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Abstract

We present a method to detect differences
in the semantics of the spontaneous lan-
guage of persons with separate primary
progressive aphasia syndromes (PPA) us-
ing automated Information Control Unit
derivation. The resulting semantic clusters
are evaluated for their use in a predictive
model to identify speakers with PPA. A
prototype description is automatically gen-
erated based on a picture description by
control speakers. Clustering is used to iden-
tify topics. The semantic distance between
the prototype and language from persons
with PPA is used to quantify the degree to
which the language of persons with PPA de-
viates from normal language. A classifier
is used to classify individual fragments.

The vocabulary of speakers with PPA is
found to be less diverse in speakers with
PPA. Different clusters are identified auto-
matically that correspond with categories
of objects and actions. In several clus-
ters, speakers with PPA show deviations
from the prototype. Random Forest clas-
sification out-performs baseline in control
vs PPA and control vs svPPA vs nfvPPA
tasks. Whereas nfvPPA is usually associ-
ated with speech motor problems, our study
also finds their language deviating on the
level of semantics.

1 Introduction

One of the clinical manifestations of dementia
is a decline of the ability to use language. Prob-
lems with language have been reported in indi-
viduals with dementia caused by Alzheimer’s
disease, Parkinson’s disease or frontotempo-
ral lobar degeneration. The term Primary Pro-
gressive Aphasia (PPA; Mesulam 2001) is used
to describe a neurodegenerative condition in
which the primary, dominant symptom is a pro-
gressive language disorder.

Individuals with PPA form a subclass of in-
dividuals with either Frontotemporal dementia
(FTD) or Alzheimer pathology (Rohrer et al.,
2012). There is commonly a threeway distinc-
tion of PPA types, each with different linguis-
tic characteristics: a semantic variant (SVPPA;
characterized by fluent but increasingly empty
speech with affected naming and word com-
prehension), a nonfluent variant (nfvPPA; char-
acterized by agrammatism and/or hesitant or
labored speech / apraxia of speech) and a lo-
gopenic variant (IpvPPA; characterized by apha-
sia with anomia and difficulties with repetition
of sentences or phrases).

There is a large variation of language deficits
and atrophy patterns, both within each of the
PPA subgroups and between them (Louwer-
sheimer et al., 2016; Patterson et al., 2006;
Thompson et al., 1997, 2012; Wilson et al.,
2010, 2018). Some patients present with lan-
guage problems even if they don’t yet meet
the published guidelines for PPA; and some
present with heterogeneous language problems
and mixed phenotypical manifestations that do
not clearly follow the threeway distinction.

One of the standard tasks in the clinical as-
sessment of a person’s language is an analy-
sis of their spontaneous speech and language,
through stimuli that elicit connected speech
(Boschi et al., 2017). The usual stimulus is
an image that provides a visual context for
a narrative. In most cases (e.g., Goodglass,
2000; Swinburn et al., 2004), the image is as-
sociated with Information Control Units (ICUs;
Yancheva and Rudzicz 2016), usually human-
supplied (hsICUs), which represents the objects,
actions and causality relations of the figures in
the image. Previous studies have found that the
scoring of ICUs and their comparison to prede-
fined hsICUs can indicate differences between
the narratives from healthy persons and those



with aphasia (Hier et al., 1985; Croisile et al.,
1996).

As one of the defining characteristics of
svPPA is anomia, the typical scoring of ICUs
for this group deviates, due to the difficulty
with mapping an image’s figures onto nouns
and verbs (Bozeat et al., 2002; Garrard and Car-
roll, 2006; Hoffman et al., 2013). Persons with
nfvPPA have poorer fluency and reduced syn-
tax, however their ability to name things is rela-
tively spared (Mancano and Papagno, 2023).

Analyses are usually based on multiple vari-
ables measured in a transcription, at different
levels of detail. Some variables require more
language data for reliable analysis than others,
which impacts the required amount of effort
(Ossewaarde et al., 2020). Transcribing what
is said into individual tokens requires sufficient
knowledge of the spoken language to identify
the words used by the speaker. The annota-
tion of word categories and their meaning re-
quires knowledge of linguistic concepts (part-
of-speech) and also consensus about the mean-
ing expressed by the words in the language.
ICU analysis, the measurement of the distance
between the language in the transcription and
the ICUs, requires interpretation of what is said.

Manual annotation is labor intensive, expen-
sive, and error prone. Automatic annotation
with software has been shown to be useful
for speech assessments in the context of other
forms of dementia (e.g. Robin et al., 2023).
However, for PPA, it is still an open question
how specifically the changes in the semantics of
the language can be recognized with software
such that human interpretation of the language
is not necessary.

Therefore, this study investigates the degree
to which the use of software can automate ICU
analysis in such a way that machine learning
models can detect whether a given speaker is
from the PPA group or from the control group.
To this end, we set out to automatically analyze
fragments of semispontaneous, connected, spo-
ken Dutch language. Any positive result on the
classification task would provide suggestions
for the way in which meaning expression can
be quantified in a diagnostic setting.

2 Methods

2.1 Participants

Language samples were collected from two dif-
ferent groups of Dutch speaking participants:
one group that served as a control group (n =
15) and one group of participants with demen-
tia related brain damage (n = 16), split evenly
between nfvPPA and svPPA diagnosed.!
Participants in the PPA groups were under
the care of neurologists at the Alzheimer Center
of the Amsterdam University Medical Center
and part of the Amsterdam Dementia Cohort
(Van der Flier et al., 2014). They were asked
to participate after their clinical consultation
with a neurologist. Inclusion criteria were: able
to understand and follow the task instructions,
and able to generate speech (ie: not mutistic).
The assessment of probable PPA was accord-
ing to the diagnostic criteria of Gorno-Tempini
et al. (2011). Their clinical workup followed a
standardized healthcare pathway that includes a
battery of diagnostic tests. In 12 cases amyloid
biomarker assessment had taken place.
Participants in the control group were en-
rolled in a larger cohort of volunteer subjects
in brain research studies (Dutch Brain Re-
search Registry; Zwan et al., 2021). They were
matched demographically by the selection al-
gorithm of the registry. Control participants
were included when they were native speakers
of Dutch and had no history (self-reported) of
neurological or psychiatric disorders. Demo-
graphic characteristics are reported in Table 1.

2.2 Elicitation

Spontaneous speech data was collected via the
spontaneous speech task from the Comprehen-
sive Aphasia Test (CAT-NL, Swinburn et al.
2004). The stimulus material consisted of an
image portraying distinct elements, including a
fish tank and an array of books, all of which are
interlinked through a series of causal and con-
sequential relationships. The participants were
directed to describe the picture with the verbal
prompts stipulated within the official guidelines
of the CAT-NL. The assessment sessions with
participants in the svPPA and nfvPPA groups

'Written informed consent was obtained from all par-
ticipants. Ethical approval was determined exempt by the
Medical Ethics Committee of the Amsterdam University
Medical Center.



control nfvPPA svPPA

Number of participants 15 8 8
Number of language samples 15 13 16
Persons:

Women (%) 60.0 62.5 62.5
Samples:

Women (%) 60 54 69

Months since symptom onset n/a 35.9 34.6

Age at language recording 63.4 +8.4 66.7 +6.1 66.1 £3.0

MMSE n/a 26.3 £1.4 27.5 +0.6

Data are shown as mean +/- standard deviation or frequency (%). Sample variables are computed
at time of recording. Kruskal-Wallis test indicated no statistically significant different distributions
with alpha <= 0.05. nfvPPA: nonfluent variant of PPA, svPPA: semantic variant of PPA, MMSE:

Mini-mental State Examination score.

Table 1: Main clinical and demographic characteristics.

were conducted face-to-face within the clinical
setting. Where possible, participants in these
groups also contributed at follow-up visits. Ses-
sions with control participants were held once
per participant. Language in these groups was
elicited via video conferencing (Google Meet)
due to social distancing measures at the time of
elicitation.

Some participants from the patient groups
contributed samples at followup visits. Samples
were assumed to be independent data points,
given that the time between tests was suffi-
ciently large to exclude memory effects (> 90
days), and given the relatively heterogeneous
character of the disease, which negatively af-
fects the correlation that can be expected be-
cause samples are produced by the same indi-
vidual.

2.3 Transcription and linguistic analysis

At transcription, the starts and ends of the
recordings of participants were manually
trimmed so that only the audio of the CAT-NL
spontaneous speech task resulted. The start
condition was the moment that the interviewer
finished the instructions to the participant. The
end condition was the signal from the partici-
pant that the storytelling was over.

The tokens in the spoken fragments were
transcribed in a broad transcription, with spe-
cial markings for filled pauses (/eh/ and /ehm/).
There was no separate tier to transcribe tempo-
ral properties or (morpho-)syntax.

Part of speech tags were assigned automat-
ically by RNNTagger (Schmid, 2019) trained

on the Eindhoven Corpus?.

2.3.1 Comparison of transcripts to
prototype

A statistical way of capturing the meaning of
a word is through meaurement of its similarity
to other words in the same embedding context.
(Distributional Hypothesis; Sahlgren, 2008). In
practice, word embeddings are represented by a
vector with enough dimensionality to be infor-
mative enough. Vectors are computed through
large scale corpus analysis, resulting in either
context independent word vectors (one vector
for left in “the left side was left unpainted”;
word2vec models; Mikolov et al., 2017) or con-
text dependent word vectors (two vectors for
left in the same example; BERT models; De-
vlin et al., 2019). Word embeddings have been
shown to adequately capture the similarity of se-
mantically similar words, thus acting as a proxy
for the truth-conditional meaning of that sense
of the word. The use of vectors allows a natural
way to study the relatedness of the words that
persons use in the retelling of a narrative.

We use a monolingual Dutch transformer-
based pre-trained language model (BERTje; de
Vries et al., 2019) to map tokens to embeddings.
The context dependent nature of BERTje means
that semantic similarity comparisons of abso-
lute values are less robust on the word level
because contextual information influences the
relatedness values.

2Eindhoven-corpus (Version 2.0.1) (2014) [Data set].
Available at the Dutch Language Institute: http://hdl.
handle.net/10032/tm-a2-n6
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BERT-like models boosts their performance
for out-of-vocabulary words by computing em-
beddings on the sub-word level ("embedding’
is represented as ['em’ ’bed’ ’ding’]. Out-
of-vocabulary words include neologisms and
phonological paraphasias. In this study, we
matched what is tokenized by BERTje with the
tokens processed by the Stanford parser to en-
sure the correct alignment of sub-word tokens
with words in in the transcript.

The embeddings are used to create a proto-
type of the picture description, based on the
language of healthy speakers. The prototype
is then used to investigate to what extent the
divergence from the prototype is indicative of
aphasia caused by PPA.

All content words (nouns, verbs) of the con-
trol speakers were clustered jointly based on
their similarity scores. Similarity scores were
derived from the hidden layers of the pretrained
BERTje vectors through summation of the last
four layers. The Elbow method (Satopaa et al.,
2011) was used to determine the optimum num-
ber of clusters, optimizing for the lowest WCSS
(distortion) score. The average optimal WCSS
scores were found to be at k£ = 12 clusters.

Because high dimension data sets can en-
code its information in such a sparse way that
subsequent clustering suffers in terms of perfor-
mance, it is standard practice to apply a dimen-
sionality reduction step as part of preprocessing
before clustering. We applied the Uniform Man-
ifold Approximation & Projection algorithm
(UMAP; Mclnnes et al., 2018).

The data pipeline is illustrated in Figure 1.

The clustered space may be considered as
a prototype: it is the summation of all con-
tent words used by control speakers clustered
around centers that represent a dimension in
the conceptual space. Each of the speaker’s
descriptions of the picture is a variant on the
prototype. The distance of each of the content
terms of each speaker to the cluster centers was
computed to yield a fingerprint for the relation
between prototype and variant as follows:

Each token that a participant uses is labeled
as belonging to a cluster of the prototype. The
mean average distance to each cluster is a mea-
sure for the semantic closeness to that cluster.
If a cluster is about a specific concept that is
part of the picture, such as the fish tank or
the books in the picture of the CAT, then any

speaker should be expected to also use words
relating to those categories. If the speaker uses
different but semantically similar terms, then
the distance will be higher, but still closer than
if a speaker uses semantically vague terms.

The labels of the words spoken by the par-
ticipant form a bag (multiset). Comparison be-
tween the bag of unique labels spoken by the
participant to the bag of labels in the prototype
is quantified using the Tversky index, which is
a widely used asymmetric similarity measure
for comparison of a variant to a prototype.

B |AN B|
SAB) = A BT alB -4+ BlA-B]
(Tversky index)

Because the clusters of the variant are a priori
derived from the prototype, the o parameter -
a multiplier for the number of clusters in the
variant that do not occur in the prototype - is
necessarily zero. The 5 parameter was set to
1. The index that we use is insensitive to the
number of times that a person mentions the
same topic.

The number of words assigned to each clus-
ter is an indication of the semantic fingerprint
of the speaker’s narrative. Between group com-
parisons are performed using one-way ANOVA
tests.

2.4 Classification

A Random Forest Classifier (Breiman, 2001)
was used to classify the participants. The inde-
pendent variables were: the Tversky index, the
frequency of each cluster label, and the aver-
age distance of the tokens to the cluster centers.
The dependent variable was either the binary
distinction control versus patient or the ternary
distinction control versus nfvPPA versus svPPA.
The cross-validation performance was used to
tune the model. The number of trees was cho-
sen as 100, with no constraints on the maximum
depth of the tree. To evaluate the model, the
out-of-sample performance was estimated us-
ing leave-one-out cross validation. Scoring of
the classifier is reported using the balanced ac-
curacy metric.

3 Results

The clusters and English translations of their
tokens are reported in Appendix A. Their rel-
ative contributions are visualized in Figure 2.



Prototype: clustering to find topics (K-means)

Transcription — Part-of-Speech Tagger — Get word embeddings (BERTje) — Reduce dimensionality UMAP

Variant: determine distance to cluster centers

Figure 1: The pipeline from transcription to prediction
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Figure 2: Relative contributions of clusters to the CAT-NL story.

The silhouette coefficient plot in Figure 3 visu-
alizes the relationship between tokens and their
assigned clusters.

The k-means algorithm, due to its determin-
istic character and its assumption of centers
in spherical clusters, will always classify data,
even words that are noise. Cluster O is the
largest cluster in terms of number of different
words, and the most heterogeneous. Both hu-
man inspection and the negative coefficient in
the silhouette plot for this cluster suggest that
this is the default cluster which is assigned to
words that do not clearly belong to any of the
other clusters.

Cluster 1 contains verbs that usually func-
tion as auxiliaries or modals. Clusters 2, 7 and
9 mostly contain the verbs that describe the
action in the image, with one cluster (cluster
2) particularly associated with verbs of stance.
Two clusters contain human and nonhuman an-
imate figures respectively (clusters 3 and 4);
one cluster (10) contains most of the inanimate
figures that occur in the image.

Narratives from the nfvPPA group show sig-
nificantly less words in almost all the clusters

which is indicative of the generally shorter and
more effortful speech in that group.

The comparison between participant groups
for both the Tversky index variable and the
absolute set size of each cluster is reported in
Table 2. Except for clusters 3, 7 and 10, there
are significant differences between each of the
groups.

Cluster O is the largest cluster in terms of
words, and the most heterogeneous. Both hu-
man inspection and the negative coefficient in
the silhouette plot for this cluster suggest that
this is the default cluster which is assigned to
words that don’t clearly belong to any of the
other clusters. Cluster 1 contains verbs that
usually function as auxiliaries or modals.

Both svPPA and nfvPPA group speakers pro-
duce relatively more words in cluster O, the
cluster with the most semantically distant (un-
related or vaguer) words. Both groups produce
relatively fewer words in clusters 4 and 8, which
contains the nonhuman animate figures and fur-
nishings respectively.

Concerning verbs, nfvPPA speakers use
fewer auxiliary and modal verbs (cluster 1) and
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Figure 3: Silhouette plot of the clusters with their average silhouette score.

verbs that relate to what happens in the figure
(clusters 5, 9). They use more verbs that relate
to how they interpret the image (think, suspect;
cluster 6). SVPPA speakers use more auxiliary
verbs (cluster 1), fewer verbs that describe the
stance of the figures in the image (cluster 2) and
fewer verbs that relate to how they interpret the
image (cluster 6).

The emerging semantic profile of the nfvPPA
group is that of a narrative that has words for
the humans in the figure and their stance actions
in similar proportions as that of control speak-
ers. However, the description of non-human
animate figures (fish, cat, (teddy) bear, plant)
and of furnishings are sparser, as well as their
use of auxiliary verbs that are typically used
in grammatically more complex expressions.
Their language contains more words that are
semantically remote from the prototype.

The svPPA group uses more auxiliary verbs
and more words that are semantically remote.
The typical difficulty with naming that devel-
ops over time in this group manifests through
a smaller proportion of words assigned to the
clusters with more extensional meaning (fewer
words in clusters 2, 4, 6, 8, 11). The profile of
this narrative fits the description of relatively
intact syntax, but difficulties in recalling the
specific words.

3.1 Results of the classification of
individuals

The per-class results of the classification are
summarized as confusion matrices in Tables 3a
and 3b for the two and three class classifiers

respectively. The observed performance is re-
ported in Table 4. In both tasks, the classifi-
cation performed significantly better than the
baseline strategy of predicting the most fre-
quent label.

4 Discussion

In this paper, we set out to quantify the degree
to which the semantic content of a narrative by
PPA participants differs from that by control
speakers. In our methodology, we did not iden-
tify any topics a priori (hsICU), but rather used
software to create a prototype from the narra-
tives of controls, and then measured how the
speech of PPA diverges.

One major finding is that the Tversky mea-
sure for both the svPPA and nfvPPA stories is
significantly lower than that of control stories,
with the nfvPPA group scoring lowest. The
lower Tversky index for patient group speakers
indicates that these speakers used relatively less
distinct words to describe the story than speak-
ers from the control group. This indicates that
the vocabulary that is used by these speakers
shows less variation, which relates to the gen-
eral finding that vocabulary creativity decreases
under the influence of PPA (Fraser et al., 2014).
For nfvPPA participants, semantic effects are
a surprising finding, given that nfvPPA is usu-
ally associated with effortful speech, in some
cases caused by speech motor problems (Pri-
mary Progressive Apraxia of Speech, PPAOS;
Dufty, 2006). In our grouping of participants,
we did not subdivide the participants of the
nfvPPA group, therefore categorizing nfvPPA



Group  Tversky 1 (0) 0 1 p) 3 4 3 6 7 ] 9 10 i1

kk Kk kk Kk Kk ksksk skeksk skkok * *
Control 096 (0.03) 2133 1100 940 940 7.60 1087 327 133 420 240 2.3 320
nfvPPA 077(0.16) 1100  3.00 375 467 183 358 192 000 083 033 192 133
svPPA 0.85(0.17) 2669 1450 406 1006 3.00 1000 119 194 219 225 162 188

Table 2: The Tversky index and number of tokens assigned to each cluster. Alpha-values for significance:

7#7:0.05, 7**°: 0.01, ****: 0.001.

(a) 2-class clustering

(b) 3-class clustering

Prediction  Actual value Prediction Actual value
Control PPA Control nfvPPA svPPA
Control 12 3 Control 12 0 3
PPA 0 26 nfvPPA 2 9 1
svPPA 0 1 15

Table 3: Confusion matrices for 2 and 3-class clustering.

Task Accuracy Precision F1

2-class: control vs. PPA 0.77 0.81 0.80

3-class: control vs. nfvPPA vs. svPPA 0.70 0.71 0.71

Table 4: Observed performance of the Random Forest Classifier for the two classification tasks. The
accuracy reported is the balanced accuracy, the average of recall obtained on each class. The scores for

precision and F1 are micro averaged.

with PPAS in the same group as those without.

The clustering based on embeddings allows
further introspection of the differences between
the participant groups. Combining the Tversky
findings and the cluster comparisons yields a
quantification of the nfvPPA narratives as con-
taining less content words in general (lowest
Tversky index), and svPPA narratives as con-
taining relatively more general nouns and verbs.

Our methodology shows how the contents of
a story can be analyzed in an automatic way.
We identified ICU’s that should occur in a pic-
ture description through an automated analy-
sis of descriptions by healthy speakers. This
is an alternative to the approach in which hu-
mans predefine the elements, as in the hsICU
approach that is often used in the field. One
advantage of the use of software is that it scales
well, even if narratives become longer or cover
topics that are less predefined as those in a pic-
ture task.

In our approach, we used verbs and nouns, as
these add most of the truth-conditional seman-
tical content. The implication of our results
is that persons with nfvPPA have less prob-
lems finding content words but produce less lan-
guage overall, and that persons with svPPA will
use content words that are emptier in meaning.

The classification results indicate that verbs and
nouns alone are informative enough to result in
a classification between the groups. However,
one aspect of the task is that of the causality
between different elements in the picture. Al-
though classification without the causality ele-
ment is already promising, future research may
target a way to also include words that describe
the causality relation, such as subordinating
conjunctions or prepositional phrases (because,
then).

BERT models encode features such as famil-
iarity, age-of-acquisition, frequency, and con-
creteness internally into their vector representa-
tions. These features have been shown individ-
ually to be predictive for the selective loss of
concepts in persons with PPA. The black box
nature of Transformer models does not allow
direct introspection of the importance of such
features for the classification prediction. Fu-
ture research may focus on post hoc analyses of
such features in the clusters that influence the
classification.

BERTje embeddings are context dependent.
For some tasks, context independent embed-
dings, generated by more traditional dictionary
approaches (such as Word2Vec and GloVE;
(Pennington et al., 2014)), perform as well as



context dependent ones (e.g., Arora et al. 2020).
The prediction is that context dependent models
fare better when the language has more com-
plex structure, more ambiguity in its word us-
age and contains more Out of Vocabulary words.
This is relevant for the application to persons
with language problems because their language
is often marred by syntactic problems or word
finding problems.

The hyperparameters in the dimensionality
reduction dictate the performance of the algo-
rithm, especially the selection of the number of
clusters. Although the parameter setting was
governed by best practices, a different choice
for the number of clusters may result in a clus-
tering of the labels that is more aligned with
human intuitions. The silhouette visualization
(cf. Figure 3) indicates a good convergence of
all clusters except for cluster 0, which is the
catch-all cluster for words. Participants in the
svPPA group use a significantly higher number
of words related to this cluster, which indicates
a strategy of replacing target words with more
general counterparts.

Because no topics have been identified a pri-
ori, our methodology can be seen as agnostic
about the stimulus that is used to elicit the nar-
ratives. It scales to other narratives and to other
languages, under the condition that pretrained
embeddings are available.

5 Limitations

Words that have no truth-conditional semantics
(such as pronouns) are not included in the clus-
tering. It is expected that nfvPPA participants
use more frequently constructions that are more
referential (Cokal et al., 2018); our methodol-
ogy yields no further insight in the usage of
such words, but see [citation: name deleted to
maintain review integrity] for an analysis of
word usage differences between the groups of
this study.

Our choice of dimensionality reduction al-
gorithm and subsequent k-means classification
is partly inspired by the white box properties
of these algorithms (Leijnen et al., 2020). It is
possible that other AI methods (such as artifi-
cial neural networks) show better performance,
even though our training set is relatively mod-
est.

The expression of meaning through embed-

dings carries the same bias as the training data
used to generate the embeddings. Our expec-
tation is that the choice of embedding model
is relatively insignificant, given the nature of
the analyzed texts: for the specific image in
this task, descriptions are expected to contain
mostly high frequency vocabulary items that
name everyday things. One form of bias is
significant for applications in healthcare: the
training data for BERT data is derived from
large scale corpora, with demographics of the
speakers regressing towards the mean of the
general population. Persons with PPA are gen-
erally older. Language production declines with
age, even in healthy speakers (Kemper, Thomp-
son, and Marquis, 2001). In our study, we use
a task and a stimulus specifically designed for
this target population; however, when extend-
ing our methodology towards stimuli with more
freedom, care must be taken that the bias of the
trained embeddings does not translate into bias
effects in the analysis.

The pipeline includes Dutch specific ele-
ments: the parser and the embedding model.
Because the quality of the subsequent analysis
depends on the quality of the software elements
for that language, scaling to other languages is
not a given, unless similar resources are avail-
able. Some approaches to developing BERT
models actively include multiple languages in
the same model (e.g. multilingual BERT; Wu
and Dredze 2020). The assumption is that some
linguistic constructs are shared between lan-
guages, and so that the training effort of multi-
ple languages combined is less than a per lan-
guage training approach. The high interest in
embeddings for different languages bodes well
for the ability to scale our approach to other
languages.

6 Conclusion

The use of parsing software combined with pre-
trained embeddings can aid in the analysis of
spontaneous speech. In this study, we classi-
fied participants between control and PPA, and
between the control and two of the three dom-
inant subtypes of PPA, with a high degree of
confidence. The classification is based on a
comparison to the language of healthy persons,
which makes the method cost effective and ag-
nostic of predefined
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A Clusters and the words they contain.

Clusters and English translations of the words they contain. Stars indicate significant deviations
in absolute word counts with arrows indicating the deviation direction. The cluster labels were
assigned post hoc by the authors.

Cluster Tokens nfvPPA  svPPA
vs control
0 ok attention, number, picture, alcohol, busy, fold, holes, effect, speak, ... catch-all category «* *
will, must, have, was, wants, succeeds, happens, would, gets, have, has, knows,
1 ** is, seems, lets, been, am, causes, us, may, goes, finds, can, will, tried, give, auxiliary & modal verbs $ *
comes, can
2 ok lay, falls, sit, stand, hang, lays, hangs, placed, stands, happens, fall, sits figure stance verbs $
family, little, granddaughter, girl, dad, young, mister, small, child-, girl, on, .
3 daughter, children, daddy, child, father, man animate human figures * L
4 ok cat, teddy bear, fish (pl), fish (sg), gold fish, plant, cat animate non-human figures ¥ 3
5 kol see, watch, look, find perception verbs 3
6 ##%  think, suspect experiencer verb «*
awake, become, tell, receive, fishing, hit, do, say, pull, make, take, comes,
7 getting, point, catch, fall, interfere, fell, placed, care, fetch, wake, holes, throw, figure action verbs ¥ *
hear, want, warn, can
curtain, living room, table, armchair, cabinets, wall, ground, small table, chair,
8 ##%  window, floor, upper, cabinet, shelf, coffee table, dresser, window sill, paper, furnishings 3 3
walls, couch, living room, stack
awake, plays, lays, occupied, warns, want, happens, sleep, tries, sleeping, sit,
9 * about to, points, put, holds, asks, says, plays, seems, does, comfortable, try, figure action verbs ¥
stay, hunts, sits, sleeps, baby sits, peaceful, light
cd, living room, alcohol, audio, table, booze, plays, video, takes record, plant,
10 empty, toy, window, speaker, vase, wine, doll, door, nice, salon, bottle, stereo, inanimate figures *
glass, pane, panes, little jar, little glass, flower, music, box, drank, cognac, gures
house, drill, sound-, liquor, windows, stack, radio
11 * read, books about reading *
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