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Abstract

Large language models (LLMs) are increasingly used to support humans in tasks
involving writing natural language and programming. How do we evaluate the
benefits of LLM assistance for humans and learn from human interaction? We
argue that benchmarks that evaluate the abilities of the model in isolation are not
sufficient to reveal its impact on humans. Ideally, we can conduct user studies where
humans complete tasks with the LLM and measure outcomes of interest. However,
this can be prohibitively expensive in terms of human resources, especially as we
want to iterate on model design continuously. We propose building a simulation
environment that mimics how humans interact with the LLM, focusing in this work
on assistants that provide inline suggestions for coding tasks. The environment
simulates the multi-turn interactions that occur in programming with LLMs and
uses a secondary LLM to simulate the human. We design the environment based
on work that studies programmer behavior when coding with LLMs to make sure
it is realistic. The environment allows us to evaluate the abilities of different scales
of LLMs in terms of simulation metrics of success. The simulation also allows us
to collect data that can be potentially used to improve the LLM’s ability to assist
humans, which we showcase with a simple experiment.

1 Introduction

The emergence of AI assistants powered by large language models (LLMs), such as ChatGPT [16]
and Copilot [8], holds the potential to enhance productivity in various industries. In contrast with
traditional prediction models, LLMs are thought to be well-suited to support humans in generative,
language-based tasks, which include writing [12] and coding [13]. In the context of generative tasks,
human interactions with AI assistants typically involve a repeated set of interactions, where each
round of interaction involves the human generating some amount of text, the AI providing some
amount of suggested text, and then the human deciding whether to accept the suggested text and
potentially making further edits. In this work, we focus on a canonical setting for coding tasks
where programmers use AI assistants that provide inline suggestions. Examples of such AI assistants
include GitHub’s Copilot [8], Replit’s Ghostwriter [20], and Amazon CodeWhisperer [1].

To evaluate the extent an AI assistant can support programmers, one could consider the AI’s per-
formance on coding benchmarks (e.g., HumanEval [5]2 or MBPP [2]), where the AI assistant is

∗Correspondence to mozannar@mit.edu and valeriechen@cmu.edu
2Despite what its name may suggest, the HumanEval benchmark does not involve human evaluation.
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“From a given list of integers, 
generate a list of rolling 
maximum element found until 
given moment”

…

max_list = [], current_max = 0
for num in numbers:
   if num > current_max  
      current_max = num
      max_list.append(current_max)
return rolling_max_list

…

Figure 1: We propose an environment that takes as input a coding task and simulates how a pro-
grammer would iteratively interact with an AI assistant to accomplish the task. This simulation
environment allows us to evaluate the ability of different models to theoretically assist humans and
collect synthetic data to further train the models.

evaluated based on its ability to write complete functions and pass unit tests. However, we argue
that an AI assistant’s performance on coding benchmarks does not necessarily translate to its ability
to support programmers. In practice, since a programmer mainly accepts small snippets of code
suggestions from the AI assistant, it is not necessary for the AI assistant to be able to fully complete
the entire task on its own. As such, the ideal evaluation of an AI assistant’s utility would be to conduct
user studies where some programmers are provided with AI assistance and compared to those who
are not.

While initial user studies have already demonstrated positive signals in AI assistants’ ability to
improve programmer productivity [18], evaluation of AI assistants is still generally challenging.
Beyond the typical barriers to conducting user studies (e.g., time, resources, accessibility to users),
the iterative nature of generative tasks like coding adds complexity to the evaluation. Additionally,
collecting an extensive set of user data or preferences on the AI assistant to further improve or
customize aspects of the AI assistant may be difficult. To alleviate these challenges, we propose a
simulation environment that captures the interaction between a programmer and an AI assistant.

Simulation has been commonly used to evaluate and train AI agents in robotics [6] and transferring
from simulation to the real world [9] is a common strategy. More recently, powerful LLMs have been
used to simulate human preference and behavior [7, 17, 11]. Inspired by the recent literature, we rely
on LLMs (specifically GPT-3.5) to simulate the programmer in our simulation environment. The
challenge of creating a realistic simulation of human-AI interactions is appropriately modeling the
programmer’s behavior. We integrate prompting techniques with the existing literature that aims to
understand how programmers use LLM assistance [13] to produce more nuanced behavior of how
programmers write code and incorporate the AI assistant’s suggestions, as illustrated in Figure 1.

Our simulation for a widely applicable use case like programming with an AI assistant can be useful
for multiple reasons; we discuss two and provide associated experiments for each:
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• Efficient evaluation signal. The environment can be used to more cheaply evaluate existing
models to understand the nuances of supporting humans on tasks like programming. We compare
different LLM models of varying abilities and show the relation between their coding abilities and
their simulation performance.

• Source of realistic, synthetic data. Collection of human data may be augmented by data collected
from our environment. We demonstrate the simulation environment’s ability to be used as a source
of data by collecting preferences of AI assistant suggestions.

2 Related Work

General Background. The emergence of artificially intelligent assistants based on large language
models (LLMs), such as ChatGPT [16] and Copilot [8], holds the potential to enhance productivity
in various industries. Studies have demonstrated significant productivity improvements through AI-
assistants, with experiments showing a 14% increase in customer support agent productivity [4] and a
randomized control trial revealing a 55% reduction in coding time with Copilot [18]. The backend of
these systems is LLMs such as GPT which are trained on standard language modeling objectives using
the Common Crawl data [19]. Chat models such as ChatGPT are fine-tuned using Reinforcement
Learning from Human Feedback (RLHF) [22, 3] to be more conversational. Autocomplete models
like Copilot are then fine-tuned on public code repositories [5], without any use of human feedback.

LLMs to simulate Humans. Motivated by the high cost of obtaining human data and running
user studies, there is an increasing number of studies relying on LLMs to simulate human behavior.
In [17], LLMs "generative agents" simulate believable human behavior in real life in a small city
environment. Recent work on learning from "AI feedback" (RLAIF), as opposed to learning from
human feedback, has used LLMs in order to simulate human preference for the training for chat
models and has shown that AI preference is highly correlated with human preference [7]. Moreover,
models trained using RLAIF are competitive with models trained using RLHF [11]. In particular,
when training a smaller LLM with feedback from a larger LLM this strategy is particularly effective
and can be considered as a form of distillation.

Coding Benchmarks. As mentioned previously, HumanEval [5] and MBPP [2] are the most
commonly used coding benchmarks. However, there exist variations of these benchmarks to evaluate
the fill-in-the-middle abilities of the models and single-line completion. The DS-1000 [10] benchmark
evaluates models’ abilities on complex data science problems that require using outside libraries. An
example of more involved evaluations is the multi-turn program evaluation benchmark (MTPB) [14]
which factorizes a coding task into a set of multiple prompts. Our simulation environment can be
considered as accomplishing this factorizing synthetically with the code of the simulated programmer.

3 Simulation Environment of Programmer-LLM Interaction

We propose a simulation environment that captures the interaction between the programmer and
the AI assistant. Among various forms of AI assistance in programming,3 we consider a common
setting of programming with an AI assistant (typically a LLM) that provides inline code suggestions
inside the programmer’s integrated development environment. In this environment, not only is the
AI assistant powered by an LLM but the programmer is also simulated using a secondary LLM.
While, in our experiments, we use variants of GPT-3.5 [15] to simulate the programmer and the
open-source LLM CodeLlama 7B [21] as the AI assistant, both the programmer and AI assistant can
be instantiated by any LLM that has the ability to perform code completion and code infilling. The
code is restricted to Python only.

3.1 Overview of environment set-up

Task definition. The simulation requires that a coding task T is defined. The task is typically
one that would require the programmer multiple actions (e.g., multiple lines of code) to complete.
For example, a task could be to write a machine learning algorithm to classify cats and dogs. The

3A programmer may also “chat” with an LLM model by writing comments in their code files.
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programmer is typically aware of the full task specifications, but the AI assistant is not. As such, in
our environment, the programmer is provided with a natural language description of a coding task
and a function signature, while the LLM only observes the code file.

Iterative interaction protocol. We now provide a high-level sketch that formalizes the interaction
between the programmer and AI assistant to complete the task T :

1. Assume that the programmer performs the task in continuous time and that the state of the current
code file that the programmer is editing at any time t is Xt.

2. At some time t, the AI assistant can generate a code suggestion St which is a function of the
current code file: St = πAI(Xt; θAI). The suggestion is typically based on a prompt Pt extracted
from the code file, rather than the entire code file as it might not fit in the model context size.

3. In response to the suggestion, the programmer has two choices: accept the suggestion or reject
the suggestion. If the programmer accepts the suggestion at a time t′, the code file is modified to
include the suggestion and becomes Xt′ . The programmer continues from this point can arbitrarily
modify the code file.

Evaluation metrics. The objective of the programmer is to complete the task T . We assume that,
at the end time te, the programmer will stop their session and the code they’ve written Xte is their
attempt at completing the task T . Given their coding session and final code, we measure as metrics
the time it took to complete the task te ∈ R and a binary success metric (pass@1) for whether the
code accomplishes the task.

3.2 Simulating programmer behavior

In Section 3.1, we outlined the iterative interaction process between the programmer and the LLM
but did not describe how the human behaves when writing code in Step 1 and Step 3. To ensure
the simulation faithfully reflects real-world programmers, we design the programmer behavior in
each step based on recent work that has performed a detailed analysis of the patterns of behavior of
programmers writing code with GitHub’s Copilot [13].4 All activities are implemented with a custom
prompt template provided to either the chat GPT-3.5 (“gpt-3.5-turbo”) or the base GPT-3.5 (“gpt-3.5-
turbo-instruct”). Each of these nine activities entails different behavior from the programmer and is
implemented with a custom prompt template.

The simulation consists of an iterative process where in Step 1 the programmer takes a writing action
randomly assigned with probabilities according to the transitions in the Markov Process described in
[13], then in Step 2, the model generates a suggestion, and finally in Step 3 the programmer takes
a thinking action also randomly assigned accordingly to the probabilities in [13] and then edits the
code if needed.

More specifically, when the programmer is writing code (Step 1), there are a few states that we
randomly assign the programmer according to a probability distribution of states determined from
[13]:

• Writing new code functionality: we prompt GPT-3.5 base from the existing code to write
n ∼ Poisson(10) tokens. This takes a time equal to the number of tokens written. We put a
negative logit bias of −100 on all tokens that contain "#" to prevent comments in this activity.

• Prompt crafting for suggestions: we prompt GPT-3.5 base to complete the code starting
from the comment "# write a comment in English and not code to describe what the next step in
the code should be <newline> # the next step is". This takes a time equal to the number of tokens
written.

• Writing documentation: we prompt GPT-3.5 base to complete the code starting from the
comment "# write a comment in English to describe what the code is doing <newline> # the code
above"

• Editing code: We prompt GPT-3.5 to re-write the entire code given the old code with a similar
number of tokens ± 5 tokens. This takes a time equal to the edit distance between the original code
and the edited code

4Note that Mozannar et al. [13] has two additional activities, testing code and looking up documentation,
which we leave to future work.
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Preamble A good suggestion is one that helps a programmer accomplish the task
without error given the existing code body. If we append the suggestion
to the code body, it should be better than only the code body. We
define four evaluation axes for suggestion quality: helpfulness, accuracy,
conciseness, and readability. We define helpfulness as the ability of the
suggestion to help the programmer complete the task from the existing
code We define accuracy as the ability of the suggestion to help the
programmer accomplish the task without error, the suggestion can be
incomplete. We define conciseness as the ability of the suggestion to help
the programmer accomplish the task with the least amount of code and
using existing libraries and functions. We define readability as the ability
of the suggestion to help the programmer accomplish the task with the
most readable code. You are an expert Python programmer writing code
with the help of an assistant who gives you partial suggestions. Given a
task, a code that is already written and a code suggestion, you have to
output 1 if is a good suggestion to complete the code for the task, and 0
otherwise .

1-Shot Exemplar —– Example —– Task: Given a list of integers, return the sum of all the
integers in the list. Code body: def sum_list(list):<newline><tab>sum =
0 <newline><tab><tab> for i in list: Suggestion: <tab><tab> sum += i
<newline><tab> return sum Thoughts on Suggestion: Helpfulness - 10.
The suggestion completes where the code left off and completes the task.
Accuracy - 10. The suggestion has no errors and gets the sum of the
integers in the list Conciseness - 5. The code can be made more concise
by using the built-in sum function Readability - 10. The code is readable
and easy to understand <newline> good suggestion=1

Sample to annotate Follow the instructions and the example above and output 1 if it is a
good suggestion and 0 otherwise. Task: [Task Description] Code body:
[Code Body] Suggestion: [Suggestion]

Ending good suggestion=
Table 1: Prompt used for determining whether the simulated programmer should accept a given
suggestion in the context of completing a task with existing code. This mimics the prompt template
in [11].

• Waiting for a suggestion: The simulated programmer writes no tokens.

After the writing action, a suggestion is generated by the LLM. When the programmer is reviewing
and potentially incorporating the suggested code (Step 3), we again assign them randomly to one of
the following states:

• Verifying the suggestion: we implement the decision to accept a suggestion with a chain-
of-thought (COT) with one example (COT 1-shot) and self-consistency following [11] to GPT-
3.5-turbo, the prompt is showcased in Table 1. This takes a time equal to half the tokens in the
suggestion.

• Deferring thought: we automatically accept the suggestion. This takes a time equal to 1/10 of
the number of tokens in the suggestion.

• Thinking about new code to write: we automatically reject the suggestion

• Edit the suggestion: we implement the decision to edit a suggestion with a COT 1-shot
prompt. This takes time equal to half the tokens in the suggestion (to verify) plus the edit distance
between the original and edited suggestion.

The simulation ends once the simulated programmer starts writing code outside the scope of the
function or we reach 10 iterations.
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3.3 Telemetry

The simulation also logs aspects of the interactions via telemetry that mimics the real-world telemetry
of interacting with LLMs. Before and after each programmer activity, we log the code file, the
suggestion if it exists, the programmer actions (accept/reject), edits to the suggestion, and time. The
telemetry can be represented as a dataset D = {ci, Si, Ai, Xi, ti, zi} where ci is the activity name,
Si is the suggestion, Ai is the action, Xi is the code, ti is time and zi represents auxiliary information
such as information about suggestion edits (if it exists).
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% of Session spent in State

Thinking About New Code To Write

Deferring Thought For Later

Waiting For Suggestion

Editing Last Suggestion

Editing Written Code

Writing Documentation
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Writing New Functionality

Prompt Crafting

(a) The percentage of total session time spent in each activity during a coding
session.
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(b) Timelines annotated with coding activities, suggestion acceptance/rejection
for 5 randomly selected tasks in the simulation.

# Return n-th Fibonacci 
number
def fib(n: int):

def fib(n: int):
  if n == 1 or n == 2:
    return 1
  else: 
    return fib(n-1) +

def fib(n: int):
  if n == 1 or n == 2:
    return 1
  else: 
    return fib(n-1) + 
fib(n-2)

def fib(n: int):
  if n == 1 or n == 2:
    return 1
  else:

def fib(n: int):
  if n == 1 or n

Writing New 
Functionality

(18s)

Verifying 

Suggestion
(16.5s)

== 2:
    return 1
  else

Writing New 
Functionality

(27s)

Verifying 
Suggestion

(16.5s)

+ fib(n-2)

Accepted Suggestion

Accepted Suggestion

(c) Code snippets from the simulation obtain the n’th Fibonacci number, the snippets
illustrate every step of the iteration annotated with the code activities and time spent in
each activity. Both suggestions displayed were accepted in this example. These snippets
are obtained from the simulation without code edits.

Figure 2: Illustration of aggregate programmer behavior in the simulation as well as snippets of the
coding simulation.
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4 Evaluation

Validation of Simulation Environment. To validate programmer and AI assistant interactions in
the simulation, we use the HumanEval dataset which consists of 164 Python problems each with
an associated docstring, a ground truth function body solution, and a set of tests to evaluate the
validity of the proposed solutions [5]. We run the simulation for each example in the HumanEval
and record the telemetry for each example. In Figure 2 (a) we show the distribution of time spent
in the nine different activities across all 164 tasks and Figure 2 (b) shows a timeline of the coding
snippet as transitions between the nine activities. The three most common activities in the simulation
are writing code by the simulated programmer, prompt crafting, and verifying suggestions of the AI
assistant, which aligns with the study of real programmer behavior where they found that the four
most common states are verifying suggestions, writing code, and thinking about code to write. In
Figure 2 (c), we can see how the AI assistant provided short code snippets that helped the programmer
complete the task.

Performance of Different Models in Simulation. Fixing the simulated programmer to be GPT-3.5,
we vary the LLM model between three models of increasing size: CodeLlama 7B [21], CodeLlama
13B [21] and GPT-3.5-turbo-instruct. We set a maximum token constraint of 20 for each of the
models. We also disable the action of "Editing Code" as it forces the code to continue for too many
rounds. The coding ability of these three models on HumanEval is reported in Table 3 according
to the literature. We plug the models in the simulation and report the average metrics on the 164
problems of HumanEval in Table 2. The three metrics we report are pass1 (did code pass the unit
tests?), average time spent in simulation, and finally acceptance rate by the human proxy. We can see
that all three metrics improve with the performance of the LLM model. Moreover, we can see that
the performance of the programmer-LLM pairing lies between the performance of the LLM and the
programmer proxy (GPT-3.5). However, we also see that the lower quality LLMs (CodeLlama 7B
and 13B) can bring down the performance of the programmer.

Table 2: Comparison of Different Model Configurations
Metrics GPT-3.5 + CodeLlama-7B GPT-3.5 + CodeLlama-13B GPT-3.5 + GPT-3.5

pass@1 (%) 36.1 43.6 49.4
average time 413 401 344
acceptance rate (%) 24.2 39.9 53.0

Table 3: Performance of the models on HumanEval dataset in terms of pass@1 as reported in the
literature [21].

Model CodeLlama 7B CodeLlama 13B GPT-3.5
Pass@1 33.5% 36% 48.1%

Modifying the LLM based on the Simulation. The simulation environment can be used not only
to evaluate existing AI assistants but also to collect programmer preferences to modify or improve the
AI assistant. We experiment with modifying the length of the suggestions that the LLM assistant
provides. In particular, we constrain the length of the generation to be exactly n tokens and vary
n ∈ {5, 10, 20, 30} and run the simulation on HumanEval. Results are shown in Table 4. We observe
that as we increase the suggestion length, the acceptance rates increases. However, as we increase
the suggestion length the average time significantly increases. It is clear here that we should favor a
smaller max token length of generation, as the performance of the programmer-LLM team decreases
with larger suggestion sizes. It would be interesting to explore if the programmer proxy was a less
capable model than the LLM, if we see a reverse trend.
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Table 4: Comparison of different max token generation length for CodeLlama 7B on a sample of 30
HumanEval problems

Metrics Max Token Size 5 10 20 30

pass@1 (%) 50 43 33.3 43
average time 487.8 540 587 658
acceptance rate (%) 21.0 34 29.7 39.8

5 Limitation, Discussion and Conclusion

Limitations. Our simulation environment has many limitations. First of all, it is only designed for
writing functions and it is mono-lingual (Python only for now). Second the cursor of the programmer
is not taken into account, programmers often go back and forth in the code file to edit code that
we do not model in detail, this is something that we plan to include in future iterations by keeping
track of a dynamically changing cursor which would also allow to evaluate infilling abilities. Third,
the simulation requires the use of a closed-source LLM model that is powerful enough to provide a
good signal such as GPT-3.5, it would be interesting to see if we can replace GPT-3.5 with an open-
source model and maintain a good simulation. Finally, we did not provide quantitative or qualitative
measures to evaluate how realistic our environment is. We hope to remedy these limitations in future
work.

Future Work. The hope is that this simulation provides an environment where we can train and
evaluate LLMs with the explicit goal of making them better in-line assistants to humans. We hope to
explore different strategies that exploit the telemetry generated by the simulation to train better LLM
models and then conduct an evaluation with real human participants to check if simulation gains
translate to the real world.
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