
Towards Dynamic KV-Cache Compression:
Fine-Grained Evaluation of Key/Value Ranks in LLMs

Jian Chen1,3∗, Zhuoran Wang2,4∗, Jiayu Qin2, Ming Li5, Meng Wang6
Changyou Chen1, Yin Chen2, Qizhen Weng2, Yirui Liu2†

1University at Buffalo 2TeleAI 3Dolby Laboratories
4Delft University of Technology 5University of Maryland 6ByteDance

Abstract

Large language models rely on KV-cache to avoid redundant computation dur-
ing autoregressive decoding, but reading and writing the growing cache quickly
overwhelms GPU memory bandwidth as context length increases. Recent studies
therefore explore KV-cache compression, however existing work either overlook
the data-dependent nature of key/value features or their layer level differences. In
this work, we propose a method that directly computes the optimal data-dependent
compression of key and value activations via singular value decomposition during
inference. Our approach is gradient-free and incremental, enabling independent
per-layer decomposition with batch computation and low memory cost. Using
this method, we conduct a comprehensive analysis across multiple models and
datasets spanning diverse domains and languages, uncovering fine-grained patterns
of KV-cache compressibility. Our method serves as a valuable evaluation tool
to reveal how LLMs allocate their representational capacity, offering actionable
insights for designing dynamic and data-aware KV-cache compression strategies
for deployment.

1 Introduction

Large language models (LLMs) adopt the Transformer architecture [1] and generate text autoregres-
sively under a causal mask, which ensures that past key and value vectors can be cached (KV-cache)
[2]. These caches are stored in high-bandwidth memory (HBM) on GPUs and repeatedly fetched into
compute-unit registers during decoding, reducing computation but introducing a memory-bandwidth
bottleneck as context length grows. This challenge has motivated both hardware innovation [3] and
algorithmic approaches for KV-cache compression [4], with our work focusing on the latter.

A natural way to reduce KV-cache cost is to compress key and value representations into lower-
dimensional spaces. Many methods use low-rank approximation of projection matrices [5, 6], but
they ignore the data-dependent nature of key/value activations, whose intrinsic rank can be smaller in
domain-specific tasks that exercise only part of the model’s capacity [7]. Moreover, most approaches
apply the same compression ratio across layers [8], overlooking distinct compressibility profiles.
Methods for analyzing and comparing key/value rank across layers remain underexplored.

To address these limitations, we propose an incremental singular value decomposition (SVD) method
that directly operates on key and value features computed over large datasets. Unlike approaches
that approximate projection weights, our method is data-dependent and captures the intrinsic rank of
the KV-cache induced by real inputs. It also allows independent per-layer decomposition without

∗Equal contribution. Work done when Jian was at University at Buffalo and Zhuoran was at TeleAI.
†Corresponding author: liuyr17@chinatelecom.cn

NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle.

cross-layer coupling. The method is gradient-free, supports batch-wise computation with low memory
overhead, and guarantees a globally optimal low-rank projection under the Frobenius norm. Unlike
existing methods [9, 8] that only compute the optimal compression matrix, our method explicitly
decomposes long sequences of key and value features to recover the singular value distributions of
each layer on a given dataset, thereby enabling systematic evaluation of compressibility and providing
an effective diagnostic tool for understanding representational capacity usage in LLMs.

We conduct extensive experiments across open-source LLMs of different sizes and architectures,
spanning datasets in instruction following, code generation, medical QA, and multilingual tasks. We
introduce normalized effective rank (NER) as a lightweight metric for per-layer compressibility and
systematically compare key and value ranks across models and domains. Beyond static evaluation,
end-to-end SVD-based truncation shows that NER correlates strongly with perplexity, validating it
as a reliable proxy for compression sensitivity. These results reveal consistent layer-wise and data-
dependent patterns in KV-cache compressibility, laying the groundwork for dynamic and adaptive
strategies. Our contributions are as follows:

• We propose a novel algorithm for the efficient computation of the SVD of dataset-level KV-
caches, which achieves the global optimum for low-rank compression under the Frobenius
norm, enabling data-dependent rank analysis and compression.

• We conduct extensive experiments across models, datasets, and languages, and show that
normalized effective rank correlates with perplexity, establishing it as a practical evaluation
tool for guiding dynamic KV-cache compression.

2 Method

To evaluate and compress KV caches, we develop an efficient method that incrementally computes
the SVD of keys and values over large datasets, enabling layer-wise and data-dependent evaluation
of their compressibility in LLMs. At the same time, our method computes the optimal compression
matrices, addressing challenges identified in prior work [9, 8, 10].

To illustrate our method and its advantages, we first introduce notations. As our method applies
uniformly across layers and to both key and value spaces, we omit layer-specific notation in the rest
of the section and focus on K as an example in the following discussion for simplicity. Consider
a dataset containing l tokens, for a particular LLM, let X = [x1; ...;xl] ∈ Rl×de be the sequence
of activations for an attention layer, computed based on the dataset. Let WK be the key projection
weights of a layer. The corresponding key K = [k1; ...;kl] features are computed as, XWK . The
data-dependent optimal low-rank compression of K is formulated as follows. For each key/value
projection matrix WK , we seek a low-rank matrix W̃K with rank r that minimizes the compression
error: ||XWK −XW̃K ||F . The solution W̃K can be expressed as a pair of down- and up-projection
matrices, which compress keys into dimension r and then reconstruct them for efficient autoregressive
inference.

2.1 SVD-based KV-cache Analysis

Our key idea is to perform SVD on key and value spaces for each layer, allowing an analytical study
of the layer-wise compressibility of KV caches given a LLM and a particular dataset. For example,
the SVD on K ∈ Rl×mhdh can be written as K = UΣVT , where U ∈ Rl×l and V ∈ Rmhdh×mhdh

are left and right singular values, respectively, and Σ ∈ Rl×mhdh denotes singular values. By
the Eckart-Young-Mirsky theorem [11], the truncation of the largest singular values along with
corresponding singular vectors Kk = UkΣkVT

k forms the best k-rank approximation to K in the
Frobenius norm sense. In other words, for any k ∈ [1, r], the minimal k−rank approximation loss
to K is a deterministic function of singular values. Thus, we use singular value–based metrics
to evaluate the compressibility of key and value spaces in each attention layer, as detailed in the
experimental section. Moreover, the right singular vectors V of K can be used to construct the
dataset-dependent optimal k-rank approximation of WK , given WK , as W̃K = WKVkVT

k . A
detailed proof is provided in the appendix C.1.

2

2.2 Incremental SVD Algorithm for Dataset-level KV-cache

A key challenge is that the size of K ∈ Rl×mhdh scales up with the number of tokens l in a Dataset,
rendering direct SVD on K impractical due to excessive memory and computational demands.
We propose a novel algorithm that mitigates memory and computation bottlenecks through batch
computation without sacrificing accuracy. This method only requires holding and updating a mhdh-
by-mhdh covariance matrix, avoiding the direct SVD of K and still generating the mathematically
equivalent singular values Σ and right singular vectors V . Algorithm 1 shows the pseudo-code of our
method. More details about the proof is included in appendix C.2.

Algorithm 1 An adaptive algorithm to compute Σ and V of K
Input: Dataset containing l tokens in total; LLM model weights WK

Output: singular values Σ and right singular vectors V of K
C ← mhdh ×mhdh zero matrix ▷ Initialize covariance matrix to zero
for t = 1, . . . , l do

kt ← xtW
K

C ← C + kT
t kt ▷ Update covariance matrix in each step

end for
V,Σ2,VT ← eigen-decomposition(C) ▷ perform eigen-decomposition on the final covariance
matrix
return Σ,V

3 Experiment

We evaluate our method on 5 open-source LLM series of varying sizes including Qwen3 (4B, 8B) [12],
Mistral-7B [13], Gemma-1.1 (2B, 7B) [14], and Phi-3-mini-128k-instruct [15], where Gemma-1.13

is a recent update of the original instruction-tuned Gemma, incorporating a new RLHF method that
improves overall performance. To study the data-dependence of KV-cache compression, we evaluate
our method on 5 datasets including Alpaca [16], MedAlpaca [17], CodeAlpaca [18], WizardCoder
[19], and FunctionCall4, spanning multiple domains. We also evaluate rank patterns across different
languages using the multilingual split of the VisR-Bench dataset [20], which comprises 15 languages.
More experimental details are provided in Appendix D.

3.1 Evaluation Metric

We evaluate compression potential and downstream performance using two complementary metrics.
The Normalized Effective Rank (NER) [21] quantifies the data-dependent, per-layer low-rank structure
of the KV-cache. For a matrix M with singular values {σi}, the effective rank is exp(−

∑
i pi log pi)

where pi = σi/
∑

j σj , i.e., the exponential of the Shannon entropy of the normalized spectrum;
normalizing by the matrix dimension yields a score in [0, 1], with lower values indicating stronger
low-rankness. To assess the impact on language modeling quality, we report perplexity (PPL) [22],
defined as the exponential of the empirical cross-entropy between the data and model distributions.
Lower PPL means the model assigns higher probability to the observed data, while higher PPL
indicates degraded predictive performance.

3.2 Benchmarking Experiment on KV-Cache Compressibility

3.2.1 Average NER across Models and Datasets

Table 1 reports the mean NER of keys (NER-K) and values (NER-V), averaged over all attention
layers across 7 models on 5 datasets and 7 languages. Complete results are provided in Table E.1.
We highlight four key findings: 1. Keys are more compressible than values: Across all models and
datasets, keys consistently exhibit lower NER, reflecting higher compressibility. 2. Language effects
outweigh domain effects: English datasets from different domains yield similar NER, whereas

3Gemma-1.1: https://huggingface.co/google/gemma-1.1-7b-it
4glaiveai/glaive-function-calling-v2: https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2

3

https://huggingface.co/google/gemma-1.1-7b-it
https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2

Datasets
Qwen3-4B Qwen3-8B Gemma-2B Gemma-7B Mistral-7B Phi-3 LLaMA-2-7B

K V K V K V K V K V K V K V
Multi-domain Datasets

Alpaca 0.428 0.724 0.452 0.753 0.612 0.900 0.359 0.469 0.449 0.773 0.409 0.616 0.023 0.464
MedAlpaca 0.429 0.723 0.452 0.752 0.594 0.889 0.344 0.455 0.441 0.771 0.403 0.604 0.176 0.310
CodeAlpaca 0.421 0.708 0.443 0.737 0.589 0.869 0.321 0.429 0.420 0.733 0.380 0.571 0.028 0.337
WizardCoder 0.425 0.726 0.447 0.753 0.597 0.889 0.329 0.445 0.420 0.750 0.385 0.587 0.265 0.304
FunctionCall 0.432 0.731 0.451 0.756 0.608 0.900 0.342 0.458 0.432 0.762 0.397 0.604 0.135 0.449
Multilingual Question in VisR-Bench Datasets

English 0.424 0.717 0.446 0.745 0.597 0.884 0.337 0.448 0.430 0.753 0.393 0.593 0.088 0.141
German 0.383 0.640 0.400 0.666 0.536 0.802 0.305 0.400 0.392 0.676 0.345 0.523 0.092 0.138
Italian 0.377 0.632 0.392 0.655 0.529 0.793 0.299 0.393 0.387 0.669 0.339 0.515 0.084 0.135
Swedish 0.371 0.620 0.387 0.645 0.526 0.794 0.296 0.389 0.381 0.656 0.322 0.486 0.078 0.128
Spanish 0.367 0.629 0.384 0.654 0.523 0.790 0.299 0.396 0.381 0.665 0.334 0.513 0.064 0.095
Japanese 0.361 0.619 0.380 0.648 0.506 0.775 0.276 0.369 0.364 0.636 0.321 0.467 0.079 0.125
Arabic 0.337 0.582 0.354 0.609 0.503 0.769 0.270 0.361 0.338 0.594 0.288 0.413 0.052 0.173

Table 1: Average NER of keys and values across all layers of 7 models on diverse datasets

multilingual results show larger variation. 3. Earlier model is more compressible: Models such
as LLaMA-2-7B show dramatically lower NER than recent ones (e.g., Qwen3-4B), likely due to
smaller key/value dimensions and weaker rank utilization. 4. Rank collapse in low-resource
settings: Languages with limited training data (e.g., Arabic) show unusually low NER, likely due to
under-trained token embeddings collapsing into lower-rank spaces, suggesting NER as a potential
diagnostic for coverage gaps.

3.2.2 Layer-wise NER Patterns

Figure 1 presents the layer-wise NER of Qwen3-4B on the 5 datasets and on 3 selected language
subsets of VisR-Bench, with additional plots for other models included in the appendix E.2. The
results show that NER is not uniform across layers. This heterogeneity suggests that future KV-cache
compression should be layer-aware, as applying a uniform compression ratio may overly degrade
high-rank layers while missing opportunities for stronger reduction in lower-rank ones.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
layer

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NE
R

Value
Key

Alpaca
CodeAlpaca

WizardCoder
FunctionCall

MedAlpaca
VisR-Bench (Arabic)

VisR-Bench (German)
VisR-Bench (Swedish)

Figure 1: Layer-wise NER of key and value representations in Qwen3-4B, evaluated on 5 datasets
and 3 languages from the VisR-Bench benchmark.

3.2.3 Effect of KV-cache Compression on PPL

We show the perplexity (PPL) of LLaMA-2-7B and Qwen3-4B across a grid of KV-cache compression
ratios using heatmaps, included in Appendix E.3. Each heatmap reports PPL on one dataset. LLaMA-
2-7B exhibits stable behavior, with only small PPL increases even at higher compression ratios,
whereas Qwen3-4B is more sensitive, showing more drastic degradation. These results demonstrate
that NER correlates positively with compressibility as reflected by PPL changes.

4

4 Conclusion

We presented an incremental SVD method for dataset-level KV-cache analysis that yields optimal
low-rank projections with low memory cost, enabling evaluation of compressibility through singular
value distributions. Experiments across models, domains, and languages reveal systematic patterns
in key/value compressibility and show that normalized effective rank correlates with perplexity
under compression. Our results provide a practical tool and guidance for designing future dynamic
KV-cache compression methods.

References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[2] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint
arXiv:1904.01038, 2019.

[3] Myunghyun Rhee, Joonseop Sim, Taeyoung Ahn, Seungyong Lee, Daegun Yoon, Euiseok
Kim, Kyoung Park, Youngpyo Joo, and Hosik Kim. Hpu: High-bandwidth processing unit for
scalable, cost-effective llm inference via gpu co-processing. arXiv preprint arXiv:2504.16112,
2025.

[4] Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and Hai Zhao. Keep the cost down: A review
on methods to optimize llm’s kv-cache consumption. arXiv preprint arXiv:2407.18003, 2024.

[5] Tao Ji, Bin Guo, Yuanbin Wu, Qipeng Guo, Lixing Shen, Zhan Chen, Xipeng Qiu, Qi Zhang,
and Tao Gui. Towards economical inference: Enabling deepseek’s multi-head latent attention in
any transformer-based llms. arXiv preprint arXiv:2502.14837, 2025.

[6] Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo
Wang, Ning-Chi Huang, Luis Ceze, Mohamed S Abdelfattah, and Kai-Chiang Wu. Palu:
Compressing kv-cache with low-rank projection. arXiv preprint arXiv:2407.21118, 2024.

[7] Hao Yu and Jianxin Wu. Compressing transformers: features are low-rank, but weights are
not! In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages
11007–11015, 2023.

[8] Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024.

[9] Patrick Chen, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. Drone: Data-aware low-
rank compression for large nlp models. Advances in neural information processing systems,
34:29321–29334, 2021.

[10] Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd:
Activation-aware singular value decomposition for compressing large language models, 2024.

[11] Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank.
Psychometrika, 1(3):211–218, 1936.

[12] Qwen Team. Qwen3 technical report, 2025.

[13] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

[14] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

5

[15] Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

[16] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

[17] Tianyu Han, Lisa C Adams, Jens-Michalis Papaioannou, Paul Grundmann, Tom Oberhauser,
Alexander Löser, Daniel Truhn, and Keno K Bressem. Medalpaca–an open-source collection of
medical conversational ai models and training data. arXiv preprint arXiv:2304.08247, 2023.

[18] Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation.
https://github.com/sahil280114/codealpaca, 2023.

[19] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models
with evol-instruct, 2025.

[20] Jian Chen, Ming Li, Jihyung Kil, Chenguang Wang, Tong Yu, Ryan Rossi, Tianyi Zhou,
Changyou Chen, and Ruiyi Zhang. Visr-bench: An empirical study on visual retrieval-
augmented generation for multilingual long document understanding. arXiv preprint
arXiv:2508.07493, 2025.

[21] Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In
2007 15th European signal processing conference, pages 606–610. IEEE, 2007.

[22] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

[23] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain:
Unifying sparse and low-rank attention. Advances in Neural Information Processing Systems,
34:17413–17426, 2021.

[24] Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language
model compression with weighted low-rank factorization. arXiv preprint arXiv:2207.00112,
2022.

[25] Habib Hajimolahoseini, Walid Ahmed, Mehdi Rezagholizadeh, Vahid Partovinia, and Yang
Liu. Strategies for applying low rank decomposition to transformer-based models. In 36th
Conference on Neural Information Processing Systems (NeurIPS2022), volume 6, 2022.

[26] Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
Losparse: Structured compression of large language models based on low-rank and sparse
approximation. In International Conference on Machine Learning, pages 20336–20350. PMLR,
2023.

[27] Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
attention loses rank doubly exponentially with depth. In International conference on machine
learning, pages 2793–2803. PMLR, 2021.

[28] Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and
Aurelien Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of
rank collapse. Advances in Neural Information Processing Systems, 35:27198–27211, 2022.

[29] Can Yaras, Peng Wang, Laura Balzano, and Qing Qu. Compressible dynamics in deep overpa-
rameterized low-rank learning & adaptation. arXiv preprint arXiv:2406.04112, 2024.

[30] Srinadh Bhojanapalli, Chulhee Yun, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar.
Low-rank bottleneck in multi-head attention models. In International conference on machine
learning, pages 864–873. PMLR, 2020.

6

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/sahil280114/codealpaca

[31] Enric Boix-Adsera, Etai Littwin, Emmanuel Abbe, Samy Bengio, and Joshua Susskind. Trans-
formers learn through gradual rank increase. Advances in Neural Information Processing
Systems, 36:24519–24551, 2023.

[32] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR,
1(2):3, 2022.

[33] Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, and Abhinav Bhatele. Loki: Low-
rank keys for efficient sparse attention. Advances in Neural Information Processing Systems,
37:16692–16723, 2024.

[34] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca:
A distributed serving system for {Transformer-Based} generative models. In 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 22), pages 521–538, 2022.

[35] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

[36] Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

[37] Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and
Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head
checkpoints. arXiv preprint arXiv:2305.13245, 2023.

[38] Carl D Meyer. Matrix analysis and applied linear algebra. SIAM, 2023.

7

Appendix

A Related Work

Rank Analysis in Language Models: Early work has investigated the relationship between the rank
of transformer weights or representations and model performance, seeking either to leverage low-rank
structure for efficiency [23, 24, 25, 26], to prevent rank collapse that limits expressivity [27, 28, 29],
or to maximize rank utilization for enhanced modeling capacity [30, 31]. With the growing use of
large language models (LLMs), research has turned to their inherent low-rank properties. LoRA [32]
leverages this structure during fine-tuning, showing that many weight updates lie in low-dimensional
subspaces. Loki [33] examined the key representations in attention layers and found that they often
reside in lower-dimensional subspaces across models and datasets, which can be used for efficient
sparse attention. These directions have also motivated growing efforts on KV-cache compression [4]
to address the deployment bottleneck in reading and storing the KV cache [34]. Our work introduces
a fine-grained method for evaluating the compressibility of KV caches in LLMs through effective rank
analysis, uncovering layer-wise and data-dependent patterns that can inform the design of dynamic
and adaptive compression strategies.

Low-Rank KV-cache Compression: DeepSeek [35] introduced Multi-head Latent Attention
(MLA), which applies low-rank joint KV cache compression to enable scalable inference, unlike
MQA [36] and GQA [37] which reduce parameters by merging heads in multi-head attention (MHA)
[1]. MHA2MLA [5] and PALU [6] applies SVD to compress key and value projection weights,
converting models based on MHA into the MLA structure for reduced KV cache size. However, this
approach targets only the projection weights, while prior work [7] has shown that transformers weights
typically have higher rank than the output features (keys/values), suggesting that data-dependent
KV-cache compression is more effective. In this direction, DRONE [9] proposed a closed-form
solution for data-aware low-rank compression of projected keys/values, and SVD-LLM [8] introduced
an incremental optimization based on Cholesky decomposition [38] that achieves the same optimal
compression loss with lower memory overhead. In comparison, our method achieves the same
optimality with a much simpler formulation; moreover, it explicitly computes the SVD of key/value
representations, whereas SVD-LLM only recovers the optimal compression matrix.

B Preliminary

B.1 MHA, MQA and GQA

We first introduce the standard MHA and two of its variants—MQA and GQA. Given an input
embedding vector, MHA project it into key and value vectors for each attention head, causing the KV
cache size to scale linearly with the number of heads. In contrast, MQA and GQA reduce the KV
cache size by grouping heads and sharing the same key and value vectors within each group.

Focusing on GQA, the most general technique among the three, we define de, mh, dh and mg as the
embedding dimension, number of heads, dimension per head and number of groups, respectively.
Given an input embedding vector xt ∈ Rde corresponding to the t-th token, GQA divides the mh

attention heads into mg groups. Formally, this grouping can be described by a helper function g,
which maps from head indices {1, ...,mh} to group indices {1, ...,mg} as,

g(i) =

⌈
i

/
mh

mg

⌉
, ∀i ∈ {1, ...,mh} (B.1)

Then it projects xt into query qt ∈ R1×mhdh , key kt ∈ R1×mgdh , and value vector vt ∈ R1×mgdh

as follows:

[qt,1, ...,qt,mh
] = qt = xtW

Q (B.2)

[kt,1, ...,kt,mg
] = kt = xtW

K (B.3)

[vt,1, ...,vt,mg] = vt = xtW
V (B.4)

where qt,i,∀i ∈ {1, ...,mh} denote the query vector for each attention head, and kt,i,vt,i,∀i ∈
{1, ...,mg} represent the key and value vector for each group. The matrices WQ ∈ Rde×mhdh and

8

WK ,WV ∈ Rde×mgdhdenote learnable model parameters. The attention of each head and the final
projected output are computed as,

ot,i =

t∑
j=1

Softmaxj

(
qt,ik

T
j,g(i)√
dh

)
vj,g(i), ∀i ∈ {1, ...,mh} (B.5)

yt = [ot,1, ...,ot,mh
]WO (B.6)

where ot,i ∈ R1×dh , WO ∈ Rmhdh×de and yt ∈ R1×de denote the attention output for i-th head,
the output projection matrix and the projected output respectively.

Note that when mg = mh, GQA reduces to standard MHA, and when mg = 1, it specializes MQA.

B.2 MLA

Unlike MHA and its variants, MLA projects the input embedding xt ∈ Rde of t-th token into two
distinct spaces: a joint latent KV space and a decoupled key space designed to incorporate RoPE.
Formally, this can be expressed as:

cKV
t = xtW

DKV (B.7)

kR
t = RoPE(xtW

KR) (B.8)

where cKV
t ∈ R1×dc and kR

t ∈ R1×dR denote the joint latent KV vector and the RoPE-encoded
decoupled key vector, receptively. The projection matrices WDKV ∈ Rde×dc and WKR ∈ Rde×dR

handle the corresponding down-projections. During attention calculation, cKV
t is up-projected to get

the key and value vectors, while the query vector is computed directly from the input embedding xt.
These operations are described by following equations (B.9) and (B.10):

[kC
t,1, ...,k

C
t,n] = kC

t = cKV
t WUK

kt,i = [kC
t,i,k

R
t]

[vC
t,1, ...,v

C
t,mh

] = vC
t = cKV

t WUV

(B.9)

cQt = xtW
DQ

[qC
t,1, ...,q

C
t,mh

] = qC
t = cQt W

UQ

[qR
t,1, ...,q

R
t,mh

] = qR
t = RoPE(cQt W

QR)

qt,i = [qC
t,i,q

R
t,i]

(B.10)

where WUK ,WUV ∈ Rdc×mhdh are up-projection matrices for key and value vectors, respectively.
The matrices WDQ ∈ Rde×d′

c and WUQ ∈ Rd′
c×mhdh serve as the down- and up-projection for

queries, while WQR ∈ Rd′
c×mhdh is the up-projection matrix used to incorporate RoPE for the

decoupled query vector. Note that both kt,i and qt,i are concatenations of their NoPE and RoPE
components.

Using qt,i, kt,i and vC
t,i, the attention of each head and the final projected output are computed as,

ot,i =

t∑
j=1

Softmaxj

(
qt,ik

T
j,i√

dh + dR

)
vC
j,i, ∀i ∈ {1, ...,mh} (B.11)

yt = [ot,1, ...,ot,mh
]WO (B.12)

A key merit of MLA lies in its caching efficiency during token generation: only cKV
t and kR

t need to
be cached, resulting in a cache size of dc + dR. Since both dc << mhdh and dR << mhdh, MLA
reduces KV cache size significantly compared to MHA, which requires caching kt ∈ R1×mhdh and
vt ∈ R1×mhdh for t-th token.

9

C Theoretical Proof

C.1 Optimality of the Low-Rank Projection Matrix

Given singular values Σ and right singular vectors V of K, we can directly recover the dataset-
dependent optimal k-rank approximation of WK as,

W̃K = WKVkVT
k (C.1)

To see why W̃K is optimal to minimize the error: ||X(i)WK(i) − X(i)W̃K(i) ||F , consider the
following:

XW̃K = XWKVkVT
k

T1= KVkVT
k

T2= UΣ(VTVk)VT
k

T3= U
(
Σ

[
Ik
0

])
VT
k

=

(
U
[
Σk

0

])
VT
k

= UkΣkVT
k

(C.2)

Where Ik is a k by k identity matrix. T1 holds because by definition K = XWK ; T2 holds because
UΣVT is the SVD of K; T3 holds because singular vectors form an orthogonal basis, thus VT

k Vk
yields a k by k identify matrix. Recall that by the Eckart-Young-Mirsky theorem [11], UkΣkVT

k

forms the best k-rank approximation of K = XWK , we can conclude that WKVkVT
k is optimal to

the optimization problem.

During LLM inference, a direct implementation is to replace WK with a pair of down-projection
WKVk and up-projection VT

k matrices. This allows caching the low-dimensional key vector
xtW

KVk instead of the full-dimensional xtW
K given t-th token, reducing both the memory and

bandwidth consumption.

C.2 Correctness of the Incremental SVD Algorithm

For each token in a Dataset containing l tokens, kT
t kt is computed and the covariance matrix C is

updated. After l iterations, we will have the complete covariance matrix of K as C = KTK =∑l
t=1 k

T
t kt. Finally we perform eigen-decomposition on C to obtain the singular values Σ and right

singular vectors V of K.

To see why the final step of Algorithm 1 generates mathematically equivalent Σ and V , consider the
following proof,

KTK = (UΣVT)TUΣVT = VΣTUTUΣVT = VΣ2VT (C.3)

10

D Experiment Setup Details

D.1 Optimization Setup

All experiments are conducted on machines equipped with 8× NVIDIA A800 GPUs (80GB each),
though all evaluations are executed on a single GPU without distributed computation. We use PyTorch
2.7.1 and Hugging Face Transformers 4.53.2 for model loading, compression, and inference. All
evaluations are conducted in inference mode without gradient computation.

D.2 Datasets

To study the data-dependence of KV-cache compression, we evaluate our method on n datasets,
spanning diverse English instruction-following tasks across multiple domains and multilingual QA.
For English evaluation, the datasets cover general instruction following, code generation, medical
QA, and function calling, including Alpaca [16], MedAlpaca [17], CodeAlpaca [18], WizardCoder
[19], and FunctionCall5. For multilingual evaluation, we use the queries from the multilingual
split of VisR-Bench [20], a question-driven, retrieval benchmark spanning English and 15 non-
English languages (Spanish, Italian, German, French, Dutch, Arabic, Croatian, Japanese, Swedish,
Vietnamese, Portuguese, Finnish, Czech, Slovenian, and Danish)—allowing us to assess performance
across a linguistically diverse setting.

E Additional Experiment Results

E.1 Average NER Results

Datasets
Qwen3-4B Qwen3-8B Gemma-2B Gemma-7B Mistral-7B Phi-3 LLaMA-2-7B

K V K V K V K V K V K V K V
Multi-domain Datasets

Alpaca 0.428 0.724 0.452 0.753 0.612 0.900 0.359 0.469 0.449 0.773 0.409 0.616 0.023 0.464
MedAlpaca 0.429 0.723 0.452 0.752 0.594 0.889 0.344 0.455 0.441 0.771 0.403 0.604 0.176 0.310
CodeAlpaca 0.421 0.708 0.443 0.737 0.589 0.869 0.321 0.429 0.420 0.733 0.380 0.571 0.028 0.337
WizardCoder 0.425 0.726 0.447 0.753 0.597 0.889 0.329 0.445 0.420 0.750 0.385 0.587 0.265 0.304
FunctionCall 0.432 0.731 0.451 0.756 0.608 0.900 0.342 0.458 0.432 0.762 0.397 0.604 0.135 0.449
Multilingual Question in VisR-Bench Datasets

English 0.424 0.717 0.446 0.745 0.597 0.884 0.337 0.448 0.430 0.753 0.393 0.593 0.088 0.141
Czech 0.383 0.627 0.401 0.652 0.536 0.803 0.292 0.383 0.385 0.660 0.313 0.470 0.099 0.148
German 0.383 0.640 0.400 0.666 0.536 0.802 0.305 0.400 0.392 0.676 0.345 0.523 0.092 0.138
Italian 0.377 0.632 0.392 0.655 0.529 0.793 0.299 0.393 0.387 0.669 0.339 0.515 0.084 0.135
Dutch 0.376 0.628 0.395 0.657 0.534 0.802 0.299 0.394 0.385 0.664 0.331 0.499 0.116 0.108
Croatian 0.375 0.620 0.393 0.645 0.525 0.791 0.292 0.382 0.383 0.659 0.320 0.479 0.081 0.132
French 0.373 0.633 0.390 0.657 0.532 0.797 0.301 0.397 0.387 0.671 0.340 0.519 0.087 0.137
Vietnamese 0.373 0.625 0.392 0.653 0.542 0.814 0.291 0.384 0.367 0.630 0.305 0.442 0.071 0.119
Swedish 0.371 0.620 0.387 0.645 0.526 0.794 0.296 0.389 0.381 0.656 0.322 0.486 0.078 0.128
Spanish 0.367 0.629 0.384 0.654 0.523 0.790 0.299 0.396 0.381 0.665 0.334 0.513 0.064 0.095
Slovenian 0.366 0.603 0.383 0.628 0.518 0.785 0.281 0.369 0.372 0.642 0.306 0.458 0.075 0.121
Portuguese 0.362 0.614 0.378 0.639 0.521 0.785 0.284 0.375 0.379 0.656 0.326 0.498 0.083 0.133
Japanese 0.361 0.619 0.380 0.648 0.506 0.775 0.276 0.369 0.364 0.636 0.321 0.467 0.079 0.125
Finnish 0.360 0.597 0.378 0.625 0.502 0.769 0.280 0.369 0.353 0.616 0.305 0.455 0.073 0.118
Arabic 0.337 0.582 0.354 0.609 0.503 0.769 0.270 0.361 0.338 0.594 0.288 0.413 0.052 0.173
Average 0.387 0.653 0.407 0.679 0.548 0.822 0.306 0.405 0.395 0.684 0.345 0.520 0.083 0.134

Table E.1: Average NER of keys and values across all layers of 7 models on multilingual split of
VisR-bench covering 15 languages

5glaiveai/glaive-function-calling-v2: https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2

11

https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2

E.2 Layer-wise NER Results

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
layer

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
NE

R
Layer-wise NER of Qwen3-4B

Value
Key

Alpaca
CodeAlpaca

WizardCoder
FunctionCall

MedAlpaca
VisR-Bench (Arabic)

VisR-Bench (German)
VisR-Bench (Swedish)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
layer

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NE
R

Layer-wise NER of Qwen3-8B

Value
Key

Alpaca
CodeAlpaca

WizardCoder
FunctionCall

MedAlpaca
VisR-Bench (Arabic)

VisR-Bench (German)
VisR-Bench (Swedish)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

NE
R

Layer-wise NER of Phi-3-mini-128k-instruct

Value
Key

Alpaca
CodeAlpaca

WizardCoder
FunctionCall

MedAlpaca
VisR-Bench (Arabic)

VisR-Bench (German)
VisR-Bench (Swedish)

Figure E.1: Layer-wise NER of key and value representations in Qwen3-4B, Qwen3-8B, and Phi-3-
mini evaluated on 5 datasets and 3 languages from the VisR-Bench benchmark.

12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
layer

0.0

0.2

0.4

0.6

0.8

NE
R

Layer-wise NER of mistral

Value
Key

Alpaca
CodeAlpaca

WizardCoder
FunctionCall

MedAlpaca
VisR-Bench (Arabic)

VisR-Bench (German)
VisR-Bench (Swedish)

1 3 5 7 9 11 13 15 17
layer

0.4

0.5

0.6

0.7

0.8

0.9

NE
R

Layer-wise NER of gemma1.1

Value
Key

Alpaca
CodeAlpaca

WizardCoder
FunctionCall

MedAlpaca
VisR-Bench (Arabic)

VisR-Bench (German)
VisR-Bench (Swedish)

1 3 5 7 9 11 13 15 17 19 21 23 25 27
layer

0.1

0.2

0.3

0.4

0.5

NE
R

Layer-wise NER of gemma-1.1-7b-it

Value
Key

Alpaca
CodeAlpaca

WizardCoder
FunctionCall

MedAlpaca
VisR-Bench (Arabic)

VisR-Bench (German)
VisR-Bench (Swedish)

Figure E.2: Layer-wise NER of key and value representations in mistral, gemma1.1, and gemma-1.1-
7b-it evaluated on 5 datasets and 3 languages from the VisR-Bench benchmark.

13

E.3 PPL Heatmap

Figure E.3: PPL heatmap of LLaMA-2-7B on 6 datasets.

14

Figure E.4: PPL heatmap of Qwen3-4B on 6 datasets.

15

	Introduction
	Method
	SVD-based KV-cache Analysis
	Incremental SVD Algorithm for Dataset-level KV-cache

	Experiment
	Evaluation Metric
	Benchmarking Experiment on KV-Cache Compressibility
	Average NER across Models and Datasets
	Layer-wise NER Patterns
	Effect of KV-cache Compression on PPL

	Conclusion
	Related Work
	Preliminary
	MHA, MQA and GQA
	MLA

	Theoretical Proof
	Optimality of the Low-Rank Projection Matrix
	Correctness of the Incremental SVD Algorithm

	Experiment Setup Details
	Optimization Setup
	Datasets

	Additional Experiment Results
	Average NER Results
	Layer-wise NER Results
	PPL Heatmap

