
MAT: Unlocking KV Cache Efficiency via Managing Anchor Tokens

Anonymous ACL submission

Abstract001

Large language models (LLMs) are power-002
ful but require massive memory to cache the003
key/value vectors (KV cache) for efficient in-004
ference. To reduce the memory burden, we005
propose MAT, a novel KV cache eviction strat-006
egy tailored to heterogeneous attention patterns007
observed in shallow and deep layers of LLMs.008
Through a detailed analysis of attention pat-009
terns in LLMs, we observe that, for deeper010
layers, the anchor tokens, which consistently011
receive high attention logits from subsequent012
tokens, exhibit notably low attention logits be-013
tween one another. These observations mo-014
tivate us to prioritize retaining anchor tokens015
based on their attention logits to the first to-016
ken for deep layers. For shallow layers, we017
retain the first few tokens of inputs as well as a018
sliding window to preserve local context. Ex-019
tensive experiments conducted on end-to-end,020
language modeling, and open-ended generation021
tasks demonstrate that MAT achieves superior022
performance compared with existing methods023
when using the same memory budgets.024

1 Introduction025

Large Language Models (LLMs) have achieved026

great success in various domains, e.g., text gener-027

ation, machine translation, and question answer-028

ing (Touvron et al., 2023a,b; Achiam et al., 2023).029

Despite their effectiveness, they require substantial030

computational resources to recompute the key and031

value vectors (KV) for all previous tokens at every032

generation step. To avoid redundant computation,033

KV cache technique (Pope et al., 2023) stores pre-034

vious key/value vectors in the memory and thus035

speeds up the decoding efficiency. However, the036

additional memory required by KV cache grows lin-037

early with the length of the input prompt (Fu, 2024),038

causing a heavy burden for memory-sensitive de-039

vices like smartphones or laptops.040

To reduce memory usage during generation041

progress, many KV cache compression methods, in-042

cluding KV cache quantization (Sheng et al., 2023; 043

Liu et al., 2024b; Hooper et al., 2024) and KV 044

cache eviction (Xiao et al., 2024; Zhang et al., 045

2023; Han et al., 2023; Cai et al., 2024), have been 046

proposed. Cache quantization methods reduce the 047

bit-width used for each key and value stored in the 048

memory, but still require a large cache size. This 049

work focuses on the KV cache eviction technique. 050

Cache eviction methods retain important tokens 051

and evict redundant tokens in the decoding process 052

to reduce the memory footprint of storing key/value 053

vectors. For example, the recent state-of-the-art 054

StreamingLLM (Xiao et al., 2024), identifies the 055

first few tokens as important tokens (called sink 056

tokens), which, together with the tokens in the 057

sliding window, are retained in the cache. How- 058

ever, intermediate tokens can also be important 059

in the generation progress (Sun et al., 2024a), 060

evicting them leads to performance degradation 061

in StreamingLLM. A crucial question in KV cache 062

eviction is how to identify the important intermedi- 063

ate tokens to be retained. 064

We start with a property (Xiao et al., 2024; 065

Zhang et al., 2023) in various LLMs where atten- 066

tion is consistently concentrated on a few tokens for 067

deeper layers. These tokens, called anchor tokens 068

in this work, consistently receive significant atten- 069

tion scores from the subsequent tokens. Building 070

on this, we further analyze the attention patterns 071

and reach two key observations. 072

(i) Attention logits between anchor tokens are low. 073

We empirically find that the attention logits from 074

anchor tokens to other anchor tokens are signifi- 075

cantly lower than the attention logits from normal 076

tokens to anchor tokens. This property is useful 077

for seeking intermediate anchor tokens based on 078

existing anchor tokens. 079

(ii) Attention shows diffused patterns for shallow 080

layers. The attention logits in shallow layers are 081

relatively sparse and diffused; that is, no few tokens 082

dominate the attention scores. This observation 083

1

aligns with recent findings (Chen et al., 2024) that084

LLMs need to gather diverse information in shallow085

layers.086

Using the above observations, we propose a087

novel method called MAT to unlock the KV cache088

efficiency via Managing Anchor Tokens. We di-089

vide the KV cache into two parts: an anchor cache090

to store anchor tokens and a window cache to store091

tokens within the sliding window. For deep layers,092

to identify the anchor tokens, based on the above093

Observation (i), we select the tokens with low at-094

tention logits to the first token (which is definitely095

an anchor token). For shallow layers, since no in-096

termediate token has a dominant influence on the097

layer’s output, the anchor cache stores the first few098

tokens of inputs.099

Extensive experiments conducted on various100

tasks, including end-to-end generation, language101

modeling, and open-ended generation, demonstrate102

that MAT consistently achieves state-of-the-art per-103

formance for different models. Specifically, MAT104

outperforms StreamingLLM (Xiao et al., 2024) by105

a large margin of 1.93% on the average accuracy of106

eight zero-shot tasks, while maintaining the same107

throughput and retaining only 30% of the cache in108

LLaMA-2 (7B) (Touvron et al., 2023b). Moreover,109

MAT performs comparably to LLM with full cache110

within less than 70% cache budgets, validating the111

effectiveness of caching anchor tokens.112

Our contributions are summarized as follows:113

• We empirically delve into the attention pat-114

terns of LLMs, revealing an important prop-115

erty that the attention logits between anchor116

tokens are relatively smaller compared with117

those between anchor tokens and normal to-118

kens. To the best of our knowledge, we are119

the first to observe this property and leverage120

it to improve the KV cache efficiency.121

• Building on this property, we propose a novel122

method called MAT to manage the KV cache123

by seeking and retaining anchor tokens while124

evicting redundant tokens.125

• Extensive experimental results on various126

tasks for different models demonstrate that127

MAT is effective in preserving performance128

while reducing memory usage of KV cache.129

2 Related Work130

Interpretation of Attention Patterns. LLMs have131

achieved great success in natural language pro-132

cessing based on attention mechanisms (Vaswani, 133

2017). Many prior works (Chen et al., 2025; Xiao 134

et al., 2024; Zhang et al., 2023) have shown that 135

attention matrices in LLMs are typically sparse, fo- 136

cusing disproportionately on a few special tokens. 137

For instance, Xiao et al. (2024) and Zhao et al. 138

(2023) show that LLMs assign most of the atten- 139

tion to the starting word token. Some works (Clark, 140

2019; Kovaleva, 2019; Bondarenko et al., 2021) dis- 141

cover that attention in BERT (Devlin, 2018) tends 142

to focus on “separate" tokens. Ge et al. (2023) finds 143

that high attention scores are usually allocated to- 144

wards a set of fixed tokens. To explore the reason 145

behind sparsity attention, Sun et al. (2024a) iden- 146

tifies the “massive activation" phenomenon to pro- 147

vide an in-depth analysis. Different from these ex- 148

isting findings, we concentrate on the relationships 149

between tokens that are consistent with massive 150

attention logit values. 151

KV Cache Compression. Many recent efforts 152

have been devoted to reducing the running-time 153

memory of LLM by compressing the KV cache. 154

They can mainly be classified into two categories: 155

(i) Reducing memory requirement for storing each 156

KV embedding and (ii) Introducing sparsity to dis- 157

card redundant tokens during the decoding process. 158

To reduce the memory footprint of KV embed- 159

dings, Cache Quantization (Sheng et al., 2023; Liu 160

et al., 2024b; Hooper et al., 2024) converts higher- 161

precision representations (such as 32-bit floating- 162

point) of cache to lower-precision ones (such as 163

8-bit integers). For example, FlexGen (Sheng et al., 164

2023) and KIVI (Liu et al., 2024b) propose to quan- 165

tize keys per channel and values per token. More- 166

over, Chang et al. (2024) reduces inference-time 167

memory usage by low-rank techniques. 168

For the second category, recent works like 169

StreamingLLM (Xiao et al., 2024) and LM-Infinite 170

(Han et al., 2023) propose to retain initial tokens as 171

“sink tokens”, suggesting the removal of KV caches 172

for intermediate tokens. H2O (Zhang et al., 2023) 173

and Scissorhands (Liu et al., 2024a) identify the im- 174

portant tokens based on high passed attention score 175

and remove the lowest one for each step. In addi- 176

tion to selecting which tokens to be evicted, Pyra- 177

midKV (Cai et al., 2024) allocates different KV 178

cache budgets across different layers. CaM (Zhang 179

et al., 2024b) merges the to-be-evicted caches into 180

the remaining ones. Our proposed MAT falls into 181

the second category. However, unlike existing ap- 182

proaches, we introduce a novel method for evicting 183

tokens based on the behavior of anchor tokens. 184

2

(a) Layer 24. (b) Layer 8. (c) Layer 0.

Figure 1: Attention patterns for different layers in LLaMA-2(7B).

3 Observations185

To gain a deeper understanding of the attention186

mechanism in large language models (LLMs), we187

study the attention patterns they exhibit. Figure 1188

visualizes the attention logits (i.e., the raw scores189

before the application of softmax) of LLaMA2-7B190

for an illustrative input example from the ARC-191

Challenge dataset (Clark et al., 2018): “Ques-192

tion: Plants and animals need food for growth.193

What happens to most of the food that plants pro-194

duce?\nAnswer:". Due to the page limit, additional195

visualizations of attention logits for diverse inputs196

are provided in Appendix A.197

Figure 1(b) and Figure 1(a) show the attention198

logits in two deeper layers, i.e., layer 8 and layer 24,199

respectively. As shown, we can observe a similar200

phenomenon as mentioned in (Zhang et al., 2023;201

Xiao et al., 2024) that most queries have a much202

higher attention logit on a small set of specific to-203

kens than on other tokens. For example, 0-th and204

10-th tokens consistently attract significant atten-205

tion logits for all subsequent queries. We define the206

type of tokens that consistently receive massive at-207

tention logits from the subsequent tokens as anchor208

tokens. Figure 2 compares the testing accuracy be-209

tween LLaMA2-7B and versions without random210

tokens and anchor tokens. We can see that the per-211

formance significantly drops when anchor tokens212

are removed, demonstrating that these tokens play213

an important role in shaping the generation of the214

final output. Moreover, Figure 7 in Appendix A215

shows the attention patterns of different prompts,216

we find that the first token is consistently an an-217

chor token. Then, we introduce two interesting218

observations for these anchor tokens.219

3.1 Attention Logits Between Anchor Tokens220

are Low221

We observe that the attention logits from anchor to-222

kens to other anchor tokens are significantly lower223

AR
C-

E

AR
C-

C

C.
QA

P.M
.Q

A

W.
g.

Ma
th

QA

CO
PA

PiQ
A

0

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

LLaMA2-7B w. o. Random Tokens w. o. Anchor Tokens

Figure 2: Performance comparison between the
LLaMA2-7B model with full KV cache, the model w.o.
random tokens and the model w.o. anchor tokens.
Table 1: Average attention logits between anchor tokens
and other tokens. Rows correspond to queries, while
columns correspond to keys. The values are average at-
tention logits from the query (row) to the key (column).

Anchor token 1 Anchor token 2

Anchor token 1 0.4266 -
Anchor token 2 1.3677 0.0792
Other Tokens 2.3608 1.2246

than the attention logits from normal tokens to an- 224

chor tokens. For example, consider an anchor token 225

(column 0) in Figures 1(b) and 1(a). The attention 226

logits from query 0-th and 10-th tokens are consis- 227

tently lower than those from other tokens across 228

different layers. To further validate this observa- 229

tion, for each sample in ARC-C dataset, we extract 230

two anchor tokens sorted by their indices. Then, 231

we compute two types of attention logits including 232

(i) anchor tokens to anchor tokens, and (ii) other 233

tokens to anchor tokens. These attention logits are 234

averaged for all the samples and reported in Table 1. 235

As shown, the attention logits from anchor tokens 236

(first two rows) are significantly lower than those 237

from other tokens (last row). 238

Our observation reveals the relationship between 239

anchor tokens and provides a potential to find other 240

anchor tokens based on the existing anchor tokens. 241

This observation will motivate us to design a KV 242

cache management strategy in Section 4. 243

3

3.2 Attention Shows Diffused Patterns for244

Shallow Layers245

While anchor tokens play a crucial role in gen-246

eration within deep layers, we observe that they247

are less influential in shallow layers. Figure. 1(c)248

shows the attention patterns for different heads in249

layer 0. Additional experiments for the other shal-250

low layer (i.e. layer 1) can be found in Figure 8251

in the Appendix. As can be seen, the attention252

logits appear relatively sparse and diffused, with253

no clear dominant focus. This indicates that the254

model broadly attends to a wide range of tokens255

without strong preferences. Interestingly, differ-256

ent heads demonstrate subtle but distinct patterns.257

For instance, head 8 displays weak diagonal struc-258

tures, indicating a slight preference for attending259

to nearby tokens, which reflects a focus on local260

context. In contrast, head 16 exhibits a more dis-261

tributed attention pattern, with attention spread262

across a wider range of tokens. This may indi-263

cate an early attempt to capture broader semantic264

relationships within the input. Overall, the diffuse265

attention patterns observed in layer 0 align with266

the model’s need to gather diverse contextual infor-267

mation during the initial stages of processing (Sun268

et al., 2024a; Cai et al., 2024).269

These attributes are also supported by other mod-270

els (i.e., LLaMA-1 (Touvron et al., 2023a), Mis-271

tral (Jiang et al., 2023)), the details can be found272

in the Appendix A.273

4 Methodology274

Building on the insights discussed above, we pro-275

pose MAT, a novel method to unlock KV cache effi-276

ciency via Managing Anchor Tokens. An overview277

is illustrated in Figure 3. We formally introduce278

the problem of KV cache eviction in Section 4.1279

and present MAT in Section 4.2.280

4.1 Problem Formulation281

For simplicity of presentation, we focus on one282

attention head with weight matrices WQ ∈ Rdi×d,283

WK ∈ Rdi×d and WV ∈ Rdi×d, where di and d284

are the input and hidden dimension, respectively.285

At each decoding step t, the LLM generates the286

next token based on the current KV cache stored in287

the memory. Specifically, an input xt ∈ Rdi of the288

attention module is mapped into query, key, and289

value vectors respectively by:290

qt = W⊤
Qxt,kt = W⊤

Kxt,vt = W⊤
V xt. (1)291

Let K ∈ Rd×n and V ∈ Rd×n be the current 292

cached key and value matrices, where n is the cache 293

size. During inference, the cache size may exceed 294

the memory limit c either in the pre-filling stage 295

or during autoregressive generation. To tackle this 296

problem, many KV cache methods (Xiao et al., 297

2024; Zhang et al., 2023; Liu et al., 2024a) have 298

been proposed to update the KV cache by inserting 299

the latest token and evicting redundantly cached 300

tokens, whose update rule generally follows: 301

K← update(K,kt),V← update(V,vt). (2) 302

Evicting redundant tokens ensures that the key 303

and value caches remain within the memory limit. 304

Based on the updated KV cache, the attention score 305

at ∈ Rn between the query vector qt and the key 306

matrix K is computed as at = softmax
(
q⊤
t K√
d

)
, 307

while the corresponding attention output ot = 308

a⊤t V ∈ Rd. The output ot is expected to approx- 309

imate the output when using the full KV cache. 310

Hence, the keys and values of tokens that contribute 311

to higher attention scores for future tokens should 312

be retained, while those with lower attention scores 313

should be evicted. Since future tokens are inher- 314

ently unavailable when performing KV cache at 315

step t, determining which tokens are irrelevant for 316

future generations remains a challenging problem. 317

4.2 Managing Anchor Tokens 318

In this section, we propose a novel method called 319

MAT to unlock KV cache efficiency via Managing 320

Anchor Tokens. The goal is to manage the KV 321

cache by identifying and retaining tokens that sig- 322

nificantly influence the model’s output during the 323

generation process while evicting redundant ones. 324

In our proposed MAT, the KV cache consists 325

of two parts: an anchor cache contains β anchor 326

tokens which receive massive attention logits from 327

the subsequent tokens, and a window cache that 328

contains the tokens within the sliding window. As 329

discussed in Section 3, the performance of LLM 330

drops significantly when removing the anchor to- 331

kens. Hence, retaining these tokens in the cache 332

is crucial for preserving the original capabilities 333

of LLMs. As the first token of any input always 334

receives high attention logits from all the following 335

tokens, it is an anchor token and is always kept in 336

the anchor cache. 337

To seek other anchor tokens in the cache, we use 338

the property discovered in Section 3.1: attention 339

logits between anchor tokens are particularly low. 340

4

Sliding WindowAnchor Tokens
At

te
nt

io
n

Lo
gi

ts
 T

o
Fi

rs
t

To
ke

n
Sliding WindowsSink Tokens

Decoding Step 5

Decoding Step 6

Decoding Step 7

0.2 1.3 0.4 1.6 2.2

0.2 1.3 0.4 1.6 2.2 0.2

0.2 1.3 0.4 1.6 2.2 0.2 1.6

(b) Update for Shallow Layers (a) Update for Deep Layers

5

6

4

7

8

2

3

1

9

10

D
ecoding Step

Figure 3: Illustration of the proposed MAT method. (a) For deep layers, we retain the tokens with Bottom-β
attention logits (here, β = 2) to the first token as anchor tokens, and a sliding window keeps the last c− β token
in the cache. (b) For shallow layers, the KV cache includes the initial s (here, s = 2) tokens as sink tokens and a
sliding window with size c− s (here, c = 5).

Let q̂i be the query value of the i-th token in the341

cache and πi =
q̂⊤
i k0√
d

be the attention logit between342

the i-th token and the first token. We define an343

attention logit cache A as:344

A = {πi : i = 1, . . . , n}. (3)345

Since the first token is an anchor token and atten-346

tion logits between anchor tokens are relatively347

lower, tokens in the cache with lower attention log-348

its to the first token (i.e., lower value in A) are349

more likely to be anchor tokens. In other words,350

tokens with higher attention logits to the first token351

are less important. Hence, we update the KV cache352

by selecting and evicting the token with the highest353

value in A when the cache exceeds memory limit:354

r = arg max
1≤i≤β

πi, A ← A−r ∪
{
q⊤
t k0/

√
d
}
,355

K← [K:,−r,kt], V← [V:,−r,vt], (4)356

where A−r means removing the r-th element from357

A, and K−r (resp. V−r) means the matrix K (resp.358

V) with the i-th column vector removed. The r-th359

token has the highest attention logit to k0, making360

it less likely to serve as an anchor token. Hence,361

removing this token has a minor impact on over-362

all performance. As the first token is an anchor363

token that exhibits low attention logits to itself, it364

is always retained. Due to the strong local depen-365

dencies and interactions of language tasks, tokens366

within the sliding window are always retained in367

the cache. Selecting the r-th tokens is computa-368

tionally efficient as storing the attention logits from369

cached tokens to the first token is very cheap.370

According to Observation (ii) in Section 3.2, at-371

tention logits in the shallow layers of LLMs tend to372

Algorithm 1 MAT.
Require: KV cache K, V, #shallow layers Ls,

attention logits cache A, attention weight ma-
trices WQ,WK ,WV , anchor cache size β,
sink cache size s, input prompt xt;

1: compute the key vector of the first token k0;
2: qt = W⊤

Qxt,kt = W⊤
Kxt,vt = W⊤

V xt;

3: πr =
q⊤
t k0√
d

, A ← A∪ {πt};
4: if t < c then
5: K← [K,kt],V← [V,vt];
6: else if l is a deep layer (i.e., l > Ls) then
7: select index r = argmax1≤i≤β πi,;
8: K← [K:,−r,kt],V← [V:,−r,vt],A←A−r;
9: else if l is a shallow layer (i.e., l ≤ Ls) then

10: K← [K:,−s,kt],V← [V:,−s,vt],A←A−s.
11: end if

be relatively sparse and diffused. No single token 373

consistently exhibits large attention logits across all 374

subsequent tokens, meaning no token has a dom- 375

inant influence on the layer’s output. Hence, in- 376

termediate anchor tokens are unavailable for the 377

shallow layers. Following StreamingLLM (Xiao 378

et al., 2024), we retain the first s tokens of inputs 379

in the cache, as these initial tokens remain accessi- 380

ble to all subsequent tokens and thus are important. 381

When exceeding the memory limit, we update the 382

KV cache for the shallow layers by moving the 383

sliding window: 384

K← [K:,−s,kt], V← [V:,−s,vt], (5) 385

When the KV cache has not exceeded the mem- 386

ory limits (i.e., n ≤ c), we add the current key and 387

value vector to the cache as: K← [K,kt], V ← 388

5

2030405060708090100
KV Cache Budget (%)

45

50

55

60

65

70

75
Ac

cu
ra

cy
 (%

)
ARC-Easy, LLaMA2-7B

Full Cache
Stream LLM
MAT (Ours)

2030405060708090100
KV Cache Budget (%)

28

32

36

40

44

Ac
cu

ra
cy

 (%
)

ARC-Challenge, LLaMA2-7B

Full Cache
Stream LLM
MAT (Ours)

2030405060708090100
KV Cache Budget (%)

20

22

24

26

28

30

32

34

Ac
cu

ra
cy

 (%
)

CommonsenseQA, LLaMA2-7B

Full Cache
Stream LLM
MAT (Ours)

2030405060708090100
KV Cache Budget (%)

62

64

66

68

70

72

Ac
cu

ra
cy

 (%
)

PubMedQa, LLaMA2-7B

Full Cache
Stream LLM
MAT (Ours)

2030405060708090100
KV Cache Budget (%)

52

56

60

64

68

Ac
cu

ra
cy

 (%
)

Winogrande, LLaMA2-7B

Full Cache
Stream LLM
MAT (Ours)

2030405060708090100
KV Cache Budget (%)

22

23

24

25

26

27

28

29

Ac
cu

ra
cy

 (%
)

MathQA, LLaMA2-7B

Full Cache
Stream LLM
MAT (Ours)

2030405060708090100
KV Cache Budget (%)

70

75

80

85

Ac
cu

ra
cy

 (%
)

COPA, LLaMA2-7B

Full Cache
Stream LLM
MAT (Ours)

2030405060708090100
KV Cache Budget (%)

70

72

74

76

78

Ac
cu

ra
cy

 (%
)

PiQA, LLaMA2-7B

Full Cache
Stream LLM
MAT (Ours)

2030405060708090100
KV Cache Budget (%)

45

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

ARC-Easy, LLaMA1-7B

Full Cache
Stream LLM
MAT (Ours)

2030405060708090100
KV Cache Budget (%)

28

32

36

40

Ac
cu

ra
cy

 (%
)

ARC-Challenge, LLaMA1-7B

Full Cache
Stream LLM
MAT (Ours)

2030405060708090100
KV Cache Budget (%)

20

21

22

23

24

25

Ac
cu

ra
cy

 (%
)

CommonsenseQA, LLaMA1-7B

Full Cache
Stream LLM
MAT (Ours)

2030405060708090100
KV Cache Budget (%)

64

66

68

70

72

74

76

Ac
cu

ra
cy

 (%
)

PubMedQA, LLaMA1-7B

Full Cache
Stream LLM
MAT (Ours)

2030405060708090100
KV Cache Budget (%)

56

60

64

68

Ac
cu

ra
cy

 (%
)

Winogrande, LLaMA1-7B

Full Cache
Stream LLM
MAT (Ours)

2030405060708090100
KV Cache Budget (%)

21

22

23

24

25

26

27

Ac
cu

ra
cy

 (%
)

MathQA, LLaMA1-7B

Full Cache
Stream LLM
MAT (Ours)

2030405060708090100
KV Cache Budget (%)

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

COPA, LLaMA1-7B

Full Cache
Stream LLM
MAT (Ours)

2030405060708090100
KV Cache Budget (%)

70

72

74

76

78

Ac
cu

ra
cy

 (%
)

PiQA, LLaMA1-7B

Full Cache
Stream LLM
MAT (Ours)

Figure 4: Performance comparison between full KV cache memory, Streaming LLM, and our proposed MAT for
compressing KV cache of mainstream LLMs on multiple language tasks.

[V,vt], The overall update pipeline of MAT at step389

t for layer l is provided in Algorithm 1.390

5 Experiments391

5.1 End-to-End Tasks392

Setup. Following (Zhang et al., 2023, 2024b), we393

evaluate MAT on the LLaMA family of models,394

i.e., LLaMA-1 (7B) (Touvron et al., 2023a) and395

LLaMA-2 (7B) (Touvron et al., 2023b). The evalu-396

ation is conducted on eight end-to-end tasks from397

the popular evaluation framework lm-eval-harness398

(Gao et al., 2024), including: ARC-Easy/Challenge399

(Clark et al., 2018), CommensenseQA (Talmor400

et al., 2019), PubMedQA (Jin et al., 2019), Wino-401

grande (Sakaguchi et al., 2021), MathQA (Amini402

et al., 2019), COPA (Roemmele et al., 2011), PiQA403

(Bisk et al., 2020). We compare MAT with (i)404

Full Cache, which has no limit on cache size, (ii)405

StreamingLLM (Xiao et al., 2024), which caches406

the sink tokens together with the tokens within the 407

sliding window. For a specific KV cache budget 408

of c, we use a grid search to determine the optimal 409

size β of the anchor cache, and the size of the slid- 410

ing window is c−β. All experiments are conducted 411

on an NVIDIA DGX A100 (80G) GPUs. 412

Results. Figure 4 shows the testing accuracy 413

when compressing KV cache memory at ratios 414

ranging from 20% to 100%. As can be seen, 415

MAT consistently achieves higher accuracies than 416

StreamingLLM for different tasks, models, and KV 417

cache budgets. Moreover, with less than 70% KV 418

cache budget, MAT performs comparably to the 419

full KV cache. With 90% KV cache budget, MAT 420

can outperform full KV cache for all the tasks, 421

demonstrating that removing some redundant to- 422

kens can improve the model generalization ability. 423

Table 2 shows the testing accuracy for MAT and 424

StreamingLLM under a constrained 30% KV cache 425

6

Table 2: Accuracy (%) on eight zero-shot tasks under 30% KV cache budget. The best is in bold.

Model Method ARC-E ARC-C C.QA P.M.QA Winogrande MathQA COPA PiQA AVG

LLaMA-1 (7B)
StreamingLLM 60.40 31.83 20.56 69.80 58.41 22.04 74.00 72.80 51.23

MAT 63.30 33.19 21.70 69.00 58.72 22.45 78.00 74.59 52.62

LLaMA-2 (7B)
StreamingLLM 61.57 32.25 20.80 65.40 59.12 22.01 74.00 71.70 50.86

MAT 65.74 35.32 21.70 66.80 59.43 22.14 77.00 74.16 52.79

budget. As can be seen, MAT consistently out-426

performs StreamingLLM across nearly all evalu-427

ated zero-shot tasks for both LLaMA-1 (7B) and428

LLaMA-2 (7B) models. For LLaMA-1 (7B), MAT429

achieves superior performance on 7 out of 8 tasks,430

with only PubMedQA showing a slight decrease (-431

0.8%) compared to StreamingLLM. Overall, MAT432

improves the average accuracy by 1.39% (from433

51.23% to 52.62%). For LLaMA-2 (7B), the per-434

formance gains are even more substantial, with435

MAT outperforming StreamingLLM on all eight436

tasks and achieving an average improvement of437

1.93% (from 50.86% to 52.79%). The most sig-438

nificant improvements are observed on ARC-Easy439

(+4.17%) and ARC-Challenge (+3.07%) tasks, sug-440

gesting that MAT’s anchor token management strat-441

egy is especially effective for complex reasoning442

tasks. These consistent improvements across dif-443

ferent model architectures and diverse task types444

demonstrate the effectiveness of MAT’s approach445

to KV cache management, which intelligently pri-446

oritizes anchor tokens based on their attention pat-447

terns.448

5.2 Language Modeling Task449

Setup. Following (Zhang et al., 2023), we con-450

duct language modeling experiments on WikiText-451

2 (Merity et al., 2016) to evaluate the perplexity per-452

formance of MAT. Since the pre-training window453

size for LLaMA-2 models is 4096, we report the454

average perplexity for both in-window sequences455

(input sequence length equals 4096) and out-of-456

window sequences (input sequence length equals457

10,000). To handle infinite-length inputs, follow-458

ing StreamingLLM (Xiao et al., 2024), we adopt459

position rolling for the updated KV cache. MAT460

is compared with Full Cache and StreamingLLM461

under cache limit of 256 and 512.462

Results. Table 3 shows the average perplexity for463

LLaMA-2 (7B) model. As can be seen, MAT con-464

sistently outperforms StreamingLLM in both in-465

window and out-of-window settings. For example,466

when c = 256, MAT achieves a perplexity improve-467

ment of 0.35 and 0.08 for input sequence lengths468

Table 3: Average perplexity on the WikiText-2 dataset
for LLaMA-2(7B) under in-window (PPL-4096) and
out-of-window (PPL-10000) settings.

Cache Size (c) Method PPL-4096 PPL-10000

- Full Cache 5.05 230.76

256
StreamingLLM 6.60 6.33

MAT 6.25 6.25

512
StreamingLLM 5.89 5.64

MAT 5.74 5.53

of 4096 and 10000, respectively. Note that the Full 469

Cache performs poorly in the out-of-window set- 470

ting due to the constraint of the pretraining window 471

size. Compared with Full Cache, MAT significantly 472

reduces the perplexity by over 97%, demonstrating 473

its effectiveness in handling infinite-length inputs. 474

5.3 Open-Ended Generation Tasks 475

Setup. We evaluate MAT on open-ended 476

generation tasks using the popular dataset 477

GSM8K (Cobbe et al., 2021), which is a math- 478

ematical benchmark with diverse grade school 479

math word problems. Following chain-of-thought 480

prompting (Wei et al., 2022), we use the 8-shot 481

prompting to guide the LLM to generate interme- 482

diate natural language reasoning steps that lead to 483

the final answer. 484

Results. Table 4 shows the testing accuracy and 485

runtime KV cache usage for the GSM8K task under 486

different configurations. As shown, MAT consis- 487

tently outperforms StreamingLLM across all set- 488

tings, achieving higher accuracy while maintaining 489

comparable running time KV caches. For exam- 490

ple, under c = 256 with LLaMA-2(7B), MAT im- 491

proves accuracy by a margin of 0.91, while keep- 492

ing roughly the same KV cache usage. These re- 493

sults further demonstrate the effectiveness of MAT 494

in tackling complex generation tasks that demand 495

multi-step logical reasoning. 496

5.4 Ablation Study 497

We conduct experiments on language modeling 498

tasks to compare our MAT with two possible vari- 499

ants: (i) MAT (with sink), which applies the update 500

7

Table 4: Accuracy and average runtime KV cache usage
on GSM8K. KV (%) here represents the ratio of KV
cache usage at runtime compared with the full generated
sequence length. The best is in bold.

Method
LLaMA-2 (7B) LLaMA-1(7B)

Acc(%) KV(%) Acc(%) KV(%)

Full Cache 14.56 100 9.48 100

c=
25

6 StreamingLLM 12.74 27.07 2.72 27.23
MAT 13.65 27.12 4.16 26.87

c=
38

4 StreamingLLM 13.94 40.97 5.00 40.85
MAT 15.92 40.90 5.84 40.56

Table 5: Comparison between MAT and two variants on
the perplexity of WikiText-2.

Cache Size (c) Method PPL-4096 PPL-10000

- Full Cache 5.05 230.7

256
MAT (w. sink) 6.60 6.33

MAT (w. anchor) 6.27 6.32
MAT 6.25 6.25

512
MAT (w. sink) 5.89 5.64

MAT (w. anchor) 5.74 5.54
MAT 5.74 5.53

rule Eq. (5) for both shallow and deep layers. In501

this case, MAT degenerates into StreamingLLM.502

(ii) MAT (with anchor), which applies the update503

rule Eq. (4) to both shallow and deep layers. Ta-504

ble 5 shows the perplexity. We can see that using505

the default strategy (i.e., MAT) achieves the lowest506

perplexity across different cache sizes. Moreover,507

MAT (with anchor) is consistently better than MAT508

(with sink), showing that retaining anchor tokens509

is more effective than retaining sink tokens used in510

StreamingLLM.511

Effects of β. To study the effect of the size of512

the anchor cache (i.e., β), we evaluate MAT on513

the language modeling task using various values514

of β, while keeping the total cache limit fixed at515

c = 256. Figure 5 shows the average perplexity on516

the WikiText-2 dataset. As can be seen, MAT is in-517

sensitive to a wide range of β ∈ [32, 96], achieving518

an improvement of approximately 0.3 compared to519

StreamingLLM. Moreover, increasing β reduces520

the average perplexity when β is small. However,521

excessively large values of β lead to a decline in522

performance.523

5.5 Efficiency Analysis524

We evaluate the efficiency of MAT by measuring525

generation throughput and peak GPU memory us-526

age on an NVIDIA A100 (80GB) GPU. All in-527

put sequences used for evaluation were sampled528

from WikiText-2 and had a length of 50,000 tokens.529

2 8 16 32 48 64 80 96 1286.2

6.3

6.4

6.5

6.6

6.7

Pe
rp

le
xi

ty

MAT StreamingLLM

Figure 5: Average perplexity w.r.t. β on the language
modeling task.

Table 6: Average generation throughput (tokens per sec-
ond) and GPU memory consumption on the WikiText-2
dataset for LLaMA-2(7B).

Cache Size (c) Method Throughput GPU memory

- Full Cache 22.68 tokens/s 56.55 GB

256
StreamingLLM 29.05 tokens/s 25.96 GB

MAT 29.21 tokens/s 25.96 GB

512
StreamingLLM 28.62 tokens/s 26.35 GB

MAT 28.61 tokens/s 26.35 GB

As shown in Table 6, MAT demonstrates signifi- 530

cant efficiency gains compared to the standard Full 531

Cache baseline, particularly for processing long 532

sequences. For instance, compared to Full Cache 533

(22.68 tokens/s, 56.55 GB), MAT with a cache size 534

(c) of 256 achieves a higher throughput of 29.21 535

tokens/s (a 1.29× speedup) while drastically reduc- 536

ing peak GPU memory usage by 54% to 25.96 GB. 537

Furthermore, MAT exhibits throughput and mem- 538

ory consumption comparable to StreamingLLM but 539

performs significantly better than StreamingLLM 540

(as shown in Tables 2 and 4), due to its efficient 541

reuse of attention scores computed during genera- 542

tion for its token selection metric. 543

6 Conclusion 544

In this paper, we propose a novel approach to en- 545

hance the performance of LLMs under memory 546

constraints through KV cache eviction. Through a 547

detailed analysis of attention patterns in LLMs, we 548

observe the anchor tokens, which attract high atten- 549

tion logits from subsequent tokens, exhibit particu- 550

larly low attention logits between themselves. In- 551

spired by these observations, we propose MAT (un- 552

locking KV cache Efficiency via Managing Anchor 553

Tokens) to recognize and retain the important an- 554

chor tokens in the cache based on their attention 555

logits to the first anchor token during the generation 556

process. Experimental results across a variety of 557

tasks show that MAT outperforms existing methods 558

and preserves the original capability of LLM. 559

8

7 Limitations560

Due to the limited computational resources, we561

only evaluate MAT using LLMs with a relatively562

small number of parameters, such as the 7B models563

from the LLaMA family. However, there are many564

publicly available LLMs with more parameters and565

greater capabilities (e.g., LLaMA-2(70B). Thus, it566

is reasonable to apply MAT to these more advanced,567

albeit costly, models. We leave the investigation of568

such scenarios to future work.569

8 Ethical Consideration570

This paper presents work whose goal is to advance571

the field of natural language processing. There572

are many potential societal consequences of our573

work, none of which we feel must be specifically574

highlighted here.575

References576

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama577
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,578
Diogo Almeida, Janko Altenschmidt, Sam Altman,579
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-580
cal report. Preprint arXiv:2303.08774.581

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-582
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.583
2019. Mathqa: Towards interpretable math word584
problem solving with operation-based formalisms.585
In Conference of the North American Chapter of the586
Association for Computational Linguistics.587

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,588
and 1 others. 2020. Piqa: Reasoning about physical589
commonsense in natural language. In Proceedings590
of the AAAI conference on artificial intelligence, vol-591
ume 34, pages 7432–7439.592

Yelysei Bondarenko, Markus Nagel, and Tijmen593
Blankevoort. 2021. Understanding and overcoming594
the challenges of efficient transformer quantization.595
Preprint arXiv:2109.12948.596

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu597
Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao598
Chang, Junjie Hu, and 1 others. 2024. PyramidKV:599
Dynamic KV cache compression based on pyramidal600
information funneling. Preprint arXiv:2406.02069.601

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-602
Yan Chen, Yu-Fang Hu, Pei-Shuo Wang, Ning-603
Chi Huang, Luis Ceze, Mohamed S Abdelfattah,604
and Kai-Chiang Wu. 2024. Palu: Compress-605
ing KV-cache with low-rank projection. Preprint606
arXiv:2407.21118.607

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Jun-608
yang Lin, Chang Zhou, and Baobao Chang. 2025.609

An image is worth 1/2 tokens after layer 2: Plug-and- 610
play inference acceleration for large vision-language 611
models. In European Conference on Computer Vi- 612
sion. Springer. 613

Tianxiang Chen, Zhentao Tan, Tao Gong, Yue Wu, 614
Qi Chu, Bin Liu, Jieping Ye, and Nenghai Yu. 2024. 615
Llama SLayer 8B: Shallow layers hold the key to 616
knowledge injection. In Findings of the Association 617
for Computational Linguistics: EMNLP 2024, pages 618
5991–6002, Miami, Florida, USA. Association for 619
Computational Linguistics. 620

Kevin Clark. 2019. What does BERT look at? an analy- 621
sis of bert’s attention. Preprint arXiv:1906.04341. 622

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 623
Ashish Sabharwal, Carissa Schoenick, and Oyvind 624
Tafjord. 2018. Think you have solved question an- 625
swering? try ARC, the AI2 reasoning challenge. 626
Preprint arXiv:1803.05457. 627

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 628
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 629
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 630
Nakano, Hesse Christopher, and Schulman John. 631
2021. Training verifiers to solve math word prob- 632
lems. Preprint arXiv:2110.14168. 633

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke 634
Zettlemoyer. 2022. GPT3.Int8 (): 8-bit matrix multi- 635
plication for transformers at scale. In Neural Infor- 636
mation Processing Systems. 637

Jacob Devlin. 2018. Bert: Pre-training of deep bidi- 638
rectional transformers for language understanding. 639
Preprint arXiv:1810.04805. 640

Elias Frantar and Dan Alistarh. 2022. Optimal brain 641
compression: A framework for accurate post-training 642
quantization and pruning. In Neural Information 643
Processing Systems. 644

Yao Fu. 2024. Challenges in deploying long-context 645
transformers: A theoretical peak performance analy- 646
sis. Preprint arXiv:2405.08944. 647

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider- 648
man, Sid Black, Anthony DiPofi, Charles Foster, 649
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, 650
Haonan Li, Kyle McDonell, Niklas Muennighoff, 651
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey 652
Schoelkopf, Aviya Skowron, Lintang Sutawika, and 653
5 others. 2024. A framework for few-shot language 654
model evaluation. Technical report. 655

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, 656
Jiawei Han, and Jianfeng Gao. 2023. Model tells you 657
what to discard: Adaptive KV cache compression for 658
llms. (arXiv preprint arXiv:2310.01801). 659

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng 660
Ji, and Sinong Wang. 2023. Lm-infinite: Simple 661
on-the-fly length generalization for large language 662
models. Preprint arXiv:2308.16137. 663

9

https://doi.org/10.18653/v1/2024.findings-emnlp.347
https://doi.org/10.18653/v1/2024.findings-emnlp.347
https://doi.org/10.18653/v1/2024.findings-emnlp.347

Song Han, Jeff Pool, John Tran, and William Dally.664
2015. Learning both weights and connections for665
efficient neural network. In Nneural Information666
Processing Systems.667

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,668
Michael W Mahoney, Yakun Sophia Shao, Kurt669
Keutzer, and Amir Gholami. 2024. KVQuant: To-670
wards 10 million context length llm inference with671
KV cache quantization. Preprint arXiv:2401.18079.672

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-673
sch, Chris Bamford, Devendra Singh Chaplot, Diego674
de las Casas, Florian Bressand, Gianna Lengyel, Guil-675
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,676
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,677
Thibaut Lavril, Thomas Wang, Timothée Lacroix,678
and William El Sayed. 2023. Mistral 7B. Preprint679
arXiv:2310.06825.680

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William681
Cohen, and Xinghua Lu. 2019. Pubmedqa: A dataset682
for biomedical research question answering. In Pro-683
ceedings of the 2019 Conference on Empirical Meth-684
ods in Natural Language Processing and the 9th In-685
ternational Joint Conference on Natural Language686
Processing (EMNLP-IJCNLP).687

Olga Kovaleva. 2019. Revealing the dark secrets of bert.688
Preprint arXiv:1908.08593.689

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-690
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,691
Xingyu Dang, Chuang Gan, and Song Han. 2024.692
AWQ: Activation-aware weight quantization for on-693
device LLM compression and acceleration. In Pro-694
ceedings of Machine Learning and Systems.695

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao696
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-697
lidis, and Anshumali Shrivastava. 2024a. Scis-698
sorhands: Exploiting the persistence of importance699
hypothesis for llm KV cache compression at test time.700
In Neural Information Processing Systems.701

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,702
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and703
Xia Hu. 2024b. Kivi: Plug-and-play 2bit KV cache704
quantization with streaming asymmetric quantization.705
Preprint arXiv:2402.02750.706

Stephen Merity, Caiming Xiong, James Bradbury, and707
Richard Socher. 2016. Pointer sentinel mixture mod-708
els. Preprint arXiv:1609.07843.709

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,710
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan711
Xiao, Shivani Agrawal, and Jeff Dean. 2023. Effi-712
ciently scaling transformer inference. Proceedings713
of Machine Learning and Systems, 5:606–624.714

Melissa Roemmele, Cosmin Adrian Bejan, and An-715
drew S Gordon. 2011. Choice of plausible alter-716
natives: An evaluation of commonsense causal rea-717
soning. In AAAI spring symposium: logical formal-718
izations of commonsense reasoning.719

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat- 720
ula, and Yejin Choi. 2021. WinoGrande: An adver- 721
sarial winograd schema challenge at scale. Commu- 722
nications of the ACM. 723

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng 724
Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng 725
Gao, Yu Qiao, and Ping Luo. 2024. OmniQuant: 726
Omnidirectionally calibrated quantization for large 727
language models. In International Conference on 728
Learning Representations. 729

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan 730
Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo- 731
pher Ré, Ion Stoica, and Ce Zhang. 2023. Flexgen: 732
High-throughput generative inference of large lan- 733
guage models with a single gpu. In International 734
Conference on Machine Learning. PMLR. 735

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang 736
Liu. 2024a. Massive activations in large language 737
models. Preprint arXiv:2402.17762. 738

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. 739
2024b. A simple and effective pruning approach for 740
large language models. In International Conference 741
on Learning Representations. 742

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 743
Jonathan Berant. 2019. Commonsenseqa: A question 744
answering challenge targeting commonsense knowl- 745
edge. In Proceedings of the Conference of the North 746
American Chapter of the Association for Computa- 747
tional Linguistics: Human Language Technologies. 748

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 749
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 750
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 751
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard 752
Grave, and Guillaume Lample. 2023a. LLAMA: 753
Open and efficient foundation language models. 754
Preprint arXiv:2302.13971. 755

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 756
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 757
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 758
Bhosale, Dan Bikel, Lukas Blecher, Cristian Can- 759
ton Ferrer, Moya Chen, Guillem Cucurull, David 760
Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, and 761
49 others. 2023b. LLaMA 2: Open foundation and 762
fine-tuned chat models. Preprint arXiv:2307.09288. 763

A Vaswani. 2017. Attention is all you need. In Neural 764
Information Processing Systems. 765

Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long, 766
Zhengkai Lin, Liye Zhang, Binbin Lin, Deng Cai, 767
and Xiaofei He. 2024. Model compression and effi- 768
cient inference for large language models: A survey. 769
Preprint arXiv:2402.09748. 770

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 771
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 772
and 1 others. 2022. Chain-of-thought prompting elic- 773
its reasoning in large language models. In Neural 774
Information Processing Systems. 775

10

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song776
Han, and Mike Lewis. 2024. Efficient streaming lan-777
guage models with attention sinks. In International778
Conference on Learning Representations.779

Mengwei Xu, Wangsong Yin, Dongqi Cai, Rongjie Yi,780
Daliang Xu, Qipeng Wang, Bingyang Wu, Yihao781
Zhao, Chen Yang, Shihe Wang, and 1 others. 2024.782
A survey of resource-efficient LLM and multimodal783
foundation models. Preprint arXiv:2401.08092.784

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao,785
Lu Hou, and Carlo Vittorio Cannistraci. 2024a. Plug-786
and-play: An efficient post-training pruning method787
for large language models. In International Confer-788
ence on Learning Representations.789

Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong,790
Zhenyu Zhang, Shiwei Liu, and Rongrong Ji. 2024b.791
Cam: Cache merging for memory-efficient llms in-792
ference. In International Conference on Machine793
Learning.794

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong795
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-796
dong Tian, Christopher Ré, Clark Barrett, and 1 oth-797
ers. 2023. H2o: Heavy-hitter oracle for efficient798
generative inference of large language models. In799
Neural Information Processing Systems.800

Jun Zhao, Zhihao Zhang, Yide Ma, Qi Zhang, Tao Gui,801
Luhui Gao, and Xuanjing Huang. 2023. Unveiling802
a core linguistic region in large language models.803
Preprint arXiv:2310.14928.804

11

A Additional Attention Patterns805

In Section 3, we have concluded three key observations by a specific prompt in LLaMA-2(7B). In this806

section, we study the attention patterns for diverse input prompts and models.807

Figure 6 visualizes the attention patterns for a different input prompt. As shown, we can observe808

the notable attributes in Section 3 again. For example, a small set of tokens (the 0-th and 20-th tokens)809

consistently receive large attention logits from the subsequent tokens for deep layers (layer 8 and layer 24),810

validating the observation in Section ??. Moreover, the attention logits from the 20-th token to the 0-th811

token are significantly lower than the attention tokens from the normal token to the 0-th token, validating812

the observation in Section 3.1.813

0 5 10 15 20 25 30 35 40 45 50
Key Index

0
5

10
15

20
25

30
35

40
45

50
Qu

er
y

In
de

x

Layer 24, Head 8

-6.0

-4.0

-2.0

0.0

2.0

0 5 10 15 20 25 30 35 40 45 50
Key Index

0
5

10
15

20
25

30
35

40
45

50
Qu

er
y

In
de

x

Layer 24, Head 16

-8.0

-6.0

-4.0

-2.0

0.0

2.0

0 5 10 15 20 25 30 35 40 45 50
Key Index

0
5

10
15

20
25

30
35

40
45

50
Qu

er
y

In
de

x

Layer 24, Head 24

-6.0

-4.0

-2.0

0.0

2.0

(a) Layer 24.

0 5 10 15 20 25 30 35 40 45 50
Key Index

0
5

10
15

20
25

30
35

40
45

50
Qu

er
y

In
de

x
Layer 8, Head 8

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

0 5 10 15 20 25 30 35 40 45 50
Key Index

0
5

10
15

20
25

30
35

40
45

50
Qu

er
y

In
de

x

Layer 8, Head 16

-8.0

-6.0

-4.0

-2.0

0.0

0 5 10 15 20 25 30 35 40 45 50
Key Index

0
5

10
15

20
25

30
35

40
45

50
Qu

er
y

In
de

x

Layer 8, Head 24

-8.0

-6.0

-4.0

-2.0

0.0

2.0

(b) Layer 8.

0 5 10 15 20 25 30 35 40 45 50
Key Index

0
5

10
15

20
25

30
35

40
45

50
Qu

er
y

In
de

x

Layer 0, Head 8

0.0

2.0

4.0

6.0

8.0

0 5 10 15 20 25 30 35 40 45 50
Key Index

0
5

10
15

20
25

30
35

40
45

50
Qu

er
y

In
de

x

Layer 0, Head 16

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10 15 20 25 30 35 40 45 50
Key Index

0
5

10
15

20
25

30
35

40
45

50
Qu

er
y

In
de

x

Layer 0, Head 24

-1.5

-1.0

-0.5

0.0

0.5

1.0

(c) Layer 0.

Figure 6: Attention patterns for input prompt: “Question: One year, the oak trees in a park began producing more
acorns than usual. The next year, the population of chipmunks in the park also increased. Which best explains why
there were more chipmunks the next year?\nAnswers:" w.r.t. different layers and heads in LLaMA-2(7B).

Figure 7 shows the attention patterns for different input prompts on layer 24, head 24 of LLaMA-2(7B).814

Regardless of the prompt, the patterns consistently align with the observations detailed in Section ?? and815

Section 3.1. Additionally, the first token is consistently an anchor token for different prompts.816

Figure 8 visualizes the attention patterns for different heads in layer 1 of LLaMA-1(7B). As can be817

seen, the attention patterns show distinct characteristics across the heads. Moreover, the attention in Layer818

1 appears diverse, with no single token dominating the patterns across heads. These observations are819

consistent with the findings discussed in Section 3.2.820

Figure 9 and Figure 10 shows the attention patterns on LLaMA-2(7B) and Mistral(7B), respectively.821

12

0 5 10 15
Key Index

0
5

10
15

Qu
er

y
In

de
x

Layer 24, Head 24

-6.0

-4.0

-2.0

0.0

2.0

0 5 10 15 20
Key Index

0
5

10
15

20
Qu

er
y

In
de

x

Layer 24, Head 24

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

0 5 10 15 20
Key Index

0
5

10
15

20
Qu

er
y

In
de

x

Layer 24, Head 24

-6.0

-4.0

-2.0

0.0

2.0

0 5 10 15 20
Key Index

0
5

10
15

20
Qu

er
y

In
de

x

Layer 24, Head 24

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

0 5 10 15 20 25 30 35
Key Index

0
5

10
15

20
25

30
35

Qu
er

y
In

de
x

Layer 24, Head 24

-8.0

-6.0

-4.0

-2.0

0.0

2.0

0 5 10 15 20 25 30 35 40
Key Index

0
5

10
15

20
25

30
35

40
Qu

er
y

In
de

x

Layer 24, Head 24

-6.0

-4.0

-2.0

0.0

2.0

0 5 10 15 20 25 30 35 40 45 50 55
Key Index

0
5

10
15

20
25

30
35

40
45

50
55

Qu
er

y
In

de
x

Layer 24, Head 24

-6.0

-4.0

-2.0

0.0

2.0

0 5 1015202530354045505560657075
Key Index

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

Qu
er

y
In

de
x

Layer 24, Head 24

-8.0

-6.0

-4.0

-2.0

0.0

2.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

Key Index

05101520253035404550556065707580859095100105110115120125130

Qu
er

y
In

de
x

Layer 24, Head 24

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

2.0

Figure 7: Attention patterns for layer 24, head 24 in LLaMA-2(7B) w.r.t. different input prompt.

0 5 10 15 20 25
Key Index

0
5

10
15

20
25

Qu
er

y
In

de
x

Layer 1, Head 8

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

0 5 10 15 20 25
Key Index

0
5

10
15

20
25

Qu
er

y
In

de
x

Layer 1, Head 16

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

0 5 10 15 20 25
Key Index

0
5

10
15

20
25

Qu
er

y
In

de
x

Layer 1, Head 24

-3.0

-2.0

-1.0

0.0

1.0

2.0

Figure 8: Attention patterns for input prompt: “Question: Plants and animals need food for growth. What happens
to most of the food that plants produce?\nAnswer:" w.r.t. different heads in layer 1 of LLaMA-2(7B).

We can see that the observations in Section 3 remain consistent across different models. 822

13

0 5 10 15 20 25
Key Index

0
5

10
15

20
25

Qu
er

y
In

de
x

Layer 24, Head 8

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

0 5 10 15 20 25
Key Index

0
5

10
15

20
25

Qu
er

y
In

de
x

Layer 24, Head 16

-6.0

-4.0

-2.0

0.0

2.0

0 5 10 15 20 25
Key Index

0
5

10
15

20
25

Qu
er

y
In

de
x

Layer 24, Head 24

-6.0

-4.0

-2.0

0.0

2.0

(a) Layer 24.

0 5 10 15 20 25
Key Index

0
5

10
15

20
25

Qu
er

y
In

de
x

Layer 8, Head 8

-6.0

-4.0

-2.0

0.0

2.0

0 5 10 15 20 25
Key Index

0
5

10
15

20
25

Qu
er

y
In

de
x

Layer 8, Head 16

-4.0

-2.0

0.0

2.0

0 5 10 15 20 25
Key Index

0
5

10
15

20
25

Qu
er

y
In

de
x

Layer 8, Head 24

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

(b) Layer 8.

0 5 10 15 20 25
Key Index

0
5

10
15

20
25

Qu
er

y
In

de
x

Layer 0, Head 8

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

0 5 10 15 20 25
Key Index

0
5

10
15

20
25

Qu
er

y
In

de
x

Layer 0, Head 16

0.0

1.0

2.0

3.0

4.0

5.0

0 5 10 15 20 25
Key Index

0
5

10
15

20
25

Qu
er

y
In

de
x

Layer 0, Head 24

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

(c) Layer 0.

Figure 9: Attention patterns in LLaMA-1(7B) for input prompt: “Question: Plants and animals need food for growth.
What happens to most of the food that plants produce?\nAnswer:" w.r.t. different layers and heads.

B Discussion on LLMs Inference Breakdown823

Despite the exceptional performance of LLMs, deploying them at inference time poses considerable824

financial burdens due to the substantial scale that requires massive GPU memory. These memory usages825

can be divided into three primary components: the volume of model parameters, the size of the activation826

buffer, and the size of the KV cache. Model compression (Frantar and Alistarh, 2022; Xu et al., 2024;827

Wang et al., 2024) has shown significant advancements in tackling the first two components. Specifically,828

Pruning methods (Han et al., 2015; Zhang et al., 2024a; Sun et al., 2024b) discard the redundant or less829

important part of the model. Quantization methods (Lin et al., 2024; Dettmers et al., 2022; Shao et al.,830

2024) reduce the bits needed for model parameters. Different from these works, we aim to compress the831

size of the KV cache.832

14

0 5 10 15 20 25
Key Index

0
5

10
15

20
25

Qu
er

y
In

de
x

Layer 24, Head 8

-8.0

-6.0

-4.0

-2.0

0.0

2.0

0 5 10 15 20 25
Key Index

0
5

10
15

20
25

Qu
er

y
In

de
x

Layer 24, Head 16

-6.0

-4.0

-2.0

0.0

2.0

0 5 10 15 20 25
Key Index

0
5

10
15

20
25

Qu
er

y
In

de
x

Layer 24, Head 24

-6.0

-4.0

-2.0

0.0

2.0

4.0

(a) Layer 24.

0 5 10 15 20 25
Key Index

0
5

10
15

20
25

Qu
er

y
In

de
x

Layer 8, Head 8

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

0 5 10 15 20 25
Key Index

0
5

10
15

20
25

Qu
er

y
In

de
x

Layer 8, Head 16

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

0 5 10 15 20 25
Key Index

0
5

10
15

20
25

Qu
er

y
In

de
x

Layer 8, Head 24

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

(b) Layer 8.

0 5 10 15 20 25
Key Index

0
5

10
15

20
25

Qu
er

y
In

de
x

Layer 0, Head 8

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

0 5 10 15 20 25
Key Index

0
5

10
15

20
25

Qu
er

y
In

de
x

Layer 0, Head 16

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 5 10 15 20 25
Key Index

0
5

10
15

20
25

Qu
er

y
In

de
x

Layer 0, Head 24

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

(c) Layer 0.

Figure 10: Attention patterns for input prompt: “Question: Plants and animals need food for growth. What happens
to most of the food that plants produce?\nAnswer:" w.r.t different layers and heads in Mistral(7B).

15

	Introduction
	Related Work
	Observations
	Attention Logits Between Anchor Tokens are Low
	Attention Shows Diffused Patterns for Shallow Layers

	Methodology
	Problem Formulation
	Managing Anchor Tokens

	Experiments
	End-to-End Tasks
	Language Modeling Task
	Open-Ended Generation Tasks
	Ablation Study
	Efficiency Analysis

	Conclusion
	Limitations
	Ethical Consideration
	Additional Attention Patterns
	Discussion on LLMs Inference Breakdown

