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ABSTRACT

Best-of-n sampling improves the accuracy of large language models (LLMs) and
large reasoning models (LRMs) by generating multiple candidate solutions and
selecting the one with the highest reward. The key challenge for reasoning tasks
is designing a scoring function that can identify correct reasoning chains without
access to ground-truth answers. We propose Probabilistic Confidence Selection
And Ranking (PiCSAR): a simple, training-free method that scores each candidate
generation using the joint log-likelihood of the reasoning and final answer. This
method utilises both the scores of the reasoning path (reasoning confidence) and
the final answer (answer confidence). PiCSAR achieves substantial gains across
diverse benchmarks (+11.7 on AIME2024, +9.81 on AIME2025), outperforming
baselines with fewer than at least 2x samples in 20 out of 25 comparisons. Our
analysis reveals that correct reasoning chains exhibit significantly higher reason-
ing and answer confidence, justifying the effectiveness of PiCSAR.
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Figure 1: Performance of PiCSAR on three datasets (AIME 2024, AIME 2025, and GPQA-
Diamond) and three models (DeeepSeek-Distill-Llama-8B, DeeepSeek-Distill-Qwen-7B, and
Qwen3-8B), compared to self-consistency.

1 INTRODUCTION

Recent studies have shown that large language models (LLMs) achieve strong performance on com-
plex reasoning tasks (Grattafiori et al., 2024; Team et al., 2024; Hurst et al., 2024); Techniques such
as Chain of Thought (CoT, Wei et al., 2022; Kojima et al., 2022) aim to enhance the reasoning
process, which generate explicit intermediate reasoning steps. Building on these advances, large
reasoning models (LRMs) – LLMs that received intensive reasoning-focused post-training, such as
OpenAI’s o1 (Jaech et al., 2024), DeepSeek R1 (Guo et al., 2025), and Qwen3 (Yang et al., 2025a)
– can solve relatively complex problems through long chains of thought, or a thinking process, often
characterised as extended CoT with self-reflection (Yang et al., 2025b; Muennighoff et al., 2025).

Despite these advances, classic decoding approaches such as greedy decoding often fall short of
state-of-the-art performance on complex benchmarks (Team et al., 2025; Balunović et al., 2025), em-
phasising the need for more sophisticated inference-time strategies. Best-of-N (BoN) sampling (Sti-
ennon et al., 2020) emerged as an important technique, where n candidate responses are generated
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How many positive two-
digit integers are factors
of both 100 and 150?

LLM

Step 1:  To find the positive two-
digit integers that are ……Step 9:  
The remaining two-digit.…… The 
final answer is: $\\boxed{4}$ Answer = 4 

Step 1: To find the positive two-
digit integers …… Step 7: After 
excluded the single-digit …..The 
final answer is: $\\boxed{4}$ Answer = 4 

Step 1: To find the factors of both 
100 and 150…… Step 7: The two-
digit common factors of.……The 
final answer is: $\\boxed{3}$ Answer = 3 

Majority-based methods select recurring 
answers despite inaccuracy

Self-Consistency:
Answer = 4

Universal Self-Consistency:
Answer = 4

PiCSAR selects an answer with the highest 
confidence

log 𝑝 𝑟! 𝑥 + log 𝑝 𝑦! 𝑟!, 𝑥 = −60.69

log 𝑝 𝑟" 𝑥 + log 𝑝 𝑦" 𝑟", 𝑥 = −50.83

log 𝑝 𝑟# 𝑥 + log 𝑝 𝑦# 𝑟#, 𝑥 = −32.03

a𝑟𝑔𝑚𝑎𝑥!,# log 𝑝 𝑦 𝑟, 𝑥 + log 𝑝 𝑟 𝑥

Answer = 3

1 Generate 𝒌 reasoning chains, 𝒓 2 Extract the answer, 𝒚, from 𝒓

3 Compute the sum of reasoning and 
answer log probability

4 Select the highest score

Figure 2: Example with llama-3.1-8B on MATH500, where PiCSAR selects the most likely reason-
ing trace r and answer y by jointly maximising their log-likelihoods log p(r | x) and log p(y | r, x).

and the one with the highest score from a reward model is selected (Mudgal et al., 2024; Huang
et al., 2025). However, training or fine-tuning external reward models can be computationally ex-
pensive (Wang et al., 2023a) and can be vulnerable to distribution shifts (Eisenstein et al., 2023).

This led to the adoption of simpler, training-free BoN variants like Self-Consistency (Wang et al.,
2023b), which selects the most frequent answer among multiple generated outputs. However, a
key limitation of Self-Consistency is its exclusive reliance on the final answer while ignoring the
reasoning that leads to it. Extensions like Universal Self-Consistency (USC, Chen et al., 2023b)
prompt the model itself to identify the most consistent response from a set of candidates. USC, while
evaluating complete responses, identifies the majority consensus pattern rather than the correctness
of the reasoning; it discards valuable signals from the reasoning process itself, such as its coherence
and plausibility, that contribute to reaching the answer. USC faces additional constraints from model
context-window capacity and the reasoning ability of the model (Chen et al., 2023b), with Kang et al.
(2025) showing that it is especially ineffective with smaller models. Attempts to overcome this by
prompting the model to self-evaluate its reasoning verbally are often ineffective, as this form of
explicit confidence can be poorly calibrated (Miao et al., 2024; Taubenfeld et al., 2025).

To address these challenges, we introduce Probabilistic Confidence Selection And Ranking (PiC-
SAR), a probabilistic confidence method for selecting a reasoning chain r together with its answer
y without requiring any additional training or fine-tuning. Our approach is straightforward to imple-
ment and can be used with any LLM or LRM as an inference-time tool. It is based on a new scoring
function that, given a prompt x, selects a reasoning chain r and the answer y via maximising their
joint conditional likelihood log p(y, r | x). This objective naturally separates into two complemen-
tary components. The reasoning confidence term log p(r | x) promotes high-probability reasoning
sequences by implicitly evaluating the likelihood of the chain given the prompt. The answer confi-
dence term log p(y | r, x) quantifies the model’s certainty in its final prediction, conditioned on the
generated reasoning chain. Figure 2 shows a high-level outline of PiCSAR, and how it can solve
instances that Self-Consistency and USC cannot solve correctly.

We evaluate PiCSAR on reasoning tasks across five LLMs and three LRMs, outperforming Self-
Consistency and USC in most cases. PiCSAR achieves these improvements with substantially fewer
samples, often requiring only k = 6 samples to outperform them even when using k = 16 or 32
samples. In particular, PiCSAR manages to substancially improve the performance of LRMs,
with Deepseek-R1-distilled-Llama-3 achieving +13.33% and +12.78% over Self-Consistency on
AIME2024 and AIME2025, respectively (Figure 1). Unlike USC, which is bounded by the un-
derlying model’s reasoning abilities, PiCSAR allows confidence scores to be estimated by separate
models. Even smaller models can approximate confidence effectively, as the evaluator captures
stable properties of the reasoning process rather than artefacts themselves (Section 5.3).
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Algorithm 1 Probabilistic Confidence Selection And Ranking (PiCSAR)

1: Input: Prompt x, number of samples k, instruction prompt ⟨a⟩.
2: Output: Reasoning chain r∗ and answer y∗.
3: Generate Candidates: Independently sample k reasoning chains {r1, r2, . . . , rk} from the

model, where each ri ∼ p(r | x) for i = i . . . k.
4: Score Candidates:
5: for each i ∈ {1, . . . , k} do
6: Extract Reasoning Confidence: Retrieve Creason(i) = log p(ri | x) from generation ri.
7: Extract Answer: Extract answer, yi, from reasoning chain, ri.
8: Compute Answer Confidence: Compute Canswer(i) = log p(yi | ⟨a⟩, ri, x).
9: Compute Final Score: Score(i) = Creason(i) + Canswer(i).

10: end for
11: Select Best: Find the index of the highest-scoring candidate: i∗ = argmaxi Score(i).
12: Return: (ri∗ , yi∗).

Beyond empirical results, we provide a comprehensive analysis of LLM confidence behaviour. At a
finer granularity, we analyse answer confidence at a sentence level, using a peak-to-sentence ratio,
which we term information density, that counts how often a reasoning chain attains high confidence
relative to its length. We find that higher accuracy correlates with a high ratio, within the model fam-
ily (Section 5.1). We show that answer confidence positively correlates with downstream accuracy.
In addition, we demonstrate that confidence values are model-dependent and should not be used for
direct comparison across models for ranking (Section 5.2).

2 A JOINT PROBABILISTIC METHOD FOR REASONING CHAIN SELECTION

We propose a training-free method for selecting a reasoning chain from a set of candidates, grounded
in a probabilistic framework that leverages the model’s confidence as its scoring signal. We frame
the selection problem as an approximation of maximum a posteriori (MAP) decoding over the joint
space of reasoning chains and final answers.

2.1 SCORING FUNCTION AND LOG-LIKELIHOOD DECOMPOSITION

We denote by X a set of possible prompts, R a set of reasoning chains, and Y the set of possible final
answers. For a given input prompt x ∈ X , our goal is to find the high confidence reasoning chain
r ∈ R and its corresponding answer y ∈ Y . Consider a selection criterion that aims to identify the
pair (r, y) with the highest joint conditional probability, p(r, y | x). By the chain rule of probability,
this decomposes into two distinct components:

p(r, y | x) = p(y | r, x) · p(r | x). (1)

In log-space, the joint probability becomes the sum of two log-likelihood terms as follows:

Score(r, y) = log p(r | x)︸ ︷︷ ︸
Reasoning Confidence

+ log p(y | r, x)︸ ︷︷ ︸
Answer Confidence

. (2)

These two terms provide complementary signals regarding the quality of a candidate generation:

• Reasoning Confidence (log p(r | x)): This term quantifies the model’s confidence in generating
r given the prompt x. It quantifies the plausibility of the reasoning path itself.

• Answer Confidence (log p(y | r, x)): This term measures the model’s certainty in the final answer
y, conditioned on the specific reasoning chain it has produced.

2.2 PROBABILISTIC CONFIDENCE SELECTION AND RANKING (PICSAR)

Directly selecting r ∈ R, y ∈ Y , where the joint log likelihood Score(r, y) is maximised over the
unconstrained space of possible pairs, is intractable. We therefore approximate this optimisation
with our PiCSAR sampling-based approach, as outlined in Algorithm 1. We first generate a set of
k candidate reasoning chains ri ∈ {r1, r2, . . . rk} from the model’s posterior p(r | x). Each chain

3
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ri implies a corresponding final answer yi. We then re-rank these candidates using our PiCSAR
scoring function.

The reasoning confidence term is obtained by summing the token-level log-probabilities from the
model during the generation of ri. By not applying length normalisation, this term naturally favours
more concise and direct reasoning paths as it involves a cumulative sum of individual token log-
probabilities. We also consider the length-normalised variant, PiCSAR-N, which focuses more on
the impact of log probability per token rather than favouring concise reasoning paths, leading to
similar results. (Details and results in Appendix C.3.)

The answer confidence term, log p(y | r, x), however, presents a practical challenge. As the model’s
distribution is over all possible text continuations, the probability of a final answer is confounded
by the likelihood of whatever text might follow it. This makes the raw log-probabilities of different
answers fundamentally incomparable. To address this and ensure we can reliably extract a final an-
swer for answer confidence computation, we condition the model on an explicit instruction prompt,
denoted as ⟨a⟩, which is appended after the reasoning chain. This prompt explicitly asks the model
to provide the final answer based on the preceding context (i.e., “When you see a potential reasoning
followed by ⟨sep⟩, output the final answer.”), with details of the prompt provided in Appendix B.
While we extract the answer y directly from the reasoning chain r, we use this augmented prompt
to compute the answer confidence. Our modified objective is thus:

argmax
r,y

[log p(r | x) + log p(y | ⟨a⟩, r, x)] . (3)

This modification grounds the answer confidence computation squarely in the reasoning provided,
allowing for a more targeted estimation of answer confidence.

The final step is to select the candidate pair with the highest score. As illustrated in Figure 2, the
two components of our scoring function play complementary roles. The reasoning confidence is
the sum of log-probabilities for every token in the reasoning chain. Since these log-probabilities
are negative, their sum naturally accumulates to a larger negative magnitude for longer sequences
(as shown in Figure 3). It thereby acts as a coarse-grained filter, placing strong selective pressure
on the overall plausibility of the reasoning process itself. The answer confidence then serves as a
powerful, fine-grained discriminator, often proving decisive when multiple candidate chains exhibit
similar reasoning plausibility. Consequently, the summation of these two components constitutes
the joint log-likelihood of the entire trajectory: log p(r, y|x) = log p(r|x) + log p(y|r, x). Rather
than discarding sequence-level information, this formulation explicitly aggregates the autoregressive
dependencies into a unified metric. By maximising this joint probability via re-ranking, PiCSAR
can identify the trajectory that simultaneously ensures reasoning plausibility and answer certainty,
thereby filtering for the most likely correct reasoning chain.

2.3 MOTIVATION: CONFIDENCE INFORMATION PLANE
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Figure 3: Information plane of
MATH500 questions that Llama-3.1-
8B predicts correctly and incorrectly
(k = 6). Quadrants show combinations
of answer and reasoning confidence.
This pattern is consistent across LLMs,
LRMs, and datasets (Appendix E).

To motivate PiCSAR design, we analyse the distribu-
tion of model-generated samples on a 2D “Information
Plane”, with respect to our two confidence terms (Fig-
ure 3). We partition the plane into four quadrants us-
ing the median value of each axis. log p(y | r,X) =
−10 represents the value used as a “fallback mechanism”
when the model fails to answer, (i.e., when no answer to-
ken is generated and the answer-confidence term cannot
be computed.) We tested this fallback mechanism with
various values, and the results are in Appendix C.7. For
Llama-3.1-8B on the MATH500 dataset, a striking pattern
emerges: correct answers (green) are concentrated in the
upper-right quadrant (Q1), corresponding to high scores
on both confidence terms.

The quadrant-wise accuracy breakdown is stark: the
upper-right quadrant (Q1) achieves 71.7% accuracy, out-
performing other quadrants (Q2: 39.0%, Q3: 31.6%, Q4:
62.2%). High reasoning confidence (Q1 and Q4) leads to
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a higher performance than a high answer confidence (Q2 and Q3). This is reinforced by a statistical
t-test that, while both terms are highly significant predictors of correctness, reasoning confidence is
a significantly stronger predictor (t-statistics ≈ 9.111) than answer confidence (t-statistics ≈ 4.753).
For more details on the statistical tests, see Appendix E.2. Nevertheless, both answer and reasoning
confidence measures remain essential components for reasoning chain selection.

This principle can be used as a practical filter; tightening the thresholds to the 75th percentile, for
instance, isolates a subset of samples with near-perfect accuracy (i.e., 100% on DS-Distilled-Qwen-
2.5-7B with AIME2025), providing a mechanism to identify reliably instances (More examples and
datasets can be referred to Appendix E). Overall, our analysis reveals that correct reasoning tends
to have higher reasoning and answer confidence, with reasoning confidence being a substantially
stronger predictor of correctness.

3 EXPERIMENTAL SETUP

Models To demonstrate the generalisability of our approach, we conduct evaluations across a di-
verse set of recent LLMs and LRMs. Our experiments include LLMs from three major families:
Llama-3.1-Instruct (8B and 70B; Dubey et al. 2024), Gemma-2-Instruct (9B; Team et al. 2024), and
Qwen3 (8B and 32B; Yang et al. 2025a). For the Qwen3 models, we disable the thinking mode for
fair comparison. For LRMs, we include two distilled models from the DeepSeek-R1 series (DS-
distill-Llama-3.1-8B and DS-distill-Qwen-2.5b; Guo et al. 2025), and the Qwen-3-8B model with
thinking mode enabled. We exclude larger LRMs due to computational cost.

Baseline Methods We compare PiCSAR against six baselines: (1) Greedy Decoding; (2) Self-
Consistency (Wang et al., 2023b); (3) Universal Self-Consistency (Chen et al., 2023b)); (4)
p(True) (Kadavath et al., 2022); (5) Self-Certainty (Kang et al., 2025). We include (6) Confidence-
Informed Self-Consistency (CISC) Taubenfeld et al. (2025) in Appendix C.1, as it mainly involves
weight voting. CISC originally proposed with weight voting through p(True), while we include a
comparison with CICS (PiCSAR) for fair comparison. Due to context length limitations and com-
putational constraints, we exclude (3), (4) and (5) in LRMs and k = 16, 32 in LLMs.

To isolate the contribution of each component in PiCSAR, we include three ablations in Ap-
pendix C.2 and C.3: Reasoning Confidence (maxr(log p(r | x))), with (6), and without (7) length
normalisation respectively, and (8) Answer Confidence (maxy(log p(y | r, x))). For LRMs, we
compare against (1), (2), (6), (7), and (8). For all datasets, we include the pass@k upper bound,
representing the maximum achievable accuracy when at least one of the k candidates is correct.
Implementation details can be found in Appendix B.

Datasets and Evaluation Metrics We evaluate on five benchmarks for LLMs, with three
mathematical benchmarks: GSM8K (Cobbe et al., 2021), SVAMP (Patel et al., 2021), and
MATH500 (Hendrycks et al., 2021), and two general scientific reasoning benchmarks: GPQA-
Diamond (Rein et al., 2024) and TheoremQA Chen et al. (2023a). For LRMs, we additionally
evaluate on AIME2024 and 2025, which are omitted from the LLM setting given their difficulty. All
results averaged over three independent runs and reported with standard errors.

4 EXPERIMENTAL RESULTS

PERFORMANCE ON LARGE LANGUAGE MODELS

Based on Table 1, we analyse our results based on the LLM model families. Llama models (Llama-
3.1-8B and 70B) show consistent improvements across all baselines. With k = 6 sampling, Llama-
3.1-8B outperforms the best-performing baseline (i.e., Self-Certainty) by 3.26% of average accuracy
score (26.54% → 29.80%) on GPQA-Diamond. Llama-3.1-70B demonstrates similar gains: 7.07%
improvement over Self-Certainty and 5.66% over USC. We can also observe a similar trend on
Gemma-2-9B. At k=6, PiCSAR outperforms Self-Consistency by 4.93%. This outcome aligns with
our information-plane analysis (see Figure 3); PiCSAR selects candidates in the top-right, high-
accuracy quadrant by maximising the joint score of reasoning and answer confidence.
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Method SVAMP GSM8K MATH500 GPQA-Diamond TheoremQA
k = 6 k = 16/32 k = 6 k = 16/32 k = 6 k = 16/32 k = 6 k = 16/32 k = 6 k = 16/32

Gemma-2-9B-Instruct

Greedy Decoding 87.33 86.64 41.40 29.80 17.14
Self-Consistency 88.15±0.22 88.89±0.22 87.04±0.24 88.10±0.05 41.60±0.40 43.27±0.23 27.27±0.58 23.91±1.38 15.44±0.12 14.10±0.00

USC 88.63±0.13 - 85.74±0.27 - 42.54±0.37 - 24.33±1.21 - 17.24±0.33 -
p(True) 88.56±0.44 87.89±0.22 88.36±0.22 88.38±0.08 46.87±0.07 46.80±0.70 30.30±1.54 33.50±0.17 15.62±0.37 15.98±0.44

Self-Certainty 88.48±0.04 88.33±0.06 87.18±0.08 87.32±0.03 43.93±0.13 43.93±0.08 26.77±0.42 27.41±0.83 14.73±0.28 14.77±0.04

PiCSAR 89.00±0.38
∗ 91.02±0.59 88.66±0.11

∗ 88.99±0.20 46.53±0.29
∗ 47.13±0.13 32.32±0.51

∗ 34.01±1.94 18.62±0.39
∗ 18.88±0.54

Upper Bound 93.44±0.22 95.67±0.38 93.44±0.09 95.60±0.04 58.47±0.27 66.67±0.47 55.22±1.10 82.49±1.02 24.32±0.49 32.40±0.20

Llama-3.1-8B-Instruct

Greedy Decoding 89.67 87.47 50.40 27.27 17.80
Self-Consistency 88.33±0.67 89.89±0.11 86.67±0.38 89.52±0.16 46.33±0.13 50.13±0.48 26.09±0.45 26.67±1.34 15.62±0.18 12.72±0.48

USC 89.87±0.23 - 88.22±0.23 - 51.80±1.25 - 25.67±1.54 - 18.88±0.31 -
p(True) 85.33±0.00 83.22±0.91 87.40±0.44 86.59±0.03 47.73±0.66 47.80±0.72 27.27±1.75 26.09±2.07 14.41±0.59 14.10±0.51

Self-Certainty 89.44±0.06 89.49±0.26 87.43±0.24 87.35±0.02 51.04±0.20 51.09±0.16 26.54±0.49 26.30±0.49 14.91±0.13 14.62±0.14

PiCSAR 91.78±0.11
∗ 93.44±0.89 89.09±0.13

∗ 89.98±0.23 53.33±0.73
∗ 53.87±0.70 29.80±1.34

∗ 33.67±3.06 20.08±0.43
∗ 19.72±0.39

Upper Bound 96.78±0.11 99.11±0.11 96.15±0.07 98.18±0.04 72.80±0.23 82.20±0.60 65.82±1.50 92.76±0.73 28.20±0.32 37.84±1.13

Qwen3-8B (Non-thinking)

Greedy Decoding 93.33 92.48 73.40 42.23 27.71
Self-Consistency 92.52±0.33 93.11±0.11 92.29±0.13 91.69±0.11 73.00±0.23 72.27±0.00 47.47±0.29 40.74±1.61 28.33±0.31 28.51±0.33

USC 93.11±0.22 - 93.24±0.13 - 73.60±0.12 - 48.38±2.06 - 27.88±0.55 -
p(True) 92.44±0.56 91.78±0.44 92.10±0.00 91.22±0.18 72.67±0.24 71.20±0.60 41.25±1.71 36.20±1.44 27.84±0.18 28.28±0.13

Self-Certainty 92.63±0.21 92.83±0.04 92.29±0.07 92.25±0.04 71.94±0.16 71.82±0.14 44.33±0.54 42.29±0.81 27.97±0.66 27.92±0.77

PiCSAR 93.56±0.22
∗ 95.13±0.22 92.33±0.13

∗ 93.22±0.08 73.67±0.24
∗ 73.40±0.13 46.98±1.01

∗ 43.69±1.26 29.76±0.58
∗ 29.17±0.64

Upper Bound 96.33±0.67 97.89±0.11 95.52±0.00 96.84±0.03 81.13±0.44 83.53±0.24 76.26±1.62 86.36±0.29 34.94±0.00 40.03±0.35

Llama-3.1-70B-Instruct

Greedy Decoding 94.33 93.93 60.20 40.44 30.79
Self-Consistency 92.78±0.56 93.45±0.11 94.00±0.10 93.98±0.13 58.60±0.46 60.80±0.87 42.59±1.02 37.54±0.67 26.55±0.47 25.61±0.00

USC 92.78±0.11 - 93.29±0.20 - 60.60±0.95 - 41.25±1.76 - 27.44±0.67 -
p(True) 93.11±0.78 93.11±0.40 94.51±0.13 94.08±0.23 61.47±1.14 62.33±1.16 41.25±1.61 42.09±2.21 24.45±0.31 24.23±0.61

Self-Certainty 93.02±0.30 93.84±0.01 94.01±0.13 94.04±0.05 61.82±0.08 61.70±0.14 39.84±0.88 38.87±0.67 24.43±0.18 24.56±0.11

PiCSAR 94.10±0.11
∗ 95.58±0.22 94.58±0.03

∗ 94.81±0.13 63.67±1.51
∗ 64.07±0.87 46.91±2.65

∗ 46.46±2.59 27.84±0.19
∗ 26.73±0.27

Upper Bound 97.22±0.22 97.78±0.22 96.91±0.03 97.44±0.03 77.07±0.47 81.67±0.18 75.59±0.61 87.71±0.45 40.70±0.20 43.47±0.18

Qwen3-32B (Non-thinking)

Greedy decoding 92.33 93.24 75.00 48.48 29.99
Self-consistency 92.67±0.33 93.11±0.33 93.62±0.00 93.75±0.08 75.93±0.33 76.27±0.12 47.31±1.98 44.44±0.51 30.79±0.00 30.92±0.28

USC 92.44±0.78 - 93.69±0.13 - 76.16±0.64 - 44.90±0.55 - 30.07±0.51 -
p(True) 93.22±0.11 93.00±0.69 92.79±0.53 92.91±0.25 74.07±1.07 74.00±0.35 39.90±2.81 38.05±0.94 30.79±0.00 30.08±0.12

Self-certainty 92.63±0.18 92.92±0.16 92.29±0.03 93.45±0.02 71.94±0.09 75.68±0.10 43.07±1.16 43.39±0.73 30.23±0.00 30.61±0.13

PiCSAR 93.22±0.22
∗ 93.55±0.33 93.90±0.28

∗ 93.88±0.22 77.00±0.18
∗ 75.93±0.13 46.91±1.02

∗ 44.44±2.28 31.46±0.04
∗ 31.42±0.27

Upper Bound 96.78±0.11 98.00±0.00 96.28±0.13 96.99±0.07 82.27±0.13 83.73±0.07 72.56±1.87 86.20±1.02 39.76±0.00 42.93±0.12

Table 1: Comparison of model accuracies across various baselines and benchmarks on LLMs.
Sampling: k = {6, 32} for Gemma-2-9B, Llama-3.1-8B, Qwen3-8B; k = {6, 16} for Llama-3.1-
70B, Qwen3-32B due to computational constraints. Bold: highest, underline: equal highest, ∗:
k = 6 outperforms k = 16, 32 baselines. PiCSAR with k = 6 outperforms larger k in 20/25 cases.

1.5 2.0 2.5 3.0 3.5

PiCSAR (1.2)
Greedy Decoding (3.2)

(3.7) p(True)
(3.6) Self-Certainty
(3.3) Self-Consistency

Figure 4: Critical Difference Diagram based on
Nemenyi Test, p < 0.05.

For the Qwen family (Qwen3-8B and Qwen3-
32B), PiCSAR generally leads across bench-
marks and sample counts (k). While there
are a few exceptions, PiCSAR maintains the
strongest overall profile. For instance, on
MATH500 with k = 6, it improves the
accuracy of Qwen3-8B from 75.93% (Self-
Consistency) to 77.00%. Our results show that PiCSAR outperforms most existing baselines and
datasets, demonstrating consistent improvements across various reasoning tasks. As shown in Ap-
pendix C.1, CISC (PiCSAR) consistently outperforms CISC (p(True)) across all baselines, indicat-
ing its potential for weighting augmentation, but detailed voting strategy analysis remains future
work. As shown in Table 4, the Nemenyi post-hoc test Demšar (2006) confirms PiCSAR signif-
icantly outperforms all baselines (p < 0.05), achieving the best average rank of 1.2. These find-
ings validate our hypothesis that the model’s confidence provides more informative signals than
frequency-based selection.

PiCSAR is sample efficient. PiCSAR with a small sampling budget (k = 6) frequently outperforms
both Self-Consistency and Self-Certainty at higher sampling budgets (k = 16, 32), narrowing the
gap to the upper bound by detecting correct reasoning even within a small sample. For instance,
Gemma-2-9B Instruct with k = 6 (46.53%) outperforms k = 32 (43.27%). This indicates that
correct reasoning chains are often present in small candidate sets, and that better selection is more
important than increased sampling. (See Appendix C.6 for details of the upper bound analysis.)

Overall, the joint score acts as a paired scoring function: the reasoning confidence (log p(r | x)),
calculated over the full reasoning path, provides an assessment of plausibility towards its own rea-
soning, while the answer confidence (log p(y | r, x)), focused on the final answer, serves as a
fine-grained discriminator. This approach yields consistent improvements across evaluated models.
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Method SVAMP GSM8K MATH500 GPQA-Diamond TheoremQA AIME 2024 AIME 2025
DS-Distill-llama-3-8B

Average 82.11±0.13 73.67±0.32 65.55±0.25 42.87±1.07 26.58±0.06 37.96±1.52 29.63±0.37

Self-Consistency 86.17±0.27 74.01±0.70 66.25±0.40 42.10±1.77 27.98±0.87 38.89±1.67 25.00±0.37

PiCSAR 85.67±0.07 76.42±0.16 67.20±0.60 47.31±0.17 28.02±0.78 47.78±4.01 33.33±1.11

Upper Bound 95.67±0.00 92.91±0.35 82.00±0.13 77.27±0.77 36.37±2.83 66.67±5.09 51.11±1.11

DS-Distill-Qwen-2.5-7B

Average 89.26±0.13 87.29±0.14 72.79±0.16 46.44±1.63 33.11±0.14 49.44±3.06 41.30±1.30

Self-Consistency 90.39±0.20 89.50±0.37 73.87±0.25 44.78±1.83 35.88±0.35 47.78±3.40 38.33±3.34

PiCSAR 91.78±0.48 88.18±0.07 74.00±0.70 52.36±2.88 36.76±0.44 61.11±1.11 51.11±1.11

Upper Bound 96.33±0.38 96.79±0.13 83.33±0.18 79.12±2.07 48.59±0.08 72.22±1.11 70.00±0.00

Qwen3-8B

Average 91.43±0.07 95.43±0.01 80.44±0.10 54.21±0.83 40.83±0.13 75.37±0.19 67.04±2.06

Self-Consistency 91.83±0.33 95.68±0.03 80.40±0.18 54.21±1.68 41.81±0.11 77.23±1.11 65.56±2.58

PiCSAR 94.33±0.33 95.94±0.04 80.60±0.13 59.43±1.61 42.57±0.27 81.33±1.34 68.89±2.22

Upper Bound 97.56±0.11 97.54±0.03 84.00±0.12 80.13±0.45 44.71±1.34 87.78±1.11 82.22±1.11

Table 2: Comparison of model accuracies across various baselines and benchmarks on LRMs.
For all evaluations, we use k = 6 sampling. PiCSAR outperforms 19/21 baselines and comparisons.

PERFORMANCE ON LARGE REASONING MODELS

Table 2 reports results on baselines evaluated from LRMs, with an additional of AIME 2024 and
AIME 2025. We observe that PiCSAR outperforms all baselines across all 18 comparisons. Rel-
ative to Self-Consistency, DS-Distill-Llama-3-8B demonstrates substantial 8.89% improvements
on AIME2024 and 8.33% on AIME2025. DS-Distill-Qwen-2.5-7B shows greater improvements
compared to Self-Consistency, with 12.33% and 12.78% accuracy improvement on AIME2024 and
AIME2025, respectively. When applied on a relatively more capable model such as Qwen3-8B, PiC-
SAR increases accuracy by 4.1% and 3.33% on AIME 2024 and AIME 2025, respectively. While
improvements on previously evaluated benchmarks such as MATH500, SVAMP, and GSM8K yield
smaller gains, we observe substantial improvements on GPQA-Diamond, with increases of 5.21%,
7.58%, and 5.22% for DS-Distill-Llama-3-8B, DS-Distill-Qwen-2.5-7B, and Qwen3-8B, respec-
tively. These trends mirror those observed with LLMs: gains are most pronounced on challenging
datasets where the models’ initial baseline accuracies are relatively lower. We conclude that PiCSAR,
by jointly maximising reasoning and answer confidence, validates the information plane principle
in Section 2.3 and provides a scoring method that improves accuracy both for LLMs and LRMs.

5 ANALYSIS

In our analysis we focus on studying: (1) the peak-to-sentence ratio dynamics, analysing how the
information density – the density of high-confidence steps in reasoning chains, correlates with over-
all accuracy; (2) the relationship between confidence scores and accuracy, both within and across
models; (3) the robustness of our confidence metric when generation and evaluation are decoupled.

5.1 SENTENCE-LEVEL CONFIDENCE DYNAMICS AS A PROXY FOR REASONING QUALITY

To understand the dynamics of PiCSAR, we analyse the evolution of answer confidence across rea-
soning chains. For a given reasoning chain r composed of sentences (r1, r2, . . . , rm) and its corre-
sponding final answer y, we measure how the model’s confidence in y changes as it processes more
of the reasoning. We compute a sequence of scores, log p(y | r1:j , x), for each partial reasoning pre-
fix r1:j , where j ranges from 1 to m. To capture the characteristics of these confidence sequences,
we rank the responses by PiCSAR scoring function into three groups (highest, middle, lowest), and
analyse the “peakiness” of the confidence trajectory within each group. We define a peak as a sen-
tence where the confidence log p(y | r1:j , x) exceeds the 95th percentile of all sentence-level scores
observed across reasoning chains with the correct answer for that particular problem. The peak-to-
sentence ratio is the peak count divided by the total sentences. We term this information density:
the proportion of reasoning sentences contributing meaningfully to answer confidence.

Table 3 reveals two key insights. (1) Higher peak-to-sentence ratio aligns with higher accuracy
across different models, showing that reasoning chains that lead to the correct answer tend to have
higher information density. For instance, Llama-3.1-8B achieves 53.33% accuracy with a 14.75%
ratio in the highest-scoring group, compared to 44.20% with only 8.58% in the lowest. (2) Longer
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Model PiCSAR Rank Avg Peak Count Avg Sentences Avg Peak-to-Sentence Ratio Accuracy

Llama-3.1-8B
Highest 1.88 16.43 14.75% 53.33%
Middle (Third Ranked) 2.00 22.86 12.75% 48.80%
Lowest 2.47 64.72 8.58% 44.20%

Llama-3.1-70B
Highest 1.80 14.09 15.53% 63.67%
Middle (Third Ranked) 1.83 19.87 12.98% 60.40%
Lowest 3.08 38.37 10.83% 59.40%

Qwen3-8B
Highest 1.99 15.78 17.63% 73.67%
Middle (Third Ranked) 1.91 17.57 16.95% 72.80%
Lowest 2.18 26.39 14.19% 69.40%

Qwen3-32B
Highest 1.48 11.62 22.39% 77.00%
Middle (Third Ranked) 1.57 12.02 19.43% 76.80%
Lowest 1.76 25.12 16.11% 72.60%

Gemma-2-9B
Highest 1.46 8.50 24.52% 46.53%
Middle (Third Ranked) 1.38 9.98 18.99% 44.00%
Lowest 1.20 11.58 14.32% 41.60%

Table 3: Peak count analysis across different PiCSAR confidence rankings. We observe that reason-
ing chains that lead to the correct answer tend to have a higher peak-to-sentence-ratio.

reasoning chains do not necessarily improve accuracy. Table 3 shows that the lowest-ranked re-
sponses are substantially longer yet less accurate. For example, Llama-3.1-8B averages 64.72 sen-
tences with 44.20% accuracy in the lowest group, versus 16.43 sentences with 53.33% accuracy in
the highest group. This observation aligns with recent findings of inverse scaling in test-time com-
pute (Chen et al., 2024; Wu et al., 2025; Hassid et al., 2025; Ghosal et al., 2025; Gema et al., 2025),
showing that solely extended reasoning length does not guarantee improved performance.

5.2 DUALITY OF CONFIDENCE: INTRA-MODEL RELIABILITY VS. INTER-MODEL VARIANCE

In this section, we investigate the reliability of PiCSAR for predicting correctness within individ-
ual models (intra-model reliability analysis) and examine whether these confidence scores remain
comparable across different models (inter-model variance analysis). For the intra-model reliability
analysis, we fit regressions for the Qwen and Llama families (Figure 5), with correctness (cor-
rect/incorrect) as the dependent variable and the answer confidence score as the independent vari-
able. This approach allows us to interpret the regression slope (β), which represents the incremental
change in log-odds of correctness per unit increase in confidence score.
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Figure 5: Calibration summary for Qwen3 and Llama-
3.1-8B models. We show that the β and r coefficients
are consistently positive across all models.

We find that the β is consistently positive
across all model sizes, indicating a strong
positive relationship between a sample’s
confidence score and its likelihood of be-
ing correct. For example, Qwen3-14B
shows a β of 0.7255, implying that for
every unit increase in the log-probability
score, the odds of the answer being correct
increase by a factor of over two (e0.7255 ≈
2.07). The Point-Biserial Correlation Co-
efficient further supports the positive rela-
tionship by measuring the linear association between binary correctness and continuous confidence
scores. These findings confirm that PiCSAR serves as a reliable predictor of correctness within
individual models. Details of both methods are in Appendix F.
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Figure 6: Comparison of % and
PiCSAR score.

However, inter-model variance analysis challenges the as-
sumption that confidence scores represent universal correct-
ness measures across different models. While intra-model re-
liability remains stable across different model sizes and archi-
tectures, confidence scores cannot be compared across models
of different parameter sizes and architectures. As shown in
Figure 6, the Llama family exhibits predictable trend: both ac-
curacy and confidence increase with model size. In contrast,
the Qwen family shows a non-monotonic relationship; Qwen3-
1.7B achieves the highest confidence while showing the lowest
accuracy. This difference implies that while there is a general
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trend that confidence is a useful proxy for selecting an accurate reasoning path from a set of candi-
dates within models, but its actual value is model-specific and incomparable across different models.

5.3 CONFIDENCE PORTABILITY: DECOUPLING GENERATION FROM EVALUATION

Having established the properties of the confidence signal within a single model, we extend our
analysis to multi-model scenarios, evaluating confidence signal robustness when generation and
evaluation are decoupled. This decoupling is motivated by practical system design, where one might
use a costly API model for reasoning confidence, while relying on a smaller local model for answer
confidence estimation. In this decoupled setting, the model that generates the reasoning chain (Mgen)
differs from the model that evaluates the answer confidence (Meval). The scoring function for a chain
ri generated by Mgen becomes:

Score(ri, yi) = log p(ri | x;Mgen)︸ ︷︷ ︸
Generated by Mgen

+ log p(yi | ⟨a⟩, ri, x;Meval)︸ ︷︷ ︸
Evaluated by Meval

. (4)
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Figure 7: Decoupling analysis for Llama-
3.1-70B and Qwen3-8B (Thinking Enabled)
as Mgen, with various Meval, showing perfor-
mance remains similar when different mod-
els are used to estimate log p(y | r, x).

We test this by having Mgen generate reasoning
chains, and various models acting as Meval. For
LRMs, the base instruct model is used as Meval.

Our results, detailed in Figure 7 and Appendix A,
demonstrate that overall accuracy remains largely
unaffected under this decoupling, with only mi-
nor degradation even when Meval is a significantly
smaller model than Mgen. For instance, accuracy
remains similar when Mgen is generated by Llama-
3.1-70B, while Meval is estimated with either Llama-
3.1-8B, or other smaller models. This suggests that
the answer confidence term, log p(y | r, x), is not
merely a model-specific artefact but functions as a
more portable measure of the logical entailment be-
tween a given reasoning chain and its conclusion.
This property enables flexible and computationally efficient answer confidence prediction.

6 RELATED WORK

Reasoning in LLMs. Enhancing reasoning abilities of LLMs has yielded significant gains on
complex tasks (Li et al., 2025; Muennighoff et al., 2025). While CoT reasoning improves per-
formance (Wei et al., 2022; Leang et al., 2024), subsequent work has introduced hierarchical rea-
soning phases, including multi-path exploration (Yao et al., 2023; Guan et al., 2025), step verifica-
tion (Lightman et al., 2024; Leang et al., 2025), and iterative refinement (Madaan et al., 2023). These
techniques do not apply to LRMs (Team et al., 2025; Yang et al., 2025a), which typically produce
long, unstructured outputs, making the approaches infeasible and computationally expensive.

Best-of-N (BoN) and Self-Consistency (SC). BoN is a simple alignment-via-inference method that
optimises outputs using a scoring function (Charniak & Johnson, 2005; Stiennon et al., 2020; Amini
et al., 2024). Inspired by scale-time inference, LLMs benefit from generating multiple samples and
selecting the best using reward models (Snell et al., 2024; Wu et al., 2024). Due to the cost of
training reward models, training-free alternatives such as Self-Consistency and its variants (Wan
et al., 2024; Wang et al., 2023b; Taubenfeld et al., 2025; Lyu et al., 2025) are widely adopted.

Sampling and Reranking in LLMs. Re-ranking is another common method to enhance gener-
ation quality (Adiwardana et al., 2020; Shen et al., 2021), often involving a trained “verifier” to
re-rank candidate solutions, which improves performance on tasks beyond fine-tuning (Cobbe et al.,
2021; Guan et al., 2025). Confidence estimation for re-ranking has been explored via sample agree-
ment (Kuhn et al., 2023; Manakul et al., 2023; Tian et al., 2024), via KL Divergence (Kang et al.,
2025) or prompting models to verbalise their confidence (Tian et al., 2023; Kadavath et al., 2022).
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7 CONCLUSION

We introduced PiCSAR, a sample-efficient, training-free scoring function for BoN sampling that
selects a reasoning chain by maximising a score decomposed into reasoning confidence and answer
confidence. PiCSAR yields consistent improvements across models and datasets, thereby narrowing
the gap to oracle performance. PiCSAR is also sample-efficient, requiring only k = 6 samples to
outperform baselines using k = 32 samples. The answer confidence component can be estimated
by different models than the one used for generation, enabling flexible and computationally efficient
deployment. At the trajectory level, peak-count-to-sentence ratios correlate with accuracy, show-
ing that reasoning chains leading to correct answers are more information-dense. However, while
confidence is predictive within a model, its absolute values remain model-specific and cannot rank
models. Overall, PiCSAR offers a promising probabilistic confidence route to reasoning selection.

REFERENCES

Daniel Adiwardana, Minh-Thang Luong, David R So, Jamie Hall, Noah Fiedel, Romal Thoppilan,
Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu, et al. Towards a human-like open-
domain chatbot. ArXiv preprint, abs/2001.09977, 2020. URL https://arxiv.org/abs/
2001.09977.

Afra Amini, Tim Vieira, Elliott Ash, and Ryan Cotterell. Variational best-of-n alignment. ArXiv
preprint, abs/2407.06057, 2024. URL https://arxiv.org/abs/2407.06057.
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A ADDITIONAL RESULTS FOR DECOUPLED CONFIDENCE ESTIMATION

In this section, we provide supplementary evidence that the decoupled confidence estimation exper-
iments introduced in Section 5.3 are portable across distinct evaluator models. This analysis aims to
strengthen the claim that the answer-confidence term, log p(y | r, x), does not depend on the specific
evaluator used.
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Figure 8: Decoupling plot by using various LLMs to evaluate p(y | r, x) across a particular model
reasoning chain, p(r | x). Each subplot represents a Mgen, and the x-axis represents various Meval.
The results remain similar when Meval varies, even with smaller models predicting larger Mgen.

Based on Figure 8, switching the evaluator model, Meval while holding the reasoning distribution
fixed yields a similar accuracy across datasets. This observation shows that the answer-confidence
term, log p(y | r, x), is highly portable, allowing small-scale LLMs to reliably evaluate the reasoning
chains of larger models.
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Figure 9: Decoupling plot by using various LLMs to evaluate p(y | r, x) across a particular model
reasoning chain, p(r | x). Each subplot represents a Mgen, and the x-axis represents various Meval.
The results remain similar when Meval varies, even with smaller models predicting larger Mgen.

When examining LRMs, we observe the same qualitative pattern (shown in Figure 9), indicating
that the phenomenon generalises across models. This reinforces the hypothesis that decoupled con-
fidence estimation captures a stable property of the reasoning process itself, rather than an artefact
of the evaluator model.
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B ADDITIONAL IMPLEMENTATION DETAILS

Sampling and Decoding. For sampling-based methods, we use k ∈ {6, 32} reasoning traces
for smaller models and k ∈ {6, 16} for the larger Llama-3.1-70B and Qwen3-32B models, due
to computational constraints. For all the models, we apply a hyperparameter of temperature=0.7
and top-p=0.6. The greedy decoding (temperature=0, top-p=1.0) baseline corresponds to k = 1,
for which we report Pass@1 accuracy. For specialised LRMs, we use k = 6 uniformly across all
methods due to computational constraints. Since LRMs are not typically evaluated using greedy
decoding, we follow the approach of Yang et al. (2025a), which is a temperature of 0.6, top-k of 20
and top-p=0.95, reporting the average accuracy across k samples. For all our baselines except greedy
decoding, we evaluate three times with the standard error reported. For LLMs, we cap the maximum
token budget at 8,096 tokens. For LRMs, we follow the configuration of Yang et al. (2025a), using
a maximum output length of 32,768 tokens, except for AIME’24 and AIME’25, where we extend
the budget to 38,912 tokens to ensure sufficient reasoning space.

Baselines and Hyperparameters We compare PiCSAR against a range of decoding, confidence
and re-ranking baselines.

• Greedy Decoding As a deterministic decoding strategy, greedy decoding selects at each step the
token with the highest conditional probability. Unlike greedy decoding, which selects a single
high-probability continuation, PiCSAR evaluates multiple full reasoning trajectories and ranks
them using joint reasoning-and-answer log-likelihood, enabling selection of the most globally
probable chain.

• Self-Consistency (SC) (Wang et al., 2023b). This method samples k reasoning chains and aggre-
gates predictions via majority voting on the final answer. In cases where multiple answers receive
equal support, we break ties by selecting one at random. While SC relies purely on majority voting
over final answers, PiCSAR incorporates the full reasoning chain’s token-level likelihood along
with answer confidence, allowing it to prefer coherent but minority reasoning paths that SC would
discard.

• Universal Self-Consistency (USC) (Chen et al., 2023b). We include USC only for LLMs under
k=6 sampling, as prompt and context length restrictions prevent its application in the LRM setting.
We use the prompting strategy proposed in Chen et al. (2023b). Unlike USC, which asks the
model to internally judge “consistency” among samples, PiCSAR uses a probabilistic, model-
agnostic scoring function based directly on log-likelihoods of reasoning and answers, avoiding
USC’s reliance on model self-evaluation and context-window limits.

• Self-Certainty (Kang et al., 2025). This method applies KL-divergence-based confidence scores,
aggregated via Borda voting with parameter p=0.5. It provides a probabilistic variant of self-
consistency, where each candidate’s confidence distribution informs the re-ranking process. In-
stead of re-ranking chains with KL-based self-estimated correctness like Self-Certainty, PiCSAR
scores each candidate through the true generative probabilities of its entire reasoning path and
answer

• P(True) (Kadavath et al., 2022). This method prompts the model to evaluate whether the answer
or reasoning is True or False, then parses the probability of the response. While P(True) extracts a
scalar correctness probability from a meta-prompt, PiCSAR leverages the actual likelihood struc-
ture of the model’s forward pass, combining reasoning and answer probabilities without relying
on verbalized or poorly calibrated self-judgments.

• CISC (Taubenfeld et al., 2025). This method aggregates multiple sampled reasoning paths by
weighting each path’s vote with the model’s own estimated correctness. For a fair comparison,
we compare CISC with PiCSAR as estimated correctness, termed CISC (PiCSAR), with CISC
(P(True), which originally proposed, in Appendix C.1.

We have summarised the novelty of PiCSAR against other baselines in table 4.

Baseline Restrictions Due to context length constraints, USC can only handle a limited number
of samples and is therefore evaluated exclusively in the LLM setting with k=6, and excluded from
all LRM experiments.

Ablations To disentangle the contributions of the two terms in our joint objective, we introduce
single-term ablations. Reasoning Confidence ranks candidates solely by log p(r | x), favouring
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Method SC USC Self-Cert. PiCSAR
Full Reasoning Chain ✓ ✓ ✓
Model Confidence ✓ ✓ ✓
Computationally Efficient ✓ ×∗ ✓ ✓
Smaller Model Capable ✓ ✓ ✓
∗Due to context length

Table 4: Comparison of Different Methods

plausible reasoning traces. Answer Confidence instead ranks by log p(y | r, x), prioritising certainty
in the final answer given the reasoning path.

Framework and Hardware. All experiments are conducted using the vLLM framework (Kwon
et al., 2023). All experiments are conducted on 2–4 NVIDIA H100 GPUs (80GB). Results are
reported as averages over independent evaluation runs to ensure robustness.

Prompt For the reasoning confidence log p(r | x) generation, we utilise the following prompt:

You are a helpful AI Assistant that provides well-reasoned and
detailed responses. Think step by step and provide the final
answer in the form of ‘The final answer is: [answer]’. Decompose
and break down your reasoning into smallest possible steps (Do
not combine multiple inferences in one step), and do label your
steps very clearly with ‘Step 1... \n\n Step 2... \n\n Step 3....
\n\n..... \n\n Step N-1..... \n\n Step N \n\n The final answer is:
[answer]’.

For predicting answer confidence log p(y | r, x), we follow a similar method to (Ton et al., 2024)
but without training. Specifically, we use the prompt template ⟨a⟩ with 5-shot learning:

You are a helpful assistant. When you see a potential partial
reasoning followed by ‘<sep>’, output the final answer.

B.1 ANALYIS OF PROMPTS

To verify that the observed improvements are not attributable to the explicit instruction prompt
(see Equation 3), we evaluated several alternative prompt formulations on the Llama-3.1-8B model.
Using the MATH500 benchmark, we compared the resulting answer-confidence estimates across
prompts.

Prompt 1: "You are a helpful assistant. When you see a potential
partial reasoning followed by ’<sep>’, output the final answer.
Here are some examples" + system contents + "You are not allowed to
provide any redundant symbols at for the final answer, including
’#’, ’/’, ’$’, ’**’ or others. Please only provide numbers as the
final answer."

Prompt 2 (original prompt): "You are a helpful assistant. When you
see a potential partial reasoning followed by ’<sep>’, output the
final answer. Here are some examples"

Prompt 3: "You are a helpful assistant. By providing the partial
reasoning, output the final answer directly without any additional
texts."
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Prompt 4: "You are a helpful assistant. Based on the reasoning
provided, output the final answer directly without any additional
texts. Only Provide the final answer."

Prompt 5: "You are a helpful assistant. Provide the final answer
directly without any additional texts (only the final answer) based
on the partial reasoning."

Prompt Accuracy
Prompt 1 54.60%
Prompt 2 54.00%
Prompt 3 54.20%
Prompt 4 54.40%
Prompt 5 54.40%

Table 5: Performance of PiCSAR on Llama-3.1-8B on MATH500 with Different Prompts for
Answer-Confidence Extraction

Our results show that changes in prompt phrasing have minimal influence on model performance.
This suggests that, although the instructional content of a prompt remains essential for eliciting the
final answer, the precise wording plays only a limited role in shaping the model’s behaviour.

C FURTHER EXPERIMENTAL RESULTS AND ABLATION STUDIES

C.1 COMPARISON BETWEEN CISC (P(TRUE)) AND CISC (PICSAR)

Based on Table 6, PiCSAR shows a great performance when integrated with weightage voting on
CISC (Taubenfeld et al., 2025), consistently improving baseline CICS (p(True)) metrics across all
evaluated methods. This indicates that PiCSAR functions effectively both as a standalone selection
mechanism and as an augmentation to existing weighting schemes. While these findings suggest
promising direction for performance optimisation, this lies beyond the current research scope.

C.2 COMPONENT ANALYSIS AND MAIN RESULTS BREAKDOWN

In this section, we first provide a detailed breakdown of the experimental results for all methods, as
summarised in Table 7, and then we introduce and analyse the performance of PiCSAR-N, a length-
normalised variant of our primary method. Finally, we present ablation studies on LRMs in Table 8.
We compare three primary approaches: Reasoning Confidence (log p(r | x)), Answer Confidence
(log p(y | r, x)), and our main method, PiCSAR (the joint probability).

Across the majority of benchmarks and model families presented in Table 7, we generally observe
that PiCSAR outperforms its individual components. This pattern underscores the benefit of jointly
considering the likelihood of both the reasoning process and the final answer. However, there are
specific instances where relying solely on answer confidence, log p(y | r, x), achieves comparable
or slightly better results (e.g., Gemma-2-9B and Qwen3-32B on GPQA-Diamond for k = 32),
highlighting that answer confidence remains a strong and competitive signal on its own.

C.3 ANALYSIS OF LENGTH-NORMALISED VARIANT: PICSAR-N

As introduced in the main paper, we proposed a variant of our method, PiCSAR-N, which applies
length normalisation to the reasoning confidence term. The scoring function for PiCSAR-N is de-
fined as:

Score(r, y) =
[
1

N
log p(r | x)

]
+ log p(y | ⟨a⟩, r, x), (5)
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Method SVAMP GSM8K MATH500 TheoremQA
k = 6 k = 16/32 k = 6 k = 16/32 k = 6 k = 16/32 k = 6 k = 16/32

Gemma-2-9B-Instruct

CISC (p(True) 89.22±0.22 88.67±0.38 88.89±0.26 89.14±0.15 46.87±0.33 47.67±0.07 17.09±0.43 17.45±0.12

PiCSAR 89.00±0.38 91.02±0.59 88.66±0.11 88.99±0.20 46.53±0.29 47.13±0.13 18.62±0.39 18.88±0.54

CISC (PiCSAR) 91.89±0.22 92.33±0.19 91.85±0.20 92.43±0.22 51.33±0.07 52.13±0.29 21.02±0.58 23.16±0.39

Upper Bound 24.32±0.49 32.40±0.20 93.44±0.09 95.60±0.04 58.47±0.27 66.67±0.47 55.22±1.10 82.49±1.02

Llama-3.1-8B-Instruct

CISC (p(True)) 91.44±0.48 92.78±0.29 91.17±0.18 91.91±0.49 54.93±0.41 58.20±0.42 18.03±0.73 39.38±18.91

PiCSAR 91.78±0.11 93.44±0.89 89.09±0.13 89.98±0.23 53.33±0.73 53.87±0.70 20.08±0.43 19.72±0.39

CISC (PiCSAR) 94.33±0.33 96.22±0.11 93.98±0.14 94.23±0.08 62.47±0.07 62.40±0.50 22.71±0.25 41.50±17.34

Upper Bound 96.78±0.11 99.11±0.11 96.15±0.07 98.18±0.04 72.80±0.23 82.20±0.60 28.20±0.32 37.846±1.13

Qwen3-8B (Non-thinking)

CICS (p(True)) 94.33±0.00 94.56±0.11 93.80±0.13 94.05±0.14 77.20±0.20 77.93±0.24 31.24±0.04 32.75±0.45

PiCSAR 93.56±0.22 95.13±0.22 92.33±0.13 93.22±0.08 73.67±0.24 73.40±0.13 29.76±0.57 29.17±0.64

CICS (PiCSAR) 95.11±0.11 95.67±0.19 94.89±0.14 95.22±0.12 79.80±0.40 79.60±0.42 36.46±0.04 36.32±0.04

Upper Bound 96.33±0.67 97.89±0.11 95.52±0.00 96.84±0.03 81.13±0.44 83.53±0.24 34.94±0.00 40.03±0.35

Llama-3.1-70B-Instruct

CISC (p(True)) 94.22±0.22 94.11±0.11 94.68±0.00 95.09±0.09 65.07±1.05 66.27±0.29 28.07±0.68 29.41±0.12

PiCSAR 94.10±0.11 95.58±0.22 94.58±0.03 94.81±0.13 63.67±1.51 64.07±0.87 27.84±0.19 26.73±0.27

CISC (PiCSAR) 96.78±0.11 96.44±0.11 95.90±0.08 96.03±0.11 69.60±0.31 70.80±0.76 31.91±0.31 31.59±0.27

Upper Bound 97.22±0.22 97.78±0.22 96.91±0.03 97.44±0.03 77.07±0.47 81.67±0.18 40.70±0.20 43.47±0.18

Qwen3-32B (Non-thinking)

CICS (P-True) 94.33±0.00 94.56±0.11 93.80±0.13 94.05±0.14 77.20±0.20 77.93±0.24 31.24±0.04 32.75±0.45

PiCSAR 93.22±0.22 93.55±0.33 93.90±0.28 93.88±0.22 77.00±0.18 75.93±0.13 31.46±0.04 31.42±0.27

CICS (PiCSAR) 95.11±0.11 95.67±0.19 94.89±0.14 95.22±0.12 79.80±0.40 79.60±0.42 36.46±0.04 36.32±0.04

Upper Bound 96.78±0.11 98.00±0.00 96.28±0.13 96.99±0.07 82.27±0.13 83.73±0.07 39.76±0.00 42.93±0.12

Table 6: Performance comparison on benchmarks across CISC (p(True)) and CISC (PiCSAR)
on LLMs. Values represent mean accuracy ± standard error over three independent evaluation runs.
Bold indicates the best-performing method per column based on the mean accuracy. Sampling
parameters: k = {6, 32} for Gemma-2-9B, Llama-3.1-8B, and Qwen3-8B; k = {6, 16} for Llama-
3.1-70B and Qwen3-32B.

where N is the number of tokens in the reasoning chain r. This normalisation is intended to mitigate
any potential bias against longer, more detailed reasoning paths which might be unfairly penalised
by the sum of negative log-probabilities.

C.4 ANALYSIS BETWEEN TOKEN LENGTH, PICSAR SCORE, AND MODEL PERFORMANCE
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Figure 10: Relationship between token length, probability, and accuracy.

Figure 10a shows that correct instances predominantly cluster in regions of high probability and
short sequence length, indicating that concise reasoning is strongly associated with higher quality.
This pattern is reinforced by Figure 10b, which demonstrates a consistent decline in accuracy as
sequence length grows. Together, the two figures highlight that shorter, more confident reasoning
trajectories tend to yield more accurate performance.
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Method SVAMP GSM8K MATH500 GPQA-Diamond
k = 6 k = 16/32 k = 6 k = 16/32 k = 6 k = 16/32 k = 6 k = 16/32

Gemma-2-9B-Instruct

Reasoning Confidence 88.66±0.33 89.67±0.49 88.51±0.05 88.46±0.25 45.87±0.47 45.87±0.68 30.64±0.45 32.32±1.52

Answer Confidence 89.66±0.33 89.02±0.59 88.05±0.17 87.04±0.05 46.47±0.66 46.33±0.18 34.01±2.65 38.22±1.76

Reasoning confidence (normalised) 89.56±0.44 90.22±0.29 88.76±0.26 89.45±0.20 46.33±0.67 46.47±0.18 29.80±1.91 27.95±2.15

PiCSAR 89.00±0.38 91.02±0.59 88.66±0.11 88.99±0.20 46.53±0.29 47.13±0.13 32.32±0.51 34.01±1.94

PiCSAR-N 89.67±0.19 89.22±0.29 88.91±0.12 89.27±0.11 46.60±0.92 46.93±0.18 35.35±1.62 38.05±1.90

Upper Bound 93.44±0.22 95.67±0.38 93.44±0.09 95.60±0.04 58.47±0.27 66.67±0.47 55.22±1.10 82.49±1.02

Llama-3.1-8B-Instruct

Reasoning Confidence 91.56±0.11 92.10±0.84 88.89±0.09 89.67±0.27 53.07±0.37 51.53±0.35 29.12±1.02 32.49±2.92

Answer Confidence 89.11±0.29 90.44±0.95 86.84±0.20 86.69±0.04 49.27±0.64 50.20±0.35 28.62±0.73 29.46±2.63

Reasoning confidence (normalised) 90.22±0.11 90.67±0.69 88.38±0.23 86.10±0.08 50.67±0.47 47.13±1.39 22.05±0.89 18.35±0.84

PiCSAR 91.78±0.11 93.44±0.89 89.09±0.13 89.98±0.23 53.33±0.73 53.87±0.70 29.80±1.34 33.67±3.06

PiCSAR-N 90.22±0.48 92.22±0.29 88.59±0.18 89.33±0.42 51.53±0.48 51.60±0.42 30.81±0.87 30.64±1.61

Upper Bound 96.78±0.11 99.11±0.11 96.15±0.07 98.18±0.04 72.80±0.23 82.20±0.60 65.82±1.50 92.76±0.73

Qwen3-8B (Non-thinking)

Reasoning Confidence 92.78±0.11 94.34±0.33 92.26±0.13 92.31±0.03 73.53±0.24 72.53±0.48 45.96±1.01 43.77±1.21

Answer Confidence 93.45±0.19 94.02±0.40 93.22±0.03 92.94±0.17 71.07±0.41 71.20±0.76 51.01±1.52 43.43±2.53

Reasoning Confidence (normalised) 93.33±0.00 93.67±0.69 92.79±0.00 92.61±0.20 71.93±0.71 69.27±0.44 43.43±0.51 38.05±1.78

PiCSAR 93.56±0.22 95.13±0.22 92.33±0.13 93.22±0.08 73.67±0.24 73.40±0.13 46.98±1.01 43.69±1.26

PiCSAR-N 94.44±0.11 94.56±0.59 93.69±0.00 93.77±0.13 73.80±0.20 72.13±0.98 47.98±1.01 44.95±0.58

Upper Bound 96.33±0.67 97.89±0.11 95.52±0.00 96.84±0.03 81.13±0.44 83.53±0.24 76.26±1.62 86.36±0.29

Llama-3.1-70B-Instruct

Reasoning Confidence 94.44±0.11 94.80±0.19 94.46±0.08 93.62±0.18 63.47±1.35 63.00±0.10 43.94±2.62 45.96±2.54

Answer Confidence 93.89±0.22 94.67±0.38 94.10±0.25 94.68±0.23 59.40±1.30 60.07±1.09 45.12±0.45 42.26±1.78

Reasoning Confidence (normalised) 93.33±0.38 93.89±0.22 93.37±0.03 93.34±0.26 65.60±0.60 65.13±0.13 40.07±1.87 37.04±0.89

PiCSAR 94.10±0.11 95.58±0.22 94.58±0.03 94.81±0.13 63.67±1.51 64.07±0.87 46.91±2.65 46.46±2.59

PiCSAR-N 94.44±0.11 94.56±0.59 94.07±0.00 94.14±0.13 72.00±0.20 70.33±0.98 47.98±1.01 44.95±0.58

Upper Bound 97.22±0.22 97.78±0.22 96.91±0.03 97.44±0.03 77.07±0.47 81.67±0.18 75.59±0.61 87.71±0.45

Qwen3-32B (Non-thinking)

Reasoning confidence 92.78±0.22 93.33±0.29 93.19±0.28 94.54±0.22 76.47±0.07 75.87±0.18 44.78±0.94 42.59±1.02

Answer confidence 92.56±0.11 92.22±0.29 93.84±0.05 93.42±0.13 75.40±0.46 74.67±0.18 51.85±0.61 44.11±0.94

Reasoning Confidence (normalised) 93.33±0.19 94.11±0.29 93.39±0.00 93.44±0.30 75.47±0.27 75.53±0.18 49.33±1.18 37.88±1.27

PiCSAR 93.22±0.22 93.55±0.33 93.90±0.28 93.88±0.22 77.00±0.18 75.93±0.13 46.91±1.02 44.44±2.28

PiCSAR-N 93.33±0.38 93.89±0.22 94.12±0.03 94.09±0.26 76.40±0.60 75.13±0.13 40.07±1.87 37.04±0.89

Upper Bound 96.78±0.11 98.00±0.00 96.28±0.13 96.99±0.07 82.27±0.13 83.73±0.07 72.56±1.87 86.20±1.02

Table 7: Performance comparison on benchmarks across methods on LLMs. Values represent
mean accuracy ± standard error over three independent evaluation runs. Bold indicates the best-
performing method per column based on the mean accuracy. Sampling parameters: k = {6, 32} for
Gemma-2-9B, Llama-3.1-8B, and Qwen3-8B; k = {6, 16} for Llama-3.1-70B and Qwen3-32B.

C.5 ABLATION STUDIES ON LLMS AND LRMS

The results for PiCSAR-N are included in Table 7 and Table 8. As shown, both PiCSAR and
PiCSAR-N consistently surpass the other baselines, including their corresponding reasoning confi-
dence metrics (with and without normalisation). The performance difference between PiCSAR and
PiCSAR-N is not consistently in one direction; each variant excels on different model-dataset com-
binations. For instance, PiCSAR-N shows stronger performance with Gemma-2-9B on MATH500
(k = 6) and GPQA-Diamond, whereas the non-normalised PiCSAR is clearly superior for Llama-
3.1-8B across most settings. This suggests that the utility of length normalisation may depend on
model-specific characteristics, such as tendencies towards verbosity.

Based on Table 7, we also observe that 20/40 results of the length-normalised (PiCSAR-N) versions
outperform the non-length normalised versions (PiCSAR), demonstrating that length-normalisation
does not perform worse than the non-length normalised version. This suggests that length normali-
sation is not detrimental and does not consistently weaken PiCSAR.

We further conducted ablation studies on LRMs, with results reported in Table 8. Here, we compare
PiCSAR and PiCSAR-N against both standard and normalised reasoning confidence, as well as an-
swer confidence. The results confirm that our joint probability methods, PiCSAR and PiCSAR-N,
consistently achieve top performance, similar to the findings with LLMs. Interestingly, we observe
that maximising answer confidence alone yields strong results, sometimes comparable to PiCSAR,
particularly on the DS-Distill-llama-3-8B model. This reinforces the value of the answer confi-
dence signal while highlighting the general effectiveness of PiCSAR’s approach in combining both
reasoning and answer confidence.
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Method AIME 2024 AIME 2025 MATH500 SVAMP GSM8K GPQA-Diamond
DS-Distill-llama-3-8B

Reasoning Confidence 44.43±5.56 35.56±1.11 66.60±0.60 83.67±0.00 72.97±0.30 46.97±0.29

Reasoning Confidence (Normalised) 33.33±3.85 28.89±1.12 65.70±1.30 83.00±0.13 76.08±0.23 41.41±1.05

Answer Confidence 42.22±4.01 32.22±1.11 67.60±1.80 88.33±0.16 76.06±0.43 48.99±1.62

PiCSAR 47.78±4.01 33.33±1.13 67.20±0.60 85.67±0.07 76.42±0.16 47.31±0.17

PiCSAR-N 40.00±5.09 32.22±1.13 67.40±1.00 89.00±0.00 75.73±0.41 47.47±2.78

Upper Bound 66.67±5.09 51.11±1.11 82.00±0.13 95.67±0.00 92.91±0.35 77.27±0.77

DS-Distill-Qwen-2.5-7B
Reasoning Confidence 57.78±1.11 51.11±1.11 72.93±0.81 91.33±0.58 87.83±0.13 52.02±2.81

Reasoning Confidence (Normalised) 54.44±2.22 45.56±2.22 74.20±1.10 90.33±0.58 88.26±0.20 45.96±2.67

Answer Confidence 50.00±5.09 44.44±2.22 72.60±0.23 91.00±0.51 88.91±0.08 53.20±2.19

PiCSAR 61.11±1.11 51.11±1.11 74.00±0.70 91.78±0.48 88.18±0.07 52.36±2.88

PiCSAR-N 57.78±2.22 48.89±2.22 73.40±1.10 91.78±0.29 89.60±0.18 50.34±2.19

Upper Bound 72.22±1.11 70.00±0.00 83.33±0.18 96.33±0.38 96.79±0.13 79.12±2.07

Qwen3-8B
Reasoning Confidence 80.00±0.00 68.89±2.22 79.20±0.00 93.00±0.33 95.92±0.03 58.59±1.62

Reasoning Confidence (Normalised) 67.78±2.22 65.56±4.01 80.00±0.00 93.56±0.56 95.72±0.05 56.23±1.76

Answer Confidence 76.67±0.00 73.33±1.92 80.13±0.33 93.78±0.11 95.37±0.00 60.61±0.29

PiCSAR 81.33±1.34 68.89±2.22 80.60±0.13 94.33±0.33 95.94±0.04 59.43±1.61

PiCSAR-N 76.67±3.33 70.00±5.09 89.67±0.37 94.22±0.56 95.08±0.03 61.11±1.77

Upper Bound 87.78±1.11 82.22±1.11 84.00±0.12 97.56±0.11 97.54±0.03 80.13±0.45

Table 8: Performance comparison of model across various baselines and benchmarks on
LRMs, measured in terms of accuracy. (%) For all the evaluations, we use k = 6 sampling.
PiCSAR outperforms all baselines with more pronounced gains in more challenging benchmarks.

C.6 THE IMPORTANCE OF SELECTION: INTERPRETING THE UPPER BOUND:

While PiCSAR consistently outperforms other heuristics, it necessarily falls short of the oracle Up-
per Bound, whose behaviour provides insight into the underlying challenges. On easier benchmarks
such as SVAMP and GSM8K, the upper bound saturates quickly. For instance, increasing the sam-
ple size from k = 6 to k = 32 with Llama-3.1-70B on GSM8K raises accuracy only marginally
from 96.91% to 97.44%, indicating that correct reasoning paths are usually present in small sample
sets, and that selection rather than generation is the main bottleneck. In contrast, on more demand-
ing tasks such as MATH500 and GPQA-Diamond, the upper bound continues to rise with larger
k, as seen with Gemma-2-9B on GPQA-Diamond where accuracy jumps from 55.22% to 82.49%,
reflecting the intrinsic difficulty of generating correct answers. In both regimes, PiCSAR demon-
strates its value: in selection-limited settings, it reliably identifies correct candidates from small
pools, while in generation-limited scenarios, it narrows the gap to the oracle by detecting correct
reasoning even when correct answers are sparse, highlighting that improving selection is often as
important as enlarging the sampling budget.

C.7 ANALYSIS OF FALLBACK MECHANISM

To assess how sensitive our method is to the penalty assigned when a generation fails, i.e., no
answer token is produced and the answer-confidence term cannot be calculated, we tested several
fallback values for the Answer Confidence score (Y ). Specifically, we compared our default setting
of log p(y | r,X) = −10 with more conservative penalties of Y = −20 and Y = −100. As shown
in Table 9, downstream accuracy is unchanged across all configurations. This indicates that, as long
as the fallback value is sufficiently low to denote a failure state, its precise magnitude does not affect
candidate rankings.

log p(y | r,X) Accuracy
−10 53.40%
−20 53.40%
−100 53.40%

Table 9: Sensitivity analysis of the Answer Confidence fallback value (Y ) on model accuracy. The
performance is robust to the magnitude of the penalty.
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Samples PiCSAR Accuracy Self-Consistency Accuracy
6 89.11% 88.15%

10 89.89% 88.56%
16 89.89% 88.11%
32 90.22% 88.89%

Table 10: Scaling analysis of GEMMA-2-9B on SVAMP comparing PiCSAR against Self-
Consistency across varying sample counts.

C.8 ANALYSIS OF PERFORMANCE WITH NUMBER OF SAMPLES AND TEMPERATURE

We first examine the scaling behavior of PiCSAR regarding the number of candidate generations
(k). We evaluate GEMMA-2-9B on the SVAMP dataset with sample budgets ranging from k = 6
to k = 32. As shown in Table 10, PiCSAR exhibits scaling properties, with accuracy consistently
improving as the candidate pool expands (rising from 89.11% at k = 6 to 90.22% at k = 32). In
contrast, Self-Consistency plateaus earlier and remains consistently outperformed by our method.
This indicates that PiCSAR is more effective at leveraging larger compute budgets to identify correct
reasoning chains.

Temperature PiCSAR Accuracy
0.7 89.89%
1.0 89.67%

Table 11: Effect of sampling temperature on GEMMA-2-9B performance on SVAMP.

Additionally, we assess the stability of our method with respect to generation stochasticity by com-
paring performance at sampling temperatures of T = 0.7 and T = 1.0. The results, summarized in
Table 11, reveal negligible performance variance (89.89% vs. 89.67%). These results indicate that
PiCSAR is robust to moderate changes in generation hyperparameters and maintains high precision
even under more stochastic sampling conditions (T = 1.0).
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C.9 EXAMPLE OF PICSAR SCORING

Question: Every day, Wendi feeds each of her chickens three cups
of mixed feed. She gives the flock three meals per day. In the
morning, she gives 15 cups of feed, and in the afternoon she gives
another 25 cups. How many cups of feed must she give in the final
meal of the day if her flock contains 20 chickens?

High PiCSAR Score
Step 1: Determine the total number of cups of feed given in the
morning. Wendi gives 15 cups.
Step 2: Determine the total number of cups of feed given in the
afternoon. Wendi gives 25 cups.
Step 3: Total feed given so far = 15 cups + 25 cups = 40 cups.
Step 4: Each chicken needs 3 cups of feed per day.
Step 5: Total daily feed required = 3 cups/chicken * 20 chickens =
60 cups.
Step 6: Total given in morning and afternoon = 40 cups.
Step 7: Final meal feed = 60 cups - 40 cups = 20 cups.
The final answer is: 20.
PiCSAR Score: -36.760562883843484

Low PiCSAR Score
Step 1: Determine the total morning feed. Wendi gives 15 cups.
Step 2: Determine the total afternoon feed. Wendi gives 25 cups.
Step 3: Total feed in morning and afternoon = 15 + 25 = 40 cups.
Step 4: Since there are three meals, multiply the morning+afternoon
total by 1.5 to estimate total daily feed. Total = 40 * 1.5 = 60
cups.
Step 5: Each chicken is assumed to get 3 cups per meal, so 3 meals
* 3 cups = 9 cups per chicken per day.
Step 6: Total feed needed per day = 20 chickens * 9 cups = 180
cups.
Step 7: Final meal feed = 180 cups - 40 cups = 140 cups.
The final answer is: 140.
PiCSAR Score: -112.79042702552356

We can observe that a concise generation with high probability leads
to higher quality than a low-probability generation with longer
length.

D LIMITATION

PiCSAR primarily targets domains with well-defined reasoning structures and definitive answers,
such as mathematical and scientific problem-solving. We view this scope as both deliberate and
essential: these domains represent a substantial class of high-value reasoning tasks where precision
is paramount. Furthermore, restricting our analysis to these settings enables a rigorous evaluation of
confidence calibration, a task that remains notoriously difficult in open-ended domains characterized
by ambiguity and multiple valid solutions. This controlled environment allows us to validate the
efficacy of model confidence as a selection metric without the confounding factors of subjective
evaluation.

Extending PiCSAR to open-ended generation remains an important avenue for future research. To
address the lack of definitive answer boundaries in such tasks, a promising direction is to augment
the probabilistic framework with learned reward models for answer evaluation. We believe this
adaptation could extend the reliability benefits of PiCSAR beyond fixed-format problems, offering
a pathway toward robust reasoning in broader, general-purpose applications.
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E ADDITIONAL EXPERIMENTS FOR CONFIDENCE SELECTION METHOD

In this section, we show all the models across datasets (GSM8K, MATH500 and AIME2024), which
consist of a variety of difficulties. We observe a consistent pattern across PiCSAR. In addition,
the utility of our confidence metric extends to filtering for high-reliability answers. For GSM8K
and MATH500, we use the median as our threshold with outliers removed, similar to Section 2.3.
However, as for AIME2024, as the instance is similar, we include all the instances include the
outliers, and set the threshold to 60% for both x and y-axis.

GSM8K
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(b) Quadrant-split representation with Q1–Q4 de-
fined by median thresholds of reasoning and answer
confidence.

Figure 11: Information Plane visualisations of Llama-3.1-8B on the GSM8K dataset (k = 6). Green
indicates correct answers, Red indicates incorrect ones.
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Figure 12: Information Plane visualisations of Gemma-2-9B on the GSM8K dataset (k = 6). Green
indicates correct answers, Red incorrect ones.
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Figure 13: Information Plane visualisations of Gemma-2-9B on the GSM8K dataset (k = 6). Green
indicates correct answers, Red incorrect ones.
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(b) Quadrant-split representation with Q1–Q4 de-
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Figure 14: Information Plane visualisations of Gemma-2-9B on the GSM8K dataset (k = 6). Green
indicates correct answers, Red incorrect ones.
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Figure 15: Information Plane visualisations of Gemma-2-9B on the GSM8K dataset (k = 6). Green
indicates correct answers, Red incorrect ones.
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(b) Quadrant-split representation with Q1–Q4 de-
fined by median thresholds of reasoning and answer
confidence.

Figure 16: Information Plane visualisations of Llama-3.1-8B on the MATH500 dataset (k = 6).
Green indicates correct answers, Red incorrect ones.
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(b) Quadrant-split representation with Q1–Q4 de-
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Figure 17: Information Plane visualisations of Llama-3.1-70B on the MATH500 dataset (k = 6).
Green indicates correct answers, Red incorrect ones.
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(b) Quadrant-split representation with Q1–Q4 de-
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Figure 18: Information Plane visualisations of Gemma-2-9B on the MATH500 dataset (k = 6).
Green indicates correct answers, Red indicates incorrect ones.
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(a) Continuous distribution without quadrant parti-
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(b) Quadrant-split representation with Q1–Q4 de-
fined by median thresholds of reasoning and answer
confidence.

Figure 19: Information Plane visualisations of Qwen3-8B on the MATH500 dataset (k = 6). Green
indicates correct answers, Red incorrect ones.
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(b) Quadrant-split representation with Q1–Q4 de-
fined by median thresholds of reasoning and answer
confidence.

Figure 20: Information Plane visualisations of Qwen3-8B on the MATH500 dataset (k = 6). Green
indicates correct answers, Red incorrect ones.
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(a) Continuous distribution without quadrant parti-
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(b) Quadrant-split representation with Q1–Q4 de-
fined by median thresholds of reasoning and answer
confidence.

Figure 21: Information Plane visualisations of DS-Distilled-Llama-8B on the AIME2024 dataset
(k = 6). Green indicates correct answers, Red incorrect ones.
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(b) Quadrant-split representation with Q1–Q4 de-
fined by median thresholds of reasoning and answer
confidence.

Figure 22: Information Plane visualisations of DS-Distilled-Llama-8B on the AIME2024 dataset
(k = 6). Green indicates correct answers, Red incorrect ones.
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(a) Continuous distribution without quadrant parti-
tioning.
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(b) Quadrant-split representation with Q1–Q4 de-
fined by median thresholds of reasoning and answer
confidence.

Figure 23: Information Plane visualisations of DS-Distilled-Llama-8B on the AIME2024 dataset
(k = 6). Green indicates correct answers, Red incorrect ones.

E.1 75% THRESHOLD ON INFORMATION PLANE

As shown in Figure 24, increasing the confidence thresholds from the median to the 75th percentile
isolates a region in the Information Plane with significantly higher accuracy, effectively identifying
the most trustworthy solutions.
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(a) Quadrants defined by the 50th percentile (median)
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(b) Quadrants defined by the 75th percentile.

Figure 24: Effect of confidence thresholding on the Information Plane for DS-Distilled-Qwen-2.5-
7B (k = 6) on AIME2024.
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E.2 STATISTICAL TEST

Term t-statistic p-value U-statistic Cohen’s d Mean (C/I)

log p(y | r, x) 4.573 6.06e-6 38441.0 0.410 -4.214 / -5.752
log p(r | x) 9.111 2.00e-18 45115.0 0.816 -45.778 / -67.427

(a) Statistical tests for LLaMA-3.1-8B on Math500 dataset comparing correct (C) and incorrect (I) samples.
All differences are highly significant (p < 0.001).

Term t-statistic p-value U-statistic Cohen’s d Mean (C/I)

log p(y | r, x) 5.759 1.48e-8 41596.0 0.539 -0.411 / -1.470
log p(r | x) 6.992 8.76e-12 39096.0 0.655 -39.870 / -53.686

(b) Statistical tests for LLaMA-3.1-70B on Math500 dataset comparing correct (C) and incorrect (I) samples.
All differences are highly significant (p < 0.001).

Term t-statistic p-value U-statistic Cohen’s d Mean (C/I)

log p(y | r, x) 9.032 3.70e-18 42086.0 0.810 -0.371 / -2.683
log p(r | x) 9.027 3.85e-18 45831.0 0.809 -18.637 / -30.797

(c) Statistical tests for Gemma-2-9B on Math500 dataset comparing correct (C) and incorrect (I) samples. All
differences are highly significant (p < 0.001).

Term t-statistic p-value U-statistic Cohen’s d Mean (C/I)

log p(y | r, x) 5.365 1.24e-7 36835.0 0.538 -0.941 / -2.360
log p(r | x) 5.170 3.39e-7 31131.0 0.518 -41.876 / -68.407

(d) Statistical tests for Qwen3-8B on Math500 dataset comparing correct (C) and incorrect (I) samples. All
differences are highly significant (p < 0.001).

Term t-statistic p-value U-statistic Cohen’s d Mean (C/I)

log p(y | r, x) 6.090 2.26e-9 34499.5 0.640 -0.378 / -1.816
log p(r | x) 4.979 8.81e-7 27660.0 0.523 -61.918 / -95.847

(e) Statistical tests for Qwen3-32B on Math500 dataset comparing correct (C) and incorrect (I) samples. All
differences are highly significant (p < 0.001).

Term t-statistic p-value U-statistic Cohen’s d Mean (C/I)

log p(y | r, x) 4.972 9.11e-7 27176.5 0.558 -2.165 / -4.550
log p(r | x) 2.665 0.00795 21190.0 0.299 -418.767 / -587.095

(f) Statistical tests for Think-Qwen3-8B on Math500 dataset (thinking enabled). Prediction and compression
terms show significant differences between correct (C) and incorrect (I) samples.

Term t-statistic p-value U-statistic Cohen’s d Mean (C/I)

log p(y | r, x) 3.874 1.21e-4 29105.0 0.391 -1.692 / -2.756
log p(r | x) 2.043 0.0416 29023.0 0.206 -174.753 / -254.234

(g) Statistical tests for Think-DeepSeek-R1-Distill-Qwen-2.5-7B on Math500 dataset (thinking enabled). Pre-
diction and compression terms show significant differences between correct (C) and incorrect (I) samples.

Term t-statistic p-value U-statistic Cohen’s d Mean (C/I)

log p(y | r, x) 5.991 4.00e-9 39822.0 0.565 -0.973 / -3.196
log p(r | x) 4.634 4.60e-6 31908.0 0.437 -246.181 / -500.004

(h) Statistical tests for Think-DeepSeek-R1-Distill-LLaMA-8B on Math500 dataset (thinking enabled). Predic-
tion and compression terms show highly significant differences between correct (C) and incorrect (I) samples.

Table 12: Statistical tests on Math500 comparing correct (C) and incorrect (I) samples across multi-
ple models. All show significant differences, though effect sizes vary.

F INTRA-MODEL RELIABILITY

To support the intra-model results in Section 5.2, we analyse the calibration of PiCSAR’s confidence
signal using the evaluation traces collected for the Qwen3 family. For every sample we pair the an-
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(c) Qwen3 32B

Figure 25: A detailed visualisation on the correct/incorrect densities based on logistic regression
plot.

swer log-probability log p(y | r, x) with its correctness label and fit a separate model per backbone.
The resulting calibration curves in Figure 5 exhibit a consistent monotonic trend: the logistic slopes
are 0.63, 0.73, and 0.57 for Qwen3-8B, 14B, and 32B respectively, and the corresponding point-
biserial coefficients (r ≈ 0.31, 0.35, 0.29) show a positive correlation between higher confidence
and the probability of a correct answer.

Figure 25 also shows how this effect manifests in the raw score distribution. Correct solutions
concentrate around higher confidence values (closer to zero log-probability), whereas incorrect ones
remain several nats lower, leaving limited overlap in the high-confidence region.

F.1 LOGISTIC REGRESSION EXPERIMENTAL TRAINING

We model the relationship between confidence and correctness using logistic regression, similar
to Gema et al. (2024). The binary outcome variable encodes whether the final answer is correct
(y ∈ 0, 1), while the predictor is the model’s confidence score expressed as the log-probability of
the final answer:

Pr(y = 1 | Conf) = σ(α+ β · Conf)

where σ is the sigmoid function. The regression coefficient β quantifies the change in log-odds of
correctness per unit change in confidence. A positive β indicates that higher confidence increases
the likelihood of correctness. For instance, as shown in Figure 25b, in Qwen3-14B, β = 0.7255
corresponds to more than doubling the odds of correctness (e0.7255 ≈ 2.07).

F.2 POINT-BISERIAL CORRELATION COEFFICIENT

As a complementary measure to logistic regression, we compute the point-biserial correlation coef-
ficient between confidence scores (continuous) and correctness (binary). This statistic, mathemati-
cally equivalent to Pearson’s correlation with a dichotomous variable, directly quantifies the strength
of association between the two. It is defined as

r =
x̄1 − x̄0

sx

√
n1n0

n2
,

where x̄1 and x̄0 denote the mean confidence scores for correct and incorrect samples, sx is the
pooled standard deviation, and n1, n0 are the respective sample counts. The coefficient is bounded in
[−1, 1], with positive values indicating alignment between confidence and correctness. For instance,
an r of 0.35 for Qwen3-14B indicates a moderate positive association. Together with logistic re-
gression, this provides a scale-free validation that confidence is a consistent predictor of correctness
within a given model.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

We have used LLM as a writing aid to assist with fluency and grammatical checking.
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