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Abstract

We present a method to detect differences001
in the semantics of the spontaneous lan-002
guage of persons with separate primary003
progressive aphasia syndromes (PPA) us-004
ing automated Information Control Unit005
derivation. The resulting semantic clusters006
are evaluated for their use in a predictive007
model to identify speakers with PPA. A008
prototype description is automatically gen-009
erated based on a picture description by010
control speakers. Clustering is used to iden-011
tify topics. The semantic distance between012
the prototype and language from persons013
with PPA is used to quantify the degree to014
which the language of persons with PPA de-015
viates from normal language. A classifier016
is used to classify individual fragments.017

The vocabulary of speakers with PPA is018
found to be less diverse in speakers with019
PPA. Different clusters are identified auto-020
matically that correspond with categories021
of objects and actions. In several clus-022
ters, speakers with PPA show deviations023
from the prototype. Random Forest clas-024
sification out-performs baseline in control025
vs PPA and control vs svPPA vs nfvPPA026
tasks. Whereas nfvPPA is usually associ-027
ated with speech motor problems, our study028
also finds their language deviating on the029
level of semantics.030

1 Introduction031

One of the clinical manifestations of dementia032

is a decline of the ability to use language. Prob-033

lems with language have been reported in indi-034

viduals with dementia caused by Alzheimer’s035

disease, Parkinson’s disease or frontotempo-036

ral lobar degeneration. The term Primary Pro-037

gressive Aphasia (PPA; Mesulam 2001) is used038

to describe a neurodegenerative condition in039

which the primary, dominant symptom is a pro-040

gressive language disorder.041

Individuals with PPA form a subclass of in- 042

dividuals with either Frontotemporal dementia 043

(FTD) or Alzheimer pathology (Rohrer et al., 044

2012). There is commonly a threeway distinc- 045

tion of PPA types, each with different linguis- 046

tic characteristics: a semantic variant (svPPA; 047

characterized by fluent but increasingly empty 048

speech with affected naming and word com- 049

prehension), a nonfluent variant (nfvPPA; char- 050

acterized by agrammatism and/or hesitant or 051

labored speech / apraxia of speech) and a lo- 052

gopenic variant (lpvPPA; characterized by apha- 053

sia with anomia and difficulties with repetition 054

of sentences or phrases). 055

There is a large variation of language deficits 056

and atrophy patterns, both within each of the 057

PPA subgroups and between them (Louwer- 058

sheimer et al., 2016; Patterson et al., 2006; 059

Thompson et al., 1997, 2012; Wilson et al., 060

2010, 2018). Some patients present with lan- 061

guage problems even if they don’t yet meet 062

the published guidelines for PPA; and some 063

present with heterogeneous language problems 064

and mixed phenotypical manifestations that do 065

not clearly follow the threeway distinction. 066

One of the standard tasks in the clinical as- 067

sessment of a person’s language is an analy- 068

sis of their spontaneous speech and language, 069

through stimuli that elicit connected speech 070

(Boschi et al., 2017). The usual stimulus is 071

an image that provides a visual context for 072

a narrative. In most cases (e.g., Goodglass, 073

2000; Swinburn et al., 2004), the image is as- 074

sociated with Information Control Units (ICUs; 075

Yancheva and Rudzicz 2016), usually human- 076

supplied (hsICUs), which represents the objects, 077

actions and causality relations of the figures in 078

the image. Previous studies have found that the 079

scoring of ICUs and their comparison to prede- 080

fined hsICUs can indicate differences between 081

the narratives from healthy persons and those 082
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with aphasia (Hier et al., 1985; Croisile et al.,083

1996).084

As one of the defining characteristics of085

svPPA is anomia, the typical scoring of ICUs086

for this group deviates, due to the difficulty087

with mapping an image’s figures onto nouns088

and verbs (Bozeat et al., 2002; Garrard and Car-089

roll, 2006; Hoffman et al., 2013). Persons with090

nfvPPA have poorer fluency and reduced syn-091

tax, however their ability to name things is rela-092

tively spared (Mancano and Papagno, 2023).093

Analyses are usually based on multiple vari-094

ables measured in a transcription, at different095

levels of detail. Some variables require more096

language data for reliable analysis than others,097

which impacts the required amount of effort098

(Ossewaarde et al., 2020). Transcribing what099

is said into individual tokens requires sufficient100

knowledge of the spoken language to identify101

the words used by the speaker. The annota-102

tion of word categories and their meaning re-103

quires knowledge of linguistic concepts (part-104

of-speech) and also consensus about the mean-105

ing expressed by the words in the language.106

ICU analysis, the measurement of the distance107

between the language in the transcription and108

the ICUs, requires interpretation of what is said.109

Manual annotation is labor intensive, expen-110

sive, and error prone. Automatic annotation111

with software has been shown to be useful112

for speech assessments in the context of other113

forms of dementia (e.g. Robin et al., 2023).114

However, for PPA, it is still an open question115

how specifically the changes in the semantics of116

the language can be recognized with software117

such that human interpretation of the language118

is not necessary.119

Therefore, this study investigates the degree120

to which the use of software can automate ICU121

analysis in such a way that machine learning122

models can detect whether a given speaker is123

from the PPA group or from the control group.124

To this end, we set out to automatically analyze125

fragments of semispontaneous, connected, spo-126

ken Dutch language. Any positive result on the127

classification task would provide suggestions128

for the way in which meaning expression can129

be quantified in a diagnostic setting.130

2 Methods 131

2.1 Participants 132

Language samples were collected from two dif- 133

ferent groups of Dutch speaking participants: 134

one group that served as a control group (n = 135

15) and one group of participants with demen- 136

tia related brain damage (n = 16), split evenly 137

between nfvPPA and svPPA diagnosed.1 138

Participants in the PPA groups were under 139

the care of neurologists at the Alzheimer Center 140

of the Amsterdam University Medical Center 141

and part of the Amsterdam Dementia Cohort 142

(Van der Flier et al., 2014). They were asked 143

to participate after their clinical consultation 144

with a neurologist. Inclusion criteria were: able 145

to understand and follow the task instructions, 146

and able to generate speech (ie: not mutistic). 147

The assessment of probable PPA was accord- 148

ing to the diagnostic criteria of Gorno-Tempini 149

et al. (2011). Their clinical workup followed a 150

standardized healthcare pathway that includes a 151

battery of diagnostic tests. In 12 cases amyloid 152

biomarker assessment had taken place. 153

Participants in the control group were en- 154

rolled in a larger cohort of volunteer subjects 155

in brain research studies (Dutch Brain Re- 156

search Registry; Zwan et al., 2021). They were 157

matched demographically by the selection al- 158

gorithm of the registry. Control participants 159

were included when they were native speakers 160

of Dutch and had no history (self-reported) of 161

neurological or psychiatric disorders. Demo- 162

graphic characteristics are reported in Table 1. 163

2.2 Elicitation 164

Spontaneous speech data was collected via the 165

spontaneous speech task from the Comprehen- 166

sive Aphasia Test (CAT-NL, Swinburn et al. 167

2004). The stimulus material consisted of an 168

image portraying distinct elements, including a 169

fish tank and an array of books, all of which are 170

interlinked through a series of causal and con- 171

sequential relationships. The participants were 172

directed to describe the picture with the verbal 173

prompts stipulated within the official guidelines 174

of the CAT-NL. The assessment sessions with 175

participants in the svPPA and nfvPPA groups 176

1Written informed consent was obtained from all par-
ticipants. Ethical approval was determined exempt by the
Medical Ethics Committee of the Amsterdam University
Medical Center.
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control nfvPPA svPPA
Number of participants 15 8 8
Number of language samples 15 13 16
Persons:

Women (%) 60.0 62.5 62.5
Samples:

Women (%) 60 54 69
Months since symptom onset n/a 35.9 34.6
Age at language recording 63.4 ±8.4 66.7 ±6.1 66.1 ±3.0
MMSE n/a 26.3 ±1.4 27.5 ±0.6

Data are shown as mean +/- standard deviation or frequency (%). Sample variables are computed
at time of recording. Kruskal-Wallis test indicated no statistically significant different distributions
with alpha <= 0.05. nfvPPA: nonfluent variant of PPA, svPPA: semantic variant of PPA, MMSE:
Mini-mental State Examination score.

Table 1: Main clinical and demographic characteristics.

were conducted face-to-face within the clinical177

setting. Where possible, participants in these178

groups also contributed at follow-up visits. Ses-179

sions with control participants were held once180

per participant. Language in these groups was181

elicited via video conferencing (Google Meet)182

due to social distancing measures at the time of183

elicitation.184

Some participants from the patient groups185

contributed samples at followup visits. Samples186

were assumed to be independent data points,187

given that the time between tests was suffi-188

ciently large to exclude memory effects (> 90189

days), and given the relatively heterogeneous190

character of the disease, which negatively af-191

fects the correlation that can be expected be-192

cause samples are produced by the same indi-193

vidual.194

2.3 Transcription and linguistic analysis195

At transcription, the starts and ends of the196

recordings of participants were manually197

trimmed so that only the audio of the CAT-NL198

spontaneous speech task resulted. The start199

condition was the moment that the interviewer200

finished the instructions to the participant. The201

end condition was the signal from the partici-202

pant that the storytelling was over.203

The tokens in the spoken fragments were204

transcribed in a broad transcription, with spe-205

cial markings for filled pauses (/eh/ and /ehm/).206

There was no separate tier to transcribe tempo-207

ral properties or (morpho-)syntax.208

Part of speech tags were assigned automat-209

ically by RNNTagger (Schmid, 2019) trained210

on the Eindhoven Corpus2. 211

2.3.1 Comparison of transcripts to 212

prototype 213

A statistical way of capturing the meaning of 214

a word is through meaurement of its similarity 215

to other words in the same embedding context. 216

(Distributional Hypothesis; Sahlgren, 2008). In 217

practice, word embeddings are represented by a 218

vector with enough dimensionality to be infor- 219

mative enough. Vectors are computed through 220

large scale corpus analysis, resulting in either 221

context independent word vectors (one vector 222

for left in “the left side was left unpainted”; 223

word2vec models; Mikolov et al., 2017) or con- 224

text dependent word vectors (two vectors for 225

left in the same example; BERT models; De- 226

vlin et al., 2019). Word embeddings have been 227

shown to adequately capture the similarity of se- 228

mantically similar words, thus acting as a proxy 229

for the truth-conditional meaning of that sense 230

of the word. The use of vectors allows a natural 231

way to study the relatedness of the words that 232

persons use in the retelling of a narrative. 233

We use a monolingual Dutch transformer- 234

based pre-trained language model (BERTje; de 235

Vries et al., 2019) to map tokens to embeddings. 236

The context dependent nature of BERTje means 237

that semantic similarity comparisons of abso- 238

lute values are less robust on the word level 239

because contextual information influences the 240

relatedness values. 241

2Eindhoven-corpus (Version 2.0.1) (2014) [Data set].
Available at the Dutch Language Institute: http://hdl.
handle.net/10032/tm-a2-n6
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BERT-like models boosts their performance242

for out-of-vocabulary words by computing em-243

beddings on the sub-word level (’embedding’244

is represented as [’em’ ’bed’ ’ding’]. Out-245

of-vocabulary words include neologisms and246

phonological paraphasias. In this study, we247

matched what is tokenized by BERTje with the248

tokens processed by the Stanford parser to en-249

sure the correct alignment of sub-word tokens250

with words in in the transcript.251

The embeddings are used to create a proto-252

type of the picture description, based on the253

language of healthy speakers. The prototype254

is then used to investigate to what extent the255

divergence from the prototype is indicative of256

aphasia caused by PPA.257

All content words (nouns, verbs) of the con-258

trol speakers were clustered jointly based on259

their similarity scores. Similarity scores were260

derived from the hidden layers of the pretrained261

BERTje vectors through summation of the last262

four layers. The Elbow method (Satopaa et al.,263

2011) was used to determine the optimum num-264

ber of clusters, optimizing for the lowest WCSS265

(distortion) score. The average optimal WCSS266

scores were found to be at k = 12 clusters.267

Because high dimension data sets can en-268

code its information in such a sparse way that269

subsequent clustering suffers in terms of perfor-270

mance, it is standard practice to apply a dimen-271

sionality reduction step as part of preprocessing272

before clustering. We applied the Uniform Man-273

ifold Approximation & Projection algorithm274

(UMAP; McInnes et al., 2018).275

The data pipeline is illustrated in Figure 1.276

The clustered space may be considered as277

a prototype: it is the summation of all con-278

tent words used by control speakers clustered279

around centers that represent a dimension in280

the conceptual space. Each of the speaker’s281

descriptions of the picture is a variant on the282

prototype. The distance of each of the content283

terms of each speaker to the cluster centers was284

computed to yield a fingerprint for the relation285

between prototype and variant as follows:286

Each token that a participant uses is labeled287

as belonging to a cluster of the prototype. The288

mean average distance to each cluster is a mea-289

sure for the semantic closeness to that cluster.290

If a cluster is about a specific concept that is291

part of the picture, such as the fish tank or292

the books in the picture of the CAT, then any293

speaker should be expected to also use words 294

relating to those categories. If the speaker uses 295

different but semantically similar terms, then 296

the distance will be higher, but still closer than 297

if a speaker uses semantically vague terms. 298

The labels of the words spoken by the par- 299

ticipant form a bag (multiset). Comparison be- 300

tween the bag of unique labels spoken by the 301

participant to the bag of labels in the prototype 302

is quantified using the Tversky index, which is 303

a widely used asymmetric similarity measure 304

for comparison of a variant to a prototype. 305

S(A,B) =
|A ∩B|

|A ∩B|+ α|B −A|+ β|A−B|
(Tversky index) 306

Because the clusters of the variant are a priori 307

derived from the prototype, the α parameter - 308

a multiplier for the number of clusters in the 309

variant that do not occur in the prototype - is 310

necessarily zero. The β parameter was set to 311

1. The index that we use is insensitive to the 312

number of times that a person mentions the 313

same topic. 314

The number of words assigned to each clus- 315

ter is an indication of the semantic fingerprint 316

of the speaker’s narrative. Between group com- 317

parisons are performed using one-way ANOVA 318

tests. 319

2.4 Classification 320

A Random Forest Classifier (Breiman, 2001) 321

was used to classify the participants. The inde- 322

pendent variables were: the Tversky index, the 323

frequency of each cluster label, and the aver- 324

age distance of the tokens to the cluster centers. 325

The dependent variable was either the binary 326

distinction control versus patient or the ternary 327

distinction control versus nfvPPA versus svPPA. 328

The cross-validation performance was used to 329

tune the model. The number of trees was cho- 330

sen as 100, with no constraints on the maximum 331

depth of the tree. To evaluate the model, the 332

out-of-sample performance was estimated us- 333

ing leave-one-out cross validation. Scoring of 334

the classifier is reported using the balanced ac- 335

curacy metric. 336

3 Results 337

The clusters and English translations of their 338

tokens are reported in Appendix A. Their rel- 339

ative contributions are visualized in Figure 2. 340

4



Transcription Part-of-Speech Tagger Get word embeddings (BERTje) Reduce dimensionality UMAP

Prototype: clustering to find topics (K-means)

Variant: determine distance to cluster centers

Figure 1: The pipeline from transcription to prediction
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Figure 2: Relative contributions of clusters to the CAT-NL story.

The silhouette coefficient plot in Figure 3 visu-341

alizes the relationship between tokens and their342

assigned clusters.343

The k-means algorithm, due to its determin-344

istic character and its assumption of centers345

in spherical clusters, will always classify data,346

even words that are noise. Cluster 0 is the347

largest cluster in terms of number of different348

words, and the most heterogeneous. Both hu-349

man inspection and the negative coefficient in350

the silhouette plot for this cluster suggest that351

this is the default cluster which is assigned to352

words that do not clearly belong to any of the353

other clusters.354

Cluster 1 contains verbs that usually func-355

tion as auxiliaries or modals. Clusters 2, 7 and356

9 mostly contain the verbs that describe the357

action in the image, with one cluster (cluster358

2) particularly associated with verbs of stance.359

Two clusters contain human and nonhuman an-360

imate figures respectively (clusters 3 and 4);361

one cluster (10) contains most of the inanimate362

figures that occur in the image.363

Narratives from the nfvPPA group show sig-364

nificantly less words in almost all the clusters365

which is indicative of the generally shorter and 366

more effortful speech in that group. 367

The comparison between participant groups 368

for both the Tversky index variable and the 369

absolute set size of each cluster is reported in 370

Table 2. Except for clusters 3, 7 and 10, there 371

are significant differences between each of the 372

groups. 373

Cluster 0 is the largest cluster in terms of 374

words, and the most heterogeneous. Both hu- 375

man inspection and the negative coefficient in 376

the silhouette plot for this cluster suggest that 377

this is the default cluster which is assigned to 378

words that don’t clearly belong to any of the 379

other clusters. Cluster 1 contains verbs that 380

usually function as auxiliaries or modals. 381

Both svPPA and nfvPPA group speakers pro- 382

duce relatively more words in cluster 0, the 383

cluster with the most semantically distant (un- 384

related or vaguer) words. Both groups produce 385

relatively fewer words in clusters 4 and 8, which 386

contains the nonhuman animate figures and fur- 387

nishings respectively. 388

Concerning verbs, nfvPPA speakers use 389

fewer auxiliary and modal verbs (cluster 1) and 390
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Figure 3: Silhouette plot of the clusters with their average silhouette score.

verbs that relate to what happens in the figure391

(clusters 5, 9). They use more verbs that relate392

to how they interpret the image (think, suspect;393

cluster 6). SvPPA speakers use more auxiliary394

verbs (cluster 1), fewer verbs that describe the395

stance of the figures in the image (cluster 2) and396

fewer verbs that relate to how they interpret the397

image (cluster 6).398

The emerging semantic profile of the nfvPPA399

group is that of a narrative that has words for400

the humans in the figure and their stance actions401

in similar proportions as that of control speak-402

ers. However, the description of non-human403

animate figures (fish, cat, (teddy) bear, plant)404

and of furnishings are sparser, as well as their405

use of auxiliary verbs that are typically used406

in grammatically more complex expressions.407

Their language contains more words that are408

semantically remote from the prototype.409

The svPPA group uses more auxiliary verbs410

and more words that are semantically remote.411

The typical difficulty with naming that devel-412

ops over time in this group manifests through413

a smaller proportion of words assigned to the414

clusters with more extensional meaning (fewer415

words in clusters 2, 4, 6, 8, 11). The profile of416

this narrative fits the description of relatively417

intact syntax, but difficulties in recalling the418

specific words.419

3.1 Results of the classification of420

individuals421

The per-class results of the classification are422

summarized as confusion matrices in Tables 3a423

and 3b for the two and three class classifiers424

respectively. The observed performance is re- 425

ported in Table 4. In both tasks, the classifi- 426

cation performed significantly better than the 427

baseline strategy of predicting the most fre- 428

quent label. 429

4 Discussion 430

In this paper, we set out to quantify the degree 431

to which the semantic content of a narrative by 432

PPA participants differs from that by control 433

speakers. In our methodology, we did not iden- 434

tify any topics a priori (hsICU), but rather used 435

software to create a prototype from the narra- 436

tives of controls, and then measured how the 437

speech of PPA diverges. 438

One major finding is that the Tversky mea- 439

sure for both the svPPA and nfvPPA stories is 440

significantly lower than that of control stories, 441

with the nfvPPA group scoring lowest. The 442

lower Tversky index for patient group speakers 443

indicates that these speakers used relatively less 444

distinct words to describe the story than speak- 445

ers from the control group. This indicates that 446

the vocabulary that is used by these speakers 447

shows less variation, which relates to the gen- 448

eral finding that vocabulary creativity decreases 449

under the influence of PPA (Fraser et al., 2014). 450

For nfvPPA participants, semantic effects are 451

a surprising finding, given that nfvPPA is usu- 452

ally associated with effortful speech, in some 453

cases caused by speech motor problems (Pri- 454

mary Progressive Apraxia of Speech, PPAOS; 455

Duffy, 2006). In our grouping of participants, 456

we did not subdivide the participants of the 457

nfvPPA group, therefore categorizing nfvPPA 458
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Group Tversky µ (σ) 0 1 2 3 4 5 6 7 8 9 10 11
** ** ** ** ** *** *** *** * *

Control 0.96 (0.03) 21.33 11.00 9.40 9.40 7.60 10.87 3.27 1.33 4.20 2.40 2.13 3.20
nfvPPA 0.77 (0.16) 11.00 3.00 3.75 4.67 1.83 3.58 1.92 0.00 0.83 0.33 1.92 1.33
svPPA 0.85 (0.17) 26.69 14.50 4.06 10.06 3.00 10.00 1.19 1.94 2.19 2.25 1.62 1.88

Table 2: The Tversky index and number of tokens assigned to each cluster. Alpha-values for significance:
’*’: 0.05, ’**’: 0.01, ’***’: 0.001.

(a) 2-class clustering

Prediction Actual value
Control PPA

Control 12 3
PPA 0 26

(b) 3-class clustering

Prediction Actual value
Control nfvPPA svPPA

Control 12 0 3
nfvPPA 2 9 1
svPPA 0 1 15

Table 3: Confusion matrices for 2 and 3-class clustering.

Task Accuracy Precision F1
2-class: control vs. PPA 0.77 0.81 0.80
3-class: control vs. nfvPPA vs. svPPA 0.70 0.71 0.71

Table 4: Observed performance of the Random Forest Classifier for the two classification tasks. The
accuracy reported is the balanced accuracy, the average of recall obtained on each class. The scores for
precision and F1 are micro averaged.

with PPAS in the same group as those without.459

The clustering based on embeddings allows460

further introspection of the differences between461

the participant groups. Combining the Tversky462

findings and the cluster comparisons yields a463

quantification of the nfvPPA narratives as con-464

taining less content words in general (lowest465

Tversky index), and svPPA narratives as con-466

taining relatively more general nouns and verbs.467

Our methodology shows how the contents of468

a story can be analyzed in an automatic way.469

We identified ICU’s that should occur in a pic-470

ture description through an automated analy-471

sis of descriptions by healthy speakers. This472

is an alternative to the approach in which hu-473

mans predefine the elements, as in the hsICU474

approach that is often used in the field. One475

advantage of the use of software is that it scales476

well, even if narratives become longer or cover477

topics that are less predefined as those in a pic-478

ture task.479

In our approach, we used verbs and nouns, as480

these add most of the truth-conditional seman-481

tical content. The implication of our results482

is that persons with nfvPPA have less prob-483

lems finding content words but produce less lan-484

guage overall, and that persons with svPPA will485

use content words that are emptier in meaning.486

The classification results indicate that verbs and 487

nouns alone are informative enough to result in 488

a classification between the groups. However, 489

one aspect of the task is that of the causality 490

between different elements in the picture. Al- 491

though classification without the causality ele- 492

ment is already promising, future research may 493

target a way to also include words that describe 494

the causality relation, such as subordinating 495

conjunctions or prepositional phrases (because, 496

then). 497

BERT models encode features such as famil- 498

iarity, age-of-acquisition, frequency, and con- 499

creteness internally into their vector representa- 500

tions. These features have been shown individ- 501

ually to be predictive for the selective loss of 502

concepts in persons with PPA. The black box 503

nature of Transformer models does not allow 504

direct introspection of the importance of such 505

features for the classification prediction. Fu- 506

ture research may focus on post hoc analyses of 507

such features in the clusters that influence the 508

classification. 509

BERTje embeddings are context dependent. 510

For some tasks, context independent embed- 511

dings, generated by more traditional dictionary 512

approaches (such as Word2Vec and GloVE; 513

(Pennington et al., 2014)), perform as well as 514
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context dependent ones (e.g., Arora et al. 2020).515

The prediction is that context dependent models516

fare better when the language has more com-517

plex structure, more ambiguity in its word us-518

age and contains more Out of Vocabulary words.519

This is relevant for the application to persons520

with language problems because their language521

is often marred by syntactic problems or word522

finding problems.523

The hyperparameters in the dimensionality524

reduction dictate the performance of the algo-525

rithm, especially the selection of the number of526

clusters. Although the parameter setting was527

governed by best practices, a different choice528

for the number of clusters may result in a clus-529

tering of the labels that is more aligned with530

human intuitions. The silhouette visualization531

(cf. Figure 3) indicates a good convergence of532

all clusters except for cluster 0, which is the533

catch-all cluster for words. Participants in the534

svPPA group use a significantly higher number535

of words related to this cluster, which indicates536

a strategy of replacing target words with more537

general counterparts.538

Because no topics have been identified a pri-539

ori, our methodology can be seen as agnostic540

about the stimulus that is used to elicit the nar-541

ratives. It scales to other narratives and to other542

languages, under the condition that pretrained543

embeddings are available.544

5 Limitations545

Words that have no truth-conditional semantics546

(such as pronouns) are not included in the clus-547

tering. It is expected that nfvPPA participants548

use more frequently constructions that are more549

referential (Çokal et al., 2018); our methodol-550

ogy yields no further insight in the usage of551

such words, but see [citation: name deleted to552

maintain review integrity] for an analysis of553

word usage differences between the groups of554

this study.555

Our choice of dimensionality reduction al-556

gorithm and subsequent k-means classification557

is partly inspired by the white box properties558

of these algorithms (Leijnen et al., 2020). It is559

possible that other AI methods (such as artifi-560

cial neural networks) show better performance,561

even though our training set is relatively mod-562

est.563

The expression of meaning through embed-564

dings carries the same bias as the training data 565

used to generate the embeddings. Our expec- 566

tation is that the choice of embedding model 567

is relatively insignificant, given the nature of 568

the analyzed texts: for the specific image in 569

this task, descriptions are expected to contain 570

mostly high frequency vocabulary items that 571

name everyday things. One form of bias is 572

significant for applications in healthcare: the 573

training data for BERT data is derived from 574

large scale corpora, with demographics of the 575

speakers regressing towards the mean of the 576

general population. Persons with PPA are gen- 577

erally older. Language production declines with 578

age, even in healthy speakers (Kemper, Thomp- 579

son, and Marquis, 2001). In our study, we use 580

a task and a stimulus specifically designed for 581

this target population; however, when extend- 582

ing our methodology towards stimuli with more 583

freedom, care must be taken that the bias of the 584

trained embeddings does not translate into bias 585

effects in the analysis. 586

The pipeline includes Dutch specific ele- 587

ments: the parser and the embedding model. 588

Because the quality of the subsequent analysis 589

depends on the quality of the software elements 590

for that language, scaling to other languages is 591

not a given, unless similar resources are avail- 592

able. Some approaches to developing BERT 593

models actively include multiple languages in 594

the same model (e.g. multilingual BERT; Wu 595

and Dredze 2020). The assumption is that some 596

linguistic constructs are shared between lan- 597

guages, and so that the training effort of multi- 598

ple languages combined is less than a per lan- 599

guage training approach. The high interest in 600

embeddings for different languages bodes well 601

for the ability to scale our approach to other 602

languages. 603

6 Conclusion 604

The use of parsing software combined with pre- 605

trained embeddings can aid in the analysis of 606

spontaneous speech. In this study, we classi- 607

fied participants between control and PPA, and 608

between the control and two of the three dom- 609

inant subtypes of PPA, with a high degree of 610

confidence. The classification is based on a 611

comparison to the language of healthy persons, 612

which makes the method cost effective and ag- 613

nostic of predefined 614
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A Clusters and the words they contain. 820

Clusters and English translations of the words they contain. Stars indicate significant deviations 821

in absolute word counts with arrows indicating the deviation direction. The cluster labels were 822

assigned post hoc by the authors. 823

Cluster Tokens nfvPPA svPPA
vs control

0 ** attention, number, picture, alcohol, busy, fold, holes, effect, speak, . . . catch-all category

1 **
will, must, have, was, wants, succeeds, happens, would, gets, have, has, knows,
is, seems, lets, been, am, causes, us, may, goes, finds, can, will, tried, give,
comes, can

auxiliary & modal verbs

2 ** lay, falls, sit, stand, hang, lays, hangs, placed, stands, happens, fall, sits figure stance verbs

3 family, little, granddaughter, girl, dad, young, mister, small, child-, girl, on,
daughter, children, daddy, child, father, man animate human figures

4 ** cat, teddy bear, fish (pl), fish (sg), gold fish, plant, cat animate non-human figures

5 *** see, watch, look, find perception verbs

6 *** think, suspect experiencer verb

7
awake, become, tell, receive, fishing, hit, do, say, pull, make, take, comes,
getting, point, catch, fall, interfere, fell, placed, care, fetch, wake, holes, throw,
hear, want, warn, can

figure action verbs

8 ***
curtain, living room, table, armchair, cabinets, wall, ground, small table, chair,
window, floor, upper, cabinet, shelf, coffee table, dresser, window sill, paper,
walls, couch, living room, stack

furnishings

9 *
awake, plays, lays, occupied, warns, want, happens, sleep, tries, sleeping, sit,
about to, points, put, holds, asks, says, plays, seems, does, comfortable, try,
stay, hunts, sits, sleeps, baby sits, peaceful, light

figure action verbs

10

cd, living room, alcohol, audio, table, booze, plays, video, takes record, plant,
empty, toy, window, speaker, vase, wine, doll, door, nice, salon, bottle, stereo,
glass, pane, panes, little jar, little glass, flower, music, box, drank, cognac,
house, drill, sound-, liquor, windows, stack, radio

inanimate figures

11 * read, books about reading

824
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