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Abstract

It has been observed that machine learning algorithms exhibit biased predictions against
certain population groups. To mitigate such bias while achieving comparable accuracy, a
promising approach is to introduce surrogate functions of the concerned fairness definition
and solve a constrained optimization problem. However, it is intriguing in previous work that
such fairness surrogate functions may yield unfair results and high instability. In this work,
in order to deeply understand them, taking a widely used fairness definition—demographic
parity as an example, we show that there is a surrogate-fairness gap between the fairness
definition and the fairness surrogate function. Also, the theoretical analysis and experimental
results about the “gap” motivate us that the fairness and stability will be affected by the
points far from the decision boundary, which is the large margin points issue investigated in
this paper. To address it, we propose the general sigmoid surrogate to simultaneously reduce
both the surrogate-fairness gap and the variance, and offer a rigorous fairness and stability
upper bound. Interestingly, the theory also provides insights into two important issues that
deal with the large margin points as well as obtaining a more balanced dataset are beneficial
to fairness and stability. Furthermore, we elaborate a novel and general algorithm called
Balanced Surrogate, which iteratively reduces the “gap” to mitigate unfairness. Finally,
we provide empirical evidence showing that our methods consistently improve fairness and
stability while maintaining accuracy comparable to the baselines in three real-world datasets.

1 Introduction

Recently, increasing attention has been paid to the fairness issue in supervised machine learning. That is,
although the classifiers seek a higher accuracy, some groups with certain sensitive features (e.g., sex, race,
age) may be unfairly treated, which raises ethical problems (Julia Angwin & Kirchner, 2016; Mehrabi et al.,
2021; Caton & Haas, 2020). One can be litigated for committing adverse impacts if his/her decision-making
process disproportionately treats groups with sensitive attributes (Barocas & Selbst, 2016).

To quantitatively measure the extent of fairness violation, a usual way is adopting the fairness definition,
demographic parity (DP), which requires the decision makers to accept a roughly equal proportion of each
group (Barocas et al., 2019). Existing methods follow the fairness-aware manner of solving a constrained
optimization problem, where the learning objective is integrated with the standard loss and a fairness con-
straint. To incorporate DP into the constraint, fairness surrogate functions are used to replace the indicator
function, which is intractable for gradient-based algorithms (Lohaus et al., 2020; Bendekgey & Sudderth,
2021) (refer to Figure 1(a) for some examples). To date, various surrogate functions have been proposed to
incorporate fairness definitions into constraints (Wu et al., 2019; Goh et al., 2016; Padh et al., 2021; Zafar
et al., 2017a;b;c; Bendekgey & Sudderth, 2021). They are widely applied in various machine learning do-
mains, such as differential privacy (Ding et al., 2020), meta-learning (Zhao et al., 2020), and semi-supervised
learning (Zhang et al., 2020). Unfortunately, these surrogate functions encounter two risks. One risk is that
if these fairness constraints are used, even when the constraints are perfectly satisfied, there is no guarantee
whether DP is satisfied (Lohaus et al., 2020). And the fairness surrogate functions may lead to even unfair
solutions (Radovanovié et al., 2022). Moreover, another risk arises from the high variance issue observed in
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Figure 1: (a) Some examples of fairness surrogate functions. The closer the surrogate functions are to the in-
dicator function, the better they represent DP. More details are introduced in Section 3.2. (b) The surrogate-
fairness gap of different surrogate functions. It measures the difference between surrogate functions and the
indicator function. There is a much smaller gap for our general sigmoid surrogate.

existing fairness-aware algorithms with surrogate functions (Friedler et al., 2019), rendering them unstable
for deployment under fairness requirements (Ganesh et al., 2023).

In this paper, we evaluate these multifarious surrogate functions in algorithmic fairness with both rigorous
theorems and extensive experiments. Firstly, we stress the importance of the “surrogate-fairness gap”,
which is the disparity between the fairness surrogate function and the fairness definition. It is the decisive
factor of whether the fairness surrogate function can lead to fair outcomes and should be minimized. Addi-
tionally, we delve into the variance of the substitute for DP, highlighting the adverse impact of unbounded
surrogates on stability. Drawing upon the inherent property of the surrogate-fairness gap and instability,
we conduct an in-depth examination of the large margin points issue within the context of unbounded
surrogate functions. To reduce the “gap" and instability, we propose two solutions to improve the existing
surrogate functions: a theoretically motivated fairness surrogate function named general sigmoid with upper
bounds of DP and variance, and a novel algorithm called the balanced surrogate to iteratively reduce the gap
during training.

Our analysis focuses on a popular surrogate, covariance proxy (Zafar et al., 2017c¢), in the case of a common
fairness definition, DP. In particular, we first derive the violation of DP for the covariance proxy in Section 4.1.
The violation of DP depends on two factors: the surrogate function itself and the surrogate-fairness gap. The
“gap” (shown in Figure 1(b)) directly determines whether a surrogate function is an appropriate substitute
for DP. Secondly, we explore the variance of the covariance proxy in Section 4.2, emphasizing the detrimental
impact of unbounded surrogates on stability. Furthermore, driven by the “gap” and variance, we recognize
that large margin points—those data points lying significantly distant from the decision boundary—pose
challenges in constraining the fairness and stability for unbounded surrogate functions. This observation is
validated through a case study on three real-world datasets in Section 4.3. With theoretical motivations, we
introduce the general sigmoid surrogate in Section 5.1 to address large margin points and simultaneously
bound the “gap” and variance. We theoretically demonstrate that there is a reliable fairness and stability
guarantee for it. Interestingly, the theorems also shed light on the importance of a balanced dataset for
both fairness and stability. Furthermore, in Section 5.2, we propose balanced surrogates, a novel and general
algorithm that iteratively reduces the “gap” to improve fairness. It is a plug-and-play learning paradigm
for the naive fairness-aware training framework using fairness surrogate functions. In the experiments in
Section 6 using three real-world datasets, our methods consistently enhance fair predictions and stability,
while maintaining accuracy comparable to the baselines. In general, our main contributions are three-fold:
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o We demonstrate the importance of surrogate-fairness gap for fairness surrogate functions and provide
an analysis of the variance. We urge researchers to pay attention to the impact of large margin points
issue on fairness and stability for unbounded surrogate functions.

e We propose General Sigmoid Surrogate and demonstrate that it achieves fairness and stability guar-
antees. The theoretical results further provide insights to the community that large margin points
issue needs to be solved and a balanced dataset is beneficial to obtain a fairer and more stable
classifier.

o We present Balanced Surrogate, a novel and general method that iteratively reduces the “gap” to
improve the fairness of any fairness surrogate functions.

2 Related Work

Fairness-aware Algorithms. To mitigate bias, there are various kinds of classical fair algorithms, most
of which fall into three categories: pre-processing, in-processing, and post-processing. The pre-processing
method is to learn a fair representation that tries to remove information correlated to the sensitive feature
while preserving other information for training, e.g., (Calders et al., 2009; Kamiran & Calders, 2011; Zemel
et al., 2013; Feldman et al., 2015; Calmon et al., 2017). The downstream tasks then use the fair representation
instead of the original biased dataset. The post-processing method is to modify the prediction results to satisfy
the fairness definition, e.g., (Kamiran et al., 2012; Fish et al., 2016; Hardt et al., 2016). The in-processing
method is to remove unfairness during training. Some intuitive and easy-to-use ideas involve applying fairness
constraints (Goh et al., 2016; Zafar et al., 2017a;b;c; Bechavod & Ligett, 2017; Wu et al., 2019; Bendekgey
& Sudderth, 2021; Padh et al., 2021) and adding a regularization term to penalize unfairness (Kamishima
et al., 2012; Berk et al., 2017; Agarwal et al., 2018; Lohaus et al., 2020; Shui et al., 2022). Our paper focuses
on in-processing methods, with a particular emphasis on fairness surrogate functions, which are widely used
in fairness constraints and fairness regularization methods mentioned above.

Fairness Surrogate Functions. Although many existing popular surrogates work well in practice, for
example, linear (Donini et al., 2018; Agarwal et al., 2018; Bechavod & Ligett, 2017), ramp (Goh et al., 2016;
Zafar et al., 2017b), convex-concave (Zafar et al., 2017a), sigmoid and log-sigmoid (Bendekgey & Sudderth,
2021). They suffer from the same issue: there is not a fairness guarantee for them (Lohaus et al., 2020). And
using fairness constraints or regularization can unexpectedly yield unfair solutions (Radovanovi¢ et al., 2022).
Refer to Appendix C for a meticulous overview of existing works, most of which present counterexamples for
analysis. The high variance issue has been observed in existing fairness-aware algorithms (Ganesh et al., 2023),
including the instability of the covariance proxy (Friedler et al., 2019). In this paper, in addition to empirically
showing counter-examples, we both theoretically and empirically underscore the significance of the surrogate-
fairness gap and variance, which are fundamental factors contributing to the two aforementioned problems,
respectively. Our general sigmoid surrogate is shown to deal with the large margin points to simultaneously
reduce both the surrogate-fairness gap and the variance. There is also fairness and stability upper bound for
it, which is crucial in this field (Gallegos et al., 2023; Mehrabi et al., 2021; Caton & Haas, 2020). Additionally,
in order to reduce the gap, we also devise a balanced surrogate approach to further improve the fairness and
stability of surrogate functions.

3 Preliminaries

3.1 Fairness-aware Classification

Note the general purpose of fairness-aware classification is to find a classifier with minimal accuracy loss
while satisfying certain fairness constraints. For simplicity, we set up the problem as the binary classification
task with only a binary-sensitive feature: with the training set S = {(x;,v:)}}.; consisting of feature vectors
x; € R? and the corresponding class labels y € {0, 1}, one needs to predict the labels of a test set. Let dg(x)
denotes the signed distance between the feature vector x and the decision boundary parameterized by 6.
Given a point x; in the test set, a classifier will predict it as positive if dg(x;) > 0 and zero if dg(x;) < 0.
Among the features of x, there is one binary sensitive attribute z € {—1,+1} (e.g., sex, race, age).
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As introduced in Section 1, a widely used fairness definition is called the demographic parity (DP) (Mehrabi
et al., 2021; Caton & Haas, 2020). It states that each protected class should receive the positive outcome at
equal rates, i.e.,

P(dp(x) > 0]z = +1) = P(dg(x) > 0]z = —1).

And further, the difference of demographic parity (DDP) metric (Lohaus et al., 2020) can be used to measure
the degree to which demographic parity is violated:

DDP = P(dy(x) > 0]z = +1) — P(dg(x) > 0]z = —1).

Then, with this metric, whether a classifier satisfies demographic parity can be determined by the condition
|[DDP| < ¢, where € > 0 is a given threshold.

3.2 Surrogate Functions

We divide the training set into four classes according to the predicted labels and sensitive features:

Nia = {(xi,4:) € S| dg(x;) > 0,2 = +1}, Ny = {(xi,4:) € S| do(x;) >0, 2z; = —1},
Noa = {(xi,y:) € S| do(x;) <0, 2 = +1}, Nov = {(xi,y:) € S| do(x;) <0, 2 =—1},

where Nig, N1y, Noo, Nop are sizes of Mg, N1y, Noa, Now, respectively. Then, to consider DDP as fairness
constraints for optimization, the probability in it cannot be computed directly, so frequency is used to
estimate them:

Nia  Np
Nia + Noo  Nip + Nop
2N Now Lo ()0 DN, Ny Lds(0>0
B Nig + Noa N1y + Nop ’

DDP =

(1)

where 1) : R — {0,1} is the indicator function that returns 1 if the condition is true and 0 otherwise.

In application, DDP usually serves as a substitute for DDP to judge the fairness of a classifier. However,
due to 14, (x)>0, it is intractable to directly incorporate DDP into constraints for gradient-based algorithms.
So smooth surrogate function ¢ : R — R is used to replace 14,(x)>0 with ¢(dg(x)). There exists a widely
recognized form of the surrogate function: Covariance Proxy (CP) (Zafar et al., 2017c). To date, according
to Google Scholar!, this article has garnered over 1,000 citations. Empirical study shows that CP can reflect
the difference of demographic parity and can be incorporated as constraints for fairness-aware classification
problem (Ding et al., 2020; Zhao et al., 2020; Zhang et al., 2020). CP finds application in a diverse range
of scenarios (Mehrabi et al., 2021), and is also generalized to other fairness definitions, such as disparate
mistreatment (Zafar et al., 2017a). The original CP is defined as Cov(z,dg(x)) = E[(z — Z)dp(x)], where Z
is the mean of z over the training set. The expectation can not be computed directly, so its empirical form
1 N — . . . . .

& 2 izt (2i — Z)da(x;) is proposed to estimate the expectation. Here we defined a general version of it:

Cot = d X d X;
Gonte) =y Yt = o) (it Q0)) _ 2t 000

(2)
The proof can be found in Appendix A.1. If ¢(z) = z, the equation (2) recovers the original definition of CP

in (Zafar et al., 2017¢). It means that the original CP is equivalent to the linear surrogate function ¢(x) = x,
which is also explained in previous work (Lohaus et al., 2020; Bendekgey & Sudderth, 2021).

4 Three Unsolved Problems

We underline three unsolved problems of CP: surrogate-fairness gap, instability and large margin points.
Specifically, the large margin points will exacerbate the first two problems.

I https://scholar.google.com/
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4.1 The Surrogate-fairness Gap

In this part, we connect DDP and Cov together, and build the surrogate-fairness gap between DP and CP.

Proposition 1. Define the magnitude of the signed distance by Dy(x), i.e., Dp(x) = |do(x)|. Let ¢(x) = x
and S1, = ZNM ?(Dg(x;)), Thq = ZNM (¢(Dg(x;)) — 1) and it is similar for N1y, Noa, Nop- It satisfies:

DDP = -
Cou(9) Nig+Noa  Nip+ Nop

N2 —— ( Tia —Soa T — Sob ) 3)
2(N1g + Noa)(N1p + Nop)

surrogate-fairness gap

There is a surrogate-fairness gap between DDP and Cov. So there is no guarantee whether DP is already
satisfied even when the empirical Cov is minimized to zero. The first term related to Cov is controllable:
Considering the constraints in (Zafar et al., 2017¢) that |Cov| < e where € > 0 is a small constant specified
in advance. The coefficient in front of Cov is also invariable because N, N1, + Noa, N1p + Nop are constants.
But it is totally different for the “gap”. It comes from the difference between the surrogate and the indicator
function. For the ideal case dp(x) = 14,(x)>0 Which is equivalent to ¢(x) = 1,0,

4.2 Instability

The variance of Cov(¢) is Var(Cov(¢)) = E(Cov($))? — [E(Cov($))]2. If we choose bounded surrogate
¢(z) € [0,1], then 60\11((;5) € [—1,1], which means that Var(@(cﬁ)) € [0,1] (Refer to the mathematical
derivation in Appendix A.1). However, if we choose unbounded surrogate function (such as ¢(x) = x for the
original CP), the resulting values of ¢ are not constrained within the range [0, 1]. Consequently, there is no
longer a stability guarantee for 5&)(425). In contrast, there is stability guarantee for DDP due to the fact
that Var(ﬁD) € [0,1].

To summarize the aforementioned two unsolved problems, incorporating Cov into fairness regularization
and constraints to indirectly minimize DDP may encounter difficulties for two reasons. Firstly, due to the
existence of the surrogate-fairness gap, minimizing Cov is not equivalent to minimizing DDP. Secondly,
if unbounded surrogate functions are employed, the uncontrollable variance of Cov makes it even more
challenging to be an appropriate estimator of DDP.

4.3 The Large Margin Points

We emphasize the third trouble here: the large margin points. In this paper, the points with too large Dy(x)
are called large margin points and others are normal points. Unfortunately, we regret to assert that these
large margin points may simultaneously worsen the first two issues mentioned above. To illustrate, we take
CP as an example. For three famous real-world data sets, Adult (Kohavi, 1996), COMPAS (Julia Angwin &
Kirchner, 2016) and Bank Marketing (S. Moro & Rita, 2014), we provide the boxplot of dy(x) in the test set
in Figure 2. The experimental details are in Appendix D.1. There are three main observations in Figure 2:
(1) Most of the points are near the decision boundary. (i) Over 5% points are large margin points for Adult
and COMPAS. (i4i) Almost all the large margin points are predicted as positive class.

Firstly, for the surrogate-fairness gap problem, the gap in (3) may be amplified in the presence of such large
margin points with positive prediction labels because they make 71, and Ti;, larger. For example, in Figure
2, most of the large margin points are predicted positive, so Sy, and Sp, are bounded (for instance, In Figure
2(b), we have |Sp,| < 2Ny, ). However, the distance between large margin points and the decision boundary
is uncertain, so there is not a tight bound for 731, and T3, which may lead to a large surrogate-fairness gap.
Finally, when the gap becomes large, constraining the fairness surrogate function is inconsistent with the
specific fairness definition, which may lead to unfair result.

Secondly, regarding the instability issue, while the majority of points are close to the decision boundary,
a small number of large margin points contribute to the increased variance of dy(x), thereby influencing
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Figure 2: The boxplot for the unconstrained logistic classifier (1) and logistic classifier with fairness con-
straints using linear surrogate (c) in three datasets. +1 and —1 represent the predicted label. The red dashed
line means dy(x) = 0. The orange line in the box is the median. The circles outside the box are large margin
points. The rates of large margin points are 7.61%, 5.12% and 0.82% respectively.

both @(é) and Var(@(@). The presence of large margin points, along with the use of an unbounded

surrogate function, surpasses the constraint on Var(@(qb)) and may result in unstable fairness guidance
for the classifier. These analytical insights above will be further validated through our experiments.

5 Our Approach

We devise the general sigmoid surrogate function with fairness and stability guarantees in Section 5.1.
The theory suggests that addressing the large margin points issue and obtaining a more balanced dataset
contribute to a fairer classifier. Then we present our balanced surrogates in Section 5.2, which is a novel
iterative approach to reduce the “gap” and thus improving fairness.

5.1 General Sigmoid Surrogates

We generalize sigmoid function as

G(z) = o(wa), (4)

where o(z) is the sigmoid function and w > 0 is the parameter. The general sigmoid surrogate is flexible
because of the adjustable w. Moreover, of paramount importance, it achieves a much lower surrogate-fairness
gap, making it more consistent with DP, which is shown in Figure 1(b). Additionally, it enjoys stability
guarantees as its values fall within the range [0, 1], ensuring that Var(Cov(G)) € [0, 1].

5.1.1 Fairness Guarantees

The following Theorem 1 provides the upper bound of |D/D\P| when G(Dy(x)) is close to 1 for all the points
under the CP fairness constraint.

Theorem 1. We assume that G(Dg(x)) € [1 — v, 1], where v > 0. Ye > 0, if ’50\11(61)’ <, then it holds:

N2
Nia + Noa)(N1p + Nop)

DDP| < .
‘DDP‘_4( €+

The proof can be found in Appendix A.2. The first term is similar to that in (3). Now with the assumption
G(Dp(x)) € [1 — v,1], the gap here can be limited to a small range of variation. If the general sigmoid
surrogates limit G(Dy(x)) to around 1 so that 7 is small enough, then there are fairness guarantees for the
classifier. In contrast, the gap for CP is influenced by the magnitude of Dy(x) for every large margin point
and thus hard to be bounded.
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Remark. In Appendiz B.3, we provide extensions of Theorem 1 to other five fairness definitions: three
kinds of disparate mistreatment (Theorem 5-10 in Appendiz B.3.1) and balance for positive (negative) class
(Theorem 11-12 in Appendix B.5.2). In particular, CP is generalized to disparate mistreatment (Zafar et al.,
2017a), and we theoretically devise the form of CP to better meet with disparate mistreatment, which is
empirically validated in (Zafar et al., 2019).

However, in some cases, we do not need to guarantee that the assumption G(Dg(x)) € [1 —+, 1] holds for all

the points. So the theorem below relaxes the assumption by giving the upper bound of |DDP| when most
of the points satisfy the assumption in Theorem 1.

Theorem 2. We assume that k points satisfy G(Dg(x)) € [0,1—~] and others satisfy G(Dp(x)) € [1 —7,1],
where v > 0. Ve > 0, if ’@(G)’ <'e, then it holds:

< N2 Syt 1 ( 1 " 1 )k
€ — .
= 4(N1q + Noa)(N1p + Nop) 7T Nig+Noa  Nip+ Nop

557

relazation factor

The proof can be found in Appendix A.3. Comparing Theorem 1 with Theorem 2, the relaxation of the
assumption produces an extra relaxation factor. According to Theorem 1, if w is large, then ~ can be small
enough, thus leading to a classifier with fairness guarantee. But an arbitrarily too large w makes training
more challenging because of the diminished gradient magnitude for general sigmoid surrogate. Theorem 2
tells us that we need not to assume that all points satisfy G(Dg(x)) € [1 — 7, 1]. Few points violating the
assumption (a small k) can also be tolerated. So it supports the idea that we do not have to choose a large
w because a relatively small w can also guarantee fairness.

5.1.2 Insights from the Theorems

Large Margin Points Issue. An obvious takeaway of Theorem 2 is that addressing the large margin
points issue makes k lower and thus obtaining a tighter bound of |D/D\P| While Bendekgey & Sudderth
(2021) also explores the influence of outliers on the model under fairness constraints, their theoretical analysis
in primarily centers on loss degeneracy under fairness constraints, whereas our paper aims to establish upper
bounds concerning fairness.

Balanced Dataset. Another interesting take-away of Theorem 1-2 is that we need a balanced dataset to

obtain a fairer classifier. The approximately same number between two sensitive groups contributes to a
. =~ . . . N2

tighter | DD P| upper bound. First of all, for Theorem 1, the coefficient of € satisfies TN T Ne (N T Vo) = 1.
The equality holds if and only if N1, + Noo = N1p + Nop, which means that the two sensitive groups share
the equal size. Therefore, a more balanced dataset will obtain a tighter |DDP| upper bound. Similarly,

comparing to Theorem 1, we discover that those k points in Theorem 2 relaxed the original bound by a

2 \ Nia+Noa
if and only if N1, + Noo = Nip + Nop. So, if we use a balanced dataset, then Ny, + Ny, and Ny, + Nop
are close to each other, thus making the fairness bounded tighter. The imbalance issue also applies to other
surrogates and one can balance the dataset in advance to achieve better fairness performance.

relaxation factor. The coefficient of the relaxation factor & ( N __ 4 Nlbi\_f N0b> > 2, and the equality holds

Notably, certain theoretical investigations illuminate the positive impact of a balanced dataset on fostering
fairness in machine learning. For example, the impossibility theorem (Bell et al., 2023) in fairness literature
states that, in the context of binary classification, equalizing some specific set of multiple common perfor-
mance metrics between protected classes is impossible, except in two special cases: a perfect predictor and
equal base rate (Chouldechova, 2017; Kleinberg et al., 2017; Pleiss et al., 2017). Furthermore, the reduction
of variation in group base rates has been demonstrated to yield a diminished lower bound for separation
gap and independence gap (Liu et al., 2019). Moreover, minimizing the difference in base rates results in a
decreased lower bound for joint error across both sensitive groups (Zhao & Gordon, 2022). In contrast, our
Theorem 2 provides an elucidation from the perspective of upper bound. It implies that a more balanced
dataset results in a tighter upper bound on the violation of DP.
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Remark. In Appendiz A.5, we compute an upper bound of Var(lTD\P) and the Theorem 4 highlights the
advantage of a balanced dataset in reducing variance.

5.2 Balanced Surrogates

The naive fairness-aware training framework can be formulated as

min  L(0,x,y) + A - 55?’, (5)

ZNlG’NOa $do(x)) ZN]bvNob $(do (%))
NiatNoa N1iy+Nop

regularization, and A > 0 is the coefficient. Recall that whether DDP is an appropriate estimation of DP
depends on ¢. Thus, the existence of surrogate-fairness gap motivates us that it is still necessary to reduce
“gap” to improve fairness.

is the fairness

where L(6,x,y) is the loss function for accuracy, DDP =

Our balanced surrogates approach mitigates unfairness by treating different sensitive groups differently using
a parameter being updated during training. The key idea of the updating procedure is making the magnitude
of “gap” as small as possible. It is a general plug-and-play learning paradigm for training framework using
fairness surrogate functions like (5), which is validated in the experiments.

Specifically, we consider different surrogates for two sensitive groups, i.e.,

d(do(xi)) = {ﬁ;gzgz;g: Z _ ti ©

P

With (6), we rewrite DDP as:

DDP — 2MaNow P1(B0)) 2w, i, $2(d6(X))
Nia + Noa N1y + Nop ’

For simplicity, we assume
$2(z) = A1 (), (8)
where A > 0 is the balance factor to be updated to reduce the gap. Our objective is

DDP — DDP =0, 9)

which is equivalent to a Surrogate-fairness Gap of zero. Plug equations (1), (7) and (8) into the equation
(9), we then solve for A:

(N1 + Nov) D pr,, wo P1(do (%)) — (N1aNop — NoaN1p)

A= v 1+ Now) S e 01 (d90) 10

In this way, we can first specify ¢; in (6), initiate X\ as \p, and train an unconstrained classifier with
the produced 60y as the start point of the iteration. Then we iteratively solve (5) and compute (10) until
convergence. In order to avoid oscillation and accelerate the convergence, we use exponential smoothing for
A
Ao, t=0.
M= {aA; F—a)h1, t=1,2,,N. (11)

Where A} comes from (10) after ¢ iterations, A is the result of A} after exponential smoothing and 0 < a <'1
is the smoothing factor. Notice that A < 0 is meaningless, so when this happens, we abandon this algorithm
and set A; to 1, which recovers (5). When the difference of A; between two successive iterations is less than
a termination threshold 7, the algorithm is over. If we choose the smoothing factor @ and the termination
threshold n properly, then the loop will terminate after a few runs. The algorithmic representation of the
balanced surrogates can be found in Appendix D.
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6 Experiments

6.1 Experimental Setup

Dataset.

We use three real-world datasets: Adult (Kohavi, 1996), Bank Marketing (S. Moro & Rita, 2014)

and COMPAS (Julia Angwin & Kirchner, 2016), which are commonly used in fair machine learning (Mehrabi

et al., 2021).

e Adult. The Adult dataset contains 48842 instances and 14 attributes. The goal is predicting whether
the income for a person is more than $50,000 a year. We consider sex as the sensitive feature with
values male and female.

e Bank. The Bank Marketing dataset contains 41188 instances and 20 input features. The goal is
predicting whether the client will subscribe a term deposit. We follow (Zafar et al., 2017¢) and
consider age as the binary sensitive attribute, which is discretized into the case whether the client’s
age is between 25 and 60 years.

« COMPAS. The COMPAS dataset was compiled to investigate racial bias in recidivism prediction.
The goal is predicting whether a criminal defendant will be a recidivist in two years. We use only
the subset of the data with sensitive attribute Caucasian or African-American.

Baseline.

In addition to an unconstrained logistic regression classifier (denoted as ‘Unconstrained’), we

compare our general sigmoid surrogate (denoted as ‘General Sigmoid’) with other four surrogate functions
below, which have also appeared in Figure 1.
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o Linear surrogate (CP) ¢(x) = x (Zafar et al., 2017c) (denoted as ‘Linear’).
o Sigmoid surrogate ¢(r) = o(x) (Bendekgey & Sudderth, 2021) (denoted as ‘Sigmoid’).

o Log-sigmoid surrogate ¢(x) = —logo(—x) (Bendekgey & Sudderth, 2021) (denoted as ‘Log-
Sigmoid’).

o Hinge-like surrogate ¢(x) = max (x + 1,0) (denoted as ‘Hinge’).

6.2 Learning Fair Classifiers

We conduct two main experiments. One is the comparison among general sigmoid surrogate and other
surrogate functions on classification tasks. The other is validating the effect of balanced surrogates method
by applying it to different surrogate functions. Following (Bendekgey & Sudderth, 2021), a linear classifier is
used as the base classifier. The dataset is randomly divided into training set (70%), validation set (5%) and
test set (25%). The parameter setting is discribed in Appendix D.2. We report two metrics on the test set:

|17D\P | (lower is better) and accuracy (higher is better), and standard deviation is shown for the metrics.

6.3 Main Results

The results are in Figures 3-4. Refer to Appendix D.4 for specific numerical results of all three datasets.

General Sigmoid Surrogate. In Figure 3, on the one hand, we observe that the general sigmoid surrogate
achieves better fairness than unbounded surrogate functions (Log sigmoid, Linear and Hinge), which indicates
that the general sigmoid surrogate does effectively shorten the surrogate-fairness gap and therefore improve
fairness. On the other hand, comparing to the sigmoid surrogate function, our proposed surrogate not only
further reduces the gap, but it is also more flexible due to the parameter w. Moreover, it is intriguing to
note that the variance of fairness and accuracy of general sigmoid surrogate is also comparatively smaller
than other surrogate functions, demonstrating its superiority in terms of stability. It offers a simple solution
to the long-standing high variance issue observed in existing fairness-aware algorithms (Friedler et al., 2019;
Ganesh et al., 2023). We provide some theoretical analysis on variance to Appendix A.5. Exploring automated
methods to search for a suitable parameter w for improved fairness performance while reducing variance
presents an intriguing avenue for future research.

Balanced Surrogates Method. In Figure 4, we observe that balanced surrogates method succeeds
in improving fairness of unbounded surrogate functions but sometimes slightly compromising fairness of
bounded surrogate functions. For the reason of this phenomeg@\lz/ fairness-aware algorithms aim to re-
duce |DDP| Firstly, fairness regularization aims at lowerlng \DDP\ Secondly, the key idea of balanced
surrogates Is to reduce the magmtude of “gap” |DDP DDP\ thus indirectly lower |DDP| (because
|DDP| < |DDP| + |DDP - DDP|). However, an infinitesimal |DDP| is not always better. In Appendix
A4, we show in Theorem 3 that there is still a discrepancy between DDP and DDP, indicating that a
small enough |lﬁ| is not equivalent to a small |DDP|. When the “gap” is large (such as the unbounded
surrogate functions), balanced surrogates method can effectively reduce “gap” and achieves a fairer result.
But when the “gap” is limited (such as sigmoid and general sigmoid), an infinitesimal magnitude of “gap”
may sometimes undermine fairness instead. Interestingly, similar to the stability enhancement observed in
general sigmoid surrogate, the numerical results in Appendix D.4 also show that our balanced surrogates
method attains smaller variance compared to other surrogate functions. Incorporating mechanisms such as
the balanced surrogate method into existing fairness-aware algorithms to enhance both fairness and stability
is also a promising direction.

6.4 Experimental Verification for the Theoretical Insights

Large Margin Points Issue. The boxplot with our general sigmoid surrogate is shown in Figure 6. Recall
that with an unbounded surrogate function ¢, the large margin points will influence the “gap”. Now they
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Figure 5: The result of balanced dataset. ’G’ and "L’ indicates general sigmoid surrogate and linear surrogate,
respectively. "Up’ and 'Down’ correspond to upsampling and downsampling, respectively.
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Figure 6: Boxplots for three datasets with general sigmoid surrogate. +1 and —1 represent the predicted
label. The red dashed line means dg(x) = 0. The orange line in the box is the median. The median line and
the edges of the boxplot almost overlap with the box itself.

have a minor impact on the “gap” mentioned before because they are bounded (G(Dg(x)) < 1). Furthermore,
the two edges almost overlap, indicating that the variation of Dy(x) is small, contributing to more stable
results. Overall, the general sigmoid surrogate successfully deals with the large margin points, mitigating
both the surrogate-fairness gap and instability simultaneously.

Balanced Dataset. From the perspective of sensitive attribute, the Adult dataset is an imbalanced dataset:
there are 32650 male instances and 16192 female instances. The ratio of the two groups is approximately
2:1. The Bank Marketing and COMPAS datasets also suffer from the imbalance issue. The ratio of the two
groups are 39210:1978 (about 20:1) and 3175:2103 (about 3:2), respectively. Such imbalanced datasets lead
to a loose bound in Theorem 2. We randomly split the dataset into training set (70%) and test set (30%).
According to the number of minority group, we conduct two experiments: Downsampling and Upsampling,
which means randomly downsampling (upsampling) the majority (minority) group in the original training
set and form the new training set to make two demographic groups more balanced. Refer to Appendix D.3
for the details of our sampling schemes. The test set is partitioned in advance so that it is still imbalanced.
We choose an unbounded surrogate function: Linear, and our bounded surrogate: general sigmoid.

The results in Figure 5 show that downsampling the majority group and upsampling the minority group
contribute to a balanced dataset and a fairer result. However, in our experiments here, downsampling will
lead to reduction of the training set, and upsampling will lead to replication of the training set, which may
cause underfitting and overfitting problems, respectively. So the accuracy sometimes decreases. In conclusion,
before fairness-aware training, we suggest using fair data augmentation strategies to obtain a balanced
dataset, such as Fair Mixup (Chuang & Mroueh, 2021), and algorithms designed to address data imbalance,
such as SMOTE (Chawla et al., 2002).

11
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7 Conclusion

In this paper, we research on surrogate functions in algorithmic fairness. We derive the surrogate-fairness
gap between DP and CP. With boxplots, we find that unbounded surrogates are especially faced with the
large margin points issue, which further amplify the “gap” and instability. To address these challenges, we
propose general sigmoid surrogate with theoretically validated fairness and stability guarantees to deal with
large margin points. The theoretical analysis further provides insights to the community that dealing with
the large margin points issue as well as obtaining a more balanced dataset contribute to a fairer and more
stable classifier. We further elaborate balanced surrogates method, which is an iterative algorithm to reduce
the gap during training. It is also applicable to other fairness surrogate functions. Finally, our experiments
using three real-world datasets not only validate the insights of our theorems, but also show that our methods
get better fairness and stability performance.
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