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Abstract

A desirable property of autonomous agents is the ability to both solve long-horizon1

problems and generalize to unseen tasks. Recent advances in data-driven skill2

learning have shown that extracting behavioral priors from offline data can en-3

able agents to solve challenging long-horizon tasks with reinforcement learning.4

However, generalization to tasks unseen during behavioral prior training remains5

an outstanding challenge. To this end, we present Few-shot Imitation with Skill6

Transition Models (FIST), an algorithm that extracts skills from offline data and7

utilizes them to generalize to unseen tasks given a few downstream demonstrations.8

FIST learns an inverse skill dynamics model, a distance function, and utilizes a9

semi-parametric approach for imitation. We show that FIST is capable of gener-10

alizing to new tasks and substantially outperforms prior baselines in navigation11

experiments requiring traversing unseen parts of a large maze and 7-DoF robotic12

arm experiments requiring manipulating previously unseen objects in a kitchen.13

1 Introduction14

We are interested in developing control algorithms that enable robots to solve complex and practical15

tasks such as operating kitchens or assisting humans with everyday chores at home. There are two16

general characteristics of real-world tasks – long-horizon planning and generalizability. Practical17

tasks are often long-horizon in the sense that they require a robot to complete a sequence of subtasks.18

For example, to cook a meal a robot might need to prepare ingredients, place them in a pot, and19

operate the stove before the full meal is ready. Additionally, in the real world many tasks we wish our20

robot to solve may differ from tasks the robot has completed in the past but require a similar skill set.21

For example, if a robot learned to open the top cabinet drawer it should be able to quickly adapt that22

skill to open the bottom cabinet drawer. These considerations motivate our research question: how23

can we learn skills that enable robots to generalize to new long-horizon downstream tasks?24

Recently, learning data-driven behavioral priors has become a promising approach to solving long-25

horizon tasks. Given a large unlabeled offline dataset of robotic demonstrations solving a diverse set26

of tasks this family of approaches [1, 2, 3] extract behavioral priors by fitting maximum likelihood27

expectation latent variable models to the offline dataset. The behavioral priors are then used to28

guide a Reinforcement Learning (RL) algorithm to solve downstream tasks. By selecting skills29

from the behavioral prior, the RL algorithm is able to explore in a structured manner and can solve30

long-horizon navigation and manipulation tasks. However, the generalization capabilities of RL with31

behavioral priors are limited since a different RL agent needs to be trained for each downstream task32

and training each RL agent often requires millions of environment interactions.33

On the other hand, few-shot imitation learning has been a promising paradigm for generalization. In34

the few-shot imitation learning setting, an imitation learning policy is trained on an offline dataset35

of demonstrations and is then adapted in few-shot to a downstream task [4]. Few-shot imitation36
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Figure 1: In this work we are interested in enabling autonomous robots to solve complex long-horizon tasks
that were unseen during training. To do so, we assume access to a large multi-task dataset of demonstrations,
extract skills from the offline dataset, and adapt those skills to new tasks that were unseen during training.

learning has the added advantage over RL in that it is often easier for a human to provide a handful of37

demonstrations than it is to engineer a new reward function for a downstream task. However, unlike38

RL with behavioral priors, few-shot imitation learning is most often limited to short-horizon problems.39

The reason is that imitation learning policies quickly drift away from the demonstrations due to error40

accumulation [5], and especially so in the few-shot setting when only a handful of demonstrations41

are provided.42

While it is tempting to simply combine data-driven behavioral priors with few-shot imitation learning,43

it is not obvious how to do so since the two approaches are somewhat orthogonal. Behavioral priors44

are trained on highly multi-modal datasets such that a given state can correspond to multiple skills.45

Given a sufficiently large dataset of demonstrations for the downstream task the imitation learning46

algorithm will learn to select the correct mode. However, in the few-shot setting how do we ensure47

that during training on downstream data we choose the right skill? Additionally, due to the small48

sample size and long task horizon it is highly likely that a naive imitation learning policy will drift49

from the few-shot demonstrations. How do we prevent the imitation learning policy from drifting50

away from downstream demonstrations?51

The focus of our work is the setup illustrated in Figure 1; we introduce Few-Shot Imitation Learning52

with Skill Transition Models (FIST), a new algorithm for few-shot imitation learning with skills that53

enables generalization to unseen but semantically similar long-horizon tasks to those seen during54

training. Our approach addresses the issues with skill selection and drifting in the few-shot setting55

with two main components. First, we introduce an inverse skill dynamics model that conditions56

the behavioral prior not only on the current state but also on a future state, which helps FIST learn57

uni-modal future conditioned skill distribution that can then be utilized in few-shot. The inverse58

skill model is then used as a policy to select skills that will take the agent to the desired future state.59

Second, we train a distance function to find the state for conditioning the inverse skill model during60

evaluation. By finding states along the downstream demonstrations that are closest to the current61

state, FIST prevents the imitation learning policy from drifting. We show that our method results in62

policies that are able to generalize to new long-horizon downstream tasks in navigation environments63

and multi-step robotic manipulation tasks in a kitchen environment. To summarize, we list our three64

main contributions:65

1. We introduce FIST - an imitation learning algorithm that learns an inverse skill dynamics66

model and a distance function that is used for semi-parametric few-shot imitation.67

2. We show that FIST can solve long-horizon tasks in both navigation and robotic manipulation68

settings that were unseen during training and outperforms previous behavioral prior and69

imitation learning baselines.70

3. We provide insight into how different parts of the FIST algorithm contribute to final per-71

formance by ablating different components of our method such as future conditioning and72

fine-tuning on downstream data.73

2 Related Work74

Our approach combines ingredients from imitation learning and skill extraction to produce policies75

that can solve long-horizon tasks and generalize to tasks that are out of distribution but semantically76

similar to those encountered in the training set. We cover the most closely related work in imitation77

learning, skill extraction, and few-shot generalization.78
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Imitation Learning: Imitation learning is a supervised learning problem where an agent extracts a79

policy from a dataset of demonstrations. The two most common approaches to imitation are Behavior80

Cloning [6, 7] and Inverse Reinforcement Learning (IRL) [8]. BC approaches learn policies πθ(a|s)81

that most closely match the state-conditioned action distribution of the demonstration data. IRL82

approaches learn a reward function from the demonstration data assuming that the demonstrations83

are near-optimal for a desired task and utilize Reinforcement Learning to produce policies that84

maximize the reward. For simplicity and to avoid learning a reward function, in this work we aim85

to learn generalizable skills and using the BC approach. However, two drawbacks of BC are that86

the imitation policies require a large number of demonstrations and are prone to drifting away from87

the demonstration distribution during evaluation due to error accumulation [5]. For this reason, BC88

policies work best when the time-horizon of the task is short.89

Skill Extraction with Behavioral Priors: Methods that leverage behavioral priors utilize offline90

datasets of demonstrations to bias a policy towards the most likely skills in the datasets. While related91

closely to imitation learning, behavioral priors have been mostly applied to improve Reinforcement92

Learning. Behavioral priors learned through maximum likelihood latent variable models have been93

used for structured exploration in RL [1], to solve complex long-horizon tasks from sparse rewards94

[2], and regularize offline RL policies [9, 10, 11]. While impressive, RL with data-driven behavioral95

priors does not generalize to new tasks efficiently, often requiring millions of environment interactions96

to converge to an optimal policy for a new task.97

Few-Shot Learning: Few-shot learning [12] has been studied in the context of image recognition98

[13, 14], reinforcement learning [15], and imitation learning [4]. In the context of reinforcement and99

imitation learning, few-shot learning is often cast as a meta-learning problem [16, 15, 4], where the100

offline dataset of demonstrations are labeled by tasks. However, there are other means of attaining101

few-shot generalization that do not require meta-learning. Recently, advances in unsupervised102

representation learning in natural language processing [17, 18] and vision [19, 20] have shown how a103

network pre-trained with a self-supervised objective can be finetuned or adjusted with a linear probe104

to generalize in few-shot or even zero-shot [21] to a downstream task. Our approach to few-shot105

imitation learning is loosely inspired by the generalization capabilities of networks pre-trained with106

unsupervised objectives. Our approach first fits a behavioral prior to an unlabeled offline dataset of107

demonstrations to extract skills and then fits an imitation learning policy over the previously acquired108

skills to generalize in few-shot to new tasks. FIST is therefore a hierarchical few-shot imitation109

learning algorithm.110

3 Approach111

3.1 Problem Formulation112

Few-shot Imitation Learning: We denote a demonstration as a sequence of states and actions:113

τ = {s1, a1, s2, a2, . . . , sT , aT }. In a few-shot setting we assume access to a small dataset of114

M such expert demonstrations Ddemo = {τi}i=Mi=1 that fulfill a specific long horizon task in the115

environment. For instance a sequence of sub-tasks in a kitchen environment such as moving the kettle,116

turning on the burner and opening a cabinet door. The goal is to imitate this behavior to automate the117

task using only a few example trajectories available.118

Skill Extraction: In this work we assume access to an unlabeled offline dataset of prior agent119

interactions with the environment in the form ofN un-directed trajectories {τi = {(st, at)}t=Tit=1 }i=Ni=1 .120

We further assume that these trajectories include semantically meaningful skills that are composable121

to execute long horizon tasks in the environment. This data can be collected from past tasks that have122

been attempted, or be provided by human-experts through teleoperation [22].123

Skill extraction refers to an unsupervised learning approach that utilizes this undirected dataset124

to learn a skill policy in form of πθ(a|s, z) where a is action, s is the current state, and z is the125

skill. Our hypothesis is that by combining these skill primitives we can solve semantically similar126

long-horizon tasks that have not directly been seen during the training. In this work we propose127

a new architecture for skill extraction based on continuous latent variable models that enables a128

semi-parametric evaluation procedure for few-shot imitation learning.129
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Figure 2: Our algorithm – Few-Shot Imitation Learning with Skill Transition Models (FIST) – is composed of
three parts: (a) Skill Extraction: we fit a skill encoder, decoder, inverse skill dynamics model, and a distance
function to the offline dataset; (b) Skill Adaptation: For downstream task, we are given a few demonstrations and
adapt the skills learned in (a), by fine-tuning the encoder, decoder, and the inverse model. (c) Few-Shot Imitation:
finally, to imitate the downstream demonstrations, we utilize the distance function to perform a look ahead along
the demonstration to condition the inverse model and decode an action.
3.2 Hierarchical Few-Shot Imitation with Skill Transition Models130

Our method, shown in Fig. 2, has three components: (i) Skill extraction, (ii) Skill adaptation via131

fine-tuning on few-shot data, and (iii) Evaluating the skills using a semi-parametric approach to132

enable few-shot imitation.133

(i) Skill Extraction from Offline Data: We define a continuous skill zi ∈ Z as an embedding for a134

sequence of state-action pairs {st, at, . . . , st+H−1, at+H−1} with a fixed length H. This temporal135

abstraction of skills has proven to be useful in prior work [2, 3], by allowing a hierarchical decompo-136

sition of skills to achieve long horizon downstream tasks. To learn the latent space Z we propose137

training a continuous latent variable model with the encoder as qφ(z|st, at, . . . , st+H−1, at+H−1)138

and the decoder as πθ(a|s, z). The encoder outputs a distribution over the latent variable z that best139

explains the variation in the state-action pairs in the sub-trajectory.140

The encoder is an LSTM that takes in the sub-trajectory of length H and outputs the pa-141

rameters of a Gaussian distribution as the variational approximation over the true posterior142

p(z|st, at, . . . , st+H−1, at+H−1). The decoder is a policy that maximizes the log-likelihood of143

actions of the sub-trajectory conditioned on the current state and the skill. We implement the decoder144

as a feed-forward network which takes in the current state st and the latent vector z and regresses the145

action vector directly. This architecture resembles prior works on skill extraction [2].146

To learn parameters φ and θ, we randomly sample batches of H-step continuous sub-trajectories from147

the training data D and maximize the evidence lower bound (ELBO):148

log p(at|st) ≥ Eτ∼D,z∼qφ(z|τ)[log πθ(at|st, z)︸ ︷︷ ︸
Lrec

+β (log p(z)− log qφ(z|τ)︸ ︷︷ ︸
Lreg

] (1)

where the posterior qφ(z|τ) is regularized by its Kullback-Leibler (KL) divergence from a unit149

Gaussian prior p(z) = N (0, I) and β is a parameter that tunes the regularization term.150

To enable quick few shot adaptation over skills we learn an inverse skill dynamics model151

qψ(z|st, st+H−1) that infers which skills should be used given the current state and a future state that152

is H steps away. To train the inverse skill dynamics model we minimize the KL divergence between153

the approximated skill posterior qφ(z|τ) and the output of the state conditioned skill prior. This will154

result in minimizing the following loss with respect to the parameters ψ:155

Lprior(ψ) = Eτ∼D [DKL(qφ(z|τ), qψ(z|st, st+H−1))] . (2)

We use a reverse KL divergence to ensure that our inverse dynamics model has a broader distribution156

than the approximate posterior to ensure mode coverage [23]. In our implementation we use a157
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feed-forward network that takes in the concatenation of the current and future state and outputs the158

parameters of a Gaussian distribution over z. Conditioning on the future enables us to make a more159

informative decision on what skills to execute which is a key enabler to few-shot imitation. We jointly160

optimize the skill extractions and inverse model with the following loss:161

L(φ, θ, ψ) = Lrec(φ, θ) + βLreg(φ) + Lprior(ψ) (3)

(ii) Skill Adaption via Fine-tuning on Downstream Data : To improve the consistency between162

the unseen downstream demonstrations and the prior over skills, we use the demonstrations to163

fine-tune the parameters of the architecture by taking gradient steps over the loss in Equation 3. In164

the experiments we ablate the performance of FIST with and without fine-tuning to highlight the165

differences.166

(iii) Semi-parametric Evaluation for Few-shot Imitation Learning: To run the agent, we need to167

first sample a skill z ∼ qψ(z|st, s∗t ) based on the current state and the future state that it seeks to168

reach. Then, we can use the low-level decoder π(at|z, st) to convert that sampled skill z and the169

current state st to the corresponding action at. During evaluation we use the demonstrations Ddemo170

to decide which state to use as the future state to condition on. For this purpose we use a learned171

distance function d(s, s′) to measure the distance between the current state st and every other state in172

the demonstrated trajectories. Then, from the few-shot data we find the closest state s∗t to the current173

state according to the distance metric:174

s∗t = min
sij∈Ddemo

d(st, sij) (4)

where sij is the jth state in the ith trajectory in Ddemo. We then condition the inverse dynamics model175

on the current state st and the state s∗
′

t , H-steps ahead of s∗t within the trajectory that s∗t belongs to.176

If by adding H steps we reach the end of the trajectory, we use the end state within the trajectory as177

the target future state. The reason for this look-ahead adjustment is to ensure that the sampled skill178

always makes progress towards the future states of the demonstration. After the execution of action179

at according to the low-level decoder, the process is repeated until the fulfillment of the task. The180

procedure is summarized in Algorithm 1.181

Algorithm 1 FIST: Evaluation Algorithm
1: Inputs: Learned inverse skill dynamics model qψ(z|st, st+H−1), learned skill policy πθ(a|s, z), learned distance function d(s, s′),

downstream demonstrationDdemo

2: Initialize the environment to s0
3: for each t = [1 . . . T ] do
4: Pick s∗

′
t = LookAhead(mins∈Ddemo d(st, s))

5: Sample skill z ∼ qψ(z|st, s∗
′
t )

6: Sample action a ∼ πθ(a|st, z)
7: st ← env.step(a)

We learn a distance metric by optimizing an encoder using contrastive loss, such that states that are182

H steps in the future are close to the current state while all other states are further away. Refer to the183

supplementary materials for further details.184

4 Experiments185

In the experiments we are interested in answering the following questions: (i) Can our method186

successfully imitate unseen long-horizon downstream demonstrations? (ii) Is the temporal abstraction187

obtained from skills necessary for imitating long-horizon trajectories? (iii) Is pretraining and fine-188

tuning the skill embedding model necessary for achieving high success rate? (iv) Can our method189

also be used for robust one-shot imitation learning for in-distribution long-horizon tasks?190

4.1 Environments191

We evaluate the performance of FIST on two simulated navigation environments and a robotic192

manipulation task from the D4RL benchmark as shown in Figure 3. To ensure generalizability to193
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Figure 3: Top: In each environment, we block some part of the environment and collect undirected trajectories
for extracting skills. In the kitchen environment, red markers indicate the objects that are excluded. Bottom: For
downstream demonstrations, we use 10 expert trajectories that involve unseen parts of the maze or manipulation
of unseen objects.

out-of-distribution tasks we remove some category of trajectories from the offline data. At test-time,194

we see if the agent can generalize to those unseen trajectories.195

PointMaze: In this environment, the task is to navigate a point mass through a maze, from a start to196

a goal location. The outline of the maze is shown in Figure 3. We train the skills on three different197

datasets, each blocking one side of the maze. To test the method’s ability to generalize to unseen198

long-horizon tasks, we use 10 expert demonstrations that start from random places in maze, but199

end at a goal within the blocked region. This ensures that our demonstrated trajectories are out of200

distribution compared to training data. We evaluate the performance by measuring the episode length201

and the success rate in reaching the demonstrated goals.202

AntMaze: The task is to control a quadruped ant to run to different parts of the maze. The layout203

of the maze is similar to PointMaze, and the same sides are blocked off. The demonstrations are204

taken directly from the D4RL [24] dataset, by removing the trajectories passing through the blocked205

regions. The expert downstream demonstrations are randomly sampled for each of the removed206

trajectories. Similar to PointMaze we measure the episode length and success rate as our evaluation207

metric.208

Kitchen: The task is to use a 7-DoF robotic arm to manipulate different parts of a kitchen environment209

in a specific order (e.g. open a microwave door or move the kettle). During skill extraction we210

pre-process the offline data to exclude interactions with certain objects in the environment (e.g. we211

exclude interactions with the kettle). However, for the demonstrations we pick four sub-tasks one of212

which includes the objects that were excluded from the skill dataset (e.g. if the kettle was excluded,213

we pick the task to be to open the microwave, move the kettle, turn the top burner, and slide the cabinet214

door). In evaluation, for completion of each sub-task in the order consistent with the downstream215

demonstrations, the agent is awarded with a reward of 1.0 for a total max reward of 4.0 per episode.216

4.2 Results217

We use the following approaches for comparison: BC+FT: Trains a behavioral cloning agent (i.e.218

πθ(a|s)) on the offline dataset D and fine-tunes to the downstream dataset Ddemo. SPiRL: This is219

an extension of the existing skill extraction methods to imitation learning over skill space [3, 2].220

SPiRL [2] is very similar to our skill extraction method, but instead of conditioning the skill prior221

on the future state it only uses the current state. We extract skills from D using SPiRL, fine-tune222

the module on the downstream demonstrations Ddemo, and then execute the skill prior for evaluation.223

FIST (ours): This runs our semi-parametric approach after learning the future conditioned skill prior.224

After extracting skills from D we fine-tune the parameters on the downstream demonstrations Ddemo225

and perform the proposed semi-parametric approach for evaluation.226
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Table 1: Comparison of our approach to other baselines on the Maze environments. For each experiment we
report the average episode length from 10 fixed starting positions with the standard error across 10 evaluation
runs (lower is better). We also report success rate and its standard deviation. The maximum episode length for
PointMaze and AntMaze are 2000 and 1000, respectively.

FIST (Ours) SPiRL BC+FT
Blocked Region Environment Episode Length Success Rate Episode Length Success Rate Episode Length Success Rate

Left PointMaze 363.87 ± 18.73 0.99 ± 0.03 1966.7 ± 32.54 0.02 ± 0.04 1089.76 ± 173.74 0.74 ± 0.11
Right PointMaze 571.21 ± 38.82 0.91 ± 0.07 2000 ± 0 0.0 ± 0.0 1918.99 ± 43.65 0.07 ± 0.06
Bottom PointMaze 359.82 ± 3.62 1.0 ± 0.0 2000 ± 0 0.0 ± 0.0 1127.47 ± 148.24 0.87 ± 0.10

Left AntMaze 764.36 ± 8.93 0.32 ± 0.04 1000 ± 0 0.0 ± 0.0 1000 ± 0 0.0 ± 0.0
Right AntMaze 903.98 ± 12.01 0.22 ± 0.12 1000 ± 0 0.0 ± 0.0 1000 ± 0 0.0 ± 0.0
Bottom AntMaze 923.22 ± 6.36 0.21 ± 0.07 957.85 ± 8.62 0.12 ± 0.07 1000 ± 0 0.0 ± 0.0

Table 2: Comparison of average episode reward for our approach against other baselines on the KitchenRobot
environment. The average episode reward (with a max. of 4) along with its standard error is measured across 10
evaluation runs (higher is better). Each bolded keyword indicates the task that was excluded during skill data
collection.

Task (Unseen) Environment FIST (Ours) SPiRL BC+FT
Microwave, Kettle, Top Burner, Light Switch KitchenRobot 3.6± 0.16 2.1 ± 0.48 0.0 ± 0.0
Microwave, Bottom Burner, Light Switch, Slide Cabinet KitchenRobot 2.3± 0.5 2.3± 0.5 2.2± 0.28
Microwave, Kettle, Slide Cabinet, Hinge Cabinet KitchenRobot 3.5± 0.3 1.9 ± 0.09 1.3 ± 0.47
Microwave, Kettle, Slide Cabinet, Hinge Cabinet KitchenRobot 4.0± 0.0 3.3 ± 0.38 1.0 ± 0.32

For details on the implementation and example videos of the experiments we refer the reader to227

supplementary materials. Our results are summarized in Table 1 and 2 Each row in the tables indicates228

an experiment where a specific downstream task was excluded from the offline data D. We provide a229

summary of our key findings:230

(i) In the PointMaze environment, FIST consistently succeeds in navigating the point mass into all231

three goal locations. The skills learned by SPiRL fail to generalize when the point mass falls outside232

training distribution, causing it to get stuck in corners. While BC+FT also solves the task frequently233

in the Left and Bottom goal location, the motion of the point mass is sub-optimal, resulting in longer234

completion times.235

(ii) In the AntMaze environment, FIST achieves the best performance compared to the baselines.236

SPiRL and BC+FT make no progress in navigating the agent towards the goal while FIST is able237

to frequently reach the goals in the demonstrated trajectories. We believe that the low success rate238

numbers in this experiment is due to the low quality of trajectories that exist in the offline skill239

dataset D. In the dataset, we see many episodes with ant falling over, and FIST’s failure cases also240

demonstrate the same behavior, hence resulting in a low success rate. We hypothesize that with a241

better skill dataset FIST will be able reach to a higher success rate number.242

(iii) In the kitchen environment, we see that FIST significantly outperforms SPiRL and BC+FT. FIST243

can successfully complete 3 out of 4 long-horizon object manipulation tasks in this environment. In244

one of these long-horizon tasks all algorithms perform similarly poor. We believe that such behavior245

is due to the fact that fine-tuning the agent on the given task may cause it to forget some part of246

previous skills (e.g. Sliding the cabinet door). As future work, we plan to explore how different247

fine-tuning mechanisms (e.g. gradual layer unfreezing) could help avoid forgetting of prior skills.248

4.3 Ablation Studies249

In this section we study different components of the FIST algorithm to provide insight on the250

contribution of each part. In particular we are interested in performing the following ablations:251

Imitation Learning over skills vs. atomic actions: The FIST algorithm is comprised of two coupled252

pieces that are both critical for robust performance: the inverse dynamics model over skills and the253

non-parametric evaluation algorithm. In this experiment we measure the influence of inverse skill254

dynamics model qψ(z|st, st+H−1).255

An alternative baseline to learning skill dynamics model is to learn an inverse dynamics model on256

atomic actions qψ(at|st, st+H−1) and perform goal-conditioned behavioral cloning (Goal-BC). This257
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model outputs the first action at required for transitioning from st to st+H−1 over H steps. We can258

combine this model with FIST’s non-parametric module to determine the st+H−1 to condition on259

during evaluation of the policy. As shown in Table 3, temporal abstraction obtained in learning an260

inverse skill dynamics model is a critical factor in the performance of FIST.261

Table 3: We ablate the use of our inverse skill dynamics model by replacing it with an inverse dynamics model
on atomic actions. The baseline ablations only succeed on one out of the four tasks. BC learns an inverse
dynamics model that takes in state as input and outputs a distribution over atomic actions. Goal-BC uses both
state and the goal (sub-task) as input.

Task (Unseen) FIST (ours) Goal-BC

Microwave, Kettle, Top Burner, Light Switch 3.6± 0.16 0.0 ± 0.0
Microwave, Bottom Burner, Light Switch, Slide Cabinet 2.3± 0.5 1.2 ± 0.3
Microwave, Kettle, Slide Cabinet, Hinge Cabinet 3.5± 0.3 1.8 ± 0.44
Microwave, Kettle, Slide Cabinet, Hinge Cabinet 4.0± 0.0 0.9 ± 0.1

The effect of skill pre-training and fine-tuning on FIST: In order to adjust the skill-set to out-of-262

distribution tasks (e.g. moving the kettle while kettle is excluded from the skill dataset) FIST requires263

fine-tuning on the downstream demonstrations. We hypothesize that without fine-tuning, the agent264

should be able to perfectly imitate the demonstrated sub-trajectories that it has seen during training,265

but should start drifting away when encountered with an out-of-distribution skill. We also hypothesise266

that pre-training on a large dataset, even if it does not include the downstream demonstration sub-267

trajectories, is crucial for the good performance seen on FIST. Intuitively, pre-training provides a268

behavioral prior that is easier to adapt to unseen tasks than a random initialization.269

To examine the impact of fine-tuning, we compare FIST with FIST-no-FT which directly evaluates the270

semi-parameteric approach with the model parameters trained on the skill dataset without fine-tuning271

on the downstream trajectories. To understand the effect of pre-training, we compare FIST with272

FIST-no-pretrain which is not pre-trained on the skill dataset. Instead, we directly train the latent273

variable and inverse skill dynamics model on the downstream data and perform the semi-parametric274

evaluation of the FIST algorithm.275

From the results in Table 4, we observe that fine-tuning is a critical component for out-of-distribution276

task. The scores on FIST-no-FT suggests that the agent is capable of fulfilling the sub-tasks seen277

during skill training without fine-tuning but cannot progress onto unseen tasks. Based on the scores278

on FIST-no-pretrain, we also find that the pre-training on a rich dataset, even when the downstream279

task is directly excluded, provides sufficient prior knowledge about the dynamics of the environment280

and can immensely help with generalization to unseen tasks via fine-tuning.281

Table 4: We ablate the use of pre-training on offline data, as well as fine-tuning on downstream demonstrations.
FIST-no-FT removes the fine-tuning on downstream demonstration step in FIST, while FIST-no-pretrain trains
the skills purely from the given downstream data. Without seeing the subtask, FIST-no-FT is unable to solve the
downstream subtask. Trained on only downstream data, FIST-no-pretrain is unable to properly manipulate the
robot.

Task (Unseen) FIST (ours) FIST-no-FT FIST-no-pretrain

Microwave, Kettle, Top Burner, Light Switch 3.6± 0.16 2.0 ± 0.0 0.5 ± 0.16
Microwave, Bottom Burner, Light Switch, Slide Cabinet 2.3± 0.5 0.0 ± 0.0 0.7 ± 0.15
Microwave, Kettle, Slide Cabinet, Hinge Cabinet 3.5± 0.3 1.0 ± 0.0 0.0 ± 0.0
Microwave, Kettle, Slide Cabinet, Hinge Cabinet 4.0± 0.0 2.0 ± 0.0 0.8 ± 0.13

One-shot Imitation Learning: The FIST algorithm can be directly evaluated on one-shot in-282

distribution downstream tasks without any fine-tuning. In this experiment, we want to see if the283

agent can pick up the right mode within its skill-set with only one demonstration for fulfilling a284

long-horizon task in the kitchen environment. The difference between this experiment and our main285

result is that the down-stream task is within the distribution of its pre-trained skill-set. This is still a286

challenging task since the agent needs to correctly identify the desired mode of skills.287

Our hypothesis is that in SPiRL, the skill prior is only conditioned on the current state and therefore288

is, by definition, a multi-modal distribution and would require more data to adapt to a specific289

long-horizon trajectory. For instance, in the kitchen environment, after opening the microwave door,290

the interaction with any other objects in the environment is a possible choice of skills that can be291
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invoked. However, in FIST, by conditioning the skill prior on the future states, we fit a uni-modal292

distribution over skills. In principle, there should be no need for fine-tuning for invoking those skills293

within the distribution of the pre-trained skill set.294

We compare our approach to SPiRL (Section 4.2) as a baseline. In addition, we can provide295

supervision on which skills to invoke to fulfill the long-horizon task by fine-tuning SPiRL (hence296

SPiRL-FT) for a few epochs on the downstream demonstration. As summarized in Table 5, FIST,297

without any fine-tuning, can fulfill all the long-horizon tasks listed with almost no drift from the expert298

demonstration. We also see that it is tricky to fine-tune SPiRL in a one-shot setting, as fine-tuning299

only on one demonstration may cause over-fitting and degradation of performance.300

Table 5: With all subtasks seen in the skill dataset, FIST is able to imitate a long-horizon task in the kitchen
environment. We compare to a baseline method, SPiRL, which fails to follow the single demo.

Order of tasks (seen in the skill dataset) FIST (ours) SPiRL-FT SPiRL-no-FT

Kettle, Bottom Burner, Slide Cabinet, Hinge Cabinet 4.0± 0.0 0.8 ± 0.19 2.4 ± 0.35
Kettle, Top Burner, Light Switch, Slide Cabinet 3.8± 0.19 0.5 ± 0.16 1.1 ± 0.22
Microwave, Kettle, Slide Cabinet, Hinge Cabinet 4.0± 0.0 1.1 ± 0.22 1.0 ± 0.37
Top Burner, Bottom Burner, Slide Cabinet, Hinge Cabinet 4.0± 0.0 0.1 ± 0.1 0.6 ± 0.25

5 Broader Impacts and Limitations301

Environment Episode Length Success Rate

PointMaze 621.02 ± 69.87 1.0 ± 0.0

Table 6: We evaluate FIST on the maze
environment with goal at the bottom
when the inverse skill model is trained
on an extremely noisy dataset. In this
case, FIST achieves sub-optimal perfor-
mance, or is unable to imitate the test
time demonstration.

Limitations As with all imitation learning methods, the per-302

formance of FIST is related to the quality of the provided303

demonstrations. Concretely, when the skill training demon-304

strations are poor, we expect the extracted skills to be also305

sub-optimal, thus, hurting downstream imitation performance.306

To better understand this limitation, we analyze an extremely307

noisy versions of the PointMaze dataset and use it for skill ex-308

traction. As shown in Table 6, despite achieving a high success309

rate, the episode length is substantially worse than FIST trained310

on expert data.311

Learning structured skills from noisy offline data is an exciting312

direction for future research.313

Broader Impacts The ability to extract skills from offline data and adapt them to solve new314

challenging tasks in few-shot could be impactful in domains where large offline datasets are available315

but control is challenging and cannot be manually scripted. Examples of such domains include316

autonomous vehicle navigation, warehouse robotics, digital assistants and perhaps in the future, home317

robots. However, there are also negative potential consequences. First, since in real-world settings318

offline data will be collected from users at scale there will likely be privacy concerns, especially for319

video data collected from users’ cars or homes. Additionally, since FIST extracts skills, without320

labels data, quality for large datasets becomes increasingly opaque and if there are harmful skills or321

behavior present in the dataset FIST may extract those and use them during deployment which could322

have unintended consequences. A promising direction for future work is to include a human in the323

loop for skill verification.324

6 Conclusion325

We present FIST, a semi-parametric algorithm for few-shot imitation learning for long-horizon tasks326

that are unseen during training. We use previously collected trajectories of the agent interacting327

with the environment to learn a set of skills along with an inverse dynamics model that is then328

combined with a non-parametric approach to keep the agent from drifting away from the downstream329

demonstrations. Our approach is able to solve long-horizon challenging tasks in both one and few-shot330

settings where other methods fail.331
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A Implementation Details411

A.1 Distance function412

As mentioned in Section 3, we wish to learn an encoding such that our distance metric d is the413

euclidean distance between the encoded states.414

d(s, s′) = ||h(s)− h(s′)||2 (5)

To learn the encoder h, we optimize a contrastive loss on encodings of the current and future states415

along the same trajectory. We use the InfoNCE Loss [25],416

Lq = log
exp(qTWk)

exp
(∑K

i=0 exp(q
TWki)

) (6)

with query q = h(sit) as the encoded starting state, and the keys k = h(sit+H) as the encoded future417

states along the K trajectories in the dataset D.418

A.2 Training419

The training for both skill extraction and fine-tuning were done on a single NVIDIA 2080Ti GPU. Skill420

extraction takes approximately 3-4 hours, and fine-tuning requires less than 10 minutes. Our codebase421

builds upon the SPiRL released code and is located at https://github.com/kouroshhakha/fist.422

Hyperparameters used for training and fine-tuning are listed in Table 7 and 8, respectively.423

Table 7: Training Hyperparameters

Hyperparameter Value

Contrastive Distance Metric
Encoder output dim 32
Encoder Hidden Layers 128
Encoder # Hidden Layers 2
Optimizer Adam(β1 = 0.9, β2 = 0.999, LR=1e-3)

Skill extraction
Epochs 200
Batch size 128
Optimizer Adam(β1 = 0.9, β2 = 0.999, LR=1e-3)
H (sub-trajectory length) 10
β 5e-4 (Kitchen), 1e-2 (Maze)
Skill Encoder
dim-Z in VAE 128
hidden dim 128
# LSTM Layers 1

Skill Decoder
hidden dim 128
# hidden layers 5

Inverse Skill Dynamic Model
hidden dim 128
# hidden layers 5

Fine-tuning
Epochs 50
Batch size 128
Optimizer Adam(β1 = 0.9, β2 = 0.999, LR=1e-3)
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Table 8: Fine-tuning hyperparameters

Hyperparameter Value

Epochs 50
Epoch cycle train 10
VAE finetuning (Maze: False, Kitchen: True)

A.3 Datasets424

The PointMaze and Kitchen environment datasets (both skill extraction datasets and few-shot learning425

datasets) are generated from an expert policy. For the AntMaze environment, the dataset was created426

from the D4RL dataset [24], licensed under the Creative Commons Attribution 4.0 License (CC BY).427

Datasets for each blocked section was created by filtering out any trajectories that passed through428

the blocked regions shown in Figure 3. Code for the dataset generation is included in the released429

repository.430
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