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Abstract
Various evaluation metrics have been proposed001
for Grammatical Error Correction (GEC), but002
many, particularly reference-free metrics, lack003
explainability. This lack of explainability hin-004
ders researchers from analyzing the strengths005
and weaknesses of GEC models and limits the006
ability to provide detailed feedback for users.007
To address this issue, we propose attributing008
sentence-level scores to individual edits, pro-009
viding insight into how specific corrections con-010
tribute to the overall performance. For the at-011
tribution method, we use Shapley values, from012
cooperative game theory, to compute the con-013
tribution of each edit. Experiments with ex-014
isting sentence-level metrics demonstrate high015
consistency across different edit granularities016
and show approximately 70% alignment with017
human evaluations. In addition, we analyze018
biases in the metrics based on the attribution019
results, revealing trends such as the tendency to020
ignore orthographic edits. Our implementation021
is available at LINK 1.022

1 Introduction023

Grammatical error correction (GEC) is the task of024

automatically correcting grammatical or superfi-025

cial errors in an input sentence. Automatic evalua-026

tion metrics play a key role in improving GEC per-027

formance, but their effectiveness depends on their028

level of explainability. For example, metrics that029

evaluate at the edit level are more explainable than030

sentence-level metrics, as they allow us to identify031

which specific edits are effective and which are032

not, even when a GEC system makes multiple edits.033

Such explainable metrics enable researchers to ana-034

lyze the strengths and weaknesses of GEC models,035

providing valuable insights into how models can be036

improved. Furthermore, in education applications,037

explainable metrics can provide language learners038

with detailed feedback on their writing, supporting039

their learning more effectively.040

1Here will be replaced with an actual link in camera-ready.
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(b) Our proposed method improves explainability.

Figure 1: Overview of the proposed method with an
example using three edits. Figure (a) shows the low-
explainability of existing metrics that only estimate the
sentence-level score, but Figure (b) shows that the edit-
level attribution solves this issue.

In GEC, explainable reference-based metrics, 041

such as ERRANT (Felice et al., 2016; Bryant et al., 042

2017) are limited because references cannot ac- 043

count for all valid corrections. Preparing test data 044

with comprehensive references is often impractical, 045

especially when targeting domains such as medi- 046

cal or academic writing that differ from existing 047

datasets. To address this issue, reference-free met- 048

rics have been proposed to evaluate corrected sen- 049

tences without relying on references (Choshen and 050

Abend, 2018; Yoshimura et al., 2020; Islam and 051

Magnani, 2021; Maeda et al., 2022). Although 052

these reference-free metrics achieve high correla- 053

tion with human evaluations, many are designed to 054

assign scores at the sentence level, limiting their 055

explainability on individual edits. This lack of gran- 056

ularity makes it difficult to analyze how specific 057

edits contribute to the overall sentence score. For 058

example, as shown in Figure 1, a metric evaluates 059

a corrected sentence created by applying the three 060
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edits. As shown in Figure 1a, the sentence-level061

metric assigns an overall score of 0.75, but it does062

not indicate whether all edits are valid, or if both063

valid and invalid edits have been applied.064

To improve the explainability of metrics with low065

or no explanation, we propose attributing sentence-066

level scores to individual edits as illustrated in Fig-067

ure 1b. In the proposed method, the total contribu-068

tion of all edits is calculated as the difference be-069

tween the scores of the input sentence and the cor-070

rected sentence. This difference is then attributed071

to the individual edits. For example, in Figure 1b,072

a difference of -0.05 is distributed among three ed-073

its with contributions of 0.2, 0.1, and -0.35. The074

attribution results are intrepreted using the sign075

and magnitude of these scores: the sign indicates076

whether an edit is the valid or invalid, while the077

magnitude represents the degree of its influence on078

the final sentence-level score. We employ Shapley079

values (Shapley et al., 1953) from cooperative game080

theory to fairly distribute the total score among the081

edits. By considering various combinations edits,082

Shapley values allow us to precisely attribute each083

edit’s contribution to the overall sentence score,084

offering insights into their individual impact. Un-085

like previous feature attribution methods (Lundberg086

and Lee, 2017; Sundararajan et al., 2017), the pro-087

posed method is novel in attributing the difference088

between the input sentence and the corrected sen-089

tence.090

In the experiments, we apply the proposed091

method to two popular reference-free met-092

rics, SOME (Yoshimura et al., 2020) and IM-093

PARA (Maeda et al., 2022), as well as a fluency094

metric based on GPT-2 (Radford et al., 2019) per-095

plexity. The results show that the proposed attri-096

bution method produces consistent scores across097

different granularities of edits and that edits with098

larger absolute attribution scores align more closely099

with human evaluations. We introduce Shapley100

sampling values (Strumbelj and Kononenko, 2010)101

to mitigate the time-complexity issues of calculat-102

ing Shapley values. Additionally, we demonstrate103

that the proposed method can explain metric deci-104

sions at both the sentence and corpus levels, cate-105

gorized by error types. These analyses reveal the106

types of edits that metrics give more weight to,107

as well as provide insights into the strengths and108

weaknesses of GEC systems.109

2 Background 110

Edits in GEC. The GEC task aims to correct 111

grammatical errors in a source sentence S and out- 112

put a corrected sentence H . The differences be- 113

tween S and H are often represented as N edits 114

e = {ei}Ni=1 to enable evaluation (Dahlmeier and 115

Ng, 2012; Bryant et al., 2017; Gong et al., 2022; Ye 116

et al., 2023), ensembling (Tarnavskyi et al., 2022), 117

and post-processing (Sorokin, 2022) at the edit 118

level. These edits can be automatically extracted 119

using edit extraction methods (Felice et al., 2016; 120

Bryant et al., 2017; Belkebir and Habash, 2021; 121

Korre et al., 2021; Uz and Eryiğit, 2023). Each 122

edit typically includes a word-level span in S and 123

its corresponding correction, although it may also 124

include an error type (Bryant et al., 2017). The 125

error type categorizes each edit, indicating the part- 126

of-speech or grammatical aspect it relates to, which 127

helps to analyze the strengths and weaknesses of 128

the GEC systems. 129

Sentence-level Metrics. A sentence-level met- 130

ric M computes the score of the corrected sen- 131

tence given the source sentence, denoted as 132

M(H|S) ∈ R. The source sentence is used 133

to assess meaning preservation, as GEC requires 134

correcting errors while maintaining the original 135

meaning of the source sentence. This formulation 136

has been adopted by several reference-free met- 137

rics (Yoshimura et al., 2020; Islam and Magnani, 138

2021; Maeda et al., 2022; Kobayashi et al., 2024a). 139

Sentence-level metrics aim to rank GEC systems in 140

alignment with humans judgments, as evidenced by 141

the fact that the meta-evaluation is performed using 142

the correlation between metric-generated rankings 143

or scores and those of humans. However, these 144

metrics are limited to sentence-level scoring and 145

cannot explain how individual edits contribute to 146

the final score. 147

3 Method 148

Our attribution method assumes that the overall 149

contribution of edits is the difference in scores be- 150

fore and after correction. We distribute the differ- 151

ence ∆M(H|S) = M(H|S) − M(S|S) across 152

each edit e = {ei}Ni=1, where M(S|S) is the score 153

of the source sentence treated as its own corrected 154

sentence. 155

The goal of our attribution method is to compute 156

the contribution for each edit denoted as {ϕi(M) ∈ 157
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R}Ni=1, so that the following equation is satisfied:158

∆M(H|S) =
N∑
i=1

ϕi(M). (1)159

We refer to ϕi(M) as attribution scores. A positive160

score (ϕi(M) > 0) indicates an edit that improves161

the metric M(·), while a negative score (ϕi(M) <162

0) indicates an edit that worsens it. The absolute163

value |ϕi(M)| represents the degree of the edit’s164

impact.165

Shapley. For the attribution method, we intro-166

duce Shapley values (Shapley et al., 1953) from167

cooperative game theory. In cooperative game the-168

ory, multiple players work together towards a com-169

mon goal and share the total benefit based on their170

contributions. Shapley values distribute this benefit171

among players fairly, ensuring that those players172

who contributes more receive a larger share. For173

our purpose, we regard ∆M(H|S) as the total ben-174

efit, edits e as the players, and ϕi(M) as the Shap-175

ley values. The Shapley value ϕi(M) for a given176

metric M(·) is calculated as follows:177

ϕi(M) =
∑

e′⊆e\{ei}

|e′|!(N − |e′| − 1)!

N !

(∆M(Se′∪{ei}|S)−∆M(Se′ |S)),
(2)

178

where Se denotes the source sentence af-179

ter applying the edit set e. Equation 2180

calculates the weighted sum of the differ-181

ences in evaluation scores when including and182

excluding the edit ei. For example, us-183

ing Figure 1 with e = {e1, e2, e3} =184

{[A → The], [job → work], [is → was]}, one of185

the terms in the calculation for ϕ1(M) with e′ =186

{e2} is187

1

6

(
∆M(S{e1,e2}|S)−∆M(S{e2}|S)

)
=

1

6
(∆M(The work is performed by him.|S)

−∆M(A work is performed by him.|S)).
(3)

188

Here, bold words indicate the edit being attributed,189

and underlined words show other edits. The terms190

for e′ = {ϕ}, {e3}, and {e2, e3} are computed in a191

similar way. Shapley values consider various com-192

binations of edits, ensuring accurately attribution193

of the i-th edit’s contribution. By design, Shapley194

values naturally satisfy Equation 1 due to their ef- 195

fectiveness (Shapley et al., 1953). However, the 196

computational complexity is O(2N ). 197

Shapley Sampling Values. To improve compu- 198

tational efficiency, we introduce Shapley sampling 199

values (Strumbelj and Kononenko, 2010), an ap- 200

proximation of Shapley values. Equation 2 can be 201

rewritten as: 202

ϕi(M) =
1

N !

∑
o∈π(e)

(∆M(S, SPrei(o)∪{ei}))−∆M(S, SPrei(o)))

(4)

203

where π(e) is the set of all possible or- 204

ders of edits, and Prei(o) is the set of ed- 205

its preceding ei in permutation o. In the 206

example from Equation 3, Pre1(o) = {ϕ} 207

when o = [e1, e2, e3], and Pre1(o) = 208

{e2, e3} = {[job → work], [is → was]} when 209

o = [e3, e2, e1]. To approximate Shapley val- 210

ues, we uniformly sample T permulations with- 211

out replacement from π(e), denoted as
∼

π(e) = 212

{o1, . . . ,oT }. Shapley sampling values are then 213

calculated using
∼

π(e) instead of π(e) in Equation 4. 214

This approximation reduces the computational cost 215

from O(2N ) to O(TN). 216

Normalized Shapley Values The calculated at- 217

tribution scores are not directly comparable across 218

different sentence-level scores. For instance, an at- 219

tribution score of 0.2 has a different relative impact 220

when distributing a sentence-level score of 1.0 ver- 221

sus -0.05. To enable meaningful comparison, we 222

apply L1 normalization to the attribution scores: 223

ϕnorm
i (M) =

ϕi(M)∑N
i=1 |ϕi(M)|

. (5) 224

This normalization, applied as a post-processing 225

step, adjusts only the magnitude of the scores while 226

preserving their original signs. Since the normal- 227

ized scores represent the ratio of each edit’s con- 228

tribution, they are assumed to be comparable even 229

when the sentence-level scores differ. 230

4 Evaluation of Attribution 231

We evaluate the proposed attribution method from 232

two perspectives: faithfulness and explainabil- 233

ity (Wang et al., 2024). Faithfulness measures how 234

well the attribution results reflect the model’s in- 235

ternal decision, while explainability assesses the 236
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extent to which the results are understandable to hu-237

mans. To demonstrate the effectiveness of the pro-238

posed method across various domains, we conduct239

experiments using diverse datasets, GEC systems,240

and metrics.241

4.1 Experimental Settings242

4.1.1 Datasets243

We use the CoNLL-2014 test set (Ng et al., 2014)244

and the JFLEG validation set (Heilman et al., 2014;245

Napoles et al., 2017). CoNLL-2014 is a benchmark246

for minimal edits, focusing on correcting errors247

while preserving the original structure of the input248

as much as possible. In contrast, JFLEG is a bench-249

mark for fluency edits, allowing more extensive250

rewrites to produce fluent and natural sentences.251

4.1.2 GEC Systems252

We evaluate our attribution method on various GEC253

systems, including two tagging-based models (the254

official RoBERTa-based GECToR (Omelianchuk255

et al., 2020) and GECToR-2024 (Omelianchuk256

et al., 2024)), two encoder-decoder models257

(BART (Lewis et al., 2020) and T5 (Rothe et al.,258

2021)), and a causal language model (GTP-4o259

mini). This allows us to assess the explainability260

of attributions scores across different GEC archi-261

tectures. For GPT-4o mini, we used a two-shot set-262

ting following Coyne et al. (2023), with examples263

randomly sampled once from the W&I+LOCNESS264

validation set (Yannakoudakis et al., 2018) and used265

for all input sentences. Note that we use only the266

corrected sentences containing 10 or fewer edits267

(N ≤ 10) due to the computational complexity268

of Shapley values. According to Figure 2, which269

shows the cumulative sentence ratio by the number270

of edits, our experiments cover at least more than271

97% of the sentences in both datasets.272

4.1.3 Reference-free Metrics273

SOME (Yoshimura et al., 2020) trains a BERT-274

based regression model optimized directly on hu-275

man evaluation results. We used the official pre-276

trained model weights2 and used the default coeffi-277

cients for the weighted average of grammaticality,278

fluency, and meaning preservation scores, from the279

official script3.280

2https://github.com/kokeman/SOME
30.55*grammaticality + 0.43 * fluency + 0.02 * meaning

preservation.
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Figure 2: Cumulative sentences ratio regarding the num-
ber of edits. The red line indicates the position where
the number of edits is 10.

IMPARA (Maeda et al., 2022) estimates evalua- 281

tion scores through similarity estimation and qual- 282

ity estimation. We use BERT (bert-base-cased) 283

as the similarity estimator and train our own model 284

for the quality estimator, as the official pre-trained 285

weights are not available. Our quality estimator 286

was trained following the same settings described 287

in Maeda et al. (2022), achieving a correlation with 288

the human ranking comparable to their reported 289

results. 290

GPT-2 Perplexity (PPL). Our proposed method 291

can be applied to metrics that evaluate only the 292

quality of the corrected sentence4. To test this, we 293

use GPT-2 (Radford et al., 2019) perplexity, with 294

negative perplexity scores to ensure that higher 295

values correspond to better quality. 296

4.2 Baseline Attribution Methods 297

To evaluate the effectiveness of Shapley values, 298

we employ simpler variants, i.e., ADD and Sub, as 299

baseline attribution methods. 300

Add. This method observes the change in the 301

score when each edit is applied individually to 302

the source sentence. An edit that increases the 303

score is considered valid for the metric. This ap- 304

proach corresponds to using only e′ = {ϕ} in 305

Equation 2, with the attribution scores normalized 306

by ∆M(H|S)∑N
i=1 ϕi(M)

so that it satisfies Equation 1. 307

Sub. This method observes the change in the 308

score when each edit is removed individually from 309

the corrected sentence. An edit that decreases the 310

score upon removal is considered valid for the 311

metric. This approach corresponds to using only 312

4In this case, the sentence-level score is ∆M(S,H) =
M(H)−M(S)

4

https://github.com/kokeman/SOME
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Figure 3: The results of consistency-based evaluation. Each row shows the different datasets and each column
shows different metrics. “Mag.” means the magnitude. Colors show the attribution scores.

e′ = e \ {ei} in Equation 2, with the attribution313

scores normalized by ∆M(H|S)∑N
i=1 ϕi(M)

so that it satisfies314

Equation 1.315

4.3 Consistency Evaluation316

To evaluate faithfulness, we test how well the attri-317

bution scores represent the judgments of the met-318

rics through consistency evaluation. Specifically,319

we first calculate the attribution scores for individ-320

ual edits and then group edits with the same sign,321

treating them as a single edit. Next, we calculate322

the attribution score for the grouped edits. We hy-323

pothesize that the attribution score for a grouped324

edit should equal the sum of the individual attribu-325

tion scores of the edits comprising the group. If326

this condition holds, the attribution method consis-327

tently calculates the contributions of edits, making328

its results reliable for practical use. We use an329

agreement ration to measure the consistency of the330

signs and use Pearson and Spearman correlations331

to assess the consistency of the magnitudes.332

For example, in Figure 1, we group two333

positivity-attributed edits, [A → The] and [job →334

work], into a single edit and compute attribution335

scores for the grouped edit and the remaining edit,336

[is → was]. Ideally, the attribution score for the337

grouped edit should be 0.2 + 0.1 = 0.3, which can338

be verified by sign agreement and closeness to 0.3.339

Figure 3 presents the results for each metrics.340

Our proposed Shapley method shows higher consis-341

tency than the baseline attribution methods across 342

various domains and metrics. While the Sub metric 343

also demonstrates high consistency, its Spearman’s 344

rank correlation occasionally drops for certain met- 345

rics, such as IMPARA. Low rank correlation can 346

misrepresent the relative importance of edits, pos- 347

ing a serious issue for explainability. These results 348

suggest that the attribution method is reliable across 349

different edit granularities, such as edits extracted 350

by ERRANT (Felice et al., 2016; Bryant et al., 351

2017) or chunks created by merging multiple ed- 352

its (Ye et al., 2023). This flexibility enables a wide 353

range of applications for the proposed method. 354

4.4 Human Evaluation 355

To evaluate explainability, we assess the agreement 356

between attribution scores and human evaluation 357

results using references. Ideally, a positively at- 358

tributed edit should align with a correct edit in the 359

reference-based evaluation, while a negativity at- 360

tributed edit should correspond to an incorrect one. 361

Furthermore, edits with larger absolute attribution 362

scores are expected to show higher agreement with 363

human evaluations. 364

In this experiment, we annotate two types of la- 365

bels for each edit: one based on the sign of the 366

attribution score and another based on reference- 367

based evaluation. We then calculate the match- 368

ing ratio between these labels at the corpus level. 369

For the evaluation, we use the two official refer- 370

ences for CoNLL-2014, and four official references 371
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for JFLEG validation set. The assessment is per-372

formed on mixed outputs from five GEC systems.373

To ensure the analysis focuses on meaningful cases,374

we include only sentences with two or more edits.375

When assigning labels for reference-based evalua-376

tion with multiple references, we select the refer-377

ence that results in the highest agreement with the378

attribution scores. To further examine the relation-379

ship between the magnitude of attribution scores380

and agreement rates, we follow standard attribu-381

tion evaluation practices (Petsiuk, 2018; Fong and382

Vedaldi, 2017) by applying a threshold to the ab-383

solute values of the scores. We use only edits with384

normalized absolute attribution scores below the385

threshold for accuracy calculations. The threshold386

starts at 0.1 and increases in steps of 0.1 until it387

reaches 1.0, where all edits are included.388

Figure 4 presents the results for the CoNLL-389

2014 and JFLEG datasets. Overall, the results show390

that including edits with larger absolute attribution391

scores improves the agreement with human evalua-392

tion, indicating that the magnitude of these scores is393

meaningful. When comparing attribution methods,394

Shapley rarely achieves the worst agreement. For395

instance, in JFLEG, the SOME metric shows the or-396

der Add > Shapley > Sub, while the IMPARA met-397

ric shows Sub > Shapley > Add. Either Add or Sub398

often results in the worst agreement, whereas Shap-399

ley demonstrates more stable performance across400

different metrics and domains.401

When comparing metrics, particularly in the re-402

sults for JFLEG (Figure 4b), the agreement rates403

consistently rank in the order of PPL, SOME, and404

IMPARA. This trend may reflect the characteris-405

tics of these reference-free metrics in relation to406

reference-based evaluation. In fact, when we com-407

pute the correlation with ERRANT 5 using stan-408

dard sentence-level meta-evaluation (Kobayashi409

et al., 2024b), the rankings follow the same or-410

der: of PPL (0.550), SOME (0.529), and IMPARA411

(0.516), with Kendall rank correlation coefficients412

of 0.100, 0.058, and 0.033, respectively. These re-413

sults suggest that metrics more closely aligned with414

reference-based evaluation can be attributed more415

accurately, improving the reliability of our attribu-416

tion method. On the other hand, for CoNLL-2014,417

the sentence-level correlation shows the order of418

PPL (0.522), IMPARA (0.479), and SOME (0.477).419

However, the agreement in Figure 4a does not fol-420

5We use ERRANT as a representative edit-based and
reference-based metric.
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Figure 4: Human evaluation results for CoNLL-2014
and JFLEG. Colors indicate metrics and line styles indi-
cate attribution methods.

low this trend. This indicates that the proposed 421

method aligns well with human judgement in case 422

of fluency edits. Conversely, minimal edits may 423

require further studies, but primarily depend on the 424

development of better reference-free metrics. 425

4.5 Efficiency of Shapley Values 426

One limitation of Shapley values is their high com- 427

putational cost. Figure 5 shows the relation be- 428

tween the number of edits and the computation 429

time per sentence in seconds on a single RTX 3090. 430

The computation time increases rapidly when the 431

number of edits exceeds 11. For this reason, we 432

assume that sentences with more than 11 edits are 433

impractical to attribute within a reasonable time. 434

According to Figure 2, the affects approximately 435

3% of the sentences in GEC output. Similarly, 436

tasks involving a higher number of edits, such as 437

text simplification, could face even greater chal- 438

lenges. 439

As discussed in Section 3, we address this is- 440
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Original (S) - Further more by these evidence u will agree
Correction (H) - Further more , with this evidence , you will agree .

Metrics (M ) ∆M(·) Shapley values ϕi(M)

SOME 0.298 - 0.068 0.064 0.033 - 0.038 0.066 - 0.030
IMPARA -0.027 - 0.068 0.029 0.124 - 0.145 -0.361 - -0.033
PPL 1266.3 - 250.7 103.8 216.0 - 67.4 366.6 - 261.5

Normalized Shapley values

SOME - 0.229 0.215 0.111 - 0.126 0.220 - 0.099
IMPARA - 0.090 0.039 0.163 - 0.191 -0.475 - -0.043
PPL - 0.198 0.082 0.171 - 0.053 0.290 - 0.207

Table 1: An example of the proposed method’s results using actual sentence.
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Figure 5: The relationship between the number of edits
and computation time per sentence. The solid lines are
average time and ranges are standard deviation.

sue by employing Shapley sampling values and441

evaluate their ability to approximate exact Shap-442

ley values by measuring the average absolute dif-443

ferences between them. For system-independent444

experiments, we use a dataset combining all GEC445

model corrections on the JFLEG validation set. We446

set T = 64 and restrict sentences to 10 ≤ N ≤ 15447
6.448

Table 2 reports the errors and computation times449

for each metric. With Shapley sampling values, the450

computation time per sentence can be reduced to as451

little as one second. To assess the impact of errors,452

we also show the distribution of absolute original453

Shapley values. While SOME and PPL show errors454

below the average, IMPARA exhibits higher errors.455

This discrepancy with IMPARA can lead to misin-456

terpretations of attribution scores. For example, the457

frequency of changes in the relative contributions458

of different edits is likely to increase, undermining459

reliability. IMPARA’s higher error rate may be due460

to its smaller variance in evaluated values, making461

6When T = 64 and 10 ≤ N , the computation cost of
Shapley sampling values is consistently lower than that of
exact Shapley values, as 2x > 64x holds for x > 9.20 . . . .

Metric Error Time Shapley values dist.

SOME 0.014 1.00 0.019 ± 0.020
IMPARA 0.066 0.99 0.052 ± 0.071
PPL 17.515 0.20 34.549 ± 59.472

Table 2: The average error and average computation
time (seconds) when using Shapley sampling values.
It also shows the distribution of the absolute original
Shapley values (the average ± the standard deviation).

it less effective at quantifying impact with a limited 462

number of calculations. 463

5 Applications of Attribution Scores 464

We demonstrate practical applications of attribution 465

scores for users. All results in this section are based 466

on Shapley values for the attribution method. 467

5.1 Case Study 468

Attribution scores can be used to identify which 469

edits improve or worsen the sentence-level score. 470

Table 1 provides an example, showing attribution 471

scores and their normalized version. The original 472

sentence and its corrections are chunked accord- 473

ing to edit spans, omitting scores for non-edited 474

chunks which are all zeros. One observation is that 475

the sentence-level score of IMPARA declines pri- 476

marily due to the edit [u → you], as identified by 477

the attribution score. In contrast, SOME and PPL 478

prefer this edit. This analysis demonstrates how 479

attribution scores can reveal weaknesses in metrics 480

as seen in Table 1. 481

Normalized Shapley values enable comparison 482

of attribution scores across metrics. For example, 483

while SOME and IMPARA assign the same Shap- 484

ley value to the edit [ϕ→ ,], their normalized scores 485

reveal differing impacts. This feature is particularly 486

useful for comparing metrics with different value 487

ranges, such as SOME and PPL. 488
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Figure 6: The heatmap indicating the average of nor-
malized Shapley values per error type. The deeper color
indicates higher values.

However, the metrics themselves may exhibit489

biases that affect attribution scores. To investigate490

these biases, we calculate the average normalized491

Shapley values for each error type (Bryant et al.,492

2017). As in Section 4.5, we combine the corrected493

sentences from five GEC systems for the JFLEG494

validation set to mitigate biases specific to indi-495

vidual GEC models. Figure 6 shows a heatmap496

of average normalized attribution scores for error497

types with a frequency greater than 30. The results498

indicate that different metrics emphasize different499

error types. For instance, orthography (ORTH) edits,500

such as case changes and whitespace adjustments,501

tend to be downplayed. Metric biases must be con-502

sidered when interpreting attribution scores. It is503

important to not that the attribution scores reflect504

the internal decisions of the metric and may not505

align with the true correctness of edits. We leave506

addressing these biases to future work.507

5.2 Precision per Error Type508

While the case study focused on local, sentence-509

level evaluation, the proposed method can be ex-510

tended to corpus-level analysis. Typically, metrics511

with low explainability provide only a single nu-512

merical score at the corpus level. By applying the513

proposed method, we can decompose this score514

is into performance across different error types.515

Specifically, we treat edits with positive attribution516

scores as True Positives, and those with negative517

attribution scores as False Positives, enabling the518

calculation of precision for each error type. To han-519

dle attribution scores across multiple sentences, we520

use normalized Shapley values:521

Precision =
ϕnorm
+ (M)

ϕnorm
+ (M) + |ϕnorm

− (M)|
, (6)522

where ϕnorm
+ (M) and ϕnorm

− (M) represent the sum523

of positive and negative normalized attribution524

scores at the corpus-level, respectively. This is525
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Figure 7: The heatmap indicating the precision for each
GEC systems. We used JFLEG validation set as a
dataset and SOME as a metric.

similar to PT-M2 (Gong et al., 2022) which pro- 526

posed an edit-level weighted evaluation. However, 527

our method is designed to enhance the corpus-level 528

explainability of metrics rather than to improve 529

agreement with human evaluations. 530

Figure 7 shows the precision for each error type 531

using the JFLEG validation set and SOME as the 532

evaluation metric. The parentheses in the y-axis 533

labels indicate the corpus-level scores, with each 534

row of the heatmap explaining these score in terms 535

of error types. The results reveal that better edits in 536

adverbs (ADV) or orthography (ORTH) contribute 537

most to the highest corpus-level score achieved by 538

GPT-4o mini. On the other hand, despite achiev- 539

ing the highest corpus-level score among the five 540

systems, GPT-4o mini’s precisions are not particu- 541

larly high. Notably, T5 appears to perform better 542

in terms of precision, as indicated by more dark- 543

colored cells. This discrepancy may stem from an 544

overcorrection issue, leading to a low-precision, 545

high-recall trend in performance (Fang et al., 2023; 546

Omelianchuk et al., 2024). While this trend is intu- 547

itive because the valid edits in the reference-based 548

evaluation are limited to the references, we also 549

observe a similar trend even for reference-free eval- 550

uation metrics. 551

6 Conclusion 552

This paper proposes a method to improve the ex- 553

plainability of existing low-explainable GEC met- 554

rics by attributing sentence-level scores to individ- 555

ual edits. Specifically, we employed Shapley values 556

to perform attribution while accounting for various 557

contexts in which edits are applied. Quantitative 558

evaluations showed that the attribution scores align 559

with metric’s judgement achieve approximately 560

70% agreement with human evaluations. Addi- 561

tionally, we demonstrated how attribution scores 562

can be used at both the sentence and corpus levels. 563

Finally, we discussed the biases of existing metrics. 564
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Limitations565

Treating False Negative Corrections. As men-566

tioned in Section 5.2, the proposed method is lim-567

ited to analyzing corrections made by the GEC568

system, i.e. True Positives (TP) and False Posi-569

tives (FP), and does not address False Negatives570

(FN). While we assume that the effect of FN correc-571

tions is canceled out by ∆M(H|S) = M(H|S)−572

M(S|S), it may still affect the computation of at-573

tribution scores. A more detailed investigation into574

this issue is left for future work.575

Treating dependent edits Edits might exhibit576

dependencies. For example, the correction [model577

’s prediction -> prediction of the model] can be578

split into two dependent edits: [model ’s -> ϕ] and579

[ϕ -> of the model]. While analyzing these edits580

together may better capture their contribution, the581

proposed method evaluates each edit independently.582

We assume that Shapley values partially capture583

such dependent edits by considering various pat-584

terns of applying edits. However, understanding585

dependencies fully requires error correction data586

annotated for edit dependencies or tools to automat-587

ically identify them. Developing such resources is588

left as future work.589

Real Human Evaluation Unlike Section 4.4,590

which uses a reference-based evaluation frame-591

work, we could also conduct direct human evalua-592

tion. However, we prioritize reference-based evalu-593

ation for its scalability when applying the method594

to new metrics or datasets. It is important to note595

that the primary goal of this study is not to derive596

attribution scores that align with human evalua-597

tion, but to explain the decision-making process of598

metrics at the edit level.Verifying alignment with599

human evaluations is a secondary finding. If the600

goal were to achieve consistency with human eval-601

uation, training a dedicated model would be a more602

appropriate approach.603

Rectifying Metric Biases The case study re-604

sults (Section 5.1) revealed that metrics exhibit605

biases towards specific error types. While one606

could attempt to mitigate such biases, we believe607

that sentence-level metrics benefit from implicitly608

weighting edits, making these biases beneficial for609

evaluation. However, biases related to social fac-610

tors such as gender or nationality, should be ad-611

dressed. A deeper investigation into metric biases612

is beyond the scope of this work, but remains an im-613

portant area for future research. Our work provides 614

a strong foundation for exploring these biases 615
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