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Abstract
Recent efforts have been made to integrate self-
supervised learning (SSL) with the framework of
federated learning (FL). One unique challenge
of federated self-supervised learning (FedSSL)
is that the global objective of FedSSL usually
does not equal the weighted sum of local SSL ob-
jectives. Consequently, conventional approaches,
such as federated averaging (FedAvg), fail to pre-
cisely minimize the FedSSL global objective, of-
ten resulting in suboptimal performance, espe-
cially when data is non-i.i.d.. To fill this gap,
we propose a provable FedSSL algorithm, named
FedSC, based on the spectral contrastive objec-
tive. In FedSC, clients share correlation matri-
ces of data representations in addition to model
weights periodically, which enables inter-client
contrast of data samples in addition to intra-client
contrast and contraction, resulting in improved
quality of data representations. Differential pri-
vacy (DP) protection is deployed to control the
additional privacy leakage on local datasets when
correlation matrices are shared. We also provide
theoretical analysis on the convergence and extra
privacy leakage. The experimental results validate
the effectiveness of our proposed algorithm.

1. Introduction
As a type of unsupervised learning, self-supervised learning
(SSL) aims to learn a structured representation space, in
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which data similarity can be measured by simple metrics,
such as cosine and Euclidean distances, with unlabeled data
(Chen et al., 2020; Chen & He, 2021; Grill et al., 2020;
He et al., 2020; Zbontar et al., 2021; Bardes et al., 2021;
HaoChen et al., 2021). On top of the foundation model
trained with SSL, a simple linear layer, also known as linear
probe, is sufficient to perform well on a wide range of down-
stream tasks with minimal labeled data. Resulting from
its high label efficiency, SSL has been adopted in a variety
of applications, such as natural language processing (He
et al., 2021; Brown et al., 2020) and computer vision (Ravi
& Larochelle, 2016; Hu et al., 2021).

However, SSL algorithms are often executed on massive
amounts of unlabeled data that may be dispersed across
various locations. Moreover, the progressively tightening
privacy-protection regulations frequently inhibit the central-
ization of data. Within this context, the federated learning
(FL) framework is often favored, wherein a central server
can learn from private data located on clients without the
data being shared directly (McMahan et al., 2017; Stich,
2018; Li et al., 2019).

Despite the extensive study and theoretical guarantees
(Stich, 2018; Li et al., 2019) associated with conventional
FL, its generalization to incorporate with SSL is not straight-
forward. The fundamental challenge arises from the fact
that, unlike FL within supervised learning, the global ob-
jective of FedSSL usually does not equal the weighted sum
of local SSL objectives. Consequently, conventional FL
approaches, e.g. federated averaging (FedAvg), can not
minimize the exact global objective of FedSSL especially
when data is non-independent and identically distributed
(non-i.i.d.). From the perspective of contrastive learning,
FedAvg only contrasts data samples within the same client
(intra-client) rather than those across different clients (inter-
client). Therefore, the learned representation might not be
as effective at distinguishing inter-client data samples as it
is with intra-client data samples.

Although recent works on FedSSL have shown great nu-
merical success (Zhuang et al., 2021; 2022; Zhang et al.,
2023; Han et al., 2022), the majority of them either overlook
previously mentioned challenge or fail to offer a theoretical
analysis. FedU (Zhuang et al., 2021) and FedEMA (Zhuang
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Table 1. A comparison with SOTAs: FedSC (proposed) is the only
one applying DP mechanism on components other than encoder.
Moreover, FedSC is the only provable method among them.

Info. shared
besides encoder

Privacy
Protection Provable

FedU predictor × ×
FedEMA predictor × ×

FedX N/A × ×
FedCA representations × ×
FedSC correlation matrices

√ √

et al., 2021) lack the formulation of global objective and
thus fail to provide theoretical analysis. FedCA (Zhang
et al., 2023) notices the unique challenge and proposes to
share data representations, which, however, results in signif-
icant privacy leakage and communication overhead. Unlike
FedU and FedEMA, which involve sharing predictors, and
FedCA, which shares data representations, our proposed
FedSC results in much lower communication costs, since
sharing correlation matrices requires transmitting far fewer
parameters than what is needed for predictors or data repre-
sentations. FedX (Han et al., 2022) does not share additional
information besides encoders, but still lacks theoretical anal-
ysis. Among all these works, only our proposed FedSC
deploys differential privacy (DP) protection to mitigate the
extra privacy leakage from components other than encoders.
Moreover, FedSC is the only provable FedSSL method to
the best knowledge of the authors. Table 1 summarizes the
difference between this work and state of the arts (SOTAs).

Contribution. In this work, we propose a novel FedSSL
formulation based on the spectral contrastive (SC) objective
(HaoChen et al., 2021). The formulation clarifies all the
necessary components in FedSSL encompassing intra-client
contraction, intra-client contrast and inter-client contrast.
Building upon this formulation, we propose the first prov-
able FedSSL method, namely FedSC, with the convergence
guarantee to the solutions of centralized SSL. Unlike Fe-
dAvg, clients in FedSC share correlation matrices of their
local data representations in addition to the weights of local
models. By leveraging the aggregated correlation matrix
from the server, inter-client contrast of data samples, which
is overlooked in FedAvg, can be performed in addition to
local contrast and contraction. To better control and quan-
tify the extra privacy leakage, we apply DP mechanism to
correlation matrices when they are shared. We made theo-
retical analysis of FedSC, demonstrating the convergence
of the global objective and efficacy of our method. Our
contributions are summarized as follows:

• We propose a novel FedSSL formulation delineating all
essential components of FedSSL, which encompasses intra-
client contraction, intra-client contrast and inter-client con-
trast. This highlights the limitations of FedAvg due to its
neglect of the inter-client contrast.

• We propose FedSC, in which clients are able to perform
inter-client contrast of data samples by leveraging the corre-
lation matrices of data representations shared from others,
resulting in improved quality of data representations.

• DP protection is applied, which effectively constrains the
privacy leakage resulting from sharing correlation matrices
with only negligible utility degradation.

• Theoretical analysis of FedSC is made, providing extra
privacy leakage and convergence guarantee for the global
FedSSL objective. We prove that FedSC can achieve a
O(1/

√
T ) convergence rate, while FedAvg will have a con-

stant error floor.

• Through extensive experimentation involving 3 datasets
across 4 SOTAs, we affirm that FedSC achieves superior or
comparable performance compared with other methods.

2. Related Works
Self-supervised learning. SSL can be mainly categorized
into contrastive and non-contrastive SSL. The mechanisms
and explicit objective of non-contrastive SSL algorithms are
still not fully understood despite a few recent attempts (Hal-
vagal et al., 2023; Tian et al., 2021; Zhang et al., 2022). In
contrast, contrastive SSL is more intuitive and explainable.
Contrastive SSL explicitly penalizes the distance between
positive pairs (two samples share the same semantic mean-
ing), while encouraging distance between negative pairs
(two samples share different semantic meanings). For ex-
ample, SimCLR (Chen et al., 2020) objective accounts for
the mutual information between positive pairs (Tschannen
et al., 2019) preserved by representations. The SC objective
(HaoChen et al., 2021) is equivalent to performing a spectral
decomposition of the augmentation graph.

Federated Self-supervised Learning. In FedU (Zhuang
et al., 2021), clients make decisions on whether the local
model should be updated by the global based on the dis-
tances of two model weights when receiving global models
from the server. As a follow up, FedEMA (Zhuang et al.,
2022) is proposed, in which the hard decision in FedU is
replaced with a weighted combination of local and global
models. FedX (Han et al., 2022) designs local and global
objectives using the idea of cross knowledge distillation to
mitigate the effects of non-i.i.d. data. The authors of FedCA
(Zhang et al., 2023) propose to share features of individual
data samples in addition to local model weights for inter-
client contrast, which however, results in significant privacy
leakage and communication overhead.

Differential Privacy. Gaussian and Laplace mechanisms
are most common DP approaches to protect a dataset from
membership attack (Dwork, 2006). To better analyze DP,
(Mironov, 2017) proposes Rényi differential privacy (RDP),
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which characterizes the operations on mechanisms, such as
composition, in a more elegant way, and proves the equiva-
lence between DP and RDP. Currently, DP has been widely
deployed in FL (Wei et al., 2020; Truex et al., 2020; Hu
et al., 2020; Geyer et al., 2017; Noble et al., 2022).

3. Preliminaries: Spectral Contrastive (SC)
Self-supervised Learning

Spectral contrastive (SC) SSL is proposed in (HaoChen
et al., 2021) with the following objective:

LSC(θ;D) ≜
1

2
Ex,x−∼A(·|D)

[(
z(x; θ)T z(x−; θ)

)2]
− Ex̄∼DEx,x+∼A(·|x̄)

[
z(x; θ)T z(x+; θ)

]
,

where D is the dataset; z(·; θ) : Rd → RH is the represen-
tation mapping parameterized by θ; E is referred to as the
operator of expectation; A(·|x̄) is referred to as the augmen-
tation kernel, which is essentially a conditional distribution,
and A(·|D) ≜ Ex̄∼DA(·|x̄). We use (x, x−) to denote neg-
ative pairs, where sample x and x− have different semantic
meanings, and (x, x+) to denote positive pairs, where x and
x+ have same semantic meaning. Intuitively, minimizing
the SC objective encourages the orthogonality of representa-
tions of a negative pair, and simultaneously promotes linear
alignment of representations of a positive pair. It has been
proved that solving this optimization problem is equivalent
to doing spectral decomposition of a well-defined augmen-
tation graph, whose nodes are augmented images, i.e, from
A(·|D), and edges describe the semantic similarity of two
images determined by the kernel A(·|·), which results in
high-quality and explainable data (node) representations
(HaoChen et al., 2021).

After rearranging the original SC objective, we first propose
the following equivalent form not reported in (HaoChen
et al., 2021).

LSC(θ;D) = −Ex̄∼DTr{R+(x̄; θ)}

+
1

2
∥Ex̄∼DR(x̄; θ)∥2F ,

(1)

where R+(x̄; θ) ∈ RH×H and R(x̄; θ) ∈ RH×H are de-
fined respectively as

R+(x̄; θ) ≜ Ex,x+∼A(·|x̄)
[
z(x; θ)z(x+; θ)T

]
,

R(x̄; θ) ≜ Ex∼A(·|x̄)
[
z(x; θ)z(x; θ)T

]
.

The detailed derivations are given in Appendix A.

4. Problem Formulation
In an FL system consists of a server and J clients, the j-th
client owns a private local dataset Dj disjoint with others.

The goal of FedSSL is to optimize the SSL model (SC model
in this work) over the union of all local datasets, i.e,

min
θ

LSC(θ;D), (2)

where D = ∪J
j=1Dj . Like the majority of SSL objec-

tives, the global SC objective typically does not equal the
weighted sum of local SC objectives, especially with non-
i.i.d. data distribution. For the purpose of rigor, we make it
an assumption instead of a claim in this work as follows.

LSC(θ;D) ̸=
J∑

j=1

qjLSC(θ;Dj), (3)

where {qj} are weights depending on the amount of local
data. As a result, FedAvg is not guaranteed to minimize the
global objective LSC(θ;D) when data is non-i.i.d..

In addition, we adopt SC framework for the following rea-
sons: First, SC has solid theoretical derivations and simul-
taneously achieves performance comparable to SOTA SSL
methods (HaoChen et al., 2021). Second, the SC objective
suggests that correlation matrices of data representations
are sufficient for contrasting negative-pairs. Sharing cor-
relation matrices only results in constant negligible extra
communication overheads and quantifiable privacy leakage.

5. FedSC: A Provable FedSSL Method
For the simplification of notations, we denote R+

j (θ) =

Ex̄∼DjR
+(x̄; θ) and Rj(θ) = Ex̄∼DjR(x̄; θ) the positive

correlation matrix and correlation matrix, respectively. We
start with manipulating the global objective

LSC(θ;D) = −
J∑

j=1

qjTr{R+
j (θ)}+

1

2

∥∥∥∥∥∥
J∑

j=1

qjRj(θ)

∥∥∥∥∥∥
2

F

=
J∑

j=1

qj

(
−Tr{R+

j (θ)}︸ ︷︷ ︸
intra-client contraction

+
1

2
qj ∥Rj(θ)∥2F︸ ︷︷ ︸

intra-client contrast

+
1

2
(1− qj)Tr{Rj(θ)R−j(θ)}︸ ︷︷ ︸

inter-client contrast

)
,

(4)

where R−j(θ) ≜ 1
1−qj

∑
j′ ̸=j qj′Rj′(θ). From Eq. (4), we

notice that LSC(θ;D) can be decomposed into a weighted
sum of J terms corresponding to J clients, where each term
consists of three sub-terms accounting for intra-client con-
traction (of positive pairs), intra-client contrast (of negative
pairs), and inter-clients contrast (of negative pairs), respec-
tively. Inspired by this decomposition, we construct the
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Figure 1. Diagram of the proposed FedSC. 1) The server synchronizes local models with the global model. 2) Clients compute their local
correlation matrices of dataset and send them to the server. 3) The server distributes the aggregated global correlation matrices back to the
clients. 4) The clients proceed to update their local models in accordance with the local objective specified in Eq. (5). 5) The server
aggregates the local models and initiates the next iteration.

following local objective:

LSC
j (θ; R̄−j) = −Tr{R+

j (θ)}+
1

2
qj ∥Rj(θ)∥2F

+ (1− qj)Tr{Rj(θ)R̄−j},
(5)

where R̄−j ∈ RH×H is an estimate of R−j(θ), whose up-
dates relying on the communication with the server. Since
R̄−j is treated as a constant (stop gradient) in local objec-
tives, we intentionally remove the coefficient 1/2 before the
third term for gradient alignment between local and global
objectives. That is to say, when R̄−j = R−j(θ), we have

∇LSC(θ;D) =

J∑
j=1

qj∇LSC
j (θ, R̄−j). (6)

Note that directly applying FedAvg results in a misalign-
ment of gradients, which is inherited from the fact that the
global objective of FedSSL does not equal to the weighted
sum of local objectives as suggested in Eq. (3).

The process of FedSC is similar to FedAvg, except sharing
and aggregating local correlation matrices R̃t

j besides model
weights. To begin with, the server synchronizes local mod-
els with the global model. Subsequently, clients compute
their local correlation matrices and send them to the server.
Following this, the server distributes the aggregated global
correlation matrices back to the clients. The clients then
proceed to update their local models in accordance with
the local objective specified in Eq. (5). Finally, the server
aggregates the local models and initiates the next iteration.
The process is summarized in Fig. 1.

The detailed algorithm of FedSC is shown in Algorithm
1. Here, clients use Algorithm 2 DP-CalR to calculate
local correlation matrices to be shared R̃t

j with differential
privacy (DP) protection, which is detailed in Sec. 5.1. Dur-
ing local training, clients minimize LSC

j through stochastic
gradient descent (SGD), which is detailed in Sec. 5.2. It
can be noticed that both clients and the server maintain the
knowledge of global correlation matrix R̃t.

Intuitively, since the averaged local gradients align with the
global gradient as shown in Eq. (6), the drift and variance
of local gradients contribute O(1/T ) and O(1/

√
T ) to the

convergence rate, respectively, which has been extensively
studied by previous works on FedAvg. The difference is that
the shared correlation matrix R̃t

j introduces additional per-
turbation due to its aging (compared with instant correlation
matrix R−j(θ)) and DP noise. The perturbation caused by
aging is proportional to the movements of weights, which is
proportional to the squared learning rate η2, thus contribut-
ing an additional O(1/T ) factor to the convergence rate.
This is what motivates the design of FedSC.

5.1. Correlation Matrices Sharing

DP protection is applied when correlation matrices are
shared to mitigate additional privacy leakage on local
dataset. A typical Gaussian mechanism is adopted, with
parameters µ and σ2 controlling sensitivity and noise scale,
respectively. The process is summarized in Algorithm 2.

5.2. Local Training

The local training process follows mini-batch stochastic
gradient descent (SGD). At each iteration, consider a batch
of B samples X̄ ∼ Dj . Let X1, X2, ..., X2V ∼ A(X̄) be
2V views augmented from X̄ . The empirical correlation
matrices are calculated as follows:

R̂+
j ({Xv}v; θj)=

1

2BV

V∑
v=1

[
Z(Xv; θj)Z(Xv+V ;θj)

T

+ Z(Xv+V ; θj)Z(Xv; θj)
T

]
;

R̂j({Xv}v; θj)=
1

2BV

2V∑
v=1

Z(Xv; θj)Z(Xv; θj)
T .

The batch loss L̂SC
j (θj ; {Xv}v, R̄−j) can be obtained by

substitute R+
j (θ) and Rj(θ) in Eq. (5) with R̂+

j ({Xv}v, θj)
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Algorithm 1 FedSC
1: Initialization: θ0 and a set of clients [J ]
2: for t = 1...T do
3: Server samples a subset of clients J t ⊂ [J ]
4: if t = 1 then
5: for j ∈ [J ] do
6: Server sends θt−1 to client j.
7: Client j uploads R̃t

j = DP-CalR(θt−1,Dj).
8: end for
9: Server sends R̃t =

∑J
j=1 qjR̃

t
j to all clients.

10: else
11: for j ∈ J t do
12: Server sends θt−1 to client j.
13: Client j uploads R̃t

j = DP-CalR(θt−1,Dj).
14: Server updates R̃t = R̃t−1 − qjR̃

t−1
j + qjR̃

t
j .

15: end for
16: Server sends R̃t to all clients.
17: Server sets R̃t

j = R̃t−1
j for j /∈ J t.

18: end if
19: for j ∈ J t do
20: Client j calculates R̃t

−j =
1

1−qj
(R̃t − qjR̃

t
j).

21: Client j trains local model with procedures in Sec.
5.2, and returns updated weights θt−1

j .
22: end for
23: Server aggregation: θt = 1

|J t|
∑

j∈J t θ
t−1
j .

24: end for
25: return: θT

and R̂j({Xv}v, θj), respectively. The local training follows
by back-propagating the batch loss and updating the model
weights iteratively.

5.3. Comparison with existing FedSSL frameworks

In this subsection, we discuss the privacy leakage and com-
munication overhead of FedSC in comparison with other
FedSSL frameworks.

Sharing correlation matrices only results in negligible
communication overhead: Although FedSC shares cor-
relation matrices in addition, it still results in less com-
munication overhead than SOTA non-contrastive FedSSL
frameworks (Zhuang et al., 2021; 2022; He et al., 2020), due
to the implementation of predictor in non-contrastive SSL
methods. For example, the feature dimension is H = 512
in our experiments, thus the correlation matrices yield
H × H ≈ 260, 000 additional parameters to be commu-
nicated. In contrast, the structure of the predictor is often
a three-layer multilayer perceptron (MLP), which contains
parameters that are multiples of the correlation matrices. In
our case, we choose a typical size of (512 − 1024 − 512)
resulting in 1, 000, 000 parameters. The overhead of corre-
lation matrices is negligible compared with the encoders.

Algorithm 2 DP-CalR
1: Inputs: θ and local dataset Dj

2: R̃t
j = 0

3: for x̄ ∈ Dj do
4: Sample x1, x2, ..., xV ∼ A(·|x̄)
5: Calculate žv = NormClip(z(xv; θ),

√
µ), for v =

1, 2, ..., V .
6: R̃t

j = R̃t
j +

1
|Dj |V

∑V
v=1 žv ž

T
v

7: end for
8: R̃t

j = R̃t
j +N (0, σ2I).

9: return: R̃t
j

Therefore, even compared with contrastive SSL, which does
not have a predictor, the communication overhead resulting
from sharing correlation matrices is not a concern.

The extra privacy leakage is probably comparable to
that caused by sharing predictors: The predictors in non-
contrastive SSL also lead to potential privacy leakages. Al-
though theoretical characterization has not been established,
recent works shed lights on the operational meaning of the
predictors (Halvagal et al., 2023; Tian et al., 2021), suggest-
ing what information is probably leaked. Particularly, (Tian
et al., 2021) reports that linear predictors in BYOL align
with the correlation matrices R(θ) during training. This
interesting finding suggests that predictors probably contain
similar information as the correlation matrices.

6. Theoretical Analysis
In this section, we first analyze the additional privacy leak-
age and convergence of FedSC. Our findings are summa-
rized as follows:

• We prove that sharing correlation matrices through

DP-CalR results in
(

Tµ2

2σ2 +
√

2Tµ2 log 1/δ
σ2 , δ

)
-DP.

• We provide the convergence analysis of FedSC. Specifi-
cally, with large batch size B, large number of views V and
small scale of DP noise σ, we can achieve a convergence
rate close to O(1/

√
T ).

• The analysis indicates superior performance of FedSC
over FedAvg whose convergence is dominated by a O(1)
constant meaning error floor.

6.1. Additional Privacy Leakage

In this subsection, we analyze the Gaussian mechanism in
Algorithm 2 DP-CalR. We start with definitions of varia-
tions of differential privacy (DP).

Definition 6.1 ((ϵ, δ)-DP). A mechanism M : X → Y is
(ϵ, δ)-DP, if for any neighboring X,X ′ ∈ X and S ⊂ Y ,
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the following inequality is satisfied.

Pr(M(X) ∈ S) ≤ eϵPr(M(X ′) ∈ S) + δ.

DP protects the inputs of a mechanism from membership
inference attacks. For a mechanism satisfying DP, we expect
that one can hardly tell whether the input contains a certain
entry by only looking at the output. In our case, we do not
want the server to know whether a local dataset contains a
particular data point.

Definition 6.2 ((α, ϵ)-RDP (Mironov, 2017)). A mecha-
nism M : X → Y has (α, ϵ)-Rényi differential privacy,
if for any neighboring X,X ′ ∈ X , Y = M(X) and
Y ′ = M(X ′), the following inequality is satisfied:

Dα(PY ||PY ′) ≤ ϵ,

where Dα(PY ||PY ′) is Rényi-divergence of order α > 1

Dα(PY ||PY ′) ≜
1

α− 1
log EY ′

(
PY (Y

′)

PY ′(Y ′)

)α

.

RDP is a variation of DP with many good properties, which
are summarized in the following Lemmas.

Lemma 6.3 (Gaussian Mechanism of RDP (Mironov,
2017)). Let f : X → Rn be a function with l2 sensitivity W ,
then the Gaussian mechanism Gf (·) = f(·) +N (0, Inσ

2)

is (α, αW 2

2σ2 )-RDP.

Lemma 6.4 (Composition of RDP (Mironov, 2017) ). Let
M1 : X → Y be (α, ϵ1)-RDP, and M2 : X × Y → Z be
(α, ϵ2)-RDP. Then the mechanism M3 : X → Y×Z, X 7→
(M1(X),M2(X,M1(X))) is (α, ϵ1 + ϵ2)-RDP to X .

Lemma 6.5 ((Mironov, 2017)). If a mechanism is (α, ϵ)-
RDP, then it is (ϵ+ log 1/δ

α−1 , δ)-DP.

With all these preparations, we use the following proposition
to characterize the additional privacy leakage of FedSC.

Proposition 6.6 (Additional Privacy Leakage of FedSC).
Sharing correlation matrices for Tj times through Algorithm

2 DP-CalR results in
(

Tjµ
2

2σ2 +
√

2Tjµ2 log 1/δ
σ2 , δ

)
-DP.

Proof. We start with the sensitivity of DP-CalR.

∥∥∥R̃t
j

∥∥∥
F
=

∥∥∥∥∥∥ 1

|Dj |
∑
x̄∈Dj

1

V

V∑
v=1

žv(x̄)žv(x̄)
T

∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥ 1

|Dj |
∑

x̄′∈Dj/x̄

1

V

V∑
v=1

žv(x̄
′)žv(x̄

′)T

∥∥∥∥∥∥
F

+
1

|Dj |
1

V

V∑
v=1

∥∥žv(x̄)žv(x̄)T∥∥F

where žv(x̄) is the representation of the v-th view of data x̄.
Notice that for any x̄∥∥žv(x̄)žv(x̄)T∥∥F =

√
Tr {žv(x̄)žv(x̄)T žv(x̄)žv(x̄)T }

≤ µ

The sensitivity is finally bounded by µ/|Dj |. With

Lemma 6.3, we have DP-CalR is
(
α, αµ2

2σ2|Dj |2

)
-

RDP. With Lemma 6.4, sharing correlation matrices
for Tj times results in

(
α,

Tjαµ
2

2σ2|Dj |2

)
-RDP, which is(

Tjµ
2

2σ2|Dj |2 +
√

2Tjµ2 log 1/δ
σ2|Dj |2 , δ

)
-DP using Lemma 6.5 with

α =
√

2σ2|Dj |2 log 1/δ
Tjµ2 + 1.

From the results, we can notice that for arbitrarily δ, Tj and

σ, the parameter ϵ = Tjµ
2

2σ2|Dj |2 +
√

2Tjµ2 log 1/δ
σ2|Dj |2 approaches

to zero when the size of local dataset approaches to infinity,
indicating no differential privacy leakage.

6.2. Convergence of FedSC

This subsection presents the convergence of FedSC. We
begin with the following assumptions.

Assumption 6.7. For any θ and x, NN’s output is bounded
in norm ||z(x, θ)||2 ≤ A0 for some constant A0.

Assumption 6.8. For any θ and x, the Jacobian matrix of
NN’s output is bounded in norm ||∇θz(x, θ)||F ≤ A1 for
some constant A1.

Assumption 6.9. The function represented by NN has
bounded second order derivatives, i.e, for any θ and x,∑

m,p

∥∂m∂pz(x; θ)∥22 ≤ A2
2

for some constant A2, where ∂p refers to the partial deriva-
tion with respect to the p-th entry of θ.

Assumption 6.7 can be satisfied when the NN has a normal-
ization layer at the end or uses bounded activation functions,
such as sigmoid, at the output layer. Assumption 6.8 ac-
counts for the Lipschitz continuity of z(x, θ), which is often
the case when hidden layers of a NN uses activation func-
tions, such as tanh, sigmoid and relu. Note that Assumption
6.8 is weaker than the bounded gradient norm assumption
used in previous works (Li et al., 2019; Noble et al., 2022).
However, in our case, it can lead to bounded gradient norm
due to the structure of SC objectives, which is detailed in the
appendices. Assumption 6.9 accounts for the strong smooth-
ness of the NN, which is widely adopted in existing works
(Karimireddy et al., 2020b; Li et al., 2019; Karimireddy
et al., 2020a) . With these assumptions, we demonstrate the
convergence of FedSC with the following theorem.
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Table 2. Performance comparison between FedSC and SOTAs on benchmark tasks: FedSC outperforms most of the SOTAs under different
settings. Here we use bold and underline to mark the highest and second highest accuracy, respectively.

SVHN CIFAR10 CIFAR100 SVHN CIFAR10 CIFAR100
Participation 5/5 10/10 20/20 2/5 2/10 4/20

FedAvg + BYOL 87.85± 0.49 68.14± 0.51 43.54± 1.12 87.10± 0.79 65.28± 0.83 38.77± 1.04
FedAvg + SC 90.52± 0.42 77.82± 0.82 56.24± 0.19 89.89± 0.94 75.36± 0.36 42.95± 0.52

FedU 87.92± 0.31 68.39± 0.69 43.81± 0.98 87.40± 0.75 65.52± 0.51 39.11± 0.92
FedEMA 91.87± 0.30 68.78± 0.25 44.18± 0.73 88.97± 0.82 65.93± 0.63 39.78± 1.20

FedX 74.60± 0.72 59.17± 0.93 39.70± 0.39 73.34± 0.88 57.42± 0.91 33.54± 0.67
FedCA 89.92± 0.14 78.22± 0.22 52.35± 0.09 89.28± 0.44 77.22± 0.65 51.58± 0.18

FedSC (Proposed) 91.78± 0.49 80.06± 0.35 58.35± 0.15 91.03± 0.58 77.12± 0.44 56.64± 0.65

Centralized SC 93.17± 0.13 90.21± 0.08 64.32± 0.05 − − −

Theorem 6.10. Let Assumption 6.7, 6.8 and 6.9 hold.
Choose µ > A2

0, and the local learning rate η = O
(

1√
TE

)
,

where T and E are the number of communication rounds
and local updates, respectively. Then FedSC achieves

1

TE

T−1∑
t=0

E−1∑
e=0

E
[∥∥∇LSC(θt,e;D)

∥∥2]

≤ O

(
E2(H2σ2 + C2)

TE
+

√
E
√

J/|J |−1
J−1√
T

+

(
1
V +maxj

|Dj |/B−1
|Dj |−1

) (
H2σ2 + C4

)
√
TE

+
1

V
+max

j

|Dj |/B − 1

|Dj | − 1
+H2σ2

)
(7)

where θt,e ≜ 1
|J t|

∑
j∈J t θ

t,e
j is the virtual averaged

weights, and θt,ej the local weights of client j at the e-th
step in the t-th round; B and V are batch size and num-
ber of augmented views, respectively; C2 and C4 here are
constants only depending on A0, A1 and A2.

6.2.1. SUPERIOR PERFORMANCE OF FEDSC

The convergence rate of FedSC is dominated by the follow-
ing term when T approaches infinity

γ = O
(

1

V
+max

j

|Dj |/B − 1

|Dj | − 1
+H2σ2

)
. (8)

The bias of local batch gradients results in a rate of(
1
V + maxj

|Dj |/B−1
|Dj |−1

)
, in which specifically, sampling

the data set Dj (without replacement) leads to the rate of
|Dj |/B−1
|Dj |−1 , and sampling the augmentation kernel A(·|x̄) re-

sults in 1
V . Note that this bias also exists in centralized

SSL training, and does not result from federation. Sampling
variance, from the augmentation kernel, in the shared cor-
relation matrix contributes 1

V to the convergence. The DP
noise contributes H2σ2. If we set batch size B = |Dj |,
generate infinite number of views V = ∞ and not apply

DP protection, i.e., σ2 = 0, then the error floor will disap-
pear, which results in convergence rate similar to FedAvg
in supervised FL. In comparison, if we directly use the SC
objective without modification and apply FedAvg, there will
be a constant error floor independent with batch size B and
number of views V , due to the misalignment between the
averaged local objectives and the global objectives.

6.2.2. SKETCH OF PROOF

We begin with the case of full clients participation. The
convergence is determined by two terms: 1) The squared
norm of the bias of the averaged local gradient and 2) The
variance of the averaged local gradient.

The norm of bias can be factorized into three compo-
nents: 1.a) The “drift” of the local weights, leading to
a factor of O(1/T ). 1.b) The bias in the batch gradient
of local objectives LSC

j (θ; R̄−j), contributes a factor of

O
(

1
V +maxj

|Dj|/B−1
|Dj|−1

)
. The bias is due to the fact that

the SSL objective can not be written as a sum of samples
losses like in the supervised learning cases. 1.c) The impact
of aging, sample variance, and DP noise in the shared corre-
lation matrices R̃t

−j . Note that R̃t
−j remains constant during

local training. The aging (compared with R−j(θ
t,e)) leads

to a bias proportional to the drift of local weights, resulting
in a factor of O(1/T ). The sampling variance in R̃t

−j con-
tributes a factor of O(1/V ). DP noise contributes a factor of
O(H2σ2), where H is the dimension of the representation.

he variance in the averaged local gradient contributes a
factor of O(1/

√
T ), considering 2.a) the variance in batch

gradient sampling and 2.b) the DP noise in R̃t
−j .For partial

client participation, we need to consider the variance in ag-
gregation and additional aging of R̃t

−j . Given bounded
gradient norm, the variance due to client sampling is

O
(√

E
√

J/|J |−1
T (J−1)

)
. Additional aging is proportional to

the extra drift, leading to a rate of O(1/T ).
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Table 3. FedSC with different levels of DP protections (δ = 10−2): deploying DP leads to negligible performance degradation.

SVHN CIFAR10 SVHN CIFAR10
Participation 5/5 10/10 2/5 2/10

FedAvg+SC 90.52± 0.42 77.82± 0.82 89.89± 0.94 75.36± 0.36
ϵ = 3 90.90± 0.52 79.21± 0.59 90.00± 0.72 76.97± 0.64
ϵ = 6 91.32± 0.87 79.42± 0.63 90.12± 0.61 77.08± 0.46
ϵ = ∞ 91.78± 0.49 80.06± 0.35 91.03± 0.58 77.12± 0.44

7. Experiments
7.1. Experimental Setup

Datasets: Three datasets, SVHN, CIFAR10 and CIFAR100,
are used for evaluation. SVHN is split into 5 disjoint lo-
cal datasets, each of which contains 2 classes. CIFAR10
is split into 10 disjoint local datasets according to the 10
classes. CIFAR100 is split into 20 disjoint local datasets,
each of which contains 5 classes. Therefore, the size of
local datasets for SVHN, CIFAR10 and CIFAR100 tasks
are 10, 000, 5, 000 and 2, 500, respectively.

Models: For SVHN and CIFAR10, we use a modified ver-
sion of ResNet20 as backbones. For CIFAR100, the back-
bone is a modified version of ResNet50.

Hyper-parameters: For all three tasks, the number of com-
munication round T = 200, and the number of local epochs
is E = 5. For SVHN and CIFAR10, the batch size is
B = 512. For CIFAR100, the batch size is B = 256. The
number of views V = 2 for all experiments. For correlation
matrices sharing, the number of views is set as V = 5.

Benchmarks: Besides FedAvg+BYOL and FedAvg+SC,
we also compare with the following state of the arts: FedU
(Zhuang et al., 2021), FedEMA (Zhuang et al., 2022), FedX
(Han et al., 2022) and FedCA (Zhang et al., 2023).

7.2. Experimental Results

Comparison with SOTA approaches: Table 2 presents the
performance comparisons of various algorithms under linear
evaluation, where the centralized SC serves as an ideal up-
per bound. We conclude the following three observations:
(1) Our proposed algorithm, FedSC, demonstrates better or
comparable performance across different tasks compared
to other 6 methods. (2) FedBYOL, FedU, and FedEMA
show good results on SVHN but underperform on CIFAR10
and CIFAR100. We believe that this disparity is caused by
the larger local dataset size in SVHN, leading to increased
local updates. Since these methods incorporate momentum
updates in the target encoder, a larger number of updates
might be necessary to effectively initiate local training. (3)
FedSC and FedCA exhibit less performance degradation
when switched to the partial client participation case. We
believe this is because clients in both FedSC and FedCA

have extra global information about representations. Addi-
tionally, predictors in FedBYOL, FedU, and FedEMA are
under the effect of client sampling, hindering their global
information provision.

Table 4. FedSC with different levels of DP protections (δ = 10−2):
deploying DP leads to negligible performance degradation.

CIFAR100
Participation 20/20 4/20

FedAvg+SC 56.24± 0.19 42.95± 0.52
ϵ = 6 57.10± 0.82 54.87± 0.62
ϵ = 12 57.63± 0.57 55.76± 0.58
ϵ = ∞ 58.35± 0.15 56.64± 0.65

DP Impact: Table 3, 4 and 5 illustrate the impact of the DP
mechanism on FedSC’s performance. It is shown that with
a reasonable degree of DP protection, there is only a modest
decline in FedSC’s performance, which remains better than
that of FedAvg+SC. Given that our focus is on data level
DP, the extra privacy leakage shown in the tables is typically
insignificant when compared to the leakage resulting from
the encoders. On the other hand, according to the analysis
in Sec. 6.1, a smaller dataset necessitates a higher level of
DP noise to maintain the same degree of privacy protection.
The local dataset sizes for SVHN, CIFAR10, and CIFAR100
tasks are 10, 000, 5, 000, and 2, 500, respectively. As a
result, for the CIFAR100 task, we choose a slightly higher
privacy budget compared to the other two tasks.

Convergence: Fig. 2 compares the convergence of pro-
posed FedSC and FedAvg+SC, in terms of communica-
tion rounds and KNN accuracy. The figures reveal that
FedAvg+SC tends to experience either a high error rate or

Table 5. FedSC with different levels of DP protections (δ = 10−4):
deploying DP leads to negligible performance degradation.

SVHN CIFAR10 CIFAR100
Participation 2/5 2/10 4/20

FedAvg+SC 89.89±0.94 75.36±0.36 42.95±0.52
ϵ = 3 89.95±0.81 76.75±0.62 54.22±0.72
ϵ = 8 90.12±0.61 77.08±0.46 54.87±0.62
ϵ = ∞ 91.03±0.58 77.12±0.44 56.64±0.65
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(a) SVHN (b) CIFAR10 (c) CIFAR100

Figure 2. Convergence of FedSC and FedAvg+SC. 1) FedAvg+SC tends to experience either a high error floor or overfitting. 2) FedSC is
able to consistently enhance KNN accuracy. This observation validates our theoretical analysis in Sec. 6.

overfitting as the number of communication rounds grows.
In contrast, FedSC can consistently enhance KNN accuracy.
This validates our theoretical analysis in Sec. 6.

8. Conclusion
In this paper, we proposed FedSC, a novel FedSSL frame-
work based on spectral contrastive objectives. In FedSC,
clients share correlation matrices besides local weights peri-
odically. With shared correlation matrices, clients are able
to contrast inter-client sample contrast in addition to intra-
client contrast and contraction. To mitigate the extra privacy
leakage on local dataset, we adopted DP mechanism on
shared correlation matrices. We provided theoretical analy-
sis on privacy leakage and convergence, demonstrating the
efficacy of FedSC. To the best knowledge of the authors,
this is the first provable FedSSL method.
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Mironov, I. Rényi differential privacy. In 2017 IEEE 30th
computer security foundations symposium (CSF), pp. 263–
275. IEEE, 2017.

Noble, M., Bellet, A., and Dieuleveut, A. Differentially pri-
vate federated learning on heterogeneous data. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 10110–10145. PMLR, 2022.

Ravi, S. and Larochelle, H. Optimization as a model for few-
shot learning. In International conference on learning
representations, 2016.

Stich, S. U. Local sgd converges fast and communicates
little. arXiv preprint arXiv:1805.09767, 2018.

Tian, Y., Chen, X., and Ganguli, S. Understanding self-
supervised learning dynamics without contrastive pairs.
In International Conference on Machine Learning, pp.
10268–10278. PMLR, 2021.

Truex, S., Liu, L., Chow, K.-H., Gursoy, M. E., and Wei,
W. Ldp-fed: Federated learning with local differential
privacy. In Proceedings of the Third ACM International
Workshop on Edge Systems, Analytics and Networking,
pp. 61–66, 2020.

Tschannen, M., Djolonga, J., Rubenstein, P. K., Gelly, S.,
and Lucic, M. On mutual information maximization for
representation learning. arXiv preprint arXiv:1907.13625,
2019.

Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F.,
Jin, S., Quek, T. Q., and Poor, H. V. Federated learning
with differential privacy: Algorithms and performance
analysis. IEEE Transactions on Information Forensics
and Security, 15:3454–3469, 2020.

Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S. Bar-
low twins: Self-supervised learning via redundancy reduc-
tion. In International Conference on Machine Learning,
pp. 12310–12320. PMLR, 2021.

Zhang, C., Zhang, K., Zhang, C., Pham, T. X., Yoo,
C. D., and Kweon, I. S. How does simsiam avoid col-
lapse without negative samples? a unified understanding
with self-supervised contrastive learning. arXiv preprint
arXiv:2203.16262, 2022.

Zhang, F., Kuang, K., Chen, L., You, Z., Shen, T., Xiao,
J., Zhang, Y., Wu, C., Wu, F., Zhuang, Y., et al. Feder-
ated unsupervised representation learning. Frontiers of
Information Technology & Electronic Engineering, 24(8):
1181–1193, 2023.

Zhuang, W., Gan, X., Wen, Y., Zhang, S., and Yi, S. Collab-
orative unsupervised visual representation learning from
decentralized data. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pp. 4912–4921,
2021.

Zhuang, W., Wen, Y., and Zhang, S. Divergence-
aware federated self-supervised learning. arXiv preprint
arXiv:2204.04385, 2022.

10



FedSC: Provable Federated Self-supervised Learning with Spectral Contrastive Objective over Non-i.i.d. Data

A. Derivation of SC objective

LSC(θ;D) ≜ −Ex̄∼DEx,x+∼A(·|x̄)
[
z(x; θ)T z(x+; θ)

]
+

1

2
Ex,x−∼A(·|D)

[(
z(x; θ)T z(x−; θ)

)2]
= −Ex̄∼DEx,x+∼A(·|x̄)

[
Tr
{
z(x+; θ)z(x; θ)T

}]
+

1

2
Ex,x−∼A(·|D)

[
Tr
{
z(x; θ)z(x; θ)T z(x−; θ)z(x−; θ)T

}]
= −Ex̄∼D

[
Tr
{
R+(θ)

}]
+

1

2
Tr
{
Ex∼A(·|D)z(x; θ)z(x; θ)

TEx−∼A(·|D)z(x
−; θ)z(x−; θ)T

}
= −Ex̄∼D

[
Tr
{
R+(θ)

}]
+

1

2

∥∥Ex∼A(·|D)z(x; θ)z(x; θ)
T
∥∥2
F

= −Ex̄∼DTr{R+(x̄; θ)}+ 1

2
∥Ex̄∼DR(x̄; θ)∥2F

(9)

B. Proof of Theorem 6.10
B.1. Additional Notations

Let θt,ej and vt,ej be the local weights and local SGD direction, respectively, at the e-th update in the t-th communication
round. Denote θt,e ≜

∑
j qjθ

t,e
j and vt,ej ≜

∑
j qjv

t,e
j the virtual averaged weights and moving direction, respectively.

Since the server aggregates periodically, we have θt = θt,0. For simplicity, we remove the up-script ”SC” in LSC(θ) and
LSC(θ, R̃t

−j) without ambiguity.

B.2. Assumptions

Assumption B.1. For any θ and x, NN’s output is bounded in norm ||z(x, θ)||2 < A0.
Assumption B.2. For any θ and x, the Jacobin of NN’s output is bounded in norm ||∇z(x, θ)||F < A1.
Assumption B.3. The function represented by NN has bounded second order derivatives, i.e, for any θ and x∑

m,p

∥∂m∂pz(x; θ)∥22 ≤ A2
2 (10)

B.3. Lemmas

Lemma B.4. For any x̄, {Xv}v , θ and j, the following inequalities hold

∥R(x̄, θ)∥2F , ∥R(θ)∥2F , ∥Rj(θ)∥2F ,
∥∥∥R̂({Xv}v, θ)

∥∥∥2
F
≤ A4

0 (11)

∑
p

∥∂pR(x̄, θ)∥2F ,
∑
p

∥∂pR(θ)∥2F ,
∑
p

∥∂pRj(θ)∥2F ,
∑
p

∥∥∥∂pR̂({Xv}v, θ)
∥∥∥2
F
≤ 4A2

1A
2
0. (12)

Proof.

∥R(x̄, θ)∥2F =
∥∥Ex∼A(·|x̄)z(x; θ)z

T (x; θ)
∥∥2
F

≤ Ex∼A(·|x̄) ∥z(x; θ)∥
2 ∥z(x; θ)∥2

≤ A4
0

(13)

∑
p

∥∂pR(x̄, θ)∥2F ≤
∑
p

Ex∼A(·|x̄)
∥∥∂pz(x; θ)zT (x; θ) + z(x; θ)∂pz

T (x; θ)
∥∥2
F

≤ 4
∑
p

Ex∼A(·|x̄) ∥∂pz(x; θ)∥
2 ∥z(x; θ)∥2

≤ 4A2
1A

2
0

(14)

The remaining results directly follows Jansen’s inequality.
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Lemma B.5. The following function, whose p-th entry is defined as

ut,e
j (θ)[p] = −∂pTr

{
R+

j (θ)
}
+ Tr

∂pRj(θ)
∑
j′

qj′Rj′(θ)

 (15)

is β-Lipschitz continuous with

β2 = 24(A4
0 + 1)(A4

1 +A2
2A

2
0) + 48A4

1A
4
0. (16)

Proof. We start with the derivative of ut,e
j (θ)[p]

∂mut,e
j (θ)[p] = −∂m∂pTr

{
R+

j (θ)
}
+ Tr

∂m∂pRj(θ)
∑
j′

qj′Rj′(θ)

+ Tr

∂pRj(θ)
∑
j′

qj′∂mRj′(θ)

 (17)

Using AM-GM, we have

(∂mut,e
j (θ)[p])2 ≤ 3

(
∂m∂pTr

{
R+

j (θ)
})2

+ 3Tr

∂m∂pRj(θ)
∑
j′

qj′Rj′(θ)


2

+ 3Tr

∂pRj(θ)
∑
j′

qj′∂mRj′(θ)


2

(18)

For the first term, recall the definition of R+
j (θ), we have

∂m∂pTr{R+
j (θ)} = 2Ex̄∼Dj∂pEx∼A(·|x̄)z

T (x; θ)∂mEx∼A(·|x̄)z(x; θ)

+ 2Ex̄∼Dj∂m∂pEx∼A(·|x̄)z
T (x; θ)Ex∼A(·|x̄)z(x; θ).

(19)

Consequently, we have∑
m,p

(∂m∂pTr
{
R+

j (θ)
}
)2

≤ 8
(
Ex̄∼Dj

∂pEx∼A(·|x̄)z
T (x; θ)∂mEx∼A(·|x̄)z(x; θ)

)2
+ 8

(
Ex̄∼Dj

∂m∂pEx∼A(·|x̄)z
T (x; θ)Ex∼A(·|x̄)z(x; θ)

)2
≤ 8

∑
m,p

Ex̄∼Dj
Ex1,x2∼A(x̄)

((
∂pz

T (x1; θ)∂mz(x2; θ)
)2

+
(
∂m∂pz

T (x1; θ)z(x2; θ)
)2)

≤ 8
∑
m,p

Ex̄∼DjEx1,x2∼A(x̄)

(
∥∂pz(x1; θ)∥22 ∥∂mz(x2; θ)∥22 + ∥∂m∂pz(x1; θ)∥22 ∥z(x2; θ)∥22

)
≤ 8(A4

1 +A2
2A

2
0)

(20)

where the first inequality uses AM-GM, and the second inequality uses Jensen’s inequality.

For the second term, we have

Tr

∂m∂pRj(θ)
∑
j′

qj′Rj′(θ)


2

≤ ∥∂m∂pRj(θ)∥2F

∥∥∥∥∥∥
∑
j′

qj′Rj′(θ)

∥∥∥∥∥∥
2

F

. (21)

Notice that

∂m∂pRj(θ) = Ex∼A(·|Dj)∂m∂pz(x; θ)z
T (x; θ) + z(x; θ)∂m∂pz

T (x; θ)

+ ∂mz(x; θ)∂pz
T (x; θ) + ∂pz(x; θ)∂mzT (x; θ)

(22)

12
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We have ∑
m,p

∥∂m∂pRj(θ)∥2F ≤ 4
∥∥Ex∼A(·|Dj)∂m∂pz(x; θ)z

T (x; θ)
∥∥2
F
+ 4

∥∥Ex∼A(·|Dj)z(x; θ)∂m∂pz
T (x; θ)

∥∥2
F

+ 4
∥∥Ex∼A(·|Dj)∂mz(x; θ)∂pz

T (x; θ)
∥∥2
F
+ 4

∥∥Ex∼A(·|Dj)∂pz(x; θ)∂mzT (x; θ)
∥∥2
F

≤ 4Ex∼A(·|Dj)

[∥∥∂m∂pz(x; θ)z
T (x; θ)

∥∥2
F
+
∥∥z(x; θ)∂m∂pz

T (x; θ)
∥∥2
F

+
∥∥∂mz(x; θ)∂pz

T (x; θ)
∥∥2
F
+
∥∥∂pz(x; θ)∂mzT (x; θ)

∥∥2
F

]
≤ 8

∑
m,p

Ex∼A(·|Dj)

(
∥∂m∂pz(x; θ)∥22 ∥z(x; θ)∥

2
2 + ∥∂mz(x; θ)∥22 ∥∂pz(x; θ)∥

2
2

)
≤ 8(A4

1 +A2
2A

2
0)

(23)

Apply Lemma B.4, we have ∥∥∥∥∥∥
∑
j′

qj′Rj′(θ)

∥∥∥∥∥∥
2

F

≤
∑
j′

qj′ ∥Rj′(θ)∥2F ≤ A4
0 (24)

Substitute eq. (21) with eq. (23) and eq. (24), we have

Tr

∂m∂pRj(θ)
∑
j′

qj′Rj′(θ)


2

≤ 8A4
0(A

4
1 +A2

2A
2
0) (25)

For the third term, we have

∑
m,p

Tr

∂pRj(θ)
∑
j′

qj′∂mRj′(θ)


2

≤
∑
m,p

∥∂pRj(θ)∥2F

∥∥∥∥∥∥
∑
j′

qj′∂mRj′(θ)

∥∥∥∥∥∥
2

F

≤
∑
m,p

∥∂pRj(θ)∥2F
∑
j′

qj′ ∥∂mRj′(θ)∥2F

≤ 16A4
1A

4
0

(26)

where the last inequality uses Lemma B.4.

Combine eq. (20), eq. (25) and eq. (26), we have∥∥∇ut,e
j (θ)

∥∥2
F
=
∑
m,p

(∂mut,e
j (θ)[p])2 ≤ 24(A4

0 + 1)(A4
1 +A2

2A
2
0) + 48A4

1A
4
0 (27)

and thus β2 = 4(A4
0 + 1)(A4

1 +A2
2A

2
0) + 48A4

1A
4
0.

Corollary B.6. The global loss L(θ) is β-smooth.

Proof. Notice that ∇L(θ) =
∑

j qju
t,e
j (θt,e). The result follows after applying Lemma B.5.

Lemma B.7. For any random matrix X,Y , we have

Var [Tr {XY }] ≤ 2 ∥E[Y ]∥2F Var[X] + 2 ∥E[X]∥2F Var[Y ] (28)

Proof.

Var [Tr {XY }] ≤ 2Var[Tr{(X − E[X])Y }] + 2Var[Tr{E[X]Y }]

≤ 2E[Tr{(X − E[X])Y }2] + 2 ∥E[X]∥2F Var[Y ]

≤ 2 ∥E[Y ]∥2F Var[X] + 2 ∥E[X]∥2F Var[Y ]

(29)

13



FedSC: Provable Federated Self-supervised Learning with Spectral Contrastive Objective over Non-i.i.d. Data

Lemma B.8. The local stochastic gradient with p-th entry defined as

vt,ej [p] = −∂pTr
{
R̂+

j ({Xv}v, θt,ej )
}
+ qjTr

{
R̂j({Xv}v, θt,ej )∂pR̂j({Xv}v, θt,ej )

}
+ (1− qj)Tr

{
∂pR̂j({Xv}v, θt,ej ))R̃t

−j

}
.

(30)

has bounded norm

E
[∥∥vt,ej

∥∥2 |F t,0
]
≤ 12A2

1A
2
0(H

2σ2 + 1) + 12A2
1A

6
0. (31)

where F t,0 is the history before the t-th round; σ2 is the variance of the DP noise and H is the dimension of the representation
z(x, θ).

Proof. ∑
p

(vt,ej [p])2 ≤ 2
∑
p

Tr
{
∂pR̂

+
j ({Xv}v, θt,ej )

}2

+ 2
∑
p

Tr
{
∂pR̂j({Xv}v, θt,ej ))

(
qjR̂j({Xv}v, θt,ej )) + (1− qj)R̃

t
−j

)}2

.

(32)

For the first term,

Tr
{
R̂+

j ({Xv}v, θt,ej )
}
=

1

BV

B∑
b=1

V∑
v=1

zT (xb,v, θ
t,e
j )z(xb,v+V , θ

t,e
j ). (33)

Then we have

Tr
{
∂pR̂

+
j ({Xv}v, θt,ej )

}
=

1

BV

B∑
b=1

V∑
v=1

∂pz(xb,v, θ
t,e
j )z(xb,v+V , θ

t,e
j )T + z(xb,v, θ

t,e
j )T∂pz(xb,v+V , θ

t,e
j ) (34)

and ∑
p

Tr
{
∂pR̂

+
j ({Xv}v, θt,ej )

}2

≤
∑
p

2

BV

B∑
b=1

V∑
v=1

∥∥∂pz(xb,v, θ
t,e
j )
∥∥2 ∥∥z(xb,v+V , θ

t,e
j )
∥∥2 + ∥∥z(xb,v, θ

t,e
j )
∥∥2 ∥∥∂pz(xb,v+V , θ

t,e
j )
∥∥2

≤ 4A2
1A

2
0

(35)

where the line uses Jensen’s inequality and AM-GM. For the second term,∑
p

Tr
{
∂pR̂j({Xv}v, θt,ej ))

(
qjR̂j({Xv}v, θt,ej )) + (1− qj)R̃

t
−j

)}2

≤
∥∥∥qjR̂j({Xv}v, θt,ej )) + (1− qj)R̃

t
−j

∥∥∥2
F

∑
p

∥∥∥∂pR̂j({Xv}v, θt,ej )
∥∥∥2
F

≤
∥∥∥qjR̂j({Xv}v, θt,ej )) + (1− qj)R̃

t
−j

∥∥∥2
F
4A2

1A
2
0

(36)

where the last inequality uses Lemma B.4. Combine the above results we have

E
[∥∥vt,ej

∥∥2 |F t,0
]
≤ 8A2

1A
2
0 + 8A2

1A
2
0E

[∥∥∥qjR̂j({Xv}v, θt,ej )) + (1− qj)R̃
t
−j

∥∥∥2
F
|F t,0

]

= 8A2
1A

2
0 + 8A2

1A
2
0

A4
0 +

∑
j′ ̸=j

q2j′H
2σ2


≤ 8A2

1A
2
0 + 8A2

1A
2
0

(
A4

0 +H2σ2
)

(37)

where we use the fact that qjR̂j({Xv}v, θt,ej )) + (1− qj)R̃
t
−j is essentially a correlation matrix plus DP noise with scale∑

j′ ̸=j q
2
j′H

2σ2.
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B.4. Proof of the fully participation

From the β-smoothness of L(θ) given by Corollary B.6, we have

L(θt,e+1) ≤ L(θt,e)− η⟨∇L(θt,e), vt,e⟩+ βη2

2

∥∥vt,e∥∥2 . (38)

Denote the history of the optimization process as F t,e, then we have

E
[
L(θt,e+1)|F t,e

]
≤ L(θt,e)− η⟨∇L(θt,e),E

[
vt,e|F t,e

]
⟩+ βη2

2
E
[∥∥vt,e∥∥2 |F t,e

]
. (39)

Let v̄t,e = E[vt,e|F t,e] and v̄t,ej = E
[
vt,ej |F t,e

]
, we have

E
[
L(θt,e+1)|F t,e

]
≤ L(θt,e) + βη2

2
E
[∥∥vt,e∥∥2 |F t,e

]
+

η

2

[
−
∥∥∇L(θt,e)

∥∥2 − ∥∥v̄t,e∥∥2 + ∥∥∇L(θt,e)− v̄t,e
∥∥2] . (40)

By the choice of η ≤ 1/β, we have

E
[
L(θt,e+1)|F t,e

]
≤ L(θt,e)− η

2

∥∥∇L(θt,e)
∥∥2 + η

2

∥∥∇L(θt,e)− v̄t,e
∥∥2︸ ︷︷ ︸

T1

+
βη2

2
Var

[
vt,e|F t,e

]︸ ︷︷ ︸
T2

(41)

B.4.1. BOUNDING THE TERM T1

Recall the definition of local batch loss

L̂SC
j (θt,ej ) = −Tr{R̂+

j ({Xv}v, θt,ej )}+ 1

2
qj

∥∥∥R̂j({Xv}v, θt,ej )
∥∥∥2
F
+ (1− qj)Tr{R̂j({Xv}v, θt,ej )R̃t

−j} (42)

The p-th entry of vt,ej = ∇L̂SC
j (θt,ej ) is

vt,ej [p] = −∂pTr
{
R̂+

j ({Xv}v, θt,ej )
}
+ qjTr

{
R̂j({Xv}v, θt,ej )∂pR̂j({Xv}v, θt,ej )

}
+ (1− qj)Tr

{
∂pR̂j({Xv}v, θt,ej ))R̃t

−j

}
.

(43)

Take expectation over {Xv}v , we have

v̄t,ej [p] = −∂pTr
{
R+

j (θ
t,e
j )
}
+ qjE{Xv}v

[
Tr
{
R̂j({Xv}v, θt,ej )∂pR̂j({Xv}v, θt,ej )

}]
+ (1− qj)Tr

{
∂pRj(θ

t,e
j )R̃t

−j

}
.

(44)

The p-th entry of the global loss gradient is

∂pL(θt,e) = −
∑
j

qj∂pTr
{
R+

j (θ
t,e)
}
+
∑
j

qjTr

∂pRj(θ
t,e)
∑
j′

qj′Rj′(θ
t,e)


=
∑
j

qj

−∂pTr
{
R+

j (θ
t,e)
}
+ qjTr

{
∂pRj(θ

t,e)Rj(θ
t,e)
}
+ Tr

∂pRj(θ
t,e)

∑
j′ ̸=j

qj′Rj′(θ
t,e)


 (45)

Decompose vt,ej [p] = ut,e
j (θt,ej )[p] + qjb

t,e
j [p] + ct,ej [p], where the terms are defined as follows.

ut,e
j (θ)[p] = −∂pTr

{
R+

j (θ)
}
+ Tr

∂pRj(θ)
∑
j′

qj′Rj′(θ)


bt,ej [p] = E{Xv}v

[
Tr
{
R̂j({Xv}v, θt,ej )∂pR̂j({Xv}v, θt,ej )

}]
− Tr

{
Rj(θ

t,e
j )∂pRj(θ

t,e
j )
}

ct,ej [p] = (1− qj)Tr
{
∂pRj(θ

t,e
j )R̃t

−j

}
− Tr

∂pRj(θ
t,e
j )

∑
j′ ̸=j

qj′Rj′(θ
t,e
j )


(46)
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Then we have

v̄t,e[p]− ∂pL(θt,e) =
∑
j

qj
(
ut,e
j (θt,ej )[p]− ut,e

j (θt,e)[p] + qjb
t,e
j [p] + ct,ej [p]

)
. (47)

The term T1 can be written as follows

T1 =
∑
p

(
v̄t,e[p]− ∂pL(θt,e)

)2
=
∑
p

∑
j

qj
(
ut,e
j (θt,ej )[p]− ut,e

j (θt,e)[p] + qjb
t,e
j [p] + ct,ej [p]

)2

≤
∑
j

qj
∑
p

(
ut,e
j (θt,ej )[p]− ut,e

j (θt,e)[p] + qjb
t,e
j [p] + ct,ej [p]

)2

≤ 3
∑
j

qj


∑
p

(ut,e
j (θt,ej )[p]− ut,e

j (θt,e)[p])2︸ ︷︷ ︸
T3

+q2j
∑
p

(bt,ej [p])2︸ ︷︷ ︸
T4

+
∑
p

(ct,ej [p])2︸ ︷︷ ︸
T5



(48)

where the third line uses Jensen’s inequality and the last line uses AM-GM. By Lemma , we have

T3 ≤ β2
∥∥θt,e − θt,ej

∥∥2 . (49)

For the term T4, we have

T4 =
∑
p

Tr
{
E{Xv}v

[
R̂j({Xv}v, θt,ej )−Rj(θ

t,e
j )
] [

∂pR̂j({Xv}v, θt,ej )− ∂pRj(θ
t,e
j )
]}2

≤
∑
p

E{Xv}v

[∥∥∥R̂j({Xv}v, θt,ej )−Rj(θ
t,e
j )
∥∥∥2
F

∥∥∥∂pR̂j({Xv}v, θt,ej )− ∂pRj(θ
t,e
j )
∥∥∥2
F

]

≤ 2E{Xv}v

[(∥∥∥R̂j({Xv}v, θt,ej )
∥∥∥2
F
+
∥∥Rj(θ

t,e
j )
∥∥2
F

)∑
p

∥∥∥∂pR̂j({Xv}v, θt,ej )− ∂pRj(θ
t,e
j )
∥∥∥2
F

]

≤ 4A4
0E{Xv}v

∑
p

∥∥∥∂pR̂j({Xv}v, θt,ej )− ∂pRj(θ
t,e
j )
∥∥∥2
F

= 4A4
0EX̄∼Dj

E{Xv}v|X̄
∑
p

∥∥∥∂pR̂j({Xv}v, θt,ej )− ∂pR(X̄t,e
j ; θt,ej ) + ∂pR(X̄t,e

j ; θt,ej )− ∂pRj(θ
t,e
j )
∥∥∥2
F

(50)

where the third inequality uses Lemma B.4 X̄ is a batch of samples drawn from Dj , and {Xv}v are augmented views of X̄ .
Notice that

E{Xv}v|X̄⟨∂pR̂j({Xv}v, θt,ej )− ∂pR(X̄t,e
j ; θt,ej ), ∂pR(X̄t,e

j ; θt,ej )− ∂pRj(θ
t,e
j )⟩ = 0 (51)

we have

T4 ≤ 4A4
0

∑
p

EX̄∼Dj
E{Xv}v|X̄

(∥∥∥∂pR̂j({Xv}v, θt,ej )− ∂pR(X̄t,e
j ; θt,ej )

∥∥∥2
F
+
∥∥∂pR(X̄t,e

j ; θt,ej )− ∂pRj(θ
t,e
j )
∥∥2
F

)
= 4A4

0

∑
p

(
EX̄∼Dj

Var{Xv}v|X̄

[
∂pR̂j({Xv}v, θt,ej )

]
+ VarX̄∼Dj

[
∂pR(X̄; θt,ej )

])
≤ 16A2

1A
6
0

(
1

2V
+

|Dj |/B − 1

|Dj | − 1

) (52)

where the last inequality uses Lemma B.4, the fact Var[X] ≤ E ∥X∥2 and sampling with and without replacement.
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For the term T5, we have

T5 = Tr

∂pRj(θ
t,e
j )

(1− qj)R̃
t
−j −

∑
j′ ̸=j

qj′Rj′(θ
t,e
j )


2

=
∑
p

Tr

∂pRj(θ
t,e
j )

∑
j′ ̸=j

qj′
(
R̃t

j′ −Rj′(θ
t,e
j )
)

2

≤
∑
p

∥∥∂pRj(θ
t,e
j )
∥∥2
F

∥∥∥∥∥∥
∑
j′ ̸=j

qj′
(
R̃t

j′ −Rj′(θ
t,e
j )
)∥∥∥∥∥∥

2

F

≤ 4A2
1A

2
0

∥∥∥∥∥∥
∑
j′ ̸=j

qj′
(
R̃t

j′ −Rj′(θ
t,e
j )
)∥∥∥∥∥∥

2

F

≤ 4(1− qj)A
2
1A

2
0

∑
j′ ̸=j

qj′
∥∥∥R̃t

j′ −Rj′(θ
t,e
j )
∥∥∥2
F

= 4(1− qj)A
2
1A

2
0

∑
j′ ̸=j

qj′
∥∥∥R̃t

j′ −Rj′(θ
t) +Rj′(θ

t)−Rj′(θ
t,e
j )
∥∥∥2
F

≤ 8(1− qj)A
2
1A

2
0

∑
j′ ̸=j

qj′

(∥∥∥R̃t
j′ −Rj′(θ

t)
∥∥∥2
F
+
∥∥Rj′(θ

t)−Rj′(θ
t,e
j )
∥∥2
F

)

(53)

where the second inequality uses Lemma B.4, and the third inequality uses Jensen’s inequality.

Use Lemma B.4 and mean-value theorem, we have∥∥Rj′(θ
t)−Rj′(θ

t,e
j )
∥∥2
F
≤ 4A2

1A
2
0

∥∥θt − θt,ej

∥∥2
2
. (54)

Denote Dt
j =

1
1−qj

∑
j′ ̸=j qj′

∥∥∥R̃t
j′ −Rj′(θ

t)
∥∥∥2
F

, we have

T5 ≤ 8(1− qj)
2A2

1A
2
0

(
4A2

1A
2
0

∥∥θt − θt,ej

∥∥2 +Dt
j

)
(55)

Notice that ∑
j

qj
∥∥θt,e − θt,ej

∥∥2 =
∑
j

qj
∥∥θt,e − θt + θt − θt,ej

∥∥2
≤
∑
j

qj
∥∥θt − θt,ej

∥∥2 (56)

then, substitute eq. (48) with eq. (49), eq. (52) and eq. (55), we have

T1 ≤ 3

(
β2
∑
j

qj
∥∥θt,e − θt,ej

∥∥2 + 16A2
1A

6
0

∑
j

q3j

(
1

2V
+

|Dj |/B − 1

|Dj | − 1

)

+ 8A2
1A

2
0

∑
j

qj(1− qj)
2
(
4A2

1A
2
0

∥∥θt − θt,ej

∥∥2 +Dt
j

))

≤ 3

((
β2 + 32A6

1A
6
0

)∑
j

qj
∥∥θt − θt,ej

∥∥2 + 16A2
1A

6
0

(
1

2V
+max

j

|Dj |/B − 1

|Dj | − 1

)
+ 8A2

1A
2
0

∑
j

qjD
t
j

) (57)
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B.4.2. BOUNDING THE TERM T2

T2 = Var
[
vt,e|F t,e

]
= Var

∑
j

qjv
t,e
j |F t,e

 =
∑
j

q2jVar
[
vt,ej |F t,e

]
(58)

Compare eq. (43) and eq. (44), we have

vt,ej [p]− v̄t,ej [p] = −∂pTr
{
R̂+

j ({Xv}v, θt,ej )
}
+ ∂pTr

{
R+

j (θ
t,e
j )
}

+ qjTr
{
R̂j({Xv}v, θt,ej )∂pR̂j({Xv}v, θt,ej )

}
− qjE{Xv}v

[
Tr
{
R̂j({Xv}v, θt,ej )∂pR̂j({Xv}v, θt,ej )

}]
+ (1− qj)Tr

{
∂pR̂j({Xv}v, θt,ej ))R̃t

−j

}
− (1− qj)Tr

{
∂pRj(θ

t,e
j )R̃t

−j

}
(59)

Var
[
vt,ej |F t,e

]
= E{Xv}v

[∥∥vt,ej − v̄t,ej

∥∥2]
≤ 3E{Xv}v

∑
p

(
∂pTr

{
R̂+

j ({Xv}v, θt,ej )
}
− ∂pTr

{
R+

j (θ
t,e
j )
})2

︸ ︷︷ ︸
T6

+ 3q2j E{Xv}v

∑
p

(
Tr
{
R̂j({Xv}v, θt,ej )∂pR̂j({Xv}v, θt,ej )

}
− E{Xv}v

[
Tr
{
R̂j({Xv}v, θt,ej )∂pR̂j({Xv}v, θt,ej )

}])2
︸ ︷︷ ︸

T7

+ 3(1− qj)
2 E{Xv}v

∑
p

(
Tr
{
∂pR̂j({Xv}v, θt,ej ))R̃t

−j

}
− Tr

{
∂pRj(θ

t,e
j )R̃t

−j

})2
︸ ︷︷ ︸

T8

(60)

For term T6, we have

T6 ≤ EX̄∼Dj
E{Xv}v|X̄

∑
p

(
∂pTr

{
R̂+

j ({Xv}v, θt,ej )
}
− ∂pTr

{
R+(X̄, θt,ej )

}
+ ∂pTr

{
R+(X̄, θt,ej )

}
− ∂pTr

{
R+

j (θ
t,e
j )
})2

= EX̄∼Dj
E{Xv}v|X̄

∑
p

(
∂pTr

{
R̂+

j ({Xv}v, θt,ej )
}
− ∂pTr

{
R+(X̄, θt,ej )

})2
+ EX̄∼Dj

(
∂pTr

{
R+(X̄, θt,ej )

}
− ∂pTr

{
R+

j (θ
t,e
j )
})2

=
∑
p

(
EX̄∼Dj

Var{Xv}v|X̄

[
∂pTr

{
R̂+

j ({Xv}v, θt,ej )
}]

+ VarX̄∼Dj

[
∂pTr

{
R+(X̄, θt,ej )

}])
≤ 4A2

1A
2
0

(
1

V
+

|Dj |/B − 1

|Dj | − 1

)

(61)

where the first equality uses E ∥X − E[X]∥2 ≤ E ∥X∥2; the last inequality uses the variance under sampling without
replacement.
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For the term T7, we have

T7 =
∑
p

Var{Xv}v

[
Tr
{
R̂j({Xv}v, θt,ej )∂pR̂j({Xv}v, θt,ej )

}]
≤ 2

∥∥Rj(θ
t,e
j )
∥∥2
F

∑
p

Var{Xv}v

[
∂pR̂j({Xv}v, θt,ej )

]
+ 2

∑
p

∥∥∂pRj(θ
t,e
j )
∥∥2
F
Var{Xv}v

[
R̂j({Xv}v, θt,ej )

]
≤ 2A4

0

∑
p

Var{Xv}v

[
∂pR̂j({Xv}v, θt,ej )

]
+ 8A2

1A
2
0Var{Xv}v

[
R̂j({Xv}v, θt,ej )

] (62)

Notice that ∑
p

Var{Xv}v

[
∂pR̂j({Xv}v, θt,ej )

]
=
∑
p

EX̄∼Dj
Var{Xv}v|X̄

[
∂pR̂j({Xv}v, θt,ej )

]
+
∑
p

VarX̄∼Dj

[
∂pR(X̄; θt,ej )

]
≤ 4A2

1A
2
0

(
1

2V
+

|Dj |/B − 1

|Dj | − 1

) (63)

where the second line uses Var[Y ] = EXVar[Y |X] + Var[E[Y |X]]; the third line uses Var[X] ≤ E ∥X∥2F , Lemma B.4, and
sampling with and without replacement. Similarly, we have

Var{Xv}v

[
R̂j({Xv}v, θt,ej )

]
= EX̄∼Dj

Var{Xv}v|X̄

[
R̂j({Xv}v, θt,ej )

]
+ VarX̄∼Dj

[
R(X̄; θt,ej )

]
≤ A4

0

(
1

2V
+

|Dj |/B − 1

|Dj | − 1

) (64)

Plug eq. (63) and eq. (64) into eq. (62), we have

T7 ≤ 8A2
1A

6
0

(
1

2V
+

|Dj |/B − 1

|Dj | − 1

)
(65)

For the term T8, using eq. (63) we have

T8 ≤
∑
p

Var{Xv}v

[
∂pR̂j({Xv}v, θt,ej )

] ∥∥∥R̃t
−j

∥∥∥2
F

≤ 4A2
1A

2
0

(
1

2V
+

|Dj |/B − 1

|Dj | − 1

)∥∥∥R̃t
−j

∥∥∥2
F

(66)

Substitute eq. (58) with eq. (60), eq. (61), eq. (65) and eq. (66), we have

T2 ≤ 12A2
1A

2
0

∑
j

q2j

(
1

V
+

|Dj |/B − 1

|Dj | − 1

)
+ 24A2

1A
6
0

∑
j

q4j

(
1

V
+

|Dj |/B − 1

|Dj | − 1

)

+ 12A2
1A

2
0

∑
j

q2j (1− qj)
2

(
1

V
+

|Dj |/B − 1

|Dj | − 1

)∥∥∥R̃t
−j

∥∥∥2
F

≤
(

1

V
+max

j

|Dj |/B − 1

|Dj | − 1

)12A2
1A

2
0 + 24A2

1A
6
0 + 12A2

1A
2
0

∑
j

q2j (1− qj)
2
∥∥∥R̃t

−j

∥∥∥2
F


(67)

B.4.3. COMBINE THE RESULTS

Take expectation on both sides of eq. (41) conditioned on F t,0, we have

E
[
L(θt,e+1)|F t,0

]
≤ E

[
L(θt,e)|F t,0

]
− η

2
E
[∥∥∇L(θt,e)

∥∥2 |F t,0
]
+

η

2
E
[
T1|F t,0

]
+ E

[
T2|F t,0

]
. (68)
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Notice that

E
[∥∥θt − θt,ej

∥∥2 |F t,0
]
= E

∥∥∥∥∥
e−1∑
e′=0

ηvt,e
′

j

∥∥∥∥∥
2

2

|F t,0


≤ E

e−1∑
e′=0

η2E
[∥∥vt,ej

∥∥2
2
|F t,0

]
≤ E2η2(8A2

1A
2
0 + 8A2

1A
2
0(A

4
0 +H2σ2))

(69)

where the last line uses Lemma B.8. Also notice that

E
[
Dt

j |F t,0
]
=

1

1− qj

∑
j′ ̸=j

qj′E

[∥∥∥R̃t
j′ −Rj′(θ

t)
∥∥∥2
F
|F t,0

]

=
1

1− qj

∑
j′ ̸=j

qj′

[
E

[∥∥∥R̃t
j′ − Řj′(θ

t)
∥∥∥2
F
|F t,0

]
+ E

[∥∥Řj′ −Rj′(θ
t)
∥∥2
F
|F t,0

]]
= H2σ2 +

1

2V
A4

0

(70)

where Řj′ is the empirical correlation matrix before applying DP noise. Then we have

E
[
T1|F t,0

]
≤ 3

((
β2 + 32A6

1A
6
0

)
E2η2

(
8A2

1A
2
0 + 8A2

1A
2
0

(
A4

0 +H2σ2
))

+ 16A2
1A

6
0

(
1

V
+max

j

|Dj |/B − 1

|Dj | − 1

)
+ 8A2

1A
2
0

(
H2σ2 +

1

2V
A4

0

))
.

(71)

For the term E
[
T2|F t,0

]
, we have

E

[∥∥∥R̃t
−j

∥∥∥2
F
|F t,0

]
= E

[∥∥R̄t
−j

∥∥2
F
|F t,0

]
+ E

[∥∥nt
−j

∥∥2
F
|F t,0

]
= A4

0 +
1

(1− qj)2

∑
j′ ̸=j

q′2j H2σ2
(72)

E
[
T2|F t,0

]
≤
(

1

V
+max

j

|Dj |/B − 1

|Dj | − 1

)(
12A2

1A
2
0 + 26A2

1A
6
0 + 12A2

1A
2
0H

2σ2
)

(73)

where we use fact qj(1− qj)
2 ≤ 4

27 . Combine eq. (68), eq. (71) and eq. (73), we have

E
[
L(θt,e+1)|F t,0

]
− E

[
L(θt,e)|F t,0

]
≤ −η

2
E
[∥∥∇L(θt,e)

∥∥2 |F t,0
]
+

η3

2
C1E

2(H2σ2 + C2) +
η2

2
C3

(
1

V
+max

j

|Dj |/B − 1

|Dj | − 1

)(
H2σ2 + C4

)
+

η

2
C5

(
1

V
+max

j

|Dj |/B − 1

|Dj | − 1

)
+

η

2
C6

(
H2σ2 +

1

V
C7

) (74)

where C1, C2, ..., C7 are constant depending A0, A1 and A2. Telescope eq. (74) and take expectation, we have

1

TE

T−1∑
t=0

E−1∑
e=0

E
[∥∥∇L(θt,e)

∥∥2]
≤ 2

ηTE

(
E
[
L(θt,0)

]
− E

[
L(θt,E)

])
+ η2C1E

2(H2σ2 + C2) + ηC3

(
1

V
+max

j

|Dj |/B − 1

|Dj | − 1

)(
H2σ2 + C4

)
+ C5

(
1

V
+max

j

|Dj |/B − 1

|Dj | − 1

)
+ C6

(
H2σ2 +

1

V
C7

)
.

(75)
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Recall the choice η = O
(

1√
TE

)
, we have

1

TE

T−1∑
t=0

E−1∑
e=0

E
[∥∥∇L(θt,e)

∥∥2]

≤ O

E2(H2σ2 + C2)

TE
+

L(θ0) +
(

1
V +maxj

|Dj |/B−1
|Dj |−1

) (
H2σ2 + C4

)
√
TE

+
1

V
+max

j

|Dj |/B − 1

|Dj | − 1
+H2σ2

 (76)

B.5. Partial Participation Case

Partial participation results in perturbation in aggregation.

E

[∥∥∥∇L(θt,EJ t )
∥∥∥2 − ∥∥∇L(θt,E)

∥∥2 |Jt

]
= 2EJt

[
∇LT (θt,E + λh)∇2L(θt,E + λh,D)h

]
≤ 2WβEJt

[∥∥∥θt,E − θt,EJ t

∥∥∥]
≤ 2Wβ

√
EJ t

[∥∥∥θt,E − θt,EJ t

∥∥∥2
2

]
≤ 2ηβEW 2

√
J/|J t| − 1

J − 1

(77)

where one can easily verify that W = 8A2
1A

2
0 + 8A2

1A
6
0 from Lemma B.8 servers a bound for gradient norm; the second

line uses mean-value theorem. Another aspect is that R̃j is less frequently updated on sever. Therefore the term E
[
Dt

j |F t,0
]

should involve an additional term accounting to aging of correlation matrix,

E
[
Dt

j |F t,0
]
≤ H2σ2 +

1

2V
A4

0 + C8η
2. (78)

The reason is that the difference between the current and old correlation matrix is proportional to the distance between the
current and old variables (shown in eq. (54)), which is proportional to E2η2 (shown in eq. (69)). Thus we finally have

1

TE

T−1∑
t=0

E−1∑
e=0

E
[∥∥∇L(θt,e)

∥∥2] ≤ O

(
E2(H2σ2 + C2)

TE
+

L(θ0) +
(

1
V +maxj

|Dj |/B−1
|Dj |−1

) (
H2σ2 + C4

)
+ E

√
J/|J t|−1

J−1√
TE

+
1

V
+max

j

|Dj |/B − 1

|Dj | − 1
+H2σ2

)
(79)

C. Detailed Implementation of FedSC
Recall the local objective

LSC
j (θ; R̄−j) = −Tr{R+

j (θ)}+
1

2
αj ∥Rj(θ)∥2F + (1− αj)Tr{Rj(θ)R̄−j} (80)

here we replace qj with a general coefficient αj , and decay it linearly from 1 to 0.2 along with communication round indices.
The behind motivation is as follows. At the beginning of the training, moving direction from the global objective and the
average local objective tend to align closely. Moreover, the correlation matrices of clients are not yet stable at this stage,
making it less critical to at early stages. Therefore, we choose large αj for quicker start. Conversely, correlation matrices
converges and becomes stable at the end of training, thus we give the inter-client contrast larger weights, i.e., smaller αj .

We also make modifications when DP protection is applied. Based on the above analysis, we start sharing at the middle
or late stages of the training to save privacy budgets. Following are the detailed implementation details. For partial client
participation, we only change σ according to the ratio of participation.
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Table 6. Implementation details of FedSC with DP protection: full client participation
µ σ round indices local dataset size

SVHN (ϵ = 3, δ = 10−2) 2 0.0034 t > 100 10, 000
SVHN (ϵ = 6, δ = 10−2) 2 0.0018 t > 100 10, 000
SVHN (ϵ = 3, δ = 10−4) 2 0.0048 t > 100 10, 000
SVHN (ϵ = 8, δ = 10−4) 2 0.0018 t > 100 10, 000

CIFAR10 (ϵ = 3, δ = 10−2) 4 0.01 t > 150 5, 000
CIFAR10 (ϵ = 6, δ = 10−2) 4 0.0052 t > 100, t%2 = 0 5, 000
CIFAR10 (ϵ = 3, δ = 10−4) 4 0.012 t > 150 5, 000
CIFAR10 (ϵ = 8, δ = 10−4) 4 0.0051 t > 100, t%2 = 0 5, 000

CIFAR100 (ϵ = 6, δ = 10−2) 5 0.013 t > 100, t%2 = 0 2, 500
CIFAR100(ϵ = 12, δ = 10−2) 5 0.0075 t > 100, t%2 = 0 2, 500
CIFAR100 (ϵ = 3, δ = 10−4) 5 0.04 t > 100, t%2 = 0 2, 500
CIFAR100(ϵ = 8, δ = 10−4) 5 0.013 t > 100, t%2 = 0 2, 500
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