
Tight Bounds for Learning RUMs from Small Slates

Flavio Chierichetti
Sapienza University of Rome
flavio@di.uniroma1.it

Mirko Giacchini
Sapienza University of Rome

giacchini@di.uniroma1.it

Ravi Kumar
Google, Mountain View

ravi.k53@gmail.com

Alessandro Panconesi
Sapienza University of Rome
ale@di.uniroma1.it

Andrew Tomkins
Google, Mountain View

atomkins@gmail.com

Abstract

A Random Utility Model (RUM) is a classical model of user behavior defined by a
distribution over Rn. A user, presented with a subset of {1, . . . , n}, will select the
item of the subset with the highest utility, according to a utility vector drawn from
the specified distribution. In practical settings, the subset is often of small size, as
in the “ten blue links” of web search.
In this paper, we consider a learning setting with complete information on user
choices from subsets of size at most k. We show that k = Θ(

√
n) is both necessary

and sufficient to predict the distribution of all user choices with an arbitrarily small,
constant error.
Based on the upper bound, we obtain new algorithms for approximate RUM
learning and variations thereof. Furthermore, we employ our lower bound for
approximate RUM learning to derive lower bounds to fractional extensions of the
well-studied k-deck and trace reconstruction problems.

1 Introduction

In many common settings, both online and offline, users select from a set of available candidates:
cars on a dealer’s lot; songs on a streaming service; movies in a Netflix carousel of choices; and so
forth. Often, it is unrealistic to offer the user the entire universe of items. No car dealership has every
new and used car ever produced. Likewise, recommendation services have enormous catalogs of
songs, products, movies, etc, and must carefully curate a more manageable subset of recommended
items that will fit within the constraints of the user interface. Thus, user feedback often arrives as a
choice from slates of items of a certain standard cardinality—think of “ten blue links” in web search
as the classical example.

Random Utility Models (commonly called RUMs) have been the standard mathematical model for
studying user choices over subsets of a universe of items. RUMs are the subject of many decades of
study, and the centerpiece of the 2000 Nobel prize in economics. The model family is straightforward:
a RUM operates over a universe U of items, with |U | = n, and is characterized by a distribution over
Rn. A user draws from this distribution to generate a vector specifying the utility of each item of
U . The user is offered a subset of U called a slate, and must select a single item from the slate; the
user behaves rationally by selecting the available item of the highest utility. The winning distribution
of the slate is a probability distribution over the items of the slate representing the likelihood (over
draws from the utility distribution) that a particular item is selected. To learn a RUM, an algorithm is
given a training set of examples of slates with their winning distributions, and must then guess the
winning distributions of a new test set of slates.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

We are interested in learning RUMs when the example slates in the training set are constrained to
have at most a certain cardinality. We will then deem an algorithm successful if exposure to these
smaller slates allows it to approximate the winning distribution of all slates. In the extreme example,
the algorithm should infer the winning distribution over the universal slate U itself, representing the
likelihood that a particular item is a random user’s favorite from the entire catalog.

Our contributions. We present two main results representing paired upper and lower bounds for
this question. The upper bound shows that, with knowledge of the winning distributions for slates of
size at most O(

√
n), one can approximate the winning probability for any item in any slate to within

an arbitrarily small additive constant. Using this upper bound, we obtain an exponential improvement
in the time to learn a RUM. The previous best-known algorithm, implicit in earlier work, requires
time 2O(n). Our new algorithm learns any RUM to within an ℓ∞-error (resp., ℓ1-error) of ϵ > 0 in

time nO
(√

n log 1
ϵ

)
(resp., nO(

√
n log n

ϵ)). We also give a “simulation” result: the winning distribution
of each slate T can be approximated within a constant ℓ∞-error by querying polynomially many
sub-slates of T , each of size at most O

(
|T |

log |T |

)
.

Our near-matching lower bound shows that, with knowledge of the winning distributions for all slates
up to size o(

√
n), any algorithm must make error 1/2− ϵ (almost the worst possible) in predicting a

target item’s probability in the universal slate, for arbitrarily small constant ϵ. Based on this lower
bound, we also obtain lower bounds to fractional extensions of the well-studied k-deck and trace
reconstruction problems.

The bounds for RUM learning algorithms depend on the nature of the oracle used to present examples
to the algorithm. For a given slate, the MAX-DIST oracle returns the exact winning distribution, while
the MAX-SAMPLE oracle simply returns a draw from the winning distribution, as we would expect
from a real-world setting. The algorithms we present work with both oracles, with asymptotically the
same running time and the same sample complexity.

Overview of techniques. Our results are proved by observing a series of connections between
RUM learning and the approximation of the bitwise AND function via polynomials. Specifically,
the two main quantities of interest in approximating Boolean functions with polynomials are (i) the
degree of the polynomial, and (ii) the ℓ1-norm of the coefficients of the polynomial. We will show
that these two quantities are related, respectively, to (i) the size of the slates required to approximate a
RUM (Theorem 9 and Theorem 12), and (ii) the running time to approximate the winning distribution
of a queried slate (Theorem 9 and Corollary 10).

Related work. Discrete choice has been the subject of extensive research in machine learning and
economics; see [Train, 2003] for an excellent introduction. RUMs are an important class of models
in discrete choice—in particular, Multinomial Logits (MNLs) and their mixtures are special classes
of RUMs. RUMs have been extensively studied from both active and passive learning perspectives
[Soufiani et al., 2012, Oh and Shah, 2014, Chierichetti et al., 2018a,b, Negahban et al., 2018, Tang,
2020] and from an efficient representation point of view [Farias et al., 2009, Chierichetti et al., 2021].

A number of papers have used linear programming (LP) for obtaining representation of RUMs
that agree with an empirical distribution on small slates [Farias et al., 2009, Almanza et al., 2022,
Chierichetti et al., 2023]. In particular, Farias et al. [2009] make strong assumptions on the underlying
RUM, while in [Almanza et al., 2022, Chierichetti et al., 2023] the algorithms are not required to
generalize outside of the observed training set. Instead, we are asking what is the minimum k such
that if one observes all the winning distributions of slates of size up to k, one can approximately
reconstruct all the winning distributions of a RUM? Note that we do not make any assumption on the
RUM and our algorithms must generalize to all the slates.

The approximation of Boolean functions via polynomials has found applications in a disparate and
apparently remote number of fields such as cryptography [Bogdanov et al., 2016], differential privacy
[Thaler et al., 2012], quantum query complexity [Beals et al., 2001], PAC learning [Klivans and
Servedio, 2004], and more. Our work draws connections between this field and RUM learning for the
first time, showing yet another important application of such techniques.

In this paper we also strengthen the relation, that was first observed in [Chierichetti et al., 2018a],
between RUM learning and the k-deck problem.

2

Organization. In Section 2 we introduce the definitions and notation. In Section 3 we prove our
upper bound, which we then use in Section 4 to obtain algorithms for learning RUMs. In Section 5,
we present our lower bound. Finally, in Sections 6 and 7 we derive, as corollaries of our results, lower
bounds for other learning problems. All the proofs missing from the main body of the paper can be
found in Appendix A.

2 Background

Let [n] = {1, . . . , n} and let Sn denote the symmetric group on n items (the set of all permutations
of [n]). Let also

(
S
k

)
= {T ⊆ S | |T | = k}. For a distribution D, x ∼ D denotes that the

random variable x is drawn from D and D(i) denotes Prx∼D[x = i], where i ∈ supp(D). For
a, b ∈ [n], π ∈ Sn we write a <π b or b >π a to say that π ranks b higher than a.

Random utility models. A slate is a non-empty subset of [n]. For a slate ∅ ̸= S ⊆ [n] and a
permutation π ∈ Sn, let π(S) be the item of S that wins, i.e., ranks the highest in π.

The following definition of RUMs, based on probability distributions over permutations, is equivalent
to the utility-vectors definition given in the Introduction [Chierichetti et al., 2018a]; we adopt the
distribution-over-permutations definition, since it makes it easier to present our algorithms.

Definition 1 (Random Utility Model (RUM)). A random utility model (RUM) R on [n] is a distribu-
tion on Sn. For a slate S, RS denotes the distribution of the random variable π(S) where π ∼ R, so
RS(s) = Pr[s wins in S] is called the winning distribution on S induced by RUM R.

We consider two types of oracle access to the RUM: the MAX-DIST oracle returns for a given slate
the (exact) winning distribution for the slate and the MAX-SAMPLE oracle returns a draw from the
winning distribution.

Approximation of AND. For a bit string x = x1 . . . xn ∈ {0, 1}n and S ⊆ [n], let χS(x) =∏
i∈S xi. By convention, χ∅(x) = 1. The function ANDn : {0, 1}n → {0, 1} is the bitwise-

AND given by ANDn(x) = χ[n](x). We write only AND when n is clear from the context. A
polynomial p : {0, 1}n → R is said to ϵ-approximate the AND function if for all x ∈ {0, 1}n it
holds |AND(x)− p(x)| ≤ ϵ. The ϵ-approximate degree of AND is the smallest value degϵ(AND)
such that there exists a polynomial of such degree that ϵ-approximates the AND function, and it
is well known that the optimal value is degϵ(AND) = Θ(

√
n log(1/ϵ)) [Bun and Thaler, 2022].

The general form of a degree-k polynomial is
∑
S⊆[n],|S|≤k aS · χS(x), where the {aS}S⊆[n],|S|≤k

are real coefficients. However, all the polynomials proposed in the literature have at most k + 1
distinct coefficients a0, a1, . . . , ak, such that aS = a|S|, therefore in this work we will focus only on
polynomials of such form.1 While it is folklore that such coefficients can be computed in polynomial
time, for completeness we provide in Appendix D an explicit algorithm for this task. We will use
several results on the approximation of the AND function that we introduce as needed.

3 Uniform approximation of a RUM

In this section we show that if two RUMs agree on small slates, then they nearly agree on all slates.
Our result can be obtained as a consequence of a more general result of Sherstov [2008], which is
based on the approximate degree of the AND function and was originally stated only for sub-constant
errors. The following is a restatement of Sherstov [2008, Theorem 4.8], using the upper bound on the
approximate degree of AND proved by [Buhrman et al., 1999]; we also make the error term explicit.

Theorem 2 (Sherstov [2008]). There exists a constant c > 0 such that the following holds. Consider
any two probability spaces P1 and P2, and any events A1, . . . , An in P1 and B1, . . . , Bn in P2 such
that, for any S ⊆ [n], |S| ≤ c ·

√
n · ln 1/ϵ, it holds PrP1

[∩i∈SAi] = PrP2
[∩i∈SBi]. Then, it holds:∣∣PrP1

[
∩i∈[n]Ai

]
− PrP2

[
∩i∈[n]Bi

]∣∣ ≤ ϵ, where ϵ ∈ (2−n, 1/3)

1In the literature, other works focus on the coefficients of univariate polynomials q : [0, n] → R taking in
input the number of bits set to one. We stress that this is not the case in this work, where we always consider
coefficients of multivariate polynomials p : {0, 1}n → R unless otherwise specified.

3

Theorem 3 (RUMs Upper Bound). Let P and Q be two RUMs on [n]. There exists a con-
stant c > 0 such that for a given s ∈ [n], T ⊆ [n] ∖ {s}, if PS∪{s}(s) = QS∪{s}(s) for

each S ∈
{
T ′ | T ′ ⊆ T and |T ′| ≤ c ·

√
|T | · ln 1

ϵ

}
, then

∣∣PT∪{s}(s)−QT∪{s}(s)
∣∣ ≤ ϵ, where

ϵ ∈ (2−|T |, 1/3).

Proof. Let c be the constant of Theorem 2 and define k = c ·
√

|T | · ln 1/ϵ. Consider the probability
space P1 (resp. P2) having Sn as sample space and RUM P (resp. Q) as the probability mass
function. For t ∈ T , let At be the event {π ∈ Sn | s >π t}. Then, for any S ⊆ T , {π ∈ Sn |
π(S ∪ {s}) = s} = ∩i∈SAi. Therefore, for any S ⊆ T , |S| ≤ k it holds:

Pr
P1

[∩i∈SAi] = Pr
π∼P

[π(S ∪ {s}) = s] = PS∪{s}(s) = QS∪{s}(s) = Pr
P2

[∩i∈SAi] ,

where the third equality follows by hypothesis. Finally, by Theorem 2:∣∣∣PT∪{s}(s)−QT∪{s}(s)
∣∣∣ = ∣∣∣Pr

P1

[∩i∈TAi]− Pr
P2

[∩i∈TAi]
∣∣∣ ≤ ϵ.

In light of Theorem 3, accessing slates of size up to O
(√

n · ln 1
ϵ

)
is enough to predict the winning

distribution of all the slates, within an additive ϵ. In the next section, we obtain a computational
version of this result.

4 Reconstruction algorithms

In this section we obtain two algorithms for reconstructing the winning distributions on large
slates using the winning distribution on small slates. The goal of these algorithms is to obtain
a computational version of Theorem 3. The first algorithm is a proper learning algorithm that
outputs a RUM. Building the RUM takes time nO(n) but once built, querying this RUM to get
the approximate winning distribution of any given slate takes only polynomial time. Moreover,
using previous work [Chierichetti et al., 2021], this RUM can actually be approximately represented
using O(n2 log n) bits. The second algorithm is an improper learning algorithm: while its output
model allows uniformly approximating the winning distribution on each slate, this model might not
be a RUM. Building the model takes time nO(

√
n) and once built, querying this model to get the

approximate winning distribution of any given slate takes time 2O(
√
n). The total bit complexity of

the second algorithm’s model is nO(
√
n). This second algorithm has two nice properties: (i) if we

are given access to slates larger than
√
n, then querying the model becomes more efficient, and (ii)

if we want to estimate the winning distribution of only M = poly(n) pre-determined slates, then
building the model becomes more efficient. Putting these two properties together we are able to prove
a “simulation" result: for any pre-determined slate T ⊆ [n] it is possible to estimate RT to within a
constant ℓ∞-error ϵ in polynomial time and accessing slates of size at most O

(
|T |

ln |T |

)
.

4.1 A proper learning algorithm

Fix a large enough integer t ≤ n− 1. For a RUM Q, let the winning distributions of slates of size

at most k, for k = O
(√

t ln 1
ϵ

)
be known. To estimate the probability distributions QT for any

s ∈ [n] and for any slate T ⊆ [n]∖ {s} such that |T | ≤ t, it is sufficient to solve the following linear
program (LP), with no objective function:

∑
π∈Sn

π(S∪{s})=s

pπ = QS∪{s}(s) ∀s ∈ [n] ∀S ⊆ [n]∖ {s} s.t. |S| ≤ k − 1

∑
π∈Sn

pπ = 1

pπ ≥ 0 ∀π ∈ Sn

(1)

Indeed, (1) returns a RUM P that is compatible with RUMQ on each slate of size at most k. Applying
Theorem 3, we obtain:

4

Observation 4. For k = Θ
(√

t ln 1
ϵ

)
, let P be the RUM obtained by solving (1). Then, for any

s ∈ [n], and for any T ⊆ [n]∖ {s} such that |T | ≤ t, it holds |PT∪{s}(s)−QT∪{s}(s)| ≤ ϵ

By fixing t = n− 1 and solving (1)—an LP with n! variables and nO
(√

n ln 1
ϵ

)
constraints—we get:

Theorem 5 (Proper learning algorithm). Let Q be a RUM over [n]. There exists an algorithm that

uses the MAX-DIST oracle on each slate of size at most O
(√

n ln 1
ϵ

)
and in time nO(n) produces a

RUM P such that for each S ⊆ [n] and for each i ∈ S, |PS(i)−QS(i)| ≤ ϵ.

Using the result in [Chierichetti et al., 2021], the RUM P can be subsampled in poly(n) time
to a uniform RUM P̃ with a multiset of O

(
n/ϵ2

)
permutations as its support, and such that for

each S ⊆ [n],
∣∣∣P̃S − PS

∣∣∣
1
≤ ϵ. Thus, by accessing slates of size at most O

(√
n ln 1

ϵ

)
(resp.,

O
(√

n ln n
ϵ

)
), one can produce a data structure P̃ in time nO(n) such that (i) P̃ can be represented

with O
(
ϵ−2 · n2 log n

)
bits, and (ii) when P̃ is queried on a slate S, it can return in poly(n) time a

distribution P̃S such that
∣∣∣P̃S −QS

∣∣∣
∞

≤ ϵ (resp.,
∣∣∣P̃S −QS

∣∣∣
1
≤ ϵ).

By providing a version of Theorem 3 that holds when the small slates are approximately equal,
this algorithm can also be made to work with MAX-SAMPLE oracle. More details are given in
Appendix B.

We mention that this algorithm can be made to run in time 2O(n) by using the ellipsoid method and
the separation oracle of Chierichetti et al. [2023]; more details are given in Appendix C.

4.2 An improper learning algorithm

In this section we obtain a learning algorithm whose data structure is not a RUM but can be built
faster. As before, this is a restatement of Sherstov [2008, Theorem 4.8]:
Theorem 6 (Sherstov [2008]). Consider any probability space P , and any events A1, . . . , An in P .
For k ≥ Θ

(√
n · ln 1/ϵ

)
, ϵ ∈ (2−n, 1/3), let {ai}0≤i≤k be the coefficients of a degree k polynomial

approximating the AND function within ϵ (for any S ⊆ [n], |S| ≤ k, the coefficient of the monomial

χS(x) is a|S|). Then,
∣∣∣PrP [

∩i∈[n]Ai
]
−

∑
S⊆[n],|S|≤k a|S| · PrP [∩i∈SAi]

∣∣∣ ≤ ϵ

Given a RUM R over [n] and access to slates of size k ≥ Θ
(√

|T | log 1
ϵ

)
, consider an element

s ∈ [n] and a slate T ⊆ [n]∖ {s}. Let {ai}0≤i≤k−1 be the coefficients of a polynomial of degree
k − 1 that approximates the AND|T | function. Then, the following is a good approximation for
RT∪{s}(s):

R̃T∪{s}(s) =
∑

S⊆T,|S|≤k−1

a|S| ·RS∪{s}(s).

In fact, choosing the probability space and events as in Theorem 3 and applying Theorem 6, we get:

Observation 7.
∣∣∣R̃T∪{s}(s)−RT∪{s}(s)

∣∣∣ ≤ ϵ, where R is a RUM over [n], s ∈ [n], T ⊆ [n]∖ {s},

and for k ≥ Θ
(√

|T | ln 1
ϵ

)
, {ai}0≤i≤k−1 are the coefficients of a polynomial of degree k − 1

approximating the AND|T | function (the coefficient of the monomial χS(x) is a|S|).

From the above observation and given MAX-DIST oracle access to slates of size k = Θ(
√
n ln(1/ϵ)),

we obtain a deterministic algorithm that first stores RS(s) for all s ∈ S ⊆ [n], |S| ≤ k, in time
nO(k) and then, upon query (s, T) returns the approximation R̃T∪{s}(s) that can be computed in

|T |O(
√

|T | ln(1/ϵ)) ≤ nO(k) time2.

Note that this result holds for any polynomial approximating the AND function. To get a better
algorithm, which also works with MAX-SAMPLE oracle, we focus on a specific polynomial. (Observe

2We assume |T | ≥ k otherwise computing RT∪{s}(s) is trivial since we can just query the oracle

5

also that the time to answer a query in the previous algorithm does not improve as k increases. This
is counter-intuitive: given access to larger slates, it should become easier to approximate the target
slate. The second algorithm that we provide gets faster as k increases, overcoming this limitation.)

The polynomial that we use is the one proposed by Huang and Viola [2022, Corollary 1.5]:

Theorem 8 (Huang and Viola [2022]). For all ϵ ∈ (2−n, 1/3),
√
n ln(1/ϵ) ≤ d ≤ n, there exists

a polynomial p : {0, 1}n → R of degree k = Θ(d) and real coefficients {ai}0≤i≤k, where the
coefficient of χS(x) is a|S|, such that: (i) for each x ∈ {0, 1}n, |p(x) − ANDn(x)| ≤ ϵ, and (ii)∑
S⊆[n],|S|≤k |a|S|| =

∑k
c=0

(
n
c

)
|ac| ≤ 2O(

n ln(1/ϵ)
k).

Theorem 9 (Improper learning algorithm). Let R be a RUM over [n]. Let d ≥
√
n ln(1/ϵ), ϵ ∈

(0, 1/3), and δ ∈ (0, 1) such that ϵ, δ ≥ 1
nO(1) . Then, there exists a randomized algorithm that

accesses slates of size at most k = Θ(d) and such that:

(i) it first makes nO(k) queries to MAX-SAMPLE oracle (or MAX-DIST oracle) and then,

(ii) for any query s ∈ [n], T ⊆ [n] ∖ {s}, it returns, in time 2O(
|T | ln(1/ϵ)

k) · poly(|T |) and with
probability at least 1− δ, an estimate R̂T∪{s}(s) such that |R̂T∪{s}(s)−RT∪{s}(s)| ≤ ϵ.

For k = Θ(
√
n ln(1/ϵ)), Theorem 9 gives an algorithm with a pre-processing time of nO(k) and that

can answer any query (s, T) in time 2O(|T | ln(1/ϵ)/k)|T |O(1) ≤ 2O(
√

|T | ln(1/ϵ)) ≤ 2O(k). Note that
the query-time of this algorithm gets better increasing k (although the pre-processing time gets worse
since more slates must be queried).

4.3 A simulation algorithm

The pre-processing time of the improper learning algorithm increases with the slate size because the
algorithm must be able to reply to every query after the pre-processing phase. Suppose, however,
that the algorithm knows in advance which slates will be queried; in that case, it can perform the
pre-processing phase to satisfy only such requests. In this setting where the queries are known offline
(or where the oracles can be called lazily), we can get a faster algorithm.
Corollary 10 (Simulation algorithm). Let R be a RUM over [n]. Choose any element s ∈ [n], slate
T ⊆ [n]∖ {s}, ϵ ∈ (0, 1/3), and δ ∈ (0, 1) such that ϵ, δ ≥ 1

|T |O(1) . Then, there exists a randomized

algorithm that, for d ≥
√

|T | ln(1/ϵ), accesses slates of size at most k = Θ(d), makes at most

2
O

(
|T | log 1

ϵ
k

)
· poly(|T |) queries to MAX-DIST oracle (or MAX-SAMPLE oracle), and that with

probability at least 1− δ outputs a value R̂T∪{s}(s) such that |R̂T∪{s}(s)−RT∪{s}(s)| ≤ ϵ

Note that by choosing k = Θ
(

|T |
ln |T |

)
≤ Θ

(
n

lnn

)
, and constant ϵ ∈ (0, 1), the previous algorithm

returns, with high probability and accessing slates of size at most k, an approximation to RT∪{s}(s)
in polynomial time, for any predetermined s ∈ [n], T ⊆ [n]∖ {s}.

We can also interpret this algorithm in the more general setting of Sherstov [2008]. In such setting,
Corollary 10 implies that, for any n events in a probability space, the probability of the intersection of
all the events can be well-approximated by a linear combination of polynomially many probabilities
of smaller intersections (specifically, each intersection is over at most O(n/ lnn) events).

5 Lower bounds

In this section we present a lower bound showing that it is impossible to reconstruct the winning dis-
tribution of the full slate by only looking at slates of size o(

√
n), i.e., our reconstruction (Theorem 3)

is optimal. For simplicity, we consider the approximation of the winning distribution of the full slate
[n], as opposed to any slate T as in Theorem 3.3

3This is w.l.o.g., since we can build our construction for a given slate size t, by choosing n = t; later, one can
add to the same construction as many new items as desired (placing them at the end of the sampled permutation),
to get to a total of N ≥ t items in the RUM.

6

Our construction actually shows that, in this o(
√
n)-slates setting, it is impossible to approximate the

distribution of the full slate even within a constant ℓ∞-error. Specifically, for any constant ϵ > 0, it is
not possible to learn whether a special item, n, has probability at least 1− ϵ or at most ϵ in the full
slate by accessing only slates of size o(

√
n).

We will make use of the following result, which is a consequence of the method of dual polynomials
(see, e.g., [Bun and Thaler, 2022, Chapter 6]), and was first proved for cryptographic applications in
[Bogdanov et al., 2016, Theorem 1]. While the original result considers general Boolean functions,
we state it only for the AND function, plugging in the lower bound on the ϵ-approximate degree of
the AND proved in [Bun and Thaler, 2015, Proposition 14].
Theorem 11 (Bogdanov et al. [2016]). For a sufficiently large n and constant ϵ ∈ (0, 1), there
exists a constant c > 0 and two probability distributions µ, ψ over {0, 1}n such that: (i) for each
polynomial p : {0, 1}n → R of degree at most c ·

√
n · ϵ, Ex∼µ [p(x)] = Ex∼ψ [p(x)], and (ii)

|Ex∼µ [AND(x)]− Ex∼ψ [AND(x)]| > 1− ϵ

We are now ready to prove our lower bound for RUMs.
Theorem 12 (RUMs Lower Bound). For a sufficiently large n and for constant ϵ ∈ (0, 1), there
exists a constant c > 0 and two RUMs A,B on [n] such that: (i) for each S ⊆ [n] such that
|S| ≤ c ·

√
(n− 1) · ϵ = Θ(

√
n), it holds AS = BS , and (ii) |An−Bn| > 1− ϵ

Proof. Consider the distributions µ, ψ over {0, 1}n−1 from Theorem 11, and let k = c ·
√

(n− 1) · ϵ.
We build RUM A on [n] as follows: sample x ∈ {0, 1}n−1 according to µ, then, let Sx = {i ∈
[n−1] | xi = 1} and sample a uniform at random permutation among those where the set of elements
ranked lower than n is Sx. RUM B is defined similarly, but x is sampled from ψ. Note that for
S ⊆ [n− 1], AS∪{n}(n) = Ex∼µ [χS(x)], and similarly for B. Then, from property (ii) of Theorem
11 we have:

|An−Bn| =
∣∣∣∣ E
x∼µ

[ANDn−1(x)]− E
x∼ψ

[ANDn−1(x)]

∣∣∣∣ > 1− ϵ.

Moreover, fix any S ⊆ [n− 1], |S| ≤ k. We have:

AS∪{n}(n) = E
x∼µ

[χS(x)] = E
x∼ψ

[χS(x)] = BS∪{n}(n),

where the second equality follows by Theorem 11(ii) and since χS(x) =
∏
i∈S xi is a polynomial of

degree |S| ≤ k.

It remains to show that the winning distributions for the elements different from n in the small slates
also coincide. We show that for RUMs A and B, these probability distributions can be expressed in
terms of winning distributions of n; below, we do the calculations only for A, the calculations for B
are analogous.

Let Πx be the uniform distribution over the set of permutations where the set of elements ranked
lower than n is Sx, for a string x ∈ {0, 1}n−1. For convenience, for x ∈ {0, 1}n−1, we set xn = 1.
Choose any i ∈ S ⊆ [n], i ̸= n, |S| ≤ k, then:

AS(i) = Pr
π∼A

[π(S) = i] =
∑
T⊆S

Pr
x∼µ,π∼Πx

[
χT (x)

∏
s∈S∖T

(1− xs) = 1 ∩ π(S) = i

]

=
∑
T⊆S

Pr
x∼µ

[
χT (x)

∏
s∈S∖T

(1− xs) = 1

]
Pr

x∼µ,π∼Πx

[
π(S) = i

∣∣∣∣∣ χT (x) ∏
s∈S∖T

(1− xs) = 1

]
.

Here, the third equality follows by the law of total probabilities, partitioning on the possible values of
bits {xi}i∈S . Since it always holds xn = 1, we assume without loss of generality that either n ∈ T
or n /∈ S. Given that Πx is uniform, we have:

Pr
x∼µ,π∼Πx

[
π(S) = i

∣∣∣∣∣ χT (x) ∏
s∈S∖T

(1− xs) = 1

]
=


1
|T | if i ∈ T and |S ∖ T | = 0 and n /∈ S

0 if i ∈ T and n ∈ T

0 if i ∈ T and |S ∖ T | > 0
1

|S∖T | if i ∈ S ∖ T

7

Therefore, thanks to the conditioning, this first probability does not depend on A (the probability is
the same if we sample x from ψ and then π from Πx). Moreover:

Pr
x∼µ

[
χT (x)

∏
s∈S∖T

(1− xs) = 1

]
= E
x∼µ

[
χT (x)

∏
s∈S∖T

(1− xs)

]
= E
x∼µ

 ∑
P⊆S∖T

(−1)|P | · χT∪P (x)


=

∑
P⊆S∖T

(−1)|P | ·AT∪P∪{n}(n).

Since AT∪P∪{n}(n) = BT∪P∪{n}(n), we have AS(i) = BS(i) for any i ∈ S ⊆ [n], |S| ≤ k.

5.1 Lower bound when only slates of size k are given

We know that accessing slates of size 2, . . . , k = Θ(
√
n) is sufficient to approximate the full slate. It

is natural to wonder if the slates smaller than k are needed, or if those of size exactly k are enough. A
simple observation shows that accessing smaller slates is necessary.
Observation 13. For any k ≤ n, there exists a RUM R on [n] such that: (i) RS(s) = 1/k for all
s ∈ S ∈

(
[n]
k

)
, and (ii) R[n](i) = 1/k for all i ∈ [k]

Proof. Consider the RUM R that first samples a uniform at random element i ∈ [k], this element is
placed at the top of the permutation, followed by elements [n]∖ [k] permuted uniformly at random,
and finally by the elements [k]∖ {i} permuted uniformly at random. Consider any s ∈ S ∈

(
[n]
k

)
.

If s ∈ [k], then RS(s) = 1/k. If instead s ∈ [n] ∖ [k], let α = |S ∩ [k]| < k, we have, RS(s) =
(1− α/k) · 1/(k − α) = 1/k. Moreover, for any i ∈ [k], by construction, R[n](i) = 1/k.

Consider k = ϵ · n, for any ϵ ∈ (0, 1), and let R be the RUM of the previous construction. Consider
now RUM Q that samples a uniform at random permutation over [n]. Clearly, R and Q coincide on
slates of size k, but for all i ∈ [k], R[n](i) = 1/k andQ[n](i) = 1/n, and in particular the ℓ1-distance
between R[n] and Q[n] is k · (1/k− 1/n)+ (n− k)/n = 2− 2ϵ. Therefore, any algorithm accessing
only slates of size k = O(ϵ · n) will incur in an ℓ1-error of 1 − ϵ on the full slate. By selecting
k = O(nc), for any c ∈ (0, 1), we have that any algorithm must incur an ℓ1-error of 1 − nc−1

(and also an ℓ∞-error of Ω(1
nc)) on the full slate. On the other hand, accessing all the slates of

size O
(√
n log n

)
and smaller, one can obtain an ℓ1-error as small as 1/nd for any constant d > 0.

Therefore, accessing smaller slates is necessary.

6 Fractional k-deck

The k-deck problem [Kalashnik, 1973] is a well-studied problem at the intersection of combinatorics
and computer science. Given a string s ∈ {0, 1}n and a set I = {i1, . . . , ik} ∈

(
[n]
k

)
, with

i1 < · · · < ik, the projection of s to I , denoted as sI , is the string sI = si1 . . . sik . The k-deck of s
is the multiset

Dk(s) =

{
sI | ∀I ∈

(
[n]

k

)}
.

The k-deck problem asks for the smallest k = k(n) such that any n-bit string can be reconstructed
from its k-deck. This problem has a long history. Manvel et al. [1991] originally showed that
reconstruction is possible with k = n

2 ; they also showed that it is not possible with k = Θ(log n).
Later, it was shown in [Krasikov and Roditty, 1997] (see also [Scott, 1997]) that reconstruction is
always possible with k = O(

√
n); it is widely conjectured that this bound is tight. The best known

lower bound, however, is no better than subpolynomial: in [Dudík and Schulman, 2003] it is shown
that k = eΘ(

√
logn) is insufficient for reconstruction. In [Chierichetti et al., 2018a], lower bounds for

the k-deck problem were used to obtain lower bounds on the maximum size of slates required for
reconstructing a RUM.

In this section we define a fractional version of the k-deck problem and show a reconstruction
lower bound. Note that the k-deck of a string s is a function fs : {0, 1}k → Z≥0, where fs(s′)
is the multiplicity of s′ in Dk(s). Now, given a probability distribution P over n-bit strings, the

8

fractional k-deck of P is a function fP : {0, 1}k → R≥0, where fP (s′) = Es∼P [fs(s
′)]. Also, for

a distribution P over n-bit strings, we define its ith marginal to be the probability that the ith bit of a
string sampled from P equals 1. The fractional k-deck problem seeks the minimum k = k(n, ϵ) such
that the fractional k-deck of an unknown distribution P over n-bit strings is sufficient to approximate
any marginal of P to within an additive ϵ. It is easy to see that the fractional k-deck problem
generalizes the k-deck problem (by also setting ϵ < 1/2).

Based on our RUM lower bound, we can construct two probability distributions over binary strings
giving the same fractional Θ(

√
n)-deck, but very different marginals for the first bit, obtaining:

Theorem 14. For sufficiently large n, and for each constant ϵ > 0, there exists a constant c > 0 and
two distributions XA and XB over n-bits strings of weight 1 that (i) give rise to the same fractional
k-deck, for k = ⌊c ·

√
n⌋, (ii) the marginal of the first bit of XA is ≥ 1− ϵ, and (iii) the marginal of

the first bit of XB is ≤ ϵ.

7 Fractional trace reconstruction

In the trace reconstruction problem, there is an unknown n-bit string x and a parameter d ∈
(0, 1). A sample is obtained by passing x through a d-deletion channel that erases each bit of x
independently with probability d. In this setting, one asks for the minimum number of samples
necessary to reconstruct x. Indeed, with probability (1 − d)n, x itself is returned as a sample and
hence reconstruction is trivial with Ω ((1− d)−n) samples. This problem has been the subject of
intense study [Chase, 2021a,b, De et al., 2017, Batu et al., 2004, Holenstein et al., 2008, Nazarov
and Peres, 2017, Peres and Zhai, 2017, Viswanathan and Swaminathan, 2008]. It can be solved with
eO(

3
√

n
1−d) samples in the so-called high deletion rate setting (12 ≤ d ≤ 1−Ω

(
1√
n

)
), and this bound

is tight for a special class of “mean-based” algorithms [De et al., 2017].

In this section we prove an unconditional lower bound for the fractional trace reconstruction problem,
which we define similarly to the fractional k-deck problem: given a distribution over the n-bit strings,
sample a string from that distribution, pass the string through a d-deletion channel, and return the
resulting subsequence as a sample. Note that, each time, a new fresh string is sampled before passing
it through the deletion channel. The goal is to reconstruct the marginals of the distribution.

Several variants of trace reconstruction have been studied in the literature [Chen et al., 2023, Davies
et al., 2021]. The variant closest to ours is perhaps the average-case trace reconstruction [Peres and
Zhai, 2017]. However, average-case trace reconstruction is a computationally easier version of the
problem since the single hidden string is sampled from a uniform distribution. Our fractional trace
reconstruction is instead a true generalization of trace reconstruction.

We will show that fractional trace reconstruction cannot be solved with fewer than eo(
√
n) samples.

Our lower bound is obtained as a corollary of our result for the fractional k-deck problem.

Theorem 15. For each constant ϵ > 0, there exists a constant c > 0 and two distributions XA

and XB over n-bits strings of weight 1 such that if d = 1 − c
2
√
n
+ 1

2n , then (i) with fewer than

eo((1−d)·n) = eo(
√
n) samples, the probability of correctly distinguishing between XA and XB is at

most 1
2 + o(1), (ii) the marginal of the first bit of XA is ≥ 1− ϵ, and (iii) the marginal of the first bit

of XB is < ϵ.

In this very high deletion rate setting (d = 1 − Θ
(

1√
n

)
), the magnitude of our lower bound for

fractional trace reconstruction is not larger than that of [De et al., 2017] for trace reconstruction; our
lower bound, though, holds for any reconstruction algorithm, not just for mean-based ones.

8 Conclusions

We considered the problem of learning a RUM by only looking at slates of size at most k. We showed
that to obtain a uniform approximation of the winning distributions, k = Θ(

√
n) is necessary and

sufficient. Moreover, we provided two explicit algorithms that learn the RUM. While optimal with
respect to the slate-size, both our algorithms require time exponential in n: we leave open the problem
of finding algorithms with better running times.

9

We also provided a third algorithm that can approximate any given slate by accessing only poly-
nomially many subslates of size at most Θ(n/ lnn). In this setting, we leave open the problem of
decreasing the slate size, while maintaining a polynomial running time.

Another interesting research direction would be considering a PAC-learning variant of the problem,
where the slates of the testing phase and/or the training phase come from a probability distribution
and the goal is to minimize the expected error in the testing phase. This variant might be easier with
respect to both slate size and computational complexity.

Acknowledgments and Disclosure of Funding

The authors thank the anonymous reviewers, whose insightful suggestions directly led to a significant
simplification of our results. Flavio Chierichetti and Alessandro Panconesi were supported in part
by BiCi – Bertinoro international Center for informatics and by a Google Focused Research Award.
Flavio Chierichetti was supported in part by the PRIN project 20229BCXNW.

References
Matteo Almanza, Flavio Chierichetti, Ravi Kumar, Alessandro Panconesi, and Andrew Tomkins.

RUMs from head-to-head contests. In ICML, pages 452–467, 2022.

Tugkan Batu, Sampath Kannan, Sanjeev Khanna, and Andrew McGregor. Reconstructing strings
from random traces. In SODA, page 910–918, 2004.

Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum lower
bounds by polynomials. J. ACM, 48(4), 2001.

Andrej Bogdanov, Yuval Ishai, Emanuele Viola, and Christopher Williamson. Bounded indistin-
guishability and the complexity of recovering secrets. In CRYPTO, 2016.

Harry Buhrman, Richard Cleve, Ronald de Wolf, and Christof Zalka. Bounds for small-error and
zero-error quantum algorithms. In FOCS, pages 358–368, 1999.

Mark Bun and Justin Thaler. Dual lower bounds for approximate degree and Markov–Bernstein
inequalities. Information and Computation, 243:2–25, 2015.

Mark Bun and Justin Thaler. Approximate degree in classical and quantum computing. Foundations
and Trends® in Theoretical Computer Science, 15(3-4):229–423, 2022.

Zachary Chase. New lower bounds for trace reconstruction. Annales de l’Institut Henri Poincaré,
Probabilités et Statistiques, 57(2):627 – 643, 2021a.

Zachary Chase. Separating words and trace reconstruction. In STOC, page 21–31, 2021b.

Xi Chen, Anindya De, Chin Ho Lee, Rocco A. Servedio, and Sandip Sinha. Approximate trace
reconstruction from a single trace. In SODA, 2023.

Flavio Chierichetti, Ravi Kumar, and Andrew Tomkins. Discrete choice, permutations, and recon-
struction. In SODA, pages 576–586, 2018a.

Flavio Chierichetti, Ravi Kumar, and Andrew Tomkins. Learning a mixture of two multinomial logits.
In ICML, pages 961–969, 2018b.

Flavio Chierichetti, Ravi Kumar, and Andrew Tomkins. Light RUMs. In ICML, pages 1888–1897,
2021.

Flavio Chierichetti, Mirko Giacchini, Ravi Kumar, Alessandro Panconesi, and Andrew Tomkins.
Approximating a RUM from distributions on k-slates. In AISTATS, pages 4757–4767, 2023.

Sami Davies, Miklós Z. Rácz, Benjamin G. Schiffer, and Cyrus Rashtchian. Approximate trace
reconstruction: Algorithms. In ISIT, 2021.

Anindya De, Ryan O’Donnell, and Rocco A. Servedio. Optimal mean-based algorithms for trace
reconstruction. In STOC, page 1047–1056, 2017.

10

Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of Random-
ized Algorithms. Cambridge University Press, 1st edition, 2009.

Miroslav Dudík and Leonard J. Schulman. Reconstruction from subsequences. Journal of Combina-
torial Theory, Series A, 103(2):337–348, 2003.

Vivek F. Farias, Srikanth Jagabathula, and Devavrat Shah. A data-driven approach to modeling choice.
In NIPS, pages 504–512, 2009.

Thomas Holenstein, Michael Mitzenmacher, Rina Panigrahy, and Udi Wieder. Trace reconstruction
with constant deletion probability and related results. In SODA, page 389–398, 2008.

Xuangui Huang and Emanuele Viola. Approximate degree, weight, and indistinguishability. ACM
ToCT, 14(1), 2022.

L. I. Kalashnik. The reconstruction of a word from fragments. Numerical Mathematics and Computer
Technology, pages 56–57, 1973.

Adam R. Klivans and Rocco A. Servedio. Learning DNF in time 2(Õ(n1/3)). JCSS, 68, 2004.

Ilia Krasikov and Yehuda Roditty. On a reconstruction problem for sequences. Journal of Combina-
torial Theory, Series A, 77(2):344–348, 1997.

Bennet Manvel, Aaron D. Meyerowitz, Allen J. Schwenk, Ken W. Smith, and Paul K. Stockmeyer.
Reconstruction of sequences. Discrete Mathematics, 94(3):209–219, 1991.

Fedor Nazarov and Yuval Peres. Trace reconstruction with exp(O(n1/3)) samples. In STOC, page
1042–1046, 2017.

Sahand Negahban, Sewoong Oh, Kiran K. Thekumparampil, and Jiaming Xu. Learning from
comparisons and choices. JMLR, 19(1):1478–1572, 2018.

Sewoong Oh and Devavrat Shah. Learning mixed multinomial logit model from ordinal data. In
NIPS, pages 595–603, 2014.

Yuval Peres and Alex Zhai. Average-case reconstruction for the deletion channel: Subpolynomially
many traces suffice. In FOCS, pages 228–239, 2017.

Alex D. Scott. Reconstructing sequences. Discrete Mathematics, 175(1):231–238, 1997.

Alexander A. Sherstov. Approximate inclusion-exclusion for arbitrary symmetric functions. In CCC,
2008.

Hossein Azari Soufiani, David C. Parkes, and Lirong Xia. Random utility theory for social choice. In
NIPS, pages 126–134, 2012.

Wenpin Tang. Learning an arbitrary mixture of two multinomial logits. arXiv, 2007.00204, 2020.

Justin Thaler, Jonathan Ullman, and Salil Vadhan. Faster algorithms for privately releasing marginals.
In ICALP, 2012.

Kenneth Train. Discrete Choice Methods with Simulation. Cambridge University Press, 2003.

Krishnamurthy Viswanathan and Ram Swaminathan. Improved string reconstruction over insertion-
deletion channels. In SODA, pages 399–408, 2008.

11

A Missing proofs

A.1 Proof of improper learning algorithm result

Proof of Theorem 9. Fixed integer d ≥
√
n ln(1/ϵ), consider the polynomials given by Theorem 8

to approximate ANDd, . . . ,ANDn. These polynomials will have degrees kd, . . . , kn and ℓ1-norm
of the coefficients Wd, . . . ,Wn. Let k − 1 = max{ki} = Θ(d) be the maximum degree of these
polynomials and let W = max{Wi} ≤ 2O(

n ln(1/ϵ)
k) be the maximum ℓ1-norm of the coefficients

of these polynomials. Note that these values can be computed in poly(n) time. The algorithm will
access slates of size at most k.

Let us start by describing the first phase. Using the MAX-DIST oracle, the algorithm simply stores
the values {RS(s)}s∈S⊆[n],|S|≤k. Using the MAX-SAMPLE oracle, the algorithm must instead
estimate such values. In particular, let H = k ·

∑k
c=0

(
n
c

)
, α = ⌈max{1, log√n 1

ϵ , log
√
n

2
δ }⌉, and

m = ⌈W ⌉4 · n4α +H , note that α = O(1) given that ϵδ ≥ 1/nO(1), therefore m = nO(k). Fixed
any s ∈ [n], S ⊆ [n]∖ {s}, |S| ≤ k − 1, the algorithm makes m queries to MAX-SAMPLE oracle
for the slate S ∪ {s}. Upon such query the oracle samples π ∼ R and returns π(S ∪ {s}), let Xi be
the indicator variable that is 1 if the ith query returns s and 0 otherwise. Define the random variable
RS∪{s}(s) = 1

m

∑
i∈[m]Xi, and observe that E

[
RS∪{s}(s)

]
= RS∪{s}(s). A standard additive

Chernoff bound (see, e.g., [Dubhashi and Panconesi, 2009, Theorem 1.1]) ensures that:

Pr

[
|RS∪{s}(s)−RS∪{s}(s)| ≥

√
lnm

m

]
≤ 2

m2
.

We repeat this process for each slate of size at most k and, given that m ≥ H , a simple union
bound ensures that with probability at least 1 − 2/m ≥ 1 − δ it holds that, for each s ∈ [n], S ⊆
[n]∖ {s}, |S| ≤ k − 1, we have |RS∪{s}(s)−RS∪{s}(s)| ≤

√
lnm
m ≤ m−1/4. This concludes the

first phase of the algorithm, which makes nO(k) queries and is successful with probability 1− δ.

Consider now a query s ∈ [n], T ⊆ [n]∖ {s}, we assume |T | ≥ k ≥
√
n otherwise the algorithm

can just return RT∪{s}(s) (or RT∪{s}(s) if it has access to MAX-DIST oracle). We describe the
rest of the algorithm with the MAX-SAMPLE oracle. Consider the polynomial, given by Theorem
8, of degree at most k − 1 with coefficients {ai}0≤i≤k−1 that ϵ-approximates AND|T | and let
W =

∑k−1
c=0

(|T |
c

)
|ac| ≤ W . Note that the inequalities are true by our initial choice of k and W .

Define:4

RT∪{s}(s) =
∑

S⊆T,|S|≤k−1

a|S| ·RS∪{s}(s).

By the triangle inequality and Observation 7, we have:

|RT∪{s}(s)−RT∪{s}(s)| ≤ |RT∪{s}(s)− R̃T∪{s}(s)|+ |R̃T∪{s}(s)−RT∪{s}(s)|

≤
∑

S⊆T,|S|≤k−1

|a|S|| · |RS∪{s}(s)−RS∪{s}(s)|+ ϵ

≤W ·m−1/4 + ϵ ≤ 2ϵ.

Grouping terms with the same coefficient, we have:

RT∪{s}(s) =

k−1∑
c=0

ac · ∑
S∈(Tc)

RS∪{s}(s)

 =

k−1∑
c=0

ac

(
|T |
c

)
E

S∼(Tc)

[
RS∪{s}(s)

]
,

where the expectation is over a uniform at random S ∈
(
T
c

)
. To get a faster algorithm, we estimate

this expectation via sampling. Fix c ∈ {0, 1, . . . , k − 1}, and define m = ⌈W 4⌉ · |T |4α. Sample

4When using MAX-DIST oracle we simply have RT∪{s}(s) = R̃T∪{s}(s)

12

m slates S1, . . . , Sm i.i.d. and uniformly at random from
(
T
c

)
. Define Mc =

1
m

∑m
i=1RSi∪{s}(s).

Again via a Chernoff–Hoeffding bound, we obtain:

Pr

[
|Mc − E

S∼(Tc)

[
RS∪{s}(s)

]
| ≥

√
lnm

m

]
≤ 2

m2 .

Using that m ≥ |T | ≥ k and by applying a union bound, we obtain that with probability at least

1− 2/m ≥ 1− δ, for each c ∈ {0, 1, . . . , k− 1} it holds |Mc −ES∼(Tc)
[
RS∪{s}(s)

]
| ≤

√
lnm
m ≤

m−1/4 ≤W
−1|T |−α. Define finally our estimate for RT∪{s}(s):

R̂T∪{s}(s) =

k−1∑
c=0

ac

(
|T |
c

)
·Mc.

With probability at least 1− δ, we have:∣∣∣R̂T∪{s}(s)−RT∪{s}(s)
∣∣∣ ≤ k−1∑

c=0

|ac|
(
|T |
c

) ∣∣∣∣∣Mc − E
S∈(Tc)

[
RS∪{s}(s)

]∣∣∣∣∣ ≤W ·W−1 · |T |−α ≤ ϵ.

Therefore, a triangle inequality implies |R̂T∪{s}(s) − RT∪{s}(s)| ≤ 3ϵ. Since ϵ can be chosen
arbitrarily, we can set ϵ := ϵ/3 and obtain the desired approximation guarantee.

Finally, note that by Theorem 8, W ≤ 2O(
|T | ln(1/ϵ)

k), therefore k ·m = 2O(
|T | ln(1/ϵ)

k) · poly(|T |),
and this is also the running time to answer a query.

A.2 Proof of simulation algorithm result

Proof of Corollary 10. Consider the polynomial given by Theorem 8 to approximate AND|T |. Such

polynomial has degree k = Θ(d), and ℓ1-norm of the coefficients at mostW = 2O(
|T | ln(1/ϵ)

k). Setting
m = ⌈W 4⌉ · |T |4α, for α = ⌈max{1, log|T |

1
ϵ , log|T |

2
δ }⌉, we have that the estimate R̂T∪{s}(s)

returned by Theorem 9 approximatesRT∪{s}(s). To compute such an estimate, one needs to compute
Mc for each c ∈ {0, 1, . . . , k − 1}, and each of these values requires knowing RSi∪{s}(s) for m
slates S1, . . . , Sm, finally, each such slate requires m = k ·m queries to MAX-SAMPLE oracle (or
one query to MAX-DIST oracle). Therefore, with a total of k ·m ·m = 2O(

|T | ln(1/ϵ)
k) · poly(|T |)

queries, we can provide the desired approximation.

A.3 Proof of fractional k-deck lower bound

As a first step to proving a lower bound for the fractional k-deck problem, we show that, for the
RUMs of our lower bound construction, the MAX-DIST oracle can be used to reconstruct, for each
slate, the distribution over the permutations of the slate induced by the RUM.5

Lemma 16. Consider RUMs A and B over [n] given by Theorem 12. For each slate S, the
distribution over the permutations of S induced by RUM A (resp. B) can be obtained from the values
{AT∪{n}(n)}T⊆S (resp. {BT∪{n}(n)}T⊆S).

Proof. Fix any slate S ⊆ [n]. For a permutation π over [n], denote with Sπ the slate S sorted
according to π. Let S be the set of all possible permutations of S. Note that Sπ ∈ S. We focus on
RUM A, the proof is identical for B. We have to prove that for all p ∈ S, Prπ∼A[Sπ = p] can be
written in terms of {AT∪{n}(n)}T⊆S . It holds:

Pr
π∼A

[Sπ = p] =
∑
T⊆S

Pr
x∼µ,π∼Πx

[
χT (x)

∏
s∈S∖T

(1− xs) = 1 ∩ Sπ = p

]

=
∑
T⊆S

Pr
x∼µ

[
χT (x)

∏
s∈S∖T

(1− xs) = 1

]
Pr

x∼µ,π∼Πx

[
Sπ = p

∣∣∣∣∣χT (x) ∏
s∈S∖T

(1− xs) = 1

]
.

5Incidentally, this is impossible in general RUMs.

13

As proved in Theorem 12, the first probability can be written in terms of {AP∪{n}(n)}P⊆S . It is also
easy to see that, once the bits {xi}i∈S are fixed, one can write explicitly the probability that Sπ = p,
and that such probability does not depend on RUM A.

We can now prove the lower bound for fractional k-deck.

Proof of Theorem 14. We use the RUMs A and B from the construction of Theorem 12 to obtain
two distributions over n-bit strings of Hamming weight one.

Given RUM A (resp., B) we define XA (resp., XB) to return an n-bit string containing a 1 in position
i, and 0’s in all the other positions, whenever A (resp., B) returns a permutation where the “special”
item n is in position i.

Recall that if 0 < ϵ < 1
2 is a constant, Theorem 12 guarantees that for each slate S ⊆ [n] such that

|S| ≤ cϵ ·
√
n for some cϵ > 0, it holds AS = BS . As a consequence, Lemma 16 guarantees that

RUMs A and B give rise to the same distributions over projected permutations on slates of size at
most k = ⌊cϵ ·

√
n⌋. Thus, the fractional k-deck of XA equals the fractional k-deck of XB . Indeed,

let Sπ be the binary string induced by slate S when sorted according to π, then, for any s ∈ {0, 1}k,

fXA
(s) =

∑
S∈([n]

k)

Pr
π∼A

[Sπ = s] =
∑

S∈([n]
k)

Pr
π∼B

[Sπ = s] = fXB
(s).

Theorem 12 also entails that An ≥ 1− ϵ and Bn ≤ ϵ. Therefore, XA returns a bit string
with a 1 in the first position with probability at least 1− ϵ, whereas XB returns a bit string with a 1
in the first position with probability at most ϵ. This yields the desired lower bound.

A.4 Proof of fractional trace reconstruction lower bound

Proof of Theorem 15. Given a string x ∈ {0, 1}n, let Dd,x be the random variable that represents
the output of a deletion channel with erasure probability d on input x; let ξα,d,x be the event that
this output has at least α(1− d)n bits. Then, Pr[ξα,d,x] is a function only of α, d, and |x| = n; let
pα,d,n = Pr[ξα,d,x].

Observation 17. It holds p2,d,n ≤ e−(1−d)·n/3.

Proof. Let x be any string of length n. By a standard multiplicative Chernoff bound (see, e.g.,
[Dubhashi and Panconesi, 2009, Theorem 1.1]), we get:

Pr [|Dd,x| ≥ 2(1− d)n] = Pr [|Dd,x| ≥ 2E [|Dd,x|]] ≤ e−E[|Dd,x|]/3 = e−(1−d)n/3.

Thus, if we sample the deletion channel fewer than o
(
e(1−d)·n/3

)
times, with probability 1− o(1)

we will never get a sample of length more than 2(1− d)n. We can then apply Theorem 14, which
gave the same fractional k-deck (hence the same fractional k′-deck,6 for each 1 ≤ k′ ≤ k) for
k = ⌊c ·

√
n⌋ to its two distributions XA and XB , while guaranteeing very different marginals on

their first bit. Selecting d = 1− c
2
√
n
+ 1

2n , we get that 2(1− d)n = c ·
√
n+O(1) and therefore

we have no sample of length more than c ·
√
n+O(1). Under this conditioning, the two distributions

induced by the channel seeded by XA and the channel seeded by XB are the same. Indeed, call Ψ
such event, then for any string y, |y| ≤ 2(1− d)n,

Pr
X∼XA

[Dd,X = y | Ψ] = Pr
X∼XA

[|Dd,X | = |y| | Ψ] · Pr
X∼XA

[Dd,X = y | |Dd,X | = |y|]

= Pr
X∼XB

[|Dd,X | = |y| | Ψ] ·
∑

x∈{0,1}n

Pr
X∼XA

[X = x] · fx(y)(
n
|y|
)

=
PrX∼XB

[|Dd,X | = |y| | Ψ](
n
|y|
) · fXA

(y)

6This is true for standard k-deck (see [Manvel et al., 1991]) and the argument directly generalizes to the
fractional version.

14

=
PrX∼XB

[|Dd,X | = |y| | Ψ](
n
|y|
) · fXB

(y)

= Pr
X∼XB

[Dd,X = y | Ψ].

We then get the desired lower bound.

B Proper learning algorithm with MAX-SAMPLE oracle

Theorem 18. Let P and Q be two RUMs on [n]. There exists constants c, c′ > 0 such that

for a given s ∈ [n], T ⊆ [n] ∖ {s}, if |PS∪{s}(s) − QS∪{s}(s)| ≤ 2−c
′·
√

|T | ln(1/ϵ) for each

S ∈
{
T ′ | T ′ ⊆ T and |T ′| ≤ c ·

√
|T | · ln 1

ϵ

}
, then

∣∣PT∪{s}(s)−QT∪{s}(s)
∣∣ ≤ ϵ, where ϵ ∈

(2−
√

|T |+2, 1/3).

Proof. Consider the polynomial given by Theorem 8 for d =
√
|T | ln(1/ϵ), of degree k ≤ c ·√

|T | ln(1/ϵ) = Θ(
√
|T | ln(1/ϵ)), and with ℓ1-norm of the coefficients W ≤ 2c

′′·
√

|T | ln(1/ϵ) =

2O(
√

|T | ln(1/ϵ)) for some constants c, c′′ > 0, that ϵ-approximates AND|T |. Set c′ = c′′ + 1. Then,
by Observation 7,∣∣PT∪{s}(s)−QT∪{s}(s)

∣∣ ≤|PT∪{s}(s)− P̃T∪{s}(s)|+ |Q̃T∪{s}(s)−QT∪{s}(s)|+

|P̃T∪{s}(s)− Q̃T∪{s}(s)|
≤3ϵ,

where the last inequality uses |P̃T∪{s}(s) − Q̃T∪{s}(s)| ≤ W · 2−c
′
√

|T | ln(1/ϵ) ≤ 2−
√

|T | ≤ ϵ.
Setting ϵ := ϵ/3 completes the proof.

A practical implication of this theorem is a proper learning algorithm using MAX-SAMPLE oracle.
Indeed, using enough samples one can approximate the winning distributions within an exponentially
small error, and then, fitting the approximate winning distributions with a RUM minimizing the
maximum ℓ∞-error, the theorem guarantees that such RUM will approximate the original RUM on
any slate.

It is not difficult to see that an analogous theorem can be proved in the more general setting of
Sherstov [2008]: taken any events A1, . . . , An, and B1, . . . , Bn such that the probabilities of the
intersections up to size Θ(

√
n ln(1/ϵ)) differ by at most an exponentially small error, we have that

the probabilities of any intersection differ by at most ϵ.

C Proper learning algorithm in time 2O(n)

In this section, we give more details on how to improve the running time of the proper learning
algorithm from nO(n) to 2O(n), both for the MAX-DIST oracle and the MAX-SAMPLE oracle. The
nO(n) algorithm for both oracles, can be obtained by solving directly the following LP with the
ellipsoid method, for k = Θ(

√
n ln(1/ϵ)).



min ϵ∑
π∈Sn

π(S∪{s})=s

pπ −D(S ∪ {s}, s) ≤ ϵ ∀s ∈ [n] ∀S ⊆ [n]∖ {s} s.t. |S| ≤ k − 1

∑
π∈Sn

π(S∪{s})=s

pπ −D(S ∪ {s}, s) ≥ −ϵ ∀s ∈ [n] ∀S ⊆ [n]∖ {s} s.t. |S| ≤ k − 1

∑
π∈Sn

pπ = 1

ϵ ≥ 0
pπ ≥ 0 ∀π ∈ Sn

(2)

15

Where D(S ∪ {s}, s) is equal to QS∪{s}(s) for a RUM Q in case of MAX-DIST oracle, or it is equal
to an approximation Q̃S∪{s}(s) in case of MAX-SAMPLE oracle. Our strategy is to compute the
optimal solution of (2) by first passing to the dual to reduce the number of variables. In particular, by
employing the same ideas of Chierichetti et al. [2023], one can see that the dual LP is:



maxB −
∑

s∈S⊆[n],|S|≤k
D(S, s) ·∆S,s∑

S⊆[n],1≤|S|≤k
∆S,π(S) ≥ B ∀π ∈ Sn∑

s∈S⊆[n],|S|≤k
|∆S,s| ≤ 1

∆S,s unrestricted ∀s ∈ S ⊆ [n], |S| ≤ k
B unrestricted

(3)

Note that the constraint
∑

s∈S⊆[n],|S|≤k
|∆S,s| ≤ 1 can easily be turned into a linear constraint by

introducing one auxiliary variable for each ∆S,s. Given a possible solution B, {∆S,s}s∈S⊆[n],|S|≤k,
checking all the constraints {

∑
S⊆[n],1≤|S|≤k∆S,π(S) ≥ B}π∈Sn is equivalent to solving an instance

of Weighted Feedback Hyperedge Set as described in Chierichetti et al. [2023] and this can be done
in time 2O(n) via dynamic programming [Chierichetti et al., 2023, Theorem 10]. Therefore, via the
ellipsoid method, the dual (3) can be solved in time 2O(n). In particular the ellipsoid method will call
the separation oracle at most 2O(n) times, obtaining at most 2O(n) separating hyperplanes relative to
a permutation constraint. Let P ⊆ Sn be the set of permutations relative to these constraints. Now,
by solving the LP (2) restricted to the permutation variables P , we obtain an optimal RUM R for LP
(2) in time 2O(n). The output of our proper learning algorithm is R.

D Computing coefficients in polynomial time

We show in this section that the coefficients of the polynomial proposed by Huang and Viola [2022],
to approximate ANDn, are computable in polynomial time. This is folklore in the literature, but for
completeness, we provide here an explicit algorithm.

Since the AND is a symmetric function, the construction of Huang and Viola [2022] consists of
first building a univariate polynomial q : [0, 1] → R such that: (i) q(1) = 1, and (ii) |q(i/n)| ≤ ϵ
for all i ∈ {0, 1, . . . , n − 1}. Then, the final polynomial is p(x) = q(

∑n
i=1 xi/n) that clearly

ϵ-approximates the AND on n bits. We first show that, given the coefficients of the univariate
polynomial q, those of the final polynomial p are computable in polynomial time.

For a set A and a tuple T ∈ Ab, define set(T) as the set obtained by removing duplicates from
T (e.g., set((1, 2, 1, 2, 3)) = {1, 2, 3}). For a set A ̸= ∅ and integer b ≥ 1, define m(A, b) =∣∣{T ∈ Ab | set(T) = A}

∣∣. Instead of writing m([a], b) we usually write m(a, b) for integer a ≥ 1.
Define for convenience m(0, 0) = 1 and m(0, b) = 0 for b ≥ 1.

Lemma 19. The following properties hold for A ̸= ∅, b ≥ 1, a ≥ 1:

(i) m(A, b) = m(|A|, b),
(ii) if b < a, m(a, b) = 0,

(iii) for every n ≥ 0,
∑b
i=1

(
n
i

)
m(i, b) = nb,

(iv) if b ≥ a, m(a, b) = ab −
∑a−1
i=1

(
a
i

)
·m(i, b).

Proof. Properties (i) and (ii) are immediate by definition.

Note that property (iii) is true for n = 0. If n ≥ 1, note that for each tuple T ∈ [n]b there exists a
unique non-empty set S ⊆ [n] such that set(T) = S. Let [set(T) = S] be 1 if set(T) = S and 0

16

otherwise. Then:

nb =
∑

S⊆[n],S ̸=∅

∑
T∈[n]b

[set(T) = S] =
∑

S⊆[n],S ̸=∅

∑
T∈Sb

[set(T) = S] =
∑

S⊆[n],S ̸=∅

m(S, b)

=

min{n,b}∑
i=1

(
n

i

)
m(i, b),

where the last equality applies properties (i) and (ii). Property (iv) follows by applying property (iii)
with n = a.

Lemma 20. If q : [0, 1] → R is a univariate polynomial of degree k with real coefficients

{αi}i∈{0,1,...,k}, then p : {0, 1}n → R, such that p(x) = q
(∑n

i=1 xi

n

)
, is a multivariate polynomial

of degree k such that p(x) =
∑
S⊆[n]:|S|≤k β|S| · χS(x) with coefficient β|S| =

∑k
b=|S| αb ·

m(|S|,b)
nb .

Proof. By definition, q
(∑n

i=1 xi

n

)
=

∑k
i=0 αi

(
∑n

j=1 xj)
i

ni . Note that for each j ∈ [n], x2j = xj ,
therefore, for i ≥ 1, we have:∑

j∈[n]

xj

i

=
∑
t∈[n]i

∏
j∈[i]

xtj =
∑

S⊆[n],1≤|S|≤i

m(|S|, i)χS(x),

where we used that m(|S|, i) = m(S, i) =
∣∣{t ∈ [n]i | set(t) = S}

∣∣. Therefore:

p(x) = α0 +

k∑
i=1

∑
S⊆[n],1≤|S|≤i

αi
ni

·m(|S|, i) · χS(x)

= α0 +
∑

S⊆[n],1≤|S|≤k

k∑
i=|S|

αi
ni

·m(|S|, i) · χS(x) = α0 +
∑

S⊆[n],1≤|S|≤k

χS(x)β|S|.

Finally, note that using the convention m(0, 0) = 1,m(0, b) = 0 for b ≥ 1, we have β0 = α0.

From the recurrence of Lemma 19(iv), it is easy to devise a dynamic programming algorithm that
computes all the needed values of m(a, b) in time O(k3), where k is the degree of the univariate
polynomial. Therefore, from the coefficients of the univariate polynomial q, one can compute those
of the final polynomial p in time O(k3), using Lemma 20.

We now focus on the univariate polynomial of Huang and Viola [2022]. This polynomial is the
product of n Chebyshev polynomials shifted and scaled. In particular, recall that the Chebyshev
polynomial of the first type of degree d, Td(x), is defined by the following recurrence: T0(x) = 1,
T1(x) = x, Td+1(x) = 2x ·Td(x)−Td−1(x). Therefore, via dynamic programming, the coefficients
of Td(x) can be computed in O(d2). A simple calculation shows that, if {αi}i∈{0,1,...,d} are the
coefficients of Td(x), then Td(a · xγ + b), for integer γ, is a polynomial of degree d · γ, where the
coefficient of the term xj·γ is

∑d
i=j

(
i
j

)
ajbi−jαi for j ∈ {0, 1, . . . , d}, while all other monomials

have coefficient 0. Therefore, the coefficients of Td(a · xγ + b) can be computed in O(d2) from the
αi’s. Let di, for i ∈ [n] be the coefficient of the ith Chebyshev polynomial in the product of the
final polynomial. The final polynomial has degree k, therefore computing the coefficients of all the
scaled Chebyshev polynomials takes time

∑n
i=1O(d2i) ≤ (

∑n
i=1O(di))

2
= O(k2). Recall that two

polynomials of degree k can be multiplied in time O(k log k) via the Fast Fourier Transform, then the
n− 1 multiplications can be performed in time O(nk log k). Putting it all together the coefficients of
the polynomial can be computed in time O(k2 + nk log k + k3) = O(nk log k + k3).

17

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: upper bound and algorithms can be found in sections 3 and 4, while the lower
bounds in section 5. Lower bounds for other problems are in sections 6 and 7.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: section 4 and section 8 highlight the limitations of the algorithms.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

18

Justification: proofs missing from the main body can be found in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: the paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

19

Answer: [NA]
Justification: the paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: the paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: the paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: the paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: the paper conforms with the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: there are no foreseeable negative impacts; while on the positive side, the ideas
introduced might potentially be used to improve recommender systems.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

21

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: the paper does not include experiments and we do not release any data nor
model.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: the paper does not include experiments and does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

22

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: the paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23

	Introduction
	Background
	Uniform approximation of a RUM
	Reconstruction algorithms
	A proper learning algorithm
	An improper learning algorithm
	A simulation algorithm

	Lower bounds
	Lower bound when only slates of size k are given

	Fractional k-deck
	Fractional trace reconstruction
	Conclusions
	Missing proofs
	Proof of improper learning algorithm result
	Proof of simulation algorithm result
	Proof of fractional k-deck lower bound
	Proof of fractional trace reconstruction lower bound

	Proper learning algorithm with Max-Sample oracle
	Proper learning algorithm in time 2O(n)
	Computing coefficients in polynomial time

