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Abstract

Various evaluation metrics have been proposed
for Grammatical Error Correction (GEC), but
many, particularly reference-free metrics, lack
explainability. This lack of explainability hin-
ders researchers from analyzing the strengths
and weaknesses of GEC models and limits the
ability to provide detailed feedback for users.
To address this issue, we propose attributing
sentence-level scores to individual edits, pro-
viding insight into how specific corrections con-
tribute to the overall performance. For the at-
tribution method, we use Shapley values, from
cooperative game theory, to compute the con-
tribution of each edit. Experiments with ex-
isting sentence-level metrics demonstrate high
consistency across different edit granularities
and show approximately 70% alignment with
human evaluations. In addition, we analyze
biases in the metrics based on the attribution
results, revealing trends such as the tendency to
ignore orthographic edits. Our implementation
is available at LINK '.

1 Introduction

Grammatical error correction (GEC) is the task of
automatically correcting grammatical or superfi-
cial errors in an input sentence. Automatic evalua-
tion metrics play a key role in improving GEC per-
formance, but their effectiveness depends on their
level of explainability. For example, metrics that
evaluate at the edit level are more explainable than
sentence-level metrics, as they allow us to identify
which specific edits are effective and which are
not, even when a GEC system makes multiple edits.
Such explainable metrics enable researchers to ana-
lyze the strengths and weaknesses of GEC models,
providing valuable insights into how models can be
improved. Furthermore, in education applications,
explainable metrics can provide language learners
with detailed feedback on their writing, supporting
their learning more effectively.
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Figure 1: Overview of the proposed method with an
example using three edits. Figure (a) shows the low-
explainability of existing metrics that only estimate the
sentence-level score, but Figure (b) shows that the edit-
level attribution solves this issue.

In GEC, explainable reference-based metrics,
such as ERRANT (Felice et al., 2016; Bryant et al.,
2017) are limited because references cannot ac-
count for all valid corrections. Preparing test data
with comprehensive references is often impractical,
especially when targeting domains such as medi-
cal or academic writing that differ from existing
datasets. To address this issue, reference-free met-
rics have been proposed to evaluate corrected sen-
tences without relying on references (Choshen and
Abend, 2018; Yoshimura et al., 2020; Islam and
Magnani, 2021; Maeda et al., 2022). Although
these reference-free metrics achieve high correla-
tion with human evaluations, many are designed to
assign scores at the sentence level, limiting their
explainability on individual edits. This lack of gran-
ularity makes it difficult to analyze how specific
edits contribute to the overall sentence score. For
example, as shown in Figure 1, a metric evaluates
a corrected sentence created by applying the three



edits. As shown in Figure 1a, the sentence-level
metric assigns an overall score of 0.75, but it does
not indicate whether all edits are valid, or if both
valid and invalid edits have been applied.

To improve the explainability of metrics with low
or no explanation, we propose attributing sentence-
level scores to individual edits as illustrated in Fig-
ure 1b. In the proposed method, the total contribu-
tion of all edits is calculated as the difference be-
tween the scores of the input sentence and the cor-
rected sentence. This difference is then attributed
to the individual edits. For example, in Figure 1b,
a difference of -0.05 is distributed among three ed-
its with contributions of 0.2, 0.1, and -0.35. The
attribution results are intrepreted using the sign
and magnitude of these scores: the sign indicates
whether an edit is the valid or invalid, while the
magnitude represents the degree of its influence on
the final sentence-level score. We employ Shapley
values (Shapley et al., 1953) from cooperative game
theory to fairly distribute the total score among the
edits. By considering various combinations edits,
Shapley values allow us to precisely attribute each
edit’s contribution to the overall sentence score,
offering insights into their individual impact. Un-
like previous feature attribution methods (Lundberg
and Lee, 2017; Sundararajan et al., 2017), the pro-
posed method is novel in attributing the difference
between the input sentence and the corrected sen-
tence.

In the experiments, we apply the proposed
method to two popular reference-free met-
rics, SOME (Yoshimura et al., 2020) and IM-
PARA (Maeda et al., 2022), as well as a fluency
metric based on GPT-2 (Radford et al., 2019) per-
plexity. The results show that the proposed attri-
bution method produces consistent scores across
different granularities of edits and that edits with
larger absolute attribution scores align more closely
with human evaluations. We introduce Shapley
sampling values (Strumbelj and Kononenko, 2010)
to mitigate the time-complexity issues of calculat-
ing Shapley values. Additionally, we demonstrate
that the proposed method can explain metric deci-
sions at both the sentence and corpus levels, cate-
gorized by error types. These analyses reveal the
types of edits that metrics give more weight to,
as well as provide insights into the strengths and
weaknesses of GEC systems.

2 Background

Edits in GEC. The GEC task aims to correct
grammatical errors in a source sentence S and out-
put a corrected sentence H. The differences be-
tween S and H are often represented as N edits
e = {e;}¥, to enable evaluation (Dahlmeier and
Ng, 2012; Bryant et al., 2017; Gong et al., 2022; Ye
et al., 2023), ensembling (Tarnavskyi et al., 2022),
and post-processing (Sorokin, 2022) at the edit
level. These edits can be automatically extracted
using edit extraction methods (Felice et al., 2016;
Bryant et al., 2017; Belkebir and Habash, 2021;
Korre et al., 2021; Uz and Eryigit, 2023). Each
edit typically includes a word-level span in .S and
its corresponding correction, although it may also
include an error type (Bryant et al., 2017). The
error type categorizes each edit, indicating the part-
of-speech or grammatical aspect it relates to, which
helps to analyze the strengths and weaknesses of
the GEC systems.

Sentence-level Metrics. A sentence-level met-
ric M computes the score of the corrected sen-
tence given the source sentence, denoted as
M(H|S) € R. The source sentence is used
to assess meaning preservation, as GEC requires
correcting errors while maintaining the original
meaning of the source sentence. This formulation
has been adopted by several reference-free met-
rics (Yoshimura et al., 2020; Islam and Magnani,
2021; Maeda et al., 2022; Kobayashi et al., 2024a).
Sentence-level metrics aim to rank GEC systems in
alignment with humans judgments, as evidenced by
the fact that the meta-evaluation is performed using
the correlation between metric-generated rankings
or scores and those of humans. However, these
metrics are limited to sentence-level scoring and
cannot explain how individual edits contribute to
the final score.

3 Method

Our attribution method assumes that the overall
contribution of edits is the difference in scores be-
fore and after correction. We distribute the differ-
ence AM(H|S) = M(H|S) — M(S|S) across
each edit e = {e;}Y,, where M (S|S) is the score
of the source sentence treated as its own corrected
sentence.

The goal of our attribution method is to compute
the contribution for each edit denoted as {¢; (M) €



R}i]\il’ so that the following equation is satisfied:

N
AM(H|S) = ¢i(M). (1)
=1

We refer to ¢; (M) as attribution scores. A positive
score (¢; (M) > 0) indicates an edit that improves
the metric M (-), while a negative score (¢; (M) <
0) indicates an edit that worsens it. The absolute
value |¢;(M)| represents the degree of the edit’s
impact.

Shapley. For the attribution method, we intro-
duce Shapley values (Shapley et al., 1953) from
cooperative game theory. In cooperative game the-
ory, multiple players work together towards a com-
mon goal and share the total benefit based on their
contributions. Shapley values distribute this benefit
among players fairly, ensuring that those players
who contributes more receive a larger share. For
our purpose, we regard AM (H |S) as the total ben-
efit, edits e as the players, and ¢;(M ) as the Shap-
ley values. The Shapley value ¢;(M) for a given
metric M () is calculated as follows:

le’|/(N —|e/| —1)!
> N

e’Ce\{e;}

(AM(Serugey|S) — AM(Ser]9)),

2

where S, denotes the source sentence af-
ter applying the edit set e. Equation 2
calculates the weighted sum of the differ-
ences in evaluation scores when including and
excluding the edit e;. For example, us-
ing Figure 1 with e = {ej,ez,e3} =
{[A — The], [job — work], [is — was]}, one of
the terms in the calculation for ¢1 (M) with €’ =

{62} 18

(AM(S{€1,€2}|S) - AM(S{82}|S))

¢i(M) =

=

1
=5 (AM (The work is performed by him.|.S)

— AM (A work is performed by him.|S)).
3)

Here, bold words indicate the edit being attributed,
and underlined words show other edits. The terms
fore’ = {¢}, {es}, and {e2, e3} are computed in a
similar way. Shapley values consider various com-
binations of edits, ensuring accurately attribution
of the ¢-th edit’s contribution. By design, Shapley

values naturally satisfy Equation 1 due to their ef-
fectiveness (Shapley et al., 1953). However, the
computational complexity is O(2%).

Shapley Sampling Values. To improve compu-
tational efficiency, we introduce Shapley sampling
values (Strumbelj and Kononenko, 2010), an ap-
proximation of Shapley values. Equation 2 can be
rewritten as:

1
¢i(M) = N Z
oen(e)
(AM(S7 SPrei(o)U{ei})) - AM(S’ Sprei(o)))

“)

where m(e) is the set of all possible or-
ders of edits, and Pre’(o) is the set of ed-
its preceding e; in permutation o. In the
example from Equation 3, Prel(o) = {¢}
when o0 = e, es,e3], and Prel(o) =
{e2,e3} = {[job — work], [is — was|} when
o = [es,ea,e1]. To approximate Shapley val-
ues, we uniformly sample 7' permulations with-

~

out replacement from 7(e), denoted as 7(e) =
{01,...,0r}. Shapley sampling values are then

calculated using 7(e) instead of 7r(e) in Equation 4.
This approximation reduces the computational cost
from O(2V) to O(TN).

Normalized Shapley Values The calculated at-
tribution scores are not directly comparable across
different sentence-level scores. For instance, an at-
tribution score of 0.2 has a different relative impact
when distributing a sentence-level score of 1.0 ver-
sus -0.05. To enable meaningful comparison, we
apply L1 normalization to the attribution scores:

¢i(M) .
S [6i(M))]

This normalization, applied as a post-processing
step, adjusts only the magnitude of the scores while
preserving their original signs. Since the normal-
ized scores represent the ratio of each edit’s con-
tribution, they are assumed to be comparable even
when the sentence-level scores differ.

@i (M) = )

4 Evaluation of Attribution

We evaluate the proposed attribution method from
two perspectives: faithfulness and explainabil-
ity (Wang et al., 2024). Faithfulness measures how
well the attribution results reflect the model’s in-
ternal decision, while explainability assesses the



extent to which the results are understandable to hu-
mans. To demonstrate the effectiveness of the pro-
posed method across various domains, we conduct
experiments using diverse datasets, GEC systems,
and metrics.

4.1 Experimental Settings

4.1.1 Datasets

We use the CoNLL-2014 test set (Ng et al., 2014)
and the JFLEG validation set (Heilman et al., 2014,
Napoles et al., 2017). CoNLL-2014 is a benchmark
for minimal edits, focusing on correcting errors
while preserving the original structure of the input
as much as possible. In contrast, JFLEG is a bench-
mark for fluency edits, allowing more extensive
rewrites to produce fluent and natural sentences.

4.1.2 GEC Systems

We evaluate our attribution method on various GEC
systems, including two tagging-based models (the
official RoBERTa-based GECToR (Omelianchuk
et al., 2020) and GECToR-2024 (Omelianchuk
et al., 2024)), two encoder-decoder models
(BART (Lewis et al., 2020) and T5 (Rothe et al.,
2021)), and a causal language model (GTP-40
mini). This allows us to assess the explainability
of attributions scores across different GEC archi-
tectures. For GPT-40 mini, we used a two-shot set-
ting following Coyne et al. (2023), with examples
randomly sampled once from the W&I+LOCNESS
validation set (Yannakoudakis et al., 2018) and used
for all input sentences. Note that we use only the
corrected sentences containing 10 or fewer edits
(N < 10) due to the computational complexity
of Shapley values. According to Figure 2, which
shows the cumulative sentence ratio by the number
of edits, our experiments cover at least more than
97% of the sentences in both datasets.

4.1.3 Reference-free Metrics

SOME (Yoshimura et al., 2020) trains a BERT-
based regression model optimized directly on hu-
man evaluation results. We used the official pre-
trained model weights” and used the default coeffi-
cients for the weighted average of grammaticality,
fluency, and meaning preservation scores, from the
official script®.

Zhttps://github.com/kokeman/SOME
30.55*grammaticality + 0.43 * fluency + 0.02 * meaning
preservation.
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Figure 2: Cumulative sentences ratio regarding the num-
ber of edits. The red line indicates the position where
the number of edits is 10.

IMPARA (Maeda et al., 2022) estimates evalua-
tion scores through similarity estimation and qual-
ity estimation. We use BERT (bert-base-cased)
as the similarity estimator and train our own model
for the quality estimator, as the official pre-trained
weights are not available. Our quality estimator
was trained following the same settings described
in Maeda et al. (2022), achieving a correlation with
the human ranking comparable to their reported
results.

GPT-2 Perplexity (PPL). Our proposed method
can be applied to metrics that evaluate only the
quality of the corrected sentence®. To test this, we
use GPT-2 (Radford et al., 2019) perplexity, with
negative perplexity scores to ensure that higher
values correspond to better quality.

4.2 Baseline Attribution Methods

To evaluate the effectiveness of Shapley values,
we employ simpler variants, i.e., ADD and Sub, as
baseline attribution methods.

Add. This method observes the change in the
score when each edit is applied individually to
the source sentence. An edit that increases the
score is considered valid for the metric. This ap-
proach corresponds to using only € = {¢} in

Equation 2, with the attribution scores normalized
by AM(H|S)

ity ¢i(M)
Sub. This method observes the change in the
score when each edit is removed individually from
the corrected sentence. An edit that decreases the
score upon removal is considered valid for the
metric. This approach corresponds to using only

so that it satisfies Equation 1.

*In this case, the sentence-level score is AM (S, H) =
M(H) — M(S)
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Figure 3: The results of consistency-based evaluation. Each row shows the different datasets and each column
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e = e\ {¢;} in Equation 2, with the attribution
AM(H|S)

SN 600 so that it satisfies
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scores normalized by

Equation 1.

4.3 Consistency Evaluation

To evaluate faithfulness, we test how well the attri-
bution scores represent the judgments of the met-
rics through consistency evaluation. Specifically,
we first calculate the attribution scores for individ-
ual edits and then group edits with the same sign,
treating them as a single edit. Next, we calculate
the attribution score for the grouped edits. We hy-
pothesize that the attribution score for a grouped
edit should equal the sum of the individual attribu-
tion scores of the edits comprising the group. If
this condition holds, the attribution method consis-
tently calculates the contributions of edits, making
its results reliable for practical use. We use an
agreement ration to measure the consistency of the
signs and use Pearson and Spearman correlations
to assess the consistency of the magnitudes.

For example, in Figure 1, we group two
positivity-attributed edits, [A — The] and [job —
work], into a single edit and compute attribution
scores for the grouped edit and the remaining edit,
[is — was]. Ideally, the attribution score for the
grouped edit should be 0.2 4+ 0.1 = 0.3, which can
be verified by sign agreement and closeness to 0.3.

Figure 3 presents the results for each metrics.
Our proposed Shapley method shows higher consis-

tency than the baseline attribution methods across
various domains and metrics. While the Sub metric
also demonstrates high consistency, its Spearman’s
rank correlation occasionally drops for certain met-
rics, such as IMPARA. Low rank correlation can
misrepresent the relative importance of edits, pos-
ing a serious issue for explainability. These results
suggest that the attribution method is reliable across
different edit granularities, such as edits extracted
by ERRANT (Felice et al., 2016; Bryant et al.,
2017) or chunks created by merging multiple ed-
its (Ye et al., 2023). This flexibility enables a wide
range of applications for the proposed method.

4.4 Human Evaluation

To evaluate explainability, we assess the agreement
between attribution scores and human evaluation
results using references. Ideally, a positively at-
tributed edit should align with a correct edit in the
reference-based evaluation, while a negativity at-
tributed edit should correspond to an incorrect one.
Furthermore, edits with larger absolute attribution
scores are expected to show higher agreement with
human evaluations.

In this experiment, we annotate two types of la-
bels for each edit: one based on the sign of the
attribution score and another based on reference-
based evaluation. We then calculate the match-
ing ratio between these labels at the corpus level.
For the evaluation, we use the two official refer-
ences for CoONLL-2014, and four official references



for JFLEG validation set. The assessment is per-
formed on mixed outputs from five GEC systems.
To ensure the analysis focuses on meaningful cases,
we include only sentences with two or more edits.
When assigning labels for reference-based evalua-
tion with multiple references, we select the refer-
ence that results in the highest agreement with the
attribution scores. To further examine the relation-
ship between the magnitude of attribution scores
and agreement rates, we follow standard attribu-
tion evaluation practices (Petsiuk, 2018; Fong and
Vedaldi, 2017) by applying a threshold to the ab-
solute values of the scores. We use only edits with
normalized absolute attribution scores below the
threshold for accuracy calculations. The threshold
starts at 0.1 and increases in steps of 0.1 until it
reaches 1.0, where all edits are included.

Figure 4 presents the results for the CoNLL-
2014 and JFLEG datasets. Overall, the results show
that including edits with larger absolute attribution
scores improves the agreement with human evalua-
tion, indicating that the magnitude of these scores is
meaningful. When comparing attribution methods,
Shapley rarely achieves the worst agreement. For
instance, in JFLEG, the SOME metric shows the or-
der Add > Shapley > Sub, while the IMPARA met-
ric shows Sub > Shapley > Add. Either Add or Sub
often results in the worst agreement, whereas Shap-
ley demonstrates more stable performance across
different metrics and domains.

When comparing metrics, particularly in the re-
sults for JFLEG (Figure 4b), the agreement rates
consistently rank in the order of PPL, SOME, and
IMPARA. This trend may reflect the characteris-
tics of these reference-free metrics in relation to
reference-based evaluation. In fact, when we com-
pute the correlation with ERRANT 3 using stan-
dard sentence-level meta-evaluation (Kobayashi
et al., 2024b), the rankings follow the same or-
der: of PPL (0.550), SOME (0.529), and IMPARA
(0.516), with Kendall rank correlation coefficients
of 0.100, 0.058, and 0.033, respectively. These re-
sults suggest that metrics more closely aligned with
reference-based evaluation can be attributed more
accurately, improving the reliability of our attribu-
tion method. On the other hand, for CoONLL-2014,
the sentence-level correlation shows the order of
PPL (0.522), IMPARA (0.479), and SOME (0.477).
However, the agreement in Figure 4a does not fol-
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Figure 4: Human evaluation results for CoNLL-2014
and JFLEG. Colors indicate metrics and line styles indi-
cate attribution methods.

low this trend. This indicates that the proposed
method aligns well with human judgement in case
of fluency edits. Conversely, minimal edits may
require further studies, but primarily depend on the
development of better reference-free metrics.

4.5 Efficiency of Shapley Values

One limitation of Shapley values is their high com-
putational cost. Figure 5 shows the relation be-
tween the number of edits and the computation
time per sentence in seconds on a single RTX 3090.
The computation time increases rapidly when the
number of edits exceeds 11. For this reason, we
assume that sentences with more than 11 edits are
impractical to attribute within a reasonable time.
According to Figure 2, the affects approximately
3% of the sentences in GEC output. Similarly,
tasks involving a higher number of edits, such as
text simplification, could face even greater chal-
lenges.

As discussed in Section 3, we address this is-



Original (.5) - Further more by these  evidence u will agree
Correction (H) - Further more , with this  evidence , you will agree

Metrics (M) | AM(-) | Shapley values ¢;(M)

SOME 0.298 - 0.068 0.064 0.033 - 0.038  0.066 - 0.030
IMPARA -0.027 - 0.068 0.029 0.124 - 0.145 -0.361 - -0.033
PPL 1266.3 - 250.7 103.8 216.0 - 674  366.6 - 261.5

| | Normalized Shapley values

SOME - 0229 0.215 0.111 - 0.126  0.220 - 0.099
IMPARA - 0.090 0.039 0.163 - 0.191 -0.475 - -0.043
PPL - 0.198 0.082 0.171 - 0.053  0.290 - 0.207

Table 1: An example of the proposed method’s results using actual sentence.
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Figure 5: The relationship between the number of edits
and computation time per sentence. The solid lines are
average time and ranges are standard deviation.

sue by employing Shapley sampling values and
evaluate their ability to approximate exact Shap-
ley values by measuring the average absolute dif-
ferences between them. For system-independent
experiments, we use a dataset combining all GEC
model corrections on the JFLEG validation set. We
set T = 64 and restrict sentences to 10 < N < 15
6

Table 2 reports the errors and computation times
for each metric. With Shapley sampling values, the
computation time per sentence can be reduced to as
little as one second. To assess the impact of errors,
we also show the distribution of absolute original
Shapley values. While SOME and PPL show errors
below the average, IMPARA exhibits higher errors.
This discrepancy with IMPARA can lead to misin-
terpretations of attribution scores. For example, the
frequency of changes in the relative contributions
of different edits is likely to increase, undermining
reliability. IMPARA’s higher error rate may be due
to its smaller variance in evaluated values, making

®When T = 64 and 10 < N, the computation cost of
Shapley sampling values is consistently lower than that of
exact Shapley values, as 2” > 64z holds for z > 9.20. ...

Metric | Error  Time | Shapley values dist.
SOME 0.014 1.00 0.019 £0.020
IMPARA | 0.066 0.99 0.052 £0.071
PPL 17.515  0.20 34.549 £ 59.472

Table 2: The average error and average computation
time (seconds) when using Shapley sampling values.
It also shows the distribution of the absolute original
Shapley values (the average + the standard deviation).

it less effective at quantifying impact with a limited
number of calculations.

5 Applications of Attribution Scores

We demonstrate practical applications of attribution
scores for users. All results in this section are based
on Shapley values for the attribution method.

5.1 Case Study

Attribution scores can be used to identify which
edits improve or worsen the sentence-level score.
Table 1 provides an example, showing attribution
scores and their normalized version. The original
sentence and its corrections are chunked accord-
ing to edit spans, omitting scores for non-edited
chunks which are all zeros. One observation is that
the sentence-level score of IMPARA declines pri-
marily due to the edit [u — you], as identified by
the attribution score. In contrast, SOME and PPL
prefer this edit. This analysis demonstrates how
attribution scores can reveal weaknesses in metrics
as seen in Table 1.

Normalized Shapley values enable comparison
of attribution scores across metrics. For example,
while SOME and IMPARA assign the same Shap-
ley value to the edit [¢ —,], their normalized scores
reveal differing impacts. This feature is particularly
useful for comparing metrics with different value
ranges, such as SOME and PPL.
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Figure 6: The heatmap indicating the average of nor-
malized Shapley values per error type. The deeper color
indicates higher values.

However, the metrics themselves may exhibit
biases that affect attribution scores. To investigate
these biases, we calculate the average normalized
Shapley values for each error type (Bryant et al.,
2017). Asin Section 4.5, we combine the corrected
sentences from five GEC systems for the JELEG
validation set to mitigate biases specific to indi-
vidual GEC models. Figure 6 shows a heatmap
of average normalized attribution scores for error
types with a frequency greater than 30. The results
indicate that different metrics emphasize different
error types. For instance, orthography (ORTH) edits,
such as case changes and whitespace adjustments,
tend to be downplayed. Metric biases must be con-
sidered when interpreting attribution scores. It is
important to not that the attribution scores reflect
the internal decisions of the metric and may not
align with the true correctness of edits. We leave
addressing these biases to future work.

5.2 Precision per Error Type

While the case study focused on local, sentence-
level evaluation, the proposed method can be ex-
tended to corpus-level analysis. Typically, metrics
with low explainability provide only a single nu-
merical score at the corpus level. By applying the
proposed method, we can decompose this score
is into performance across different error types.
Specifically, we treat edits with positive attribution
scores as True Positives, and those with negative
attribution scores as False Positives, enabling the
calculation of precision for each error type. To han-
dle attribution scores across multiple sentences, we
use normalized Shapley values:

S (1)
QLM (M) + [0 (M)
where ¢\°™ (M) and ¢"°"™ (M) represent the sum

of positive and negative normalized attribution
scores at the corpus-level, respectively. This is

Precision =

(6)

1.0
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0.8

0.7

Error types

Figure 7: The heatmap indicating the precision for each
GEC systems. We used JFLEG validation set as a
dataset and SOME as a metric.

similar to PT-M2 (Gong et al., 2022) which pro-
posed an edit-level weighted evaluation. However,
our method is designed to enhance the corpus-level
explainability of metrics rather than to improve
agreement with human evaluations.

Figure 7 shows the precision for each error type
using the JFLEG validation set and SOME as the
evaluation metric. The parentheses in the y-axis
labels indicate the corpus-level scores, with each
row of the heatmap explaining these score in terms
of error types. The results reveal that better edits in
adverbs (ADV) or orthography (ORTH) contribute
most to the highest corpus-level score achieved by
GPT-40 mini. On the other hand, despite achiev-
ing the highest corpus-level score among the five
systems, GPT-40 mini’s precisions are not particu-
larly high. Notably, T5 appears to perform better
in terms of precision, as indicated by more dark-
colored cells. This discrepancy may stem from an
overcorrection issue, leading to a low-precision,
high-recall trend in performance (Fang et al., 2023;
Omelianchuk et al., 2024). While this trend is intu-
itive because the valid edits in the reference-based
evaluation are limited to the references, we also
observe a similar trend even for reference-free eval-
uation metrics.

6 Conclusion

This paper proposes a method to improve the ex-
plainability of existing low-explainable GEC met-
rics by attributing sentence-level scores to individ-
ual edits. Specifically, we employed Shapley values
to perform attribution while accounting for various
contexts in which edits are applied. Quantitative
evaluations showed that the attribution scores align
with metric’s judgement achieve approximately
70% agreement with human evaluations. Addi-
tionally, we demonstrated how attribution scores
can be used at both the sentence and corpus levels.
Finally, we discussed the biases of existing metrics.



Limitations

Treating False Negative Corrections. As men-
tioned in Section 5.2, the proposed method is lim-
ited to analyzing corrections made by the GEC
system, i.e. True Positives (TP) and False Posi-
tives (FP), and does not address False Negatives
(FN). While we assume that the effect of FN correc-
tions is canceled out by AM (H|S) = M(H|S) —
M (S]S), it may still affect the computation of at-
tribution scores. A more detailed investigation into
this issue is left for future work.

Treating dependent edits Edits might exhibit
dependencies. For example, the correction [model
’s prediction -> prediction of the model] can be
split into two dependent edits: [model ’s -> ¢] and
[¢ -> of the model]. While analyzing these edits
together may better capture their contribution, the
proposed method evaluates each edit independently.
We assume that Shapley values partially capture
such dependent edits by considering various pat-
terns of applying edits. However, understanding
dependencies fully requires error correction data
annotated for edit dependencies or tools to automat-
ically identify them. Developing such resources is
left as future work.

Real Human Evaluation Unlike Section 4.4,
which uses a reference-based evaluation frame-
work, we could also conduct direct human evalua-
tion. However, we prioritize reference-based evalu-
ation for its scalability when applying the method
to new metrics or datasets. It is important to note
that the primary goal of this study is not to derive
attribution scores that align with human evalua-
tion, but to explain the decision-making process of
metrics at the edit level. Verifying alignment with
human evaluations is a secondary finding. If the
goal were to achieve consistency with human eval-
uation, training a dedicated model would be a more
appropriate approach.

Rectifying Metric Biases The case study re-
sults (Section 5.1) revealed that metrics exhibit
biases towards specific error types. While one
could attempt to mitigate such biases, we believe
that sentence-level metrics benefit from implicitly
weighting edits, making these biases beneficial for
evaluation. However, biases related to social fac-
tors such as gender or nationality, should be ad-
dressed. A deeper investigation into metric biases
is beyond the scope of this work, but remains an im-

portant area for future research. Our work provides
a strong foundation for exploring these biases
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