. In Neural
Information Processing Systems.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming lan-
guage models with attention sinks. In International
Conference on Learning Representations.

Mengwei Xu, Wangsong Yin, Dongqi Cai, Rongjie Yi,
Daliang Xu, Qipeng Wang, Bingyang Wu, Yihao
Zhao, Chen Yang, Shihe Wang, and 1 others. 2024.
A survey of resource-efficient LLM and multimodal
foundation models. Preprint arXiv:2401.08092.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao,
Lu Hou, and Carlo Vittorio Cannistraci. 2024a. Plug-
and-play: An efficient post-training pruning method
for large language models. In International Confer-
ence on Learning Representations.

Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong,
Zhenyu Zhang, Shiwei Liu, and Rongrong Ji. 2024b.
Cam: Cache merging for memory-efficient llms in-
ference. In International Conference on Machine
Learning.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, and 1 oth-
ers. 2023. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. In
Neural Information Processing Systems.

Jun Zhao, Zhihao Zhang, Yide Ma, Qi Zhang, Tao Gui,
Luhui Gao, and Xuanjing Huang. 2023. Unveiling
a core linguistic region in large language models.
Preprint arXiv:2310.14928.

11

A Additional Attention Patterns

In Section 3, we have concluded three key observations by a specific prompt in LLaMA-2(7B). In this
section, we study the attention patterns for diverse input prompts and models.

Figure 6 visualizes the attention patterns for a different input prompt. As shown, we can observe
the notable attributes in Section 3 again. For example, a small set of tokens (the O-th and 20-th tokens)
consistently receive large attention logits from the subsequent tokens for deep layers (layer 8 and layer 24),
validating the observation in Section ??. Moreover, the attention logits from the 20-th token to the 0-th
token are significantly lower than the attention tokens from the normal token to the O-th token, validating
the observation in Section 3.1.

Layer 24, Head 8 Layer 8, Head 8 Layer 0, Head 8

o o o
n § o Iz.n " I;u n i. Iso
ol ° o
— — -0.0 — E——
BB o0 a1 o R EgE o0
R b 52 i =5
ER B 20 Em L] [20 gg} = 40
> munn mmes m -
Eg o = I = gg i 3.0 g;{:’ -1
ouma = = --4.0 On H = !I 4.0 O(“;; == 20
g el o el o ki i o BB cer e e n e
< d..) o I < H H 5.0 < &
Bl = R .l 50 Eo F » v BB o0
o = o g o W
n | = - [l J_ I 1 N pumm cmr e - " - I
- | T B = [5 | 70 a
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Key Index Key Index Key Index
Layer 24, Head 16 Layer 8, Head 16 Layer 0, Head 16
o o o
20 |
: - 1
" 0.0
2 oo 2 i 5
0 | ey o n . n
x x -
&R 2 88 bR
£ S 1 £y
2o [Ema s " . fapiyl 0 2g
UM o Om § [oR
3 3 { | | A ™ 3
Sa] = b . o8
= . L 60 = R : .l id L 2
O B B me o)] n
B < e i u i . <
° 3 a0 of=d-M=mafiie- 0 @ 0 °
0 0 _EARE RO 0
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Key Index Key Index Key Index
° Layer 24, Head 24 ° Layer 8, Head 24 Layer 0, Head 24
o
20 i
n I?ﬂ n I n Il“ Ilu
3 3 -0.0 3 l= i!-‘
Ry A 0.0 9 .] II.I n 05
x x H = i
g8 E 9% w0 381 "N hi'
S0 | B 20 £ =y i il e o0
N L. L S i 20 L
m | o™ - 40 om 1 " I-‘. 05
on | & i - 40 on " ow L. i i =
o sk e “ 4 -y o 4 L
O = ~ 3 ©0 g . . '
ol e e o 8 8 PR A < g Y4 1
2 ol f o= e : . ' L N o ML] L= I"ﬁ'* 15
L= e B @6 S 0 M M i N

0 5 10 15 20 25 30 35 40 45 50
Key Index

(c) Layer O.

0 5 10 15 20 25 30 35 40 45 50
Key Index

(b) Layer 8.

‘' = =8 -
0 5 10 15 20 25 30 35 40 45 50
Key Index

(a) Layer 24.

Figure 6: Attention patterns for input prompt: “Question: One year, the oak trees in a park began producing more
acorns than usual. The next year, the population of chipmunks in the park also increased. Which best explains why
there were more chipmunks the next year?\nAnswers:" w.r.t. different layers and heads in LLaMA-2(7B).

Figure 7 shows the attention patterns for different input prompts on layer 24, head 24 of LLaMA-2(7B).
Regardless of the prompt, the patterns consistently align with the observations detailed in Section ?? and
Section 3.1. Additionally, the first token is consistently an anchor token for different prompts.

Figure 8 visualizes the attention patterns for different heads in layer 1 of LLaMA-1(7B). As can be
seen, the attention patterns show distinct characteristics across the heads. Moreover, the attention in Layer
1 appears diverse, with no single token dominating the patterns across heads. These observations are
consistent with the findings discussed in Section 3.2.

Figure 9 and Figure 10 shows the attention patterns on LLaMA-2(7B) and Mistral(7B), respectively.

12

Layer 24, Head 24

Layer 24, Head 24

Layer 24, Head 24

° 2.0 ° °
20
n f 2.0
i E
u n 10
“ | 0.0 0 00
< i N 20 £ =8
- . > 10 o 2.0
2o o >Q
[l [[
=3 3 un Jun
54 I cao O 20 O™
g 4.0
i] Il m S i,) B
6.0 =} =
u -I - n ¥ L .| 60
- m B R i di.
5 10 15 0 5 10 15 20 0 5 10 15 20 25 30 35 40 45 50 55
Key Index Key Index Key Index
Layer 24, Head 24 Layer 24, Head 24 ° Layer 24, Head 24
o o
20 - 20 n
L
1.0 0 | mam E 20
o~
n 0.0 S 2 . o0 § 0.0
x x X oN
g w0 g i3
2.0 M
£q £ £ 20
ol 20 2R 22
@ @ o
S || S 40 9 40
-30 s
o o o3
| | n
9 u w0 o o i
m -6.0 (=3 -6.0
= f 2
n Ll o
o I m m smEm m = [E 8.0
~ | | 6.0 - . [B 5 s] 8o m
5 10 15 20 0 5 10 15 20 25 30 35
Key Index Key Index Key Index
Layer 24, Head 24 Layer 24, Head 24 Layer 24, Head 24
o
° 20 2.0 20
n
00
n 00 =1 00
b o 3
2g 2 £
= -20 £ ° =
> L] >R 20 E -0
g | S 5
Oin —a0 OO 60
bl
| o 4.0
] M 80
| 6.0 n
o m
| || g
10 15 20 0 5 10 15 20 25 30 35 40
Key Index Key Index Key Index

Figure 7: Attention patterns for layer 24, head 24 in LLaMA-2(7B) w.r.t. different input prompt.

Layer 1, Head 8

Layer 1, Head 16

Layer 1, Head 24

o om 30 o
20 1 20
2.0
n 10 n = I n I
L L | 10 10
3o R ™ 0w Fo BN u Somie mn B
E” n N o ET
> [0 > >
2 F come | v Bu MR k
8 — L | 20 8 — u B | u ’ 8 — L -10
18 LE =5 1 =
g rl = 5 my pEs * S mEn L] 20
m]
u . 30 |
I irm T B
Q | 2 [n MiEs 40 Q == _ =
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Key Index Key Index Key Index

Figure 8: Attention patterns for input prompt: “Question: Plants and animals need food for growth. What happens
to most of the food that plants produce\nAnswer:" w.r.t. different heads in layer 1 of LLaMA-2(7B).

‘We can see that the observations in Section 3 remain consistent across different models.

13

Layer 24, Head 8

5

Layer 8, Head 8

Layer 0, Head 8

5 0
_
w »

X x | x -20
22 o 2R = 27
> > u 20 > I 10
g0 T [B g0 |
& TN s] L .
L] 30 | u [0 = =
S i ' S - R il =
HE N HE EE EEm 4.0 [H IEEE = | |
9 o= N CEEEEET W w o 60 9 | BB | o
0 5 10 15 20 25 5 10 15 20 25 0 5 10 15 20 25
Key Index Key Index Key Index
Layer 24, Head 16 Layer 8, Head 16 Layer 0, Head 16
o 20 o (=] 50
u 2.0
4.0
o 0.0 o Ll
v o Qo Lo u
2- 20 27 Ea o
N | B z i *
E n I 2.0 3 . n
s | o &7 s~ Ll | .
|| N N n
[
o o 4.0 < _ N | |
o~ o~ o~
II-IL th 5.0 .J — - = B I. | | - L | I. - oo
N e
0 ffE N "' e I n h " [] I H BB
Q Q a2 n HE
0 5 10 15 20 25 5 10 15 20 25 0 5 10 15 20 25
Key Index Key Index Key Index
Layer 24, Head 24 Layer 8, Head 24 Layer 0, Head 24
o o o
2.0 20 5.0
n n 10 Ll .0
N
0.0 H s 3.0
x x -00 x :
e B 33 = R -
= < o |] 20
2.0 10
g | | | g . H Em
g0 g0 g g
& | & u 20 e~ I = u Em
| 40 00
mrm]] 30 -
2 . " N B I H g * | 10
B " 1 5 60 - -0 - u | B 20
L || :
9 o | = I 9 am 0 -EI i —
0 5 10 15 20 25 10 15 20 25 0 5 10 15 20 25
Key Index Key Index Key Index
(a) Layer 24. (b) Layer 8. (c) Layer O.

Figure 9: Attention patterns in LLaMA-1(7B) for input prompt: “Question: Plants and animals need food for growth.
What happens to most of the food that plants produce?\nAnswer:" w.r.t. different layers and heads.

B Discussion on LLMs Inference Breakdown

Despite the exceptional performance of LLMs, deploying them at inference time poses considerable
financial burdens due to the substantial scale that requires massive GPU memory. These memory usages
can be divided into three primary components: the volume of model parameters, the size of the activation
buffer, and the size of the KV cache. Model compression (Frantar and Alistarh, 2022; Xu et al., 2024;
Wang et al., 2024) has shown significant advancements in tackling the first two components. Specifically,
Pruning methods (Han et al., 2015; Zhang et al., 2024a; Sun et al., 2024b) discard the redundant or less
important part of the model. Quantization methods (Lin et al., 2024; Dettmers et al., 2022; Shao et al.,
2024) reduce the bits needed for model parameters. Different from these works, we aim to compress the
size of the KV cache.

14

Layer 24, Head 8 Layer 8, Head 8 Layer 0, Head 8

o o o
2.0
20
n n 10 n
0.0 00
x x x
[ORS] [ORS] OB
E 20 2T 0 27
> > >
e a a0 g 0 -20 g n
o o o
30
o [1 6.0 o o
~ .L ~N 40 o |
- -8.0
o i e I < w
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 5
Key Index Key Index Key Index
Layer 24, Head 16 Layer 8, Head 16 Layer O, Head 16
o o o
2.0 6.0
2.0
o == 0 o 0 50
x x x 0
-0.0 |
L3 H EE gs 00 gs ..
£ £ £
r, JEEEm o B S
— — —~
3 |] . 3)
o o 2.0 (54 1.0
] EEEETEE
4.0 =} o
o~ o~ o~ 0.0
&
] . -1.0
Q [I 0 < -4.0 ﬂ
0 5 10 15 20 25 0 5 10 15 20 25 5
Key Index Key Index Key Index
Layer 24, Head 24 Layer 8, Head 24 Layer 0, Head 24
o 4.0 o 2.0 o .. 1.0
|]
10 me 05
n 2.0 n n
| 0.0 0.0
ég “00 éS “10 QS = 05
£ £ E=l |
> > -20 > 10
3 4 -20 e a g G
o o 3.0 o 15
o~ -4.0 o~ -4.0 2.0
9 I 9 I . I-'- mis 1 O
~ 6.0 ~N]
0 0 5 10 15 20 25 O 5 10 15 20 25
Key Index Key Index Key Index
(a) Layer 24. (b) Layer 8. (c) Layer 0.

Figure 10: Attention patterns for input prompt: “Question: Plants and animals need food for growth. What happens
to most of the food that plants produce™\nAnswer:" w.r.t different layers and heads in Mistral(7B).

15

	Introduction
	Related Work
	Observations
	Attention Logits Between Anchor Tokens are Low
	Attention Shows Diffused Patterns for Shallow Layers

	Methodology
	Problem Formulation
	Managing Anchor Tokens

	Experiments
	End-to-End Tasks
	Language Modeling Task
	Open-Ended Generation Tasks
	Ablation Study
	Efficiency Analysis

	Conclusion
	Limitations
	Ethical Consideration
	Additional Attention Patterns
	Discussion on LLMs Inference Breakdown

