
Published as a conference paper at ICLR 2025

PEAR: PRIMITIVE ENABLED ADAPTIVE
RELABELING FOR BOOSTING HIERARCHICAL
REINFORCEMENT LEARNING

Utsav Singh
CSE Deptt.
IIT Kanpur, India
utsavz@iitk.ac.in

Vinay P Namboodiri
CS Deptt.
University of Bath, Bath, UK
vpn22@bath.ac.uk

ABSTRACT

Hierarchical reinforcement learning (HRL) has the potential to solve complex long
horizon tasks using temporal abstraction and increased exploration. However, hi-
erarchical agents are difficult to train due to inherent non-stationarity. We present
primitive enabled adaptive relabeling (PEAR), a two-phase approach where we
first perform adaptive relabeling on a few expert demonstrations to generate effi-
cient subgoal supervision, and then jointly optimize HRL agents by employing
reinforcement learning (RL) and imitation learning (IL). We perform theoreti-
cal analysis to bound the sub-optimality of our approach and derive a joint op-
timization framework using RL and IL. Since PEAR utilizes only a few expert
demonstrations and considers minimal limiting assumptions on the task struc-
ture, it can be easily integrated with typical off-policy RL algorithms to pro-
duce a practical HRL approach. We perform extensive experiments on challeng-
ing environments and show that PEAR is able to outperform various hierarchical
and non-hierarchical baselines and achieve upto 80% success rates in complex
sparse robotic control tasks where other baselines typically fail to show signifi-
cant progress. We also perform ablations to thoroughly analyse the importance of
our various design choices. Finally, we perform real world robotic experiments on
complex tasks and demonstrate that PEAR consistently outperforms the baselines.

1 INTRODUCTION

Reinforcement learning has been successfully applied to a number of short-horizon robotic manipu-
lation tasks (Rajeswaran et al., 2018; Kalashnikov et al., 2018; Gu et al., 2017; Levine et al., 2016).
However, solving long horizon tasks requires long-term planning and is hard (Gupta et al., 2019)
due to inherent issues like credit assignment and ineffective exploration. Consequently, such tasks
require a large number of environment interactions for learning, especially in sparse reward scenar-
ios (Andrychowicz et al., 2017). Hierarchical reinforcement learning (HRL) (Sutton et al., 1999;
Dayan and Hinton, 1993; Vezhnevets et al., 2017; Klissarov et al., 2017; Bacon et al., 2017) is an
elegant framework that employs temporal abstraction and promises improved exploration (Nachum
et al., 2019). In goal-conditioned feudal architecture (Dayan and Hinton, 1993; Vezhnevets et al.,
2017), the higher policy predicts subgoals for the lower primitive, which in turn tries to achieve these
subgoals by executing primitive actions directly on the environment. Unfortunately, HRL suffers
from non-stationarity (Nachum et al., 2018; Levy et al., 2018) in off-policy HRL. Due to continu-
ously changing policies, previously collected off-policy experience is rendered obsolete, leading to
unstable higher level state transition and reward functions.

Some hierarchical approaches (Gupta et al., 2019; Fox et al., 2017; Krishnan et al., 2019) segment
the expert demonstrations into subgoal transition dataset, and consequently leverage the subgoal
dataset to bootstrap learning. Ideally, the segmentation process should produce subgoals that prop-
erly balance the task split between hierarchical levels. One possible approach of task segmentation is
to perform fixed window based relabeling (Gupta et al., 2019) on expert demonstrations. Despite be-
ing simple, this is effectively a brute force segmentation approach which may generate subgoals that

1

Published as a conference paper at ICLR 2025

s₀

s₆
s₅

s₁
s₂ s₃ s₄

Expert
Demonstrations

Relabelled Expert
Demonstrations

PEAR

Figure 1: Adaptive Relabeling Overview: We segment ex-
pert demonstrations by consecutively passing demonstration states
as subgoals to the lower primitive, and finding the state where
QπL (s, si, ai) < Qthresh (here si = s4). Since s3 was the
last reachable subgoal, it is selected as subgoal for initial state s0.
The transition is added to Dg , and the process continues with s3 as
new initial state.

(a) Maze (b) Pick (c) Bin (d) Hollow (e) Rope

Figure 2: Subgoal evolution: With training, as the lower primitive
improves, the higher level subgoal predictions (blue spheres) become
better and harder, while always being achievable by lower primitive.
Row 1 depicts initial training, Row 2 depicts mid-way through train-
ing, and Row 3 depicts end of training. This generates a curriculum of
achievable subgoals for lower primitive (red spheres: final goal).

are either too easy or too hard according to the current goal achieving ability of the lower primitive,
thus leading to degenerate solutions.

The main motivation of this work is to produce a curriculum of feasible subgoals according to the
current goal achieving capability of the lower primitive. Concretely, the value function of the lower
primitive is used to perform adaptive relabeling on expert demonstrations to dynamically generate a
curriculum of achievable subgoals for the lower primitive. This subgoal dataset is then used to train
an imitation learning based regularizer, which is used to jointly optimize off-policy RL objective
with IL regularization. Hence, our approach ameliorates non-stationarity in HRL by using primitive
enabled IL regularization, while enabling efficient exploration using RL. We call our approach:
primitive enabled adaptive relabeling (PEAR) for boosting HRL.

The major contributions of this work are: (i) our adaptive relabeling based approach generates ef-
ficient higher level subgoal supervision according to the current goal achieving capability of the
lower primitive (Figure 2), (ii) we derive sub-optimality bounds to theoretically justify the ben-
efits of periodic re-population using adaptive relabeling (Section 4.3), (iii) we perform extensive
experimentation on sparse robotic tasks: maze navigation, pick and place, bin, hollow, rope manipu-
lation and franka kitchen to empirically demonstrate superior performance and sample efficiency of
PEAR over prior baselines (Section 5 Figure 3), and finally, (iv) we show that PEAR demonstrates
impressive performance in real world tasks: pick and place, bin and rope manipulation (Figure 6).

2 RELATED WORK

Hierarchical reinforcement learning (HRL) (Barto and Mahadevan, 2003; Sutton et al., 1999; Parr
and Russell, 1998; Dietterich, 2000) promises the advantages of temporal abstraction and increased
exploration (Nachum et al., 2019). The options architecture (Sutton et al., 1999; Bacon et al., 2017;
Harutyunyan et al., 2018; Harb et al., 2018; Harutyunyan et al., 2019; Klissarov et al., 2017) learns
temporally extended macro actions and a termination function to propose an elegant hierarchical
framework. However, such approaches may produce degenerate solutions in the absence of proper
regularization. Some approaches restrict the problem search space by greedily solving for specific
goals (Kaelbling, 1993; Foster and Dayan, 2002), which has also been extended to hierarchical
RL (Wulfmeier et al., 2019; 2021; Ding et al., 2019). In goal-conditioned feudal learning (Dayan
and Hinton, 1993; Vezhnevets et al., 2017), the higher level agent produces subgoals for the lower
primitive, which in turn executes atomic actions on the environment. Unfortunately, off-policy HRL
approaches are cursed by non-stationarity issue. Prior works (Nachum et al., 2018; Levy et al.,
2018) deal with the non-stationarity by relabeling previously collected transitions for training goal-
conditioned policies. In contrast, our proposed approach deals with non-stationarity by leveraging
adaptive relabeling for periodically producing achievable subgoals, and subsequently using an im-

2

Published as a conference paper at ICLR 2025

itation learning based regularizer. We empirically show in Section 5 that our regularization based
approach outperforms relabeling based hierarchical approaches on various long horizon tasks.

Prior methods (Rajeswaran et al., 2018; Nair et al., 2018; Hester et al., 2018) leverage expert demon-
strations to improve sample efficiency and accelerate learning, where some methods use imitation
learning to bootstrap learning (Shiarlis et al., 2018; Krishnan et al., 2017; 2019; Kipf et al., 2019).
Some approaches use fixed relabeling (Gupta et al., 2019) for performing task segmentation. How-
ever, such approaches may cause unbalanced task split between hierarchical levels. In contrast,
our approach sidesteps this limitation by properly balancing hierarchical levels using adaptive re-
labeling. Intuitively, we enable balanced task split, thereby avoiding degenerate solutions. Recent
approaches restrict subgoal space using adjacency constraints (Zhang et al., 2020), employ graph
based approaches for decoupling task horizon (Lee et al., 2023), or incorporate imagined subgoals
combined with KL-constrained policy iteration scheme (Chane-Sane et al., 2021). However, such
approaches assume additional environment constraints and only work on relatively shorter horizon
tasks with limited complexity. (Kreidieh et al., 2020) is an inter-level cooperation based approach for
generating achievable subgoals, However, the approach requires extensive exploration for selecting
good subgoals, whereas our approach rapidly enables effective subgoal generation using primitive
enabled adaptive relabeling. In order to accelerate RL, recent works firstly learn behavior skill pri-
ors (Pertsch et al., 2020; Singh et al., 2021) from expert data or pre-train policies over a related task,
and then fine-tune using RL. Such approaches largely depend on policies learnt during pre-training,
and are hard to train when the source and target task distributions are dissimilar. Other approaches
either use bottleneck option discovery (Salter et al., 2022b) or behavior priors (Salter et al., 2022a;
Tirumala et al., 2022) to discover and embed behaviors from past experience, or directly hand-design
action primitives (Dalal et al., 2021; Nasiriany et al., 2022). While this simplifies the higher level
task, explicitly designing action primitives is tedious for hard tasks, and may lead to sub-optimal
predictions. Since PEAR learns multi-level policies in parallel, the lower level policies can learn
required optimal behavior, thus avoiding the issues with prior approaches.

3 BACKGROUND

Off-policy Reinforcement Learning We define our goal-conditioned off-policy RL setup as fol-
lows: Universal Markov Decision Process (UMDP) (Schaul et al., 2015) is a Markov decision pro-
cess augmented with the goal space G, where M = (S,A, P,R, γ,G). Here, S is state space, A
is action space, P (s

′ |s, a) is the state transition probability function, R is reward function, and γ
is discount factor. π(a|s, g) represents the goal-conditioned policy which predicts the probability
of taking action a when the state is s and goal is g. The overall objective is to maximize expected
future discounted reward distribution: J = (1− γ)−1Es∼dπ,a∼π(a|s,g),g∼G [r(st, at, g)].

Hierarchical Reinforcement Learning In our goal-conditioned HRL setup, the overall policy π
is divided into multi-level policies. We consider bi-level scheme, where the higher level policy
πH(sg|s, g) predicts subgoals sg for the lower primitive πL(a|s, sg). πH generates subgoals sg
after every c timesteps and πL tries to achieve sg within c timesteps. πH gets sparse extrinsic
reward rex from the environment, whereas πL gets sparse intrinsic reward rin from πH . πL gets
rewarded with reward 0 if the agent reaches within δL distance of the predicted subgoal sg , and
−1 otherwise: rin = −1(∥st − sg∥2 > δL). Similarly, πH gets extrinsic reward 0 if the achieved
goal is within δH distance of the final goal g, and −1 otherwise: rex = −1(∥st − g∥2 > δH).
We assume access to a small number of directed expert demonstrations D = {ei}Ni=1, where ei =
(se0, a

e
0, s

e
1, a

e
1 . . . , s

e
T−1, a

e
T−1).

Limitations of existing approaches to HRL Off-policy HRL promises the advantages of temporal
abstraction and improved exploration (Nachum et al., 2019). Unfortunately, HRL approaches suf-
fer from non-stationarity due to unstable lower primitive. Consequently, HRL approaches fail to
perform in complex long-horizon tasks, especially when the rewards are sparse. The primary moti-
vation of this work is to efficiently leverage a few expert demonstrations to bootstrap RL using IL
regularization, and thus devise an efficient HRL approach to mitigate non-stationarity.

3

Published as a conference paper at ICLR 2025

4 METHODOLOGY

In this section, we explain PEAR: Primitive Enabled Adaptive Relabeling for boosting HRL, which
leverages a few expert demonstrations D to solve long horizon tasks. We propose a two step ap-
proach: (i) the current lower primitive πL is used to adaptively relabel expert demonstrations to
generate efficient subgoal supervision Dg , and (ii) off-policy RL objective is jointly optimized with
additional imitation learning based regularization objective using Dg . We also perform theoretical
analysis to (i) bound the sub-optimality of our approach, and (ii) propose a practical generalized
based framework for joint optimization using RL and IL, where typical off-policy RL and IL algo-
rithms can be plugged in to generate various joint optimization based algorithms.

Algorithm 1 Adaptive Relabeling

1: Initialize Dg = {}
2: // Populating Dg

3: for each e = (se0, s
e
1, . . . , s

e
T−1) in D do

4: Initial state index init← 0
5: Subgoal transitions De

g = {}
6: for i = 1 to T − 1 do
7: // Find QπL values for demo sub-

goals
8: Compute QπL(seinit, s

e
i , ai)

9: where ai = πL(sei−1, s
e
i)

10: // Find first subgoal s.t. QπL < Qth

11: if QπL(seinit, s
e
i , ai) < Qth then

12: for j = init to i− 1 do
13: for k = (init+ 1) to i− 1 do
14: // Add the transition to

De
g

15: Add (sj , si−1, sk) to De
g

16: Initial state index init← (i− 1)

17: // Add selected transitions to Dg

18: Dg ← Dg ∪De
g

Algorithm 2 PEAR

1: Initialize Dg = {}
2: for i = 1 . . . N do
3: if i%p == 0 then
4: Clear Dg

5: Populate Dg via adaptive relabeling
6: Collect experience using πH and πL

7: Update lower primitive via SAC and IL
8: regularization with DL

g (Eq 6 or Eq 8)
9: Sample transitions from Dg

10: Update higher policy via SAC and IL
11: regularization usingDg (Eq 5 or Eq 7)

4.1 PRIMITIVE ENABLED ADAPTIVE RELABELING

PEAR performs adaptive relabeling on expert demonstration trajectories D to generate efficient
higher level subgoal transition datatset Dg , by employing the current lower primitive’s action value
function QπL(s, sei , ai). In a typical goal-conditioned RL setting, QπL(s, sei , ai) describes the ex-
pected cumulative reward where the start state and subgoal are s and sei , and the lower primitive
takes action ai while following policy πL. While parsing D, we consecutively pass the expert
demonstrations states sei as subgoals, and QπL(s, sei , ai) computes the expected cumulative reward
when the start state is s, subgoal is sei and the next primitive action is ai. Intuitively, a high value of
QπL(s, sei , ai) implies that the current lower primitive considers sei to be a good (highly rewarding
and achievable) subgoal from current state s, since it expects to achieve a high intrinsic reward for
this subgoal from the higher policy. Hence, QπL(s, sei , ai) considers goal achieving capability of
current lower primitive for populatingDg . We depict a single pass of adaptive relabeling in Figure 1
and explain the procedure in detail below.

Adaptive Relabeling Consider the demonstration dataset D = {ej}Ni=1, where each trajectory
ej = (se0, s

e
1, . . . , s

e
T−1). Let the initial state be se0. In the adaptive relabeling procedure, we

incrementally provide demonstration states sei for i = 1 to T − 1 as subgoals to lower prim-
itive’s action value function QπL(se0, s

e
i , ai), where ai = πL(s = sei−1, g = sei). At every

step, we compare QπL(se0, s
e
i , ai) to a threshold Qthresh (Qthresh = 0 works consistently for

all experiments). If QπL(se0, s
e
i , ai) >= Qthresh, we move on to next expert demonstration

state sei+1. Otherwise, we consider sei−1 to be a good subgoal (since it was the last subgoal with
QπL(se0, s

e
i−1, ai) >= Qthresh), and use it to compute subgoal transitions for populating Dg . Sub-

4

Published as a conference paper at ICLR 2025

sequently, we repeat the same procedure with sei−1 as the new initial state, until the episode termi-
nates. This is depicted in Figure 1 and Algorithm 1.

Periodic re-population of higher level subgoal dataset HRL approaches suffer from non-
stationarity due to unstable higher level station transition and reward functions. In off-policy HRL,
this occurs since previously collected experience is rendered obsolete due to continuously changing
lower primitive. We propose to mitigate this non-stationarity by periodically re-populating subgoal
transition dataset Dg after every p timesteps according to the goal achieving capability of the cur-
rent lower primitive. Since the lower primitive continuously improves with training and gets better
at achieving harder subgoals,QπL always picks reachable subgoals of appropriate difficulty, accord-
ing to the current lower primitive. This generates a natural curriculum of achievable subgoals for
the lower primitive. Intuitively, Dg always contains achievable subgoals for the current lower prim-
itive, which mitigates non-stationarity in HRL. The pseudocode for PEAR is given in Algorithm 2.
Figure 2 shows the qualitative evolution of subgoals with training in our experiments.

Dealing with out-of-distribution states Our adaptive relabeling procedure uses QπL(se0, s
e
i , ai) to

select efficient subgoals when the expert state sei is within the training distribution of states used
to train the lower primitive. However, if the expert states are outside the training distribution, QπL

might erroneously over-estimate the values on such states, which might result in poor subgoal selec-
tion. In order to address this over-estimation issue, we employ an additional margin classification
objective(Piot et al., 2014), where along with the standardQSAC objective, we also use an additional
margin classification objective to yield the following optimization objective Q̄πL = QSAC+
argmin

QπL

max
πL

(E(se0,·,·)∼Dg,sei∼πH ,ai∼πL [QπL(se0, s
e
i , ai)]− E(se0,s

e
i ,·)∼Dg,ai∼πL [QπL(se0, s

e
i , ai)])

This surrogate objective prevents over-estimation of Q̄πL by penalizing states that are out of the
expert state distribution. We found this objective to improve performance and stabilize learning. In
the next section, we explain how we use adaptive relabeling to yield our joint optimization objective.

4.2 JOINT OPTIMIZATION

Here, we explain our joint optimization objective that comprises of off-policy RL objective with IL
based regularization, using Dg generated using primitive enabled adaptive relabeling. We consider
both behavior cloning (BC) and inverse reinforcement learning (IRL) regularization. Henceforth,
PEAR-IRL will represent PEAR with IRL regularization and PEAR-BC will represent PEAR with
BC regularization. We first explain BC regularization objective, and then explain IRL regularization
objectives for both hierarchical levels.

For the BC objective, let (se, seg, s
e
next) ∼ Dg represent a higher level subgoal transition from Dg

where se is current state, senext is next state, ge is final goal and seg is subgoal supervision. Let
sg be the subgoal predicted by the high level policy πH

θH
(·|se, ge) with parameters θH . The BC

regularization objective for higher level is as follows:

min
θH

JH
BC(θH) = min

θH
E(se,seg,s

e
next)∼Dg,sg∼πH

θH
(·|se,ge)||seg − sg||2 (1)

Similarly, let (sf , af , sfnext) ∼ DL
g represent lower level expert transition where sf is current state,

sfnext is next state, gf is goal and a is the primitive action predicted by πL
θL
(·|sf , seg) with parameters

θL. The lower level BC regularization objective is as follows:

min
θL

JL
BC(θL) = min

θL
E(sf ,af ,sfnext)∼DL

g ,a∼πL
θL

(·|sf ,seg)
||af − a||2 (2)

We now consider the IRL objective, which is implemented as a GAIL (Ho and Ermon, 2016) ob-
jective implemented using LSGAN (Mao et al., 2016). Let DH

ϵ be the higher level discriminator
with parameters ϵH . Let JH

D represent higher level IRL objective, which depends on parameters
(θH , ϵH). The higher level IRL regularization objective is as follows:

max
θH

min
ϵH

JH
D (θH , ϵH) = max

θH
min
ϵH

1

2
E(se,·,·)∼Dg,sg∼πθH

(·|se,ge)[DH
ϵH (πH

θH (·|se, ge))− 0]2

+
1

2
E(se,seg,·)∼Dg

[DH
ϵH (seg)− 1]2

(3)

5

Published as a conference paper at ICLR 2025

Similarly, for lower level primitive, let DL
ϵL be the lower level discriminator with parameters ϵL. Let

JL
D represent lower level IRL objective, which depends on parameters (θL, ϵL). The lower level IRL

regularization objective is as follows:

max
θL

min
ϵL

JL
D(θL, ϵL) = max

θL
min
ϵL

1

2
E(sf ,·,·)∼DL

g ,a∼πL
θL

(·|sf ,seg)[D
L
ϵL(π

L
θL(·|s

f , seg))− 0]2

+
1

2
E(sf ,af ,·)∼DL

g
[DL

ϵL(a
f)− 1]2

(4)

Finally, we describe our joint optimization objective for hierarchical policies. Let the off-policy RL
objective be JH

θH
and JL

θL
for higher and lower policies. The joint optimization objectives using BC

regularization for higher and lower policies are provided in Equations 5 and 6 respectively.

max
θH

(JH
θH − ψ ∗ J

H
BC(θH)) (5)

max
θL

(JL
θL − ψ ∗ J

L
BC(θL)) (6)

The joint optimization objectives using IRL regularization for higher and lower policies are provided
in Equations 7 and 8 respectively.

min
ϵH

max
θH

(JH
θH + ψ ∗ JH

D (θH , ϵH)) (7)

min
ϵL

max
θL

(JL
θL + ψ ∗ JL

D(θL, ϵL)) (8)

Here, ψ is regularization weight hyper-parameter. We describe ablations to choose ψ in Section 5.

4.3 SUB-OPTIMALITY ANALYSIS

In this section, we perform theoretical analysis to (i) derive sub-optimality bounds for our proposed
joint optimization objective and show how our periodic re-population based approach affects per-
formance, and (ii) propose a generalized framework for joint optimization using RL and IL. Let π∗

and π∗∗ be unknown higher level and lower level optimal policies. Let πH
θH

be our high level policy
and πL

θL
be our lower primitive policy, where θH and θL are trainable parameters. DTV (π1, π2) de-

notes total variation divergence between probability distributions π1 and π2. Let κ be an unknown
distribution over states and actions, G be goal space, s be current state, and g be the final episodic
goal. We use κ in the importance sampling ratio later to avoid sampling from the unknown optimal
policy (Appendix A.1). The higher level policy predicts subgoals sg for the lower primitive which
is executed for c timesteps to yield sub-trajectories τ . Let ΠH

D and ΠL
D be some unknown higher and

lower level probability distributions over policies from which we can sample policies πH
D and πL

D.
Let us assume that policies πH

D and πL
D represent the policies from higher and lower level datasets

DH and DL respectively. Although DH and DL may represent any datasets, in our discussion, we
use them to represent higher and lower level expert demonstration datasets. Firstly, we introduce the
ϕD-common definition (Ajay et al., 2020) in goal-conditioned policies:

Definition 1. π∗ is ϕD-common in ΠH
D , if Es∼κ,πH

D∼ΠH
D ,g∼G[DTV (π

∗(τ |s, g)||πH
D (τ |s, g))] ≤ ϕD

Now, we define the suboptimality of policy π with respect to optimal policy π∗ as:

Subopt(θ) = |J(π∗)− J(π)| (9)

Theorem 1. Assuming optimal policy π∗ is ϕD common in ΠH
D , the suboptimality of higher policy

πH
θH

, over c length sub-trajectories τ sampled from dπ
∗

c can be bounded as:

|J(π∗)− J(πH
θH)| ≤ λH ∗ ϕD︸ ︷︷ ︸

first term

+λH ∗ Es∼κ,πH
D∼ΠH

D ,g∼G[DTV (π
H
D (τ |s, g)||πH

θH (τ |s, g))]︸ ︷︷ ︸
second term

(10)

where λH = 2
(1−γ)(1−γc)Rmax∥d

π∗
c

κ ∥∞

6

Published as a conference paper at ICLR 2025

Similarly, the suboptimality of lower primitive πL
θL

can be bounded as:

|J(π∗∗)− J(πL
θL)| ≤ λL ∗ ϕD + λL ∗ Es∼κ,πL

D∼ΠL
D,sg∼πH

θH

[DTV (π
L
D(τ |s, sg)||πL

θL(τ |s, sg))]
(11)

where λL = 2
(1−γ)2Rmax∥d

π∗∗
c

κ ∥∞

The proofs for Equations 10 and 11 are provided in Appendix A.1. We next discuss the effect of
training on the two terms in RHS of Equation 10, which bound the suboptimality of πH

θH
.

Effect of adaptive relabeling on sub-optimality bounds We firstly focus on the first term which is
dependent on ϕD. Since we represent the generated subgoal dataset asDg , we replace ϕD with ϕDg

.
In Theorem 1, we assume the optimal policy π∗ to be ϕDg

common in ΠH
D . Since ϕDg

denotes the
upper bound of the expected TV divergence between π∗ and πH

D , ϕDg provides a quality measure
of the subgoal dataset Dg populated using adaptive relabeling. Intuitively, a lower value of ϕDg

implies that the optimal policy π∗ is closely represented by Dg , or alternatively, the samples from
Dg are near optimal. As the lower primitive improves with training and is able to achieve harder
subgoals, and since Dg is re-populated using the improved lower primitive after every p timesteps,
πDg

continually gets closer to π∗, which results in reduced value of ϕD. This implies that due to
decreasing first term, the suboptimality bound in Equation 10 gets tighter, and consequently J(πH

θH
)

gets closer to optimal J(π∗) objective. Hence, our periodic re-population based approach generates
a natural curriculum of achievable subgoals for the lower primitive, which continuously improves
the performance by tightening the upper bound.

Effect of IL regularization on sub-optimality bounds Now, we focus on the second term in
Equation 10, which is TV divergence between πH

D (τ |s, g) and πH
θH

(τ |s, g) with expectation over
s ∼ κ, πH

D ∼ ΠH
D , g ∼ G. As before, D is replaced by dataset Dg . This term can be viewed as

imitation learning (IL) objective between expert demonstration policy πH
Dg

and current policy πH
θH

,
where TV divergence is the distance measure. Due to this IL regularization objective, as policy
πH
θH

gets closer to expert distribution policy πH
Dg

with training, the LHS sub-optimality bounds get
tighter. Thus, our proposed periodic IL regularization using Dg tightens the sub-optimality bounds
in Equation 10 with training, thereby improving performance.

Generalized framework We now derive our generalized framework for the joint optimization ob-
jective, where we can plug in off-the-shelf RL and IL methods to yield a generally applicable prac-
tical HRL algorithm. Considering sub-optimality is positive (Equation 9), we can use Equation 10
to derive the following objective:

J(π∗) ≥ J(πH
θH)︸ ︷︷ ︸

RL term

−λH ∗ ϕD︸ ︷︷ ︸
const. wrt Dg

−λH ∗ Es∼κ,πH
D∼ΠH

D ,g∼G[d(π
H
D (τ |s, g)||πH

θH (τ |s, g))]︸ ︷︷ ︸
IL regularization term

(12)

where (considering πH
D (τ |s, g) as πA, and πH

θH
(τ |s, g) as πB), d(πA||πB) = DTV (πA||πB).

Notably, the second term λH ∗ ϕD in RHS of Equation 12 is constant for a given dataset Dg .
Equation 12 can be perceived as a minorize maximize algorithm which intuitively means: the overall
objective can be optimized by (i) maximizing the objective J(πH

θH
) via RL, and (ii) minimizing the

distance measure d between πH
D and πH

θH
(IL regularization). This formulation serves as a framework

where we can plug in RL algorithm of choice for off-policy RL objective J(πH
θH

), and distance
function d of choice for IL regularization, to yield various joint optimization objectives.

In our setup, we plug in entropy regularized Soft Actor Critic (Haarnoja et al., 2018a) to maximize
J(πH

θH
). Notably, different parameterizations of d yield different imitation learning regularizers.

When d is formulated as Kullback–Leibler divergence, the IL regularizer takes the form of behav-
ior cloning (BC) objective (Nair et al., 2018) (which results in PEAR-BC), and when d is formulated
as Jensen-Shannon divergence, the imitation learning objective takes the form of inverse reinforce-
ment learning (IRL) objective (which results in PEAR-IRL). We consider both these objectives in
Section 5 and provide empirical performance results.

7

Published as a conference paper at ICLR 2025

(a) Maze navigation (b) Pick and place (c) Bin

(d) Hollow (e) Rope (f) Franka kitchen

Figure 3: Success rate comparison This figure compares the success rate performances on six sparse maze navigation and manipulation tasks.
The solid line and shaded region represent the mean and range of success rates across 5 seeds. As seen, PEAR shows impressive performance
and significantly outperforms the baselines.

5 EXPERIMENTS

In this section, we empirically answer the following questions: (i) does adaptive relabeling approach
outperform fixed relabeling based approaches, (ii) is PEAR able to mitigate non-stationarity, (iii)
does IL regularization boost performance in solving complex long horizon tasks, and (iv) What
is the contribution of each of our design choices? We accordingly perform experiments on six
Mujoco (Todorov et al., 2012) environments: (i) maze navigation, (ii) pick and place, (iii) bin,
(iv) hollow, (v) rope manipulation, and (vi) franka kitchen. Please refer to the supplementary for a
video depicting qualitative results, and the implementation code.

Environment and Implementation Details: We provide extensive environment and implementa-
tion details, including number and procedure of collecting demonstrations in Appendix A.3. Since
the environments are sparsely rewarded, they are complex tasks where the agent must explore the
environment extensively before receiving any rewards. Unless otherwise stated, we keep the train-
ing conditions consistent across all baselines to ascertain fair comparisons, and empirically tune the
hyper-parameter values of our method and all other baselines.

5.1 EVALUATION AND RESULTS

In Figure 3, we depict the success rate performance of PEAR and compare it with other baselines
averaged over 5 seeds. The primary goal of these comparisons is to verify that the proposed approach
indeed mitigates non-stationarity and demonstrates improved performance and training stability.

Comparing with fixed window based approach

RPL: In order to demonstrate the efficacy of adaptive relabeling, we compare our method with Relay
Policy Learning (RPL) baseline. RPL (Gupta et al., 2019) uses supervised pre-training followed by
relay fine tuning. In order to ascertain fair comparisons, we use an ablation of RPL which does
not use supervised pre-training. PEAR outperforms this baseline, which demonstrates that adaptive
relabeling outperforms fixed window based relabeling and is crucial for mitigating non-stationarity.
Since PEAR and RPL both employ jointly optimizing RL and IL based learning and only differ in
adaptive relabeling, it is evident that adaptive relabeling is crucial for generating feasible subgoals.

Comparing with hierarchical baselines

RAPS: RAPS (Dalal et al., 2021) uses hand designed action primitives at the lower level, where the
goal of the upper level is to pick the optimal sequence of action primitives. The performance of such
approaches significantly depends on the quality of action primitives, which require substantial effort
to hand-design. We found that except maze navigation task, RAPS is unable to perform well on
other tasks, which we believe is because selecting appropriate primitive sequences is hard on other
harder tasks. Notably, hand designing action primitives is exceptionally complex in environments
like rope manipulation. Hence, we do not evaluate RAPS in rope environment.

8

Published as a conference paper at ICLR 2025

(a) Maze (b) Pick and place (c) Bin (d) Hollow (e) Rope (f) Kitchen

Figure 4: Non-stationarity metric comparison This figure compares the average distance metric between the subgoals predicted by the
higher level policy and the subgoals achieved by the lower level policy during training. As seen, PEAR consistently produces efficient subgoals
leading to low distances between the predicted and achieved subgoals throughout the training process. This mitigates non-stationarity in HRL.

0 200k 400k
Timesteps

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

CRISP-BC
CRISP-IRL
CRISP-RPL

PEAR-IRL

PEAR-BC
PEAR-RPL

(a) Maze navigation

0 40k 80k
Timesteps

0.0

0.4

0.8

Su
cc

es
s R

at
e

CRISP-BC
CRISP-IRL
CRISP-RPL

(b) Pick and place

0 40k 80k 120k
Timesteps

0.0

0.4

0.8

Su
cc

es
s R

at
e

CRISP-BC
CRISP-IRL
CRISP-RPL

(c) Bin

0 50k 100k 150k
Timesteps

0.0

0.2

0.4

0.6

Su
cc

es
s R

at
e

CRISP-BC
CRISP-IRL
CRISP-RPL

(d) Hollow

0 4k 8k 12k
Timesteps

0.0

0.2

0.4

Su
cc

es
s R

at
e

CRISP-BC
CRISP-IRL
CRISP-RPL

(e) Rope

0 200k 400k
Timesteps

0.0

0.4

0.8
Su

cc
es

s R
at

e

CRISP-BC
CRISP-IRL
CRISP-RPL

(f) Franka kitchen

Figure 5: The success rate plots show success rate performance comparison between
PEAR-IRL (red), PEAR-BC (black) and PEAR-RPL (blue) ablation. PEAR-IRL
and PEAR-BC clearly outperform PEAR-RPL in almost all the tasks.

(a) Pick (b) Bin (c) Rope

Figure 6: Real world experiments in pick and place,
bin and rope environments. Row 1 depicts initial and
Row 2 depicts goal configuration.

HAC: Hierarchical actor critic (HAC) (Levy et al., 2018) deals with non-stationarity by relabeling
transitions while assuming an optimal lower primitive. Although HAC shows good performance in
maze navigation task, PEAR consistently outperforms HAC on all other tasks.

HIER-NEG and HIER: We also compare PEAR with two hierarchical baselines: HIER
and HIER-NEG, which are hierarchical baselines that do not leverage expert demonstrations.
HIER-NEG is a hierarchical baseline where the upper level is negatively rewarded if the lower
primitive fails to achieve the subgoal. Since HIER, HIER-NEG and PEAR all are hierarchical ap-
proaches, we use these baseline comparisons to motivate that the performance improvement is not
just due to use of hierarchical abstraction, but instead due to adaptive relabeling and primitive-
enabled regularization. This is clearly evidenced by superior performance of PEAR.

Comparing with non-hierarchical baselines

Additionally, we consider single-level Discriminator Actor Critic (DAC) (Kostrikov et al., 2019) that
leverages expert demos, single-level SAC (FLAT) baseline, and Behavior Cloning (BC) baselines.
However, they fail to perform well in any of the tasks.

5.2 ABLATIVE ANALYSIS

Here, we perform ablation analysis to elucidate the significance of our design choices. We choose the
hyper-parameter values after extensive experiments, and keep them consistent across all baselines.

Dealing with non-stationarity and infeasible subgoal generation in HRL: We assess whether
PEAR mitigates non-stationarity in HRL by comparing it with the vanilla HIER baseline, as shown
in Figure 4. We compute the average distance between subgoals predicted by the higher-level pol-
icy and those achieved by the lower-level primitive throughout training. A lower average distance
suggests that PEAR generates subgoals achievable by the lower primitive, inducing lower primitive
behavior to be optimal. Our findings reveal that PEAR consistently maintains low average dis-
tances, validating its effectiveness in reducing non-stationarity. Additionally, as seen in Figure 4,
post-training results show that PEAR achieves significantly lower distance values than the HIER
baseline, highlighting its ability to generate feasible subgoals through primitive regularization.

9

Published as a conference paper at ICLR 2025

0 200k 400k
Timesteps

0.0

0.4

0.8

Su
cc

es
s R

at
e

(a) Maze

0 40k 80k
Timesteps

0.0

0.4

0.8

Su
cc

es
s R

at
e

(b) Pick and Place

0 40k 80k 120k
Timesteps

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

(c) Bin

0 50k 100k 150k
Timesteps

0.0

0.4

0.8

Su
cc

es
s R

at
e

(d) Hollow

0 4k 8k 12k
Timesteps

0.1

0.2

0.3

Su
cc

es
s R

at
e

(e) Rope

0 200k 400k
Timesteps

0.0

0.4

0.8

Su
cc

es
s R

at
e

(f) Franka Kitchen

Figure 7: This figure illustrates the importance of margin surrogate objective by comparing PEAR-IRL and PEAR-BC (with margin objective)
with PEAR-IRL-No-Margin and PEAR-BC-No-Margin (without margin objective). PEAR-IRL and PEAR-BC outperform their non margin
objective counterparts in almost all tasks.

Additional Ablations: We verify the importance of adaptive relabeling by replacing it in
PEAR-IRL by fixed window relabeling (as in RPL (Gupta et al., 2019)). This ablation (PEAR-IRL)
consistently outperforms PEAR-RPL on all tasks (Figure 5), which shows the benefit of adaptive
relabeling. Further, we compare PEAR-IRL and PEAR-BC (with margin classification objectives),
with PEAR-IRL-No-Margin and PEAR-BC-No-Margin (without margin objectives) in Fig-
ure 7. PEAR-IRL and PEAR-BC outperform their No-Margin counterparts, which shows that this
objective efficiently deals with the issue of out-of-distribution states, and induces training stability.

Further, we analyse how varying Qthresh affects performance in Appendix A.4 Figure 8. We next
study the impact of varying p. Intuitively, if p is too large, it impedes generation of a good curriculum
of subgoals (Appendix A.4 Figure 9). Also, a low value of p may lead to frequent subgoal dataset
re-population and may impede stable learning. We also choose optimal window size k for RPL ex-
periments, as shown in Appendix A.4 Figure 10. We also evaluate learning rate ψ in Appendix A.4
Figure 11. If ψ is too small, PEAR is unable to utilize IL regularization, whereas conversely if ψ is
too large, the learned policy might overfit. We also deduce the optimal number of expert demonstra-
tions required in Appendix A.4 Figure 12. Next, we compare the performance of PEAR-IRL with
HER-BC, which is a single-level implementation of HER with expert demonstrations. As seen in
Appendix A.4 Figure 13, PEAR significantly outperforms this baseline, which demonstrates the ad-
vantage of our hierarchical formulation. We also provide qualitative visualizations in Appendix A.5.

Real world experiments: We perform experiments on real world robotic pick and place, bin and
rope environments (Fig 6). We use Realsense D435 depth camera to extract the robotic arm position,
block, bin, and rope cylinder positions. Computing accurate linear and angular velocities is hard in
real tasks, so we assign them small hard-coded values, which shows good performance. We per-
formed 5 sets of experiments with 10 trial each, and report the average success rates. PEAR-IRL
achieves accuracy of 0.8, 0.6, and 0.3, whereas PEAR-BC achieves accuracy of 0.8, 0, 0.3 on pick
and place, bin and rope environments. We also evaluate the performance of next best performing
RPL baseline, but it fails to achieve success in any of the tasks.

6 DISCUSSION

Limitations In this work, we assume availability of directed expert demonstrations, which we plan
to deal with in future. Additionally,Dg is periodically re-populated, which is an additional overhead
and might be a bottleneck in tasks where relabeling cost is high. Notably, we side-step this limitation
by passing the whole expert trajectory as a mini-batch for a single forward pass through lower
primitive. Nevertheless, we plan to deal with these limitations in future work.

Conclusion and future work We propose primitive enabled adaptive relabeling (PEAR), a HRL
and IL based approach that performs adaptive relabeling on a few expert demonstrations to solve
complex long horizon tasks. We perform comparisons with a various baselines and demonstrate that
PEAR shows strong results in simulation and real world robotic tasks. In future work, we plan to
address harder sequential decision making tasks, and plan to analyse generalization beyond expert
demonstrations. We hope that PEAR encourages future research in the area of adaptive relabeling
and primitive informed regularization, and leads to efficient approaches to solve long horizon tasks.

ACKNOWLEDGMENTS

This research work was partially supported by Research-I Foundation of the Department of CSE at
IIT Kanpur.

10

Published as a conference paper at ICLR 2025

REFERENCES

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal:
Offline primitive discovery for accelerating offline reinforcement learning. In Ad-
vances in Neural Information Processing Systems (NeurIPS), pages 1–12. Curran Asso-
ciates Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
1f1b5c3b8f1b5c3b8f1b5c3b8f1b5c3b-Paper.pdf.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017.

Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete Event Dynamic Systems, 13(4):341–379, 2003.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning
with imagined subgoals. In Proceedings of Advances in Neural Information Processing Systems
(NeurIPS), page TBD, 2021.

Murtaza Dalal, Deepak Pathak, and Ruslan Salakhutdinov. Accelerating robotic reinforcement
learning via parameterized action primitives. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2021. URL https://arxiv.org/abs/2110.15360.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In Advances in Neural Infor-
mation Processing Systems, pages 271–278. Morgan Kaufmann Publishers Inc., 1993.

Thomas G. Dietterich. Hierarchical reinforcement learning with the maxq value function de-
composition. Journal of Artificial Intelligence Research, 13:227–303, 2000. URL https:
//www.jair.org/index.php/jair/article/view/10266.

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation
learning. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

David Foster and Peter Dayan. Structure in the space of value functions. Machine Learning, 49
(2–3):325–346, 2002.

Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. Multi-level discovery of deep options.
In Proceedings of the 34th International Conference on Machine Learning (ICML), pages 1665–
1674. PMLR, 2017. URL https://proceedings.mlr.press/v70/fox17a.html.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. In Conference on Robot Learning (CoRL), pages 729–735.
PMLR, 2020.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 3389–3396. IEEE, 2017. doi: 10.1109/ICRA.
2017.7989385. URL https://ieeexplore.ieee.org/document/7989385.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long horizon tasks via imitation and reinforcement learning. In Conference on
Robot Learning (CoRL), 2019.

Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and Sergey Levine. Latent space policies
for hierarchical reinforcement learning. In International Conference on Machine Learning, pages
1851–1860. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th
International Conference on Machine Learning (ICML), pages 1861–1870. PMLR, 2018b. URL
https://proceedings.mlr.press/v80/haarnoja18b.html.

11

https://proceedings.neurips.cc/paper/2020/file/1f1b5c3b8f1b5c3b8f1b5c3b8f1b5c3b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1f1b5c3b8f1b5c3b8f1b5c3b8f1b5c3b-Paper.pdf
https://arxiv.org/abs/2110.15360
https://www.jair.org/index.php/jair/article/view/10266
https://www.jair.org/index.php/jair/article/view/10266
https://proceedings.mlr.press/v70/fox17a.html
https://ieeexplore.ieee.org/document/7989385
https://proceedings.mlr.press/v80/haarnoja18b.html

Published as a conference paper at ICLR 2025

Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. When waiting is not an option:
Learning options with a deliberation cost. In Proceedings of the 32nd AAAI Conference on Artifi-
cial Intelligence (AAAI), pages 3206–3213, 2018. URL https://ojs.aaai.org/index.
php/AAAI/article/view/11741.

Anna Harutyunyan, Peter Vrancx, Pierre-Luc Bacon, Doina Precup, and Ann Nowé. Learning with
options that terminate off-policy. In Proceedings of the 32nd AAAI Conference on Artificial In-
telligence (AAAI), pages 3201–3208, 2018. URL https://ojs.aaai.org/index.php/
AAAI/article/view/11740.

Anna Harutyunyan, Will Dabney, Diana Borsa, Nicolas Heess, Rémi Munos, and Doina Precup.
The termination critic. In Proceedings of the 36th International Conference on Machine Learn-
ing (ICML), pages 2645–2653, 2019. URL http://proceedings.mlr.press/v97/
harutyunyan19a.html.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Andrew
Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John P. Agapiou, Joel Z. Leibo, and Audrunas
Gruslys. Deep q-learning from demonstrations. In Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence (AAAI), pages 3223–3230, 2018. URL https://ojs.aaai.
org/index.php/AAAI/article/view/11794.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Ad-
vances in Neural Information Processing Systems (NeurIPS), pages 4565–4573,
2016. URL https://proceedings.neurips.cc/paper/2016/hash/
cc7e2b878868cbae992d1fb743995d8f-Abstract.html.

Leslie Pack Kaelbling. Learning to achieve goals. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI), pages 1094–1098, 1993.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforce-
ment learning for vision-based robotic manipulation. In Conference on robot learning, pages
651–673. PMLR, 2018.

Thomas Kipf, Yujia Li, Hanjun Dai, Vinicius Zambaldi, Alvaro Sanchez-Gonzalez, Edward Grefen-
stette, Pushmeet Kohli, and Peter Battaglia. Compile: Compositional imitation learning and
execution. In International Conference on Machine Learning, pages 3418–3428. PMLR, 2019.

Martin Klissarov, Pierre-Luc Bacon, Jean Harb, and Doina Precup. Learning options end-to-end for
continuous action tasks. In Proceedings of the 31st Conference on Neural Information Processing
Systems (NeurIPS) Hierarchical Reinforcement Learning Workshop, 2017. URL https://
arxiv.org/abs/1712.00004.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tomp-
son. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial
imitation learning. In 7th International Conference on Learning Representations (ICLR), 2019.
URL https://openreview.net/forum?id=Hk4fpoA5Km.

Abdul Rahman Kreidieh, Samyak Parajuli, Nathan Lichtlé, Yiling You, Rayyan Nasr, and Alexan-
dre M. Bayen. Inter-level cooperation in hierarchical reinforcement learning. In Proceed-
ings of the 19th International Conference on Autonomous Agents and MultiAgent Systems (AA-
MAS), pages 2000–2002, 2020. URL https://dl.acm.org/doi/10.5555/3398761.
3398990.

Sanjay Krishnan, Roy Fox, Ion Stoica, and Ken Goldberg. DDCO: Discovery of deep continuous
options for robot learning from demonstrations. In Proceedings of the 1st Annual Conference
on Robot Learning (CoRL), pages 418–437, 2017. URL https://proceedings.mlr.
press/v78/krishnan17a.html.

Sanjay Krishnan, Animesh Garg, Richard Liaw, Brijen Thananjeyan, Lauren Miller, Florian T. Poko-
rny, and Ken Goldberg. Swirl: A sequential windowed inverse reinforcement learning algorithm
for robot tasks with delayed rewards. The International Journal of Robotics Research, 38(2-
3):126–145, 2019. doi: 10.1177/0278364918784350. URL https://doi.org/10.1177/
0278364918784350.

12

https://ojs.aaai.org/index.php/AAAI/article/view/11741
https://ojs.aaai.org/index.php/AAAI/article/view/11741
https://ojs.aaai.org/index.php/AAAI/article/view/11740
https://ojs.aaai.org/index.php/AAAI/article/view/11740
http://proceedings.mlr.press/v97/harutyunyan19a.html
http://proceedings.mlr.press/v97/harutyunyan19a.html
https://ojs.aaai.org/index.php/AAAI/article/view/11794
https://ojs.aaai.org/index.php/AAAI/article/view/11794
https://proceedings.neurips.cc/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html
https://arxiv.org/abs/1712.00004
https://arxiv.org/abs/1712.00004
https://openreview.net/forum?id=Hk4fpoA5Km
https://dl.acm.org/doi/10.5555/3398761.3398990
https://dl.acm.org/doi/10.5555/3398761.3398990
https://proceedings.mlr.press/v78/krishnan17a.html
https://proceedings.mlr.press/v78/krishnan17a.html
https://doi.org/10.1177/0278364918784350
https://doi.org/10.1177/0278364918784350

Published as a conference paper at ICLR 2025

Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning. Technical report,
Tech. rep., 1998.

Seungjae Lee, Jigang Kim, Inkyu Jang, and H. Jin Kim. Dhrl: A graph-based approach for long-
horizon and sparse hierarchical reinforcement learning. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), page TBD. IEEE, 2023.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. Journal of Machine Learning Research, 17(39):1–40, 2016.

Andrew Levy, Robert Platt, and Kate Saenko. Hierarchical actor-critic. In Proceedings of
the 6th International Conference on Learning Representations (ICLR), 2018. URL https:
//openreview.net/forum?id=SJ3rcZ0cK7.

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, and Zhen Wang. Multi-class generative
adversarial networks with the l2 loss function. arXiv preprint arXiv:1611.04076, 5:1057–7149,
2016.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical rein-
forcement learning. In Advances in Neural Information Processing Systems, volume 31, pages
3303–3313, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
e6384711491713d29bc63fc5eeb5ba4f-Abstract.html.

Ofir Nachum, Haoran Tang, Xingyu Lu, Shixiang Gu, Honglak Lee, and Sergey Levine. Why
does hierarchy (sometimes) work so well in reinforcement learning? In Proceedings of the
33rd Conference on Neural Information Processing Systems (NeurIPS), 2019. URL https:
//arxiv.org/abs/1909.10618.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 6292–6299. IEEE, 2018. doi: 10.1109/
ICRA.2018.8463162. URL https://ieeexplore.ieee.org/document/8463162.

Soroush Nasiriany, Huihan Liu, and Yuke Zhu. Augmenting reinforcement learning with behavior
primitives for diverse manipulation tasks. In IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 7477–7484, 2022. URL https://arxiv.org/abs/2110.03655.

Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. In Advances
in Neural Information Processing Systems 10. MIT Press, 1998.

Karl Pertsch, Youngwoon Lee, and Joseph J. Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on Robot Learning (CoRL), pages 944–957, 2020. URL https:
//arxiv.org/abs/2010.11944.

Bilal Piot, Matthieu Geist, and Olivier Pietquin. Boosted bellman residual minimization handling
expert demonstrations. In European Conference on Machine Learning and Principles and Prac-
tice of Knowledge Discovery in Databases (ECML/PKDD), 2014.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. In Proceedings of Robotics: Science and Systems (RSS). Robotics:
Science and Systems Foundation, 2018.

Sasha Salter, Kristian Hartikainen, Walter Goodwin, and Ingmar Posner. Priors, hierarchy, and
information asymmetry for skill transfer in reinforcement learning. In Proceedings of the 5th
Conference on Robot Learning (CoRL), page TBD. PMLR, 2022a.

Sasha Salter, Markus Wulfmeier, Dhruva Tirumala, et al. Mo2: Model-based offline options. In
Conference on Lifelong Learning Agents, pages 902–919, 2022b.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxi-
mators. In Francis Bach and David Blei, editors, Proceedings of the 32nd International Con-
ference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages
1312–1320, Lille, France, 2015. PMLR. URL https://proceedings.mlr.press/v37/
schaul15.html.

13

https://openreview.net/forum?id=SJ3rcZ0cK7
https://openreview.net/forum?id=SJ3rcZ0cK7
https://proceedings.neurips.cc/paper/2018/hash/e6384711491713d29bc63fc5eeb5ba4f-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e6384711491713d29bc63fc5eeb5ba4f-Abstract.html
https://arxiv.org/abs/1909.10618
https://arxiv.org/abs/1909.10618
https://ieeexplore.ieee.org/document/8463162
https://arxiv.org/abs/2110.03655
https://arxiv.org/abs/2010.11944
https://arxiv.org/abs/2010.11944
https://proceedings.mlr.press/v37/schaul15.html
https://proceedings.mlr.press/v37/schaul15.html

Published as a conference paper at ICLR 2025

Konstantinos Shiarlis, Markus Wulfmeier, Shaun Salter, Shimon Whiteson, and Ingmar Posner.
Taco: Learning task decomposition via temporal alignment for control. In Proceedings of the
35th International Conference on Machine Learning, pages 4654–4663. PMLR, 2018.

Avi Singh, Huihan Liu, Gaoyue Zhou, Tianhe Yu, Pieter Abbeel, Chelsea Finn, and Sergey Levine.
Parrot: Data-driven behavioral priors for reinforcement learning. In 9th International Confer-
ence on Learning Representations (ICLR), 2021. URL https://arxiv.org/abs/2011.
10024.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Dhruva Tirumala, Alexandre Galashov, et al. Behavior priors for efficient reinforcement learning.
Journal of Machine Learning Research, 23(221):1–68, 2022.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033.
IEEE, 2012.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International conference on machine learning, pages 3540–3549. PMLR, 2017.

Markus Wulfmeier, Abbas Abdolmaleki, Roland Hafner, Jost Tobias Springenberg, et al. Regular-
ized hierarchical policies for compositional transfer in robotics. arXiv preprint arXiv:1906.11228,
2019.

Markus Wulfmeier, Dushyant Rao, Roland Hafner, et al. Data-efficient hindsight off-policy option
learning. In International Conference on Machine Learning (ICML), pages 11340–11350, 2021.

Tianren Zhang, Shangqi Guo, Tian Tan, Xiaolin Hu, and Feng Chen. Generat-
ing adjacency-constrained subgoals in hierarchical reinforcement learning. In Ad-
vances in Neural Information Processing Systems, volume 33, pages 9814–9826,
2020. URL https://proceedings.neurips.cc/paper/2020/file/
f5f3b8d720f34ebebceb7765e447268b-Paper.pdf.

14

https://arxiv.org/abs/2011.10024
https://arxiv.org/abs/2011.10024
https://proceedings.neurips.cc/paper/2020/file/f5f3b8d720f34ebebceb7765e447268b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f5f3b8d720f34ebebceb7765e447268b-Paper.pdf

Published as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1

2 Related Work 2

3 Background 3

4 Methodology 4

4.1 Primitive Enabled Adaptive Relabeling . 4

4.2 Joint optimization . 5

4.3 Sub-optimality analysis . 6

5 Experiments 8

5.1 Evaluation and Results . 8

5.2 Ablative analysis . 9

6 Discussion 10

A Appendix 16

A.1 Sub-optimality analysis . 16

A.1.1 Sub-optimality proof for higher level policy 16

A.1.2 Sub-optimality proof for lower level policy 16

A.2 Generating expert demonstrations . 17

A.2.1 Maze navigation task . 17

A.2.2 Pick and place task . 17

A.2.3 Bin task . 17

A.2.4 Hollow task . 18

A.2.5 Rope Manipulation Environment . 18

A.3 Environment and implementation details . 18

A.3.1 Maze navigation task . 19

A.3.2 Pick and place, Bin and Hollow Environments 19

A.3.3 Rope Manipulation Environment . 20

A.3.4 Impact Statement . 20

A.4 Ablation experiments . 20

A.5 Qualitative visualizations . 21

15

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 SUB-OPTIMALITY ANALYSIS

Here, we present the proofs for Theorem 1 for higher and lower level policies, which provide sub-
optimality bounds on the optimization objectives.

A.1.1 SUB-OPTIMALITY PROOF FOR HIGHER LEVEL POLICY

The sub-optimality of upper policy πH
θH

, over c length sub-trajectories τ sampled from dπ
∗

c can be
bounded as:

|J(π∗)− J(πH
θH)| ≤ λH ∗ ϕD + λH ∗ Es∼κ,πH

D∼ΠH
D ,g∼G[DTV (π

H
D (τ |s, g)||πH

θH (τ |s, g))]] (13)

where λH = 2
(1−γ)(1−γc)Rmax∥d

π∗
c

κ ∥∞

Proof. We extend the suboptimality bound from (Ajay et al., 2020) between goal conditioned poli-
cies π∗ and πH

θH
as follows:

|J(π∗)− J(πH
θH)| ≤ 2

(1− γ)(1− γc)
RmaxEs∼dπ∗

c ,g∼G[DTV (π
∗(τ |s, g)||πH

θH (τ |s, g))] (14)

By applying triangle inequality:

DTV (π
∗(τ |s, g)||πH

θH (τ |s, g)) ≤ DTV (π
∗(τ |s, g)||πH

D (τ |s, g)) +DTV (π
H
D (τ |s, g)||πH

θH (τ |s, g))
(15)

Taking expectation wrt s ∼ κ, g ∼ G and πH
D ∼ ΠH

D ,

Es∼κ,g∼G[DTV (π
∗(τ |s, g)||πH

θH (τ |s, g))] ≤ Es∼κ,πH
D∼ΠH

D ,g∼G[DTV (π
∗(τ |s, g)||πH

D (τ |s, g))]+

Es∼κ,πH
D∼ΠH

D ,g∼G[DTV (π
H
D (τ |s, g)||πH

θH (τ |s, g))]
(16)

Since π∗ is ϕD common in ΠH
D , we can write 16 as:

Es∼κ,g∼G[DTV (π
∗(τ |s, g)||πH

θH (τ |s, g))] ≤
ϕD + Es∼κ,πH

D∼ΠH
D ,g∼G[DTV (π

H
D (τ |s, g)||πH

θH (τ |s, g))]
(17)

Substituting the result from align 17 in align 14, we get

|J(π∗)− J(πH
θH)| ≤ λH ∗ ϕD + λH ∗ Es∼κ,πH

D∼ΠH
D ,g∼G[DTV (π

H
D (τ |s, g)||πH

θH (τ |s, g))]] (18)

where λH = 2
(1−γ)(1−γc)Rmax∥d

π∗
c

κ ∥∞

A.1.2 SUB-OPTIMALITY PROOF FOR LOWER LEVEL POLICY

Let the optimal lower level policy be π∗∗. The suboptimality of lower primitive πL
θL

can be bounded
as follows:

|J(π∗∗)− J(πL
θL)| ≤ λL ∗ ϕD + λL ∗ Es∼κ,πL

D∼ΠL
D,sg∼πH

θH

[DTV (π
L
D(τ |s, sg)||πL

θL(τ |s, sg))]]
(19)

where λL = 2
(1−γ)2Rmax∥d

π∗∗
c

κ ∥∞

Proof. We extend the suboptimality bound from (Ajay et al., 2020) between goal conditioned poli-
cies π∗∗ and πL

θL
as follows:

|J(π∗∗)− J(πL
θL)| ≤

2

(1− γ)2
RmaxEs∼dπ∗∗

c ,sg∼πH
θH

[DTV (π
∗∗(τ |s, sg)||πL

θL(τ |s, sg))] (20)

16

Published as a conference paper at ICLR 2025

By applying triangle inequality:

DTV (π
∗∗(τ |s, sg)||πL

θL(τ |s, sg)) ≤ DTV (π
∗∗(τ |s, sg)||πL

D(τ |s, sg))+
DTV (π

L
D(τ |s, sg)||πL

θL(τ |s, sg))
(21)

Taking expectation wrt s ∼ κ, sg ∼ πH
θH

and πL
D ∼ ΠL

D,

Es∼κ,sg∼πH
θH

[DTV (π
∗∗(τ |s, sg)||πL

θL(τ |s, sg))] ≤

Es∼κ,πL
D∼ΠL

D,sg∼πH
θH

[DTV (π
∗∗(τ |s, sg)||πL

D(τ |s, sg))]+

Es∼κ,πL
D∼ΠL

D,sg∼πH
θH

[DTV (π
L
D(τ |s, sg)||πL

θL(τ |s, sg))]

(22)

Since π∗∗ is ϕD common in ΠL
D, we can write 22 as:

Es∼κ,sg∼πH
θH

[DTV (π
∗∗(τ |s, sg)||πL

θL(τ |s, sg))] ≤

ϕD + Es∼κ,πL
D∼ΠL

D,sg∼πH
θH

[DTV (π
L
D(τ |s, sg)||πL

θL(τ |s, sg))]
(23)

Substituting the result from align 23 in align 20, we get

|J(π∗∗)− J(πL
θL)| ≤ λL ∗ ϕD + λL ∗ Es∼κ,πL

D∼ΠL
D,sg∼πH

θH

[DTV (π
L
D(τ |s, sg)||πL

θL(τ |s, sg))]]
(24)

where λL = 2
(1−γ)2Rmax∥d

π∗∗
c

κ ∥∞

A.2 GENERATING EXPERT DEMONSTRATIONS

For maze navigation, we use path planning RRT (LaValle, 1998) algorithm to generate expert
demonstration trajectories. For pick and place, we hard coded an optimal trajectory generation pol-
icy for generating demonstrations, although they can also be generated using Mujoco VR (Todorov
et al., 2012). For kitchen task, the expert demonstrations are collected using Puppet Mujoco VR sys-
tem (Fu et al., 2020). In rope manipulation task, expert demonstrations are generated by repeatedly
finding the closest corresponding rope elements from the current rope configuration and final goal
rope configuration, and performing consecutive pokes of a fixed small length on the rope element in
the direction of the goal configuration element. The detailed procedure are as follows:

A.2.1 MAZE NAVIGATION TASK

We use the path planning RRT (LaValle, 1998) algorithm to generate optimal paths P =
(pt, pt+1, pt+2, ...pn) from the current state to the goal state. RRT has privileged information about
the obstacle position which is provided to the methods through state. Using these expert paths, we
generate state-action expert demonstration dataset for the lower level policy.

A.2.2 PICK AND PLACE TASK

In order to generate expert demonstrations, we can either use a human expert to perform the pick and
place task in virtual reality based Mujoco simulation, or hard code a control policy. We hard-coded
the expert demonstrations in our setup. In this task, the robot firstly picks up the block using robotic
gripper, and then takes it to the target goal position. Using these expert trajectories, we generate
expert demonstration dataset for the lower level policy.

A.2.3 BIN TASK

In order to generate expert demonstrations, we can either use a human expert to perform the bin task
in virtual reality based Mujoco simulation, or hard code a control policy. We hard-coded the expert
demonstrations in our setup. In this task, the robot firstly picks up the block using robotic gripper,
and then places it in the target bin. Using these expert trajectories, we generate expert demonstration
dataset for the lower level policy.

17

Published as a conference paper at ICLR 2025

A.2.4 HOLLOW TASK

In order to generate expert demonstrations, we can either use a human expert to perform the hollow
task in virtual reality based Mujoco simulation, or hard code a control policy. We hard-coded the
expert demonstrations in our setup. In this task, the robotic gripper has to pick up the square hollow
block and place it such that a vertical structure on the table goes through the hollow block. Using
these expert trajectories, we generate expert demonstration dataset for the lower level policy.

A.2.5 ROPE MANIPULATION ENVIRONMENT

We hand coded an expert policy to automatically generate expert demonstrations e =
(se0, s

e
1, . . . , s

e
T−1), where sei are demonstration states. The states sei here are rope configuration

vectors. The expert policy is explained below.

Let the starting and goal rope configurations be sc and gc. We find the cylinder position pair
(scm, gcm) where m ∈ [1, n], such that scm and gcm are farthest from each other among all other
cylinder pairs. Then, we perform a poke (x, y, θ) to drag scm towards gcm. The (x, y) position of
the poke is kept close to scm, and poke direction θ is the direction from scm towards gcm. After the
poke execution, the next pair of farthest cylinder pair is again selected and another poke is executed.
This is repeatedly done for k pokes, until either the rope configuration sc comes within δ distance
of goal gc, or we reach maximum episode horizon T . Although, this policy is not the perfect policy
for goal based rope manipulation, but it still is a good expert policy for collecting demonstrations
D. Moreover, as our method requires states and not primitive actions (pokes), we can use these
demonstrations D to collect good higher level subgoal dataset Dg using primitive parsing.

A.3 ENVIRONMENT AND IMPLEMENTATION DETAILS

Here, we provide extensive environment and implementation details for various environments. We
perform the experiments on two system each with Intel Core i7 processors, equipped with 48GB
RAM and Nvidia GeForce GTX 1080 GPUs. We use 28 expert demos for franks kitchen task
and 100 demos in all other tasks, and provide the procedures for collecting expert demos for all
tasks in Appendix A.2. We empirically increased the number of demonstrations until there was no
significant improvement in the performance. In our experiments, we use Soft Actor Critic (Haarnoja
et al., 2018b). The actor, critic and discriminator networks are formulated as 3 layer fully connected
networks with 512 neurons in each layer.

When calculating p, we normalize QπL values of a trajectory before comparing with Qthresh:
((QπL(se0, s

e
i , ai) − min_value)/max_value) ∗ 100 for i = 1 to T − 1. The experiments are

run for 4.73e5, 1.1e5, 1.32E5, 1.8E5, 1.58e6, and 5.32e5 timesteps in maze, pick and place, bin,
hollow, rope and kitchen respectively. The regularization weight hyper-parameter Ψ is set at 0.001,
0.005, 0.005, 0.005, 0.005, and 0.005, the population hyper-parameter p is set to be 1.1e4, 2500,
2500, 2500, 3.9e5, and 1.4e4, and distance threshold hyper-parameter Qthresh is set at 10, 0, 0, 0,
0, and 0 for maze, pick and place, bin, hollow, rope and kitchen tasks respectively.

In maze navigation, a 7-DOF robotic arm navigates across randomly generated four room mazes,
where the closed gripper (fixed at table height) has to navigate across the maze to the goal position.
In pick and place task, the 7-DOF robotic arm gripper has to navigate to the square block, pick it up
and bring it to the goal position. In bin task, the 7-DOF robotic arm gripper has to pick the square
block and place the block inside the bin. In hollow task, the 7-DOF robotic arm gripper has to
pick a square hollow block and place it such that a fixed vertical structure on the table goes through
the hollow block. In rope manipulation task, a deformable soft rope is kept on the table and the
7-DoF robotic arm performs pokes to nudge the rope towards the desired goal rope configuration.
The rope manipulation task involves learning challenging dynamics and goes beyond prior work on
navigation-like tasks where the goal space is limited.

In the kitchen task, the 9-DoF franka robot has to perform a complex multi-stage task in order to
achieve the final goal. Although many such permutations can be chosen, we formulate the following
task: the robot has to first open the microwave door, then switch on the specific gas knob where the
kettle is placed. In maze navigation, upper level predicts a subgoal, and the lower level primitive
travels in a straight line towards the predicted goal. In pick and place, bin and hollow tasks, we
design three primitives, gripper-reach: where the gripper goes to given position (xi, yi, zi), gripper-

18

Published as a conference paper at ICLR 2025

open: opens the gripper, and gripper-close: closes the gripper. In kitchen environment, we use the
action primitives implemented in RAPS (Dalal et al., 2021). While using RAPS baseline, we hand
designed action primitives, which we provide in detail in Section A.3.

A.3.1 MAZE NAVIGATION TASK

In this environment, a 7-DOF robotic arm gripper navigates across random four room mazes. The
gripper arm is kept closed and the positions of walls and gates are randomly generated. The table is
discretized into a rectangularW ∗H grid, and the vertical and horizontal wall positionsWP andHP

are randomly picked from (1,W − 2) and (1, H − 2) respectively. In the four room environment
thus constructed, the four gate positions are randomly picked from (1,WP − 1), (WP + 1,W − 2),
(1, HP − 1) and (HP + 1, H − 2). The height of gripper is kept fixed at table height, and it has to
navigate across the maze to the goal position(shown as red sphere).

The following implementation details refer to both the higher and lower level polices, unless oth-
erwise explicitly stated. The state and action spaces in the environment are continuous. The state
is represented as the vector [p,M], where p is current gripper position andM is the sparse maze
array. The higher level policy input is thus a concatenated vector [p,M, g], where g is the target
goal position, whereas the lower level policy input is concatenated vector [p,M, sg], where sg is
the sub-goal provided by the higher level policy. The current position of the gripper is the current
achieved goal. The sparse maze arrayM is a discrete 2D one-hot vector array, where 1 represents
presence of a wall block, and 0 absence.

In our experiments, the size of p and M are kept to be 3 and 110 respectively. The upper level
predicts subgoal sg , hence the higher level policy action space dimension is the same as the dimen-
sion of goal space of lower primitive. The lower primitive action a which is directly executed on
the environment, is a 4 dimensional vector with every dimension ai ∈ [0, 1]. The first 3 dimensions
provide offsets to be scaled and added to gripper position for moving it to the intended position. The
last dimension provides gripper control(0 implies a fully closed gripper, 0.5 implies a half closed
gripper and 1 implies a fully open gripper). We select 100 randomly generated mazes each for train-
ing, testing and validation. For selecting train, test and validation mazes, we first randomly generate
300 distinct mazes, and then randomly divide them into 100 train, test and validation mazes each.
We use off-policy Soft Actor Critic (Haarnoja et al., 2018b) algorithm for optimizing RL objective
in our experiments.

A.3.2 PICK AND PLACE, BIN AND HOLLOW ENVIRONMENTS

In the pick and place environment, a 7-DOF robotic arm gripper has to pick a square block and
bring/place it to a goal position. We set the goal position slightly higher than table height. In this
complex task, the gripper has to navigate to the block, close the gripper to hold the block, and then
bring the block to the desired goal position. In the bin environment, the 7-DOF robotic arm gripper
has to pick a square block and place it inside a fixed bin. In the hollow environment, the 7-DOF
robotic arm gripper has to pick a hollow plate from the table and place it on the table such that its
hollow center goes through a fixed vertical pole placed on the table.

In all the three environments, the state is represented as the vector [p, o, q, e], where p is current
gripper position, o is the position of the block object placed on the table, q is the relative position of
the block with respect to the gripper, and e consists of linear and angular velocities of the gripper
and the block object. The higher level policy input is thus a concatenated vector [p, o, q, e, g], where
g is the target goal position. The lower level policy input is concatenated vector [p, o, q, e, sg], where
sg is the sub-goal provided by the higher level policy. The current position of the block object is the
current achieved goal.

In our experiments, the sizes of p, o, q, e are kept to be 3, 3, 3 and 11 respectively. The upper
level predicts subgoal sg , hence the higher level policy action space and goal space have the same
dimension. The lower primitive action a is a 4 dimensional vector with every dimension ai ∈ [0, 1].
The first 3 dimensions provide gripper position offsets, and the last dimension provides gripper
control (0 means closed gripper and 1 means open gripper). While training, the position of block
object and goal are randomly generated (block is always initialized on the table, and goal is always
above the table at a fixed height). We select 100 random each for training, testing and validation.
For selecting train, test and validation mazes, we first randomly generate 300 distinct environments

19

Published as a conference paper at ICLR 2025

with different block and target goal positions, and then randomly divide them into 100 train, test and
validation mazes each. We use off-policy Soft Actor Critic (Haarnoja et al., 2018b) algorithm for
the RL objective in our experiments.

A.3.3 ROPE MANIPULATION ENVIRONMENT

In the robotic rope manipulation task, a deformable rope is kept on the table and the robotic arm
performs pokes to nudge the rope towards the desired goal rope configuration. The task horizon is
fixed at 25 pokes. The deformable rope is formed from 15 constituent cylinders joined together. The
following implementation details refer to both the higher and lower level polices, unless otherwise
explicitly stated. The state and action spaces in the environment are continuous. The state space
for the rope manipulation environment is a vector formed by concatenation of the intermediate joint
positions. The upper level predicts subgoal sg for the lower primitive. The action space of the poke
is (x, y, η), where (x, y) is the initial position of the poke, and η is the angle describing the direction
of the poke. We fix the poke length to be 0.08.

While training our hierarchical approach, we select 100 randomly generated initial and final rope
configurations each for training, testing and validation. For selecting train, test and validation con-
figurations, we first randomly generate 300 distinct configurations, and then randomly divide them
into 100 train, test and validation mazes each. We use off-policy Soft Actor Critic (Haarnoja et al.,
2018b) algorithm for optimizing RL objective in our experiments.

A.3.4 IMPACT STATEMENT

Our proposed approach and algorithm are not anticipated to result in immediate technological
advancements. Instead, our main contributions are conceptual, targeting fundamental aspects of
Hierarchical Reinforcement Learning (HRL). By introducing primitive-enabled regularization, we
present a novel framework that we believe holds significant potential to advance HRL research and
its related fields. This conceptual groundwork lays the foundation for future investigations and could
drive progress in HRL and associated domains.

A.4 ABLATION EXPERIMENTS

Here, we present the ablation experiments in all six task environments. The ablation analysis in-
cludes comparison with HAC-demos and HBC (Hierarchical behavior cloning) (Figure 14), choos-
ing RPL Qthresh hyperparameter (Figure 8), p hyperparameter (Figure 9), RPL window size k hy-
perparameter (Figure 10), learning weight hyperparameter ϕ (Figure 11), comparisons with varying
number of expert demonstrations used during relabeling and training (Figure 12), comparison with
HER-BC ablation (Figure 13), effect of sub-optimal demonstrations (Figure 15).

0 100k 200k
Timesteps

0.0

0.2

0.4

0.6

Su
cc

es
s R

at
e d_thresh=0

d_thresh=10
d_thresh=30
d_thresh=60

(a) Maze

0 20k 40k
Timesteps

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e d_thresh=0

d_thresh=10
d_thresh=30
d_thresh=60

(b) Pick and place

0 40k 80k 120k
Timesteps

0.0

0.4

0.8

Su
cc

es
s R

at
e d_thresh=0

d_thresh=10
d_thresh=30
d_thresh=60

(c) Bin

0 50k 100k 150k
Timesteps

0.0

0.4

0.8

Su
cc

es
s R

at
e d_thresh=0

d_thresh=10
d_thresh=30
d_thresh=60

(d) Hollow

0 4k 8k 12k
Timesteps

0.0

0.1

0.1

0.2

0.2

Su
cc

es
s R

at
e

d_thresh=0
d_thresh=60

(e) Rope

0 100k 200k 300k
Timesteps

0.0

0.2

0.4

0.6

Su
cc

es
s R

at
e

d_thresh=0
d_thresh=30
d_thresh=70

(f) Franka kitchen

Figure 8: The success rate plots show the performance of PEAR for various values of Qthresh

parameter versus number of training timesteps.

20

Published as a conference paper at ICLR 2025

0 100k 200k
Timesteps

0.0

0.2

0.4

0.6

Su
cc

es
s R

at
e

p=100
p=150
p=50

(a) Maze

0 20k 40k
Timesteps

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

p=100
p=150
p=50

(b) Pick and place

0 40k 80k 120k
Timesteps

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e p=100

p=150
p=20
p=50

(c) Bin

0 100k 200k
Timesteps

0.0

0.2

0.4

0.6

0.8
Su

cc
es

s R
at

e

p=100
p=150
p=50

(d) Hollow

0 4k 8k
Timesteps

0.0

0.2

0.2

Su
cc

es
s R

at
e

p=100
p=150

(e) Rope

0 100k 200k
Timesteps

0.0

0.1

0.2

0.3

Su
cc

es
s R

at
e

p=100
p=150
p=50

(f) Franka kitchen

Figure 9: The success rate plots show the performance of PEAR for various values of population
number p parameter versus number of training timesteps.

0 200k 400k
Timesteps

0.0

0.2

0.4

0.6

Su
cc

es
s R

at
e window=15

window=30
window=50
window=70

(a) Maze navigation

0 40k 80k
Timesteps

0.0

0.0

0.0

0.1

Su
cc

es
s R

at
e window=10

window=20
window=30
window=5

(b) Pick and place

0 40k 80k 120k
Timesteps

0.0

0.0

0.0

0.0

Su
cc

es
s R

at
e

window=10
window=20
window=30

(c) Bin

0 100k 200k 300k
Timesteps

0.0

0.1

0.2

0.3

Su
cc

es
s R

at
e window=10

window=20
window=30
window=4

(d) Hollow

0 2k 4k 6k
Timesteps

0.1

0.2

0.2

0.2

Su
cc

es
s R

at
e

window=3
window=5
window=7

(e) Rope

0 100k 200k 300k 400k
Timesteps

0.0

0.2

0.4
Su

cc
es

s R
at

e window=10
window=17
window=20
window=5

(f) Franka kitchen

Figure 10: The success rate plots show the performance of RPL for values of k window size param-
eter versus number of training epochs.

A.5 QUALITATIVE VISUALIZATIONS

In this subsection, we provide visualizations for various environments.

21

Published as a conference paper at ICLR 2025

0 200k 400k
Timesteps

0.0

0.4

0.8

Su
cc

es
s R

at
e psi=0.001

psi=0.005
psi=0.01
psi=0.015

(a) Maze navigation

0 40k 80k
Timesteps

0.0

0.4

0.8

Su
cc

es
s R

at
e psi=0.001

psi=0.005
psi=0.01
psi=0.015

(b) Pick and place

0 40k 80k 120k
Timesteps

0.0

0.4

0.8

Su
cc

es
s R

at
e

psi=0.001
psi=0.01
psi=0.05

(c) Bin

0 40k 80k 120k
Timesteps

0.0

0.2

0.4

0.6

Su
cc

es
s R

at
e psi=0.001

psi=0.005
psi=0.01
psi=0.05

(d) Hollow

0 4k 8k
Timesteps

0.0

0.2

0.2

Su
cc

es
s R

at
e psi=0.001

psi=0.005
psi=0.01
psi=0.015

(e) Rope

0 100k 200k 300k
Timesteps

0.0

0.2

0.4

0.6

Su
cc

es
s R

at
e psi=0.001

psi=0.005
psi=0.01
psi=0.015

(f) Franka kitchen

Figure 11: The success rate plots show performance of PEAR for values of learning weight param-
eter ψ versus number of training timesteps.

0 50k 100k 150k 200k
Timesteps

0.0

0.2

0.4

0.6

Su
cc

es
s R

at
e

num_demos=100
num_demos=30
num_demos=70

(a) Maze navigation

0 20k 40k 60k
Timesteps

0.0

0.4

0.8

Su
cc

es
s R

at
e

num_demos=100
num_demos=30
num_demos=70

(b) Pick and place

0 40k 80k
Timesteps

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

num_demos=100
num_demos=30
num_demos=50

(c) Bin

0 40k 80k 120k
Timesteps

0.0

0.1

0.2

0.3

Su
cc

es
s R

at
e

num_demos=100
num_demos=30
num_demos=70

(d) Hollow

0 4k 8k
Timesteps

0.1

0.1

0.1

0.2

Su
cc

es
s R

at
e

num_demos=100
num_demos=30
num_demos=70

(e) Rope

0 100k 200k 300k
Timesteps

0.0

0.4

0.8
Su

cc
es

s R
at

e

num_demos=14
num_demos=28
num_demos=7

(f) Franka kitchen

Figure 12: The success rate plots show success rate performance plots of varying number of expert
demonstrations versus number of training epochs.

(a) Maze (b) Pick and place (c) Bin

(d) Hollow (e) Rope (f) Kitchen

Figure 13: Comparison with HER-BC baseline: The figure depicts success rates plots of PEAR-
IRL compared with HER-BC baseline, which is a single-level implementation of Hindsight Expe-
rience Replay (HER) with expert demonstrations. As can be seen, PEAR consistently outperforms
this baseline, which clearly demonstrates the advantages of using our hierarchical formulation in
such complex tasks.

22

Published as a conference paper at ICLR 2025

(a) Maze navigation (b) Pick and place (c) Bin

(d) Hollow (e) Rope (f) Franka kitchen

Figure 14: Success rate comparison: PEAR-IRL vs HAC-demos vs HBC This figure compares
the success rate performances of PEAR-IRL with HAC-demos, and HBC on six sparse maze navi-
gation and manipulation tasks. HAC-demos uses hierarchical actor critic (Levy et al., 2018) as the
RL objective and is jointly optimized using additional behavior cloning objective, where the lower
level uses primitive expert demonstrations and the upper level uses subgoal demonstrations extracted
using fixed window based approach (as in RPL (Gupta et al., 2019)). HBC (Hierarchical behavior
cloning) uses the same demonstrations as HAC-demos at both levels, but it is trained using only
behavior cloning objective (thus, it does not employ RL). As seen in figure, although HAC-demos
shows good performance in the easier maze navigation environment, both HAC-demos and HBC
fail to solve the tasks in harder environments, and PEAR-IRL significantly outperforms both the
baselines. The solid line and shaded region represent the mean and range of success rates across 5
seeds.

(a) Maze navigation (b) Pick and place

(c) Rope (d) Franka kitchen

Figure 15: Ablation with sub-optimal demonstrations: The success rate plots show the perfor-
mance of PEAR-IRL with varying number of sub-optimal demonstrations in the expert demon-
stration dataset. As can be seen, the performance suffers with increasing number of sub-optimal
demonstrations.

23

Published as a conference paper at ICLR 2025

Figure 16: Successful visualization: The visualization is a successful attempt at performing maze navigation task

Figure 17: Successful visualization: The visualization is a successful attempt at performing pick navigation task

Figure 18: Successful visualization: The visualization is a successful attempt at performing bin task

Figure 19: Successful visualization: The visualization is a successful attempt at performing hollow task

Figure 20: Successful visualization: The visualization is a successful attempt at performing rope navigation task

Figure 21: Successful visualization: The visualization is a successful attempt at performing kitchen navigation task

24

	Introduction
	Related Work
	Background
	Methodology
	Primitive Enabled Adaptive Relabeling
	Joint optimization
	Sub-optimality analysis

	Experiments
	Evaluation and Results
	Ablative analysis

	Discussion
	Appendix
	Sub-optimality analysis
	Sub-optimality proof for higher level policy
	Sub-optimality proof for lower level policy

	Generating expert demonstrations
	Maze navigation task
	Pick and place task
	Bin task
	Hollow task
	Rope Manipulation Environment

	Environment and implementation details
	Maze navigation task
	Pick and place, Bin and Hollow Environments
	Rope Manipulation Environment
	Impact Statement

	Ablation experiments
	Qualitative visualizations

