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ABSTRACT

Many modern high-performing machine learning models such as GPT-3 primarily
rely on scaling up models, e.g., transformer networks. Simultaneously, a parallel
line of work aims to improve the model performance by augmenting an input
instance with other (labeled) instances during inference. Examples of such aug-
mentations include task-specific prompts and similar examples retrieved from the
training data by a nonparametric component. Remarkably, retrieval-based methods
have enjoyed success on a wide range of problems, ranging from standard natu-
ral language processing and vision tasks to protein folding, as demonstrated by
many recent efforts, including WebGPT and AlphaFold. Despite growing literature
showcasing the promise of these models, the theoretical underpinning for such
models remains underexplored. In this paper, we present a formal treatment of
retrieval-based models to characterize their generalization ability. In particular,
we focus on two classes of retrieval-based classification approaches: First, we
analyze a local learning framework that employs an explicit local empirical risk
minimization based on retrieved examples for each input instance. Interestingly,
we show that breaking down the underlying learning task into local sub-tasks
enables the model to employ a low complexity parametric component to ensure
good overall accuracy. The second class of retrieval-based approaches we explore
learns a global model using kernel methods to directly map an input instance and
retrieved examples to a prediction, without explicitly solving a local learning task.

1 INTRODUCTION

As our world is complex, we need expressive machine learning models to make high accuracy
predictions on real world problems. There are multiple ways to increase expressiveness of a machine
learning model. A popular way is to homogeneously scale the size of a parametric model, such as
neural networks, which has been behind many recent high-performance models such as GPT-3 (Brown
et al., 2020) and ViT (Dosovitskiy et al., 2021). Their performance (accuracy) exhibits a monotonic
behavior with increasing model size, as demonstrated by “scaling laws” (Kaplan et al., 2020). Such
large models, however, have their own limitations, including high computation cost, catastrophic
forgeting (hard to adapt to changing data), lack of provenance, and explanability. Classical instance-
based models Fix & Hodges (1989), on the other hand, offer many desirable properties by design —
efficient data structures, incremental learning (easy addition and deletion of knowledge), and some
provenance for its prediction based on the nearest neighbors w.r.t. the input. However, these models
often suffer from weaker empirical performance as compared to deep parametric models.

Increasingly, a middle ground combining the two paradigms and retaining the best of both worlds is
becoming popular across various domains, ranging from natural language (Das et al., 2021; Wang
et al., 2022; Liu et al., 2022; Izacard et al., 2022), to vision (Liu et al., 2015; 2019; Iscen et al., 2022;
Long et al., 2022), to reinforcement learning (Blundell et al., 2016; Pritzel et al., 2017; Ritter et al.,
2020) , to even protein structure predictions (Cramer, 2021) . In such approaches, given a test input,
one first retrieves relevant entries from a data index and then processes the retrieved entries along
with the test input to make the final predictions using a machine learning model. This process is
visualized in Figure 1b. For example, in semantic parsing, models that augment a parametric seq2seq
model with similar examples have not only outperformed much larger models but also are more
robust to changes in data (Das et al., 2021).

While classical learning setups (cf. Figure 1a) have been studied extensively over decades, even
basic properties and trade-offs pertaining to retrieval-based models (cf. Figure 1b), despite their
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Figure 1: An illustration of a retrieval-based classification model. Given an input instance x, similar
to an instance-based model, it retrieves similar (labeled) examples Rx = {(x′j , y′j)}j from training
data. Subsequently, it processes (potentially via a nonparametric method) input instance along with
the retrieved examples to make the final prediction ŷ = f(x,Rx).

aforementioned remarkable successes, remain highly under-explored. Most of the existing efforts
on retrieval-based machine learning models solely focus on developing end-to-end domain-specific
models, without identifying the key dataset properties or structures that are critical in realizing
performance gains by such models. Furthermore, at first glance, due to the highly dependent nature of
an input and the associated retrieved set, direct application of existing statistical learning techniques
does not appear as straightforward. This prompts the natural question: What should be the right
theoretical framework that can help rigorously showcase the value of the retrieved set in ensuring
superior performance of modern retrieval-based models?

In this paper, we take the first step towards answering this question, while focusing on the classification
setting (Sec. 2.1). We begin with the hypothesis that the model might be using the retrieved set to do
local learning implicitly and then adapt its predictions to the neighborhood of the test point. This idea
is inspired from Bottou & Vapnik (1992). Such local learning is potentially beneficial in cases where
the underlying task has a local structure, where a much simpler function class suffices to explain the
data in a given local neighborhood but overall the data can be complex (formally defined in Sec. 2.2).
For instance looking at a few answers at Stackoverflow even if not for same problem may help us
solve our issue much faster than understanding the whole system. We try to formally show this effect.

We begin by analyzing an explicit local learning algorithm: For each test input, (1) we retrieve a
few training examples located in the vicinity of the test input, (2) train a local model by performing
empirical risk minimization (ERM) with only these retrieved examples – local ERM; and (3) apply
the resulting local model to make prediction on the test input. For the aforementioned retrieval-based
local ERM, we derive finite sample generalization bounds that highlight a trade-off between the
complexity of the underlying function class and size of neighborhood where local structure of the
data distribution holds in Sec. 3. Under this assumption of local regularity, we show that by using
a much simpler function class for the local model, we can achieve a similar loss/error to that of a
complex global model (Thm. 3.4). Thus, we show that breaking down the underlying learning task
into local sub-tasks enables the model to employ a low complexity parametric component to ensure
good overall accuracy. Note that the local ERM setup is reminiscent of semiparametric polynomial
regression (Fan & Gijbels, 2018) in statistics, which is a special case of our setup. However, the
semiparametric polynomial regression have been only analyzed asymptotically under mean squared
error loss (Ruppert & Wand, 1994) and its treatment under a more general loss is unexplored.

We acknowledge that such local learning cannot be the complete picture behind the effectiveness
of retrieval-based models. As noted in Zakai & Ritov (2008), there always exists a model with
global component that is more “preferable” to a local-only model. In Sec. 3.2, we extend local ERM
to a two-stage setup: First learn a global representation using entire dateset, and then utilize the
representation at the test time while solving the local ERM as previously defined. This enables the
local learning to benefit from good quality global representations, especially in sparse data regions.

Finally, we move beyond explicit local learning to a setting that resembles more closely the empirically
successful systems such as REINA, WebGPT, and AlphaFold: A model that directly learns to predict
from the input instance and associated retrieved similar examples end-to-end. Towards this, we take a
preliminary step in Sec. 4 by studying a novel formulation of classification over an extended feature
space (to account for the retrieved examples) by using kernel methods (Deshmukh et al., 2019).
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To summarize, our main contributions include: 1) Setting up a formal framework for classification
under local regularity; 2) Finite sample analysis of explicit local learning framework; 3) Extending
the analysis to incorporate a globally learnt model; and 4) Providing the first rigorous treatment of an
end-to-end retrieval-based models to understand its generalization by using kernel-based learning.

2 PROBLEM SETUP

We first provide a brief background on (multiclass) classification along with necessary notations.
Subsequently, we discuss the problem setup considered in this paper, which deals with designing
retrieval-based classification models for the data distributions with local regularity.

2.1 MULTICLASS CLASSIFICATION

In this work, we restrict ourselves to (multi-class) classification setting, with access to n training
examples S = {(xi, yi)}i∈[n] ⊂ X× Y, sampled i.i.d. from the data distribution D := DX,Y . Given
S, one is interested in learning a classifier h : X → Y that minimizes miss-classification error. It
is common to define a classifier via a scorer f : x 7→

(
f1(x), . . . , f|Y|(x)

)
∈ R|Y| that assigns a

score to each class in Y for an instance x. For a scorer f , the corresponding classifier takes the form:
hf (x) = arg maxy∈Y fy(x). Furthermore, we define the margin of f at a given label y ∈ Y as

γf (x, y) = fy(x)−maxy′ 6=y fy′(x). (1)

Let PD(A) := E(X,Y )∼D
[
1{A}

]
for any random variable A. Given S and a set of scorers F ⊆ {f :

X→ R|Y|}, learning a model implies finding a scorer in F that minimizes miss-classification error:

f∗ = arg minf∈F PD(hf (X) 6= Y ). (2)

One typically employs a surrogate loss (Bartlett et al., 2006) ` for the miss-classification loss
1{hf (X)6=Y } and aims minimize the associated risk:

R`(f) = E(X,Y )∼D
[
`
(
f(X), Y

)]
. (3)

Since the underlying data distribution D is only accessible via examples in S, one learns a good scorer
by minimizing the (global) empirical risk over a large function class Fglobal as follows:

f̂ = arg minf∈Fglobal R̂`(f) :=
1

n

∑
i∈[n]

`
(
f(xi), yi

)
. (4)

2.2 DATA DISTRIBUTIONS WITH LOCAL REGULARITY

In this work, we assume that the underlying data distribution D follows a local-regularity structure,
where a much simpler (parametric) function class suffices to explain the data in each local neighbor-
hood. Formally, for x ∈ X and r > 0, we define Bx,r := {x′ ∈ X : d(x, x′) ≤ r}, an r-radius ball
around x, w.r.t. a metric d : X× X→ R. Let Dx,r be the data distribution restricted to Bx,r, i.e.,

Dx,r(A) = D(A)/D (Bx,r × Y) A ⊆ Bx,r × Y. (5)

Now, the local regularity condition of the data distribution ensures that, for each x ∈ X, there exists a
low-complexity function class Fx, with |Fx| � |Fglobal|, that approximates the Bayes optimal (w.r.t.
Fglobal) for the local classification problem defined by Dx,r. That is, for a given εX > 0, we have1

minf∈Fx EDx,r [`(f(X), Y )] ≤ minf∈Fglobal EDx,r [`(f(X), Y )] + εX, ∀ x ∈ X. (6)

As an example, if Fglobal is linear in Rd (possibly dense) with bounded norm τ , then Fx can be a
simpler function class such as linear in Rd with sparsity k � d and with bounded norm τx ≤ τ .

2.3 RETRIEVAL-BASED CLASSIFICATION MODEL

This work focuses on retrieval-based methods that can leverage the aforementioned local regularity
structure of the data distribution. In particular, we focus on two such approaches:

1As stated, we require the local-regularity condition to hold for each x. This can be relaxed to hold with high
probability with increased complexity of exposition.

3



Under review as a conference paper at ICLR 2023

Local empirical risk minimization. Given a (test) instance x, the local empirical risk minimization
(ERM) approach first retrieves a neighboring set Rx = {(x′j , y′j)} ⊆ S. Subsequently, it identifies a
(local) scorer f̂x from a ‘simple’ function class Floc ⊂ {f : X→ R|Y|} as follows:

f̂x = arg minf∈Floc R̂x` (f); R̂x` (f) :=
1

|Rx|
∑

(x′,y′)∈Rx
`
(
f(x′), y′

)
. (7)

Here, Rx corresponds to the samples in S that belong to Bx,r; hence, it follows the distribution Dx,r.
We assume there exists N(r, δ) such that for any r ≥ 0, and δ > 0,

P(X,Y )∼D
[
|RX | < N(r, δ)

]
≤ δ, and P(X,Y )∼D

[
|RX | = 0

]
= 0. (8)

Note that the local ERM approach requires solving a local learning task for each test instance.
Such a local learning algorithms was introduced in Bottou & Vapnik (1992). Another point worth
mentioning here is that (7) employs the same function class Floc for each x, whereas the local
regularity assumption (cf. (6)) allows for an instance dependent function class Fx. We consider Floc

that approximates ∪x∈XFx closely. In particular, we assume that, for some εloc > 0, we have
minf∈Floc EDx,r [`(f(X), Y )] ≤ minf∈Fx EDx,r [`(f(X), Y )] + εloc, ∀ x ∈ X. (9)

Continuing with the example following (6), where Fx is linear with sparsity k � d and bounded
norm τx, one can take Floc to be linear with the same sparsity k and bounded norm τ ′ < supx∈X τx.

Classification with extended feature space. Another approach to leverage the retrieved neighboring
labeled instances during classification is to directly learn a scorer that maps x× Rx ∈ X× (X× Y)?

to per-class scores. One can learn such a scorer over extended feature space X× (X× Y)? as follows:

f̂ ex = arg minf∈Fex R̂ex
` (f); R̂ex

` (f) :=
1

n

∑
i∈[n]

`
(
f
(
xi,R

xi
)
, yi), (10)

where Fex ⊂
{
f : X× (X× Y)? → R|Y|

}
denotes a function class over the extended space. Unlike

local ERM approach, (10) learns a common function over extended space and does not require solving
an optimization problem for each test instance. That said, since Fex operates on the extended feature
space, it can be significantly complex and computationally expensive to employ as compared to Floc.

Our goal is to develop a theoretical understanding of the generalization behavior of these two retrieval-
based methods for classification with locally regular data distributions. We present our theoretical
treatment of local ERM and classification with extended feature space in Sec. 3 and 4, respectively.

3 LOCAL EMPIRICAL RISK MINIMIZATION

Before presenting an excess risk bound for the local ERM method, we introduce various necessary
definitions and assumptions that play a critical role in our analysis. We say that a scorer f is
L-coordinate Lipschitz iff for all y ∈ Y and x1, x2 ∈ X, we have

|fy(x)− fy(x′)| ≤ L‖x− x′‖2.
In this section, we restrict ourselves to the loss functions that act on the margin of a scorer (cf. (1)),
i.e., for any given example (x, y) and any scorer f , we have `(f(x), y)) = `(γf (x, y)). In addition,
we assume that, naturally, ` is a decreasing function of the margin. Furthermore, we assume that ` is
L`-Lipschitz function, i.e., |`(γ)− `(γ′)| ≤ L`|γ − γ′|,∀γ ≥ γ′.
Note that the local ERM selects a scorer from Floc. At x ∈ X, let fx,∗ denote the minimizer of the
population version of the local loss, and f∗ the population risk minimizer for the global loss, i.e.,

fx,∗ = arg min
f∈Floc

E(X′,Y ′)∼Dx,r
[
`
(
f(X ′), Y ′

)]
and f∗ = arg min

f∈Fglobal

E(X,Y )∼D

[
`
(
f(X), Y

)]
. (11)

Given a distribution D, we define the weak margin condition (Döring et al., 2018) for a scorer f as:
Definition 3.1. A scorer f satisfies (α, c)-weak margin condition iff, for all t ≥ 0,

P(X,Y )∼D(|γf (X,Y )| ≤ t) ≤ c tα.

One of the key assumptions that we rely on is the existence of an underlying scorer f true that explains
the true labels, while ensuring the weak margin condition (cf. Definition 3.1). Here, we note that the
true function f true may neither lie in the function class Fglobal, nor in Floc.
Assumption 3.2 (True scorer function). There exists a scorer f true such that for all, (x, y) ∈ X× Y,
f true generates the true label, i.e., γftrue(x, y) > 0 and |RX | ⊥D γftrue(X,Y ). Furthermore, we
assume f true is Ltrue-coordinate Lipschitz, and satisfies the (αtrue, ctrue)-weak margin condition.

4



Under review as a conference paper at ICLR 2023

3.1 EXCESS RISK BOUND FOR LOCAL ERM

Now that we have introduced the required background and assumptions, we move to presenting our
results on characterizing the generalization behavior of local ERM. In particular, we aim to bound

E(X,Y )∼D
[
`(f̂X(X), Y )− `(f∗(X), Y )

]
. (12)

Note that in the above equation f̂X (cf. (7)) is a function of RX , and expectation over RX is taken
implicitly. Towards this, we first obtain the following upper bound on (12).

Lemma 3.3. The expected excess risk of the local ERM optimization f̂X is bounded as

E(X,Y )∼D

[
`(f̂X(X), Y )− `(f∗(X), Y )

]
≤ E(X,Y )∼D

[
E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)
− `
(
f∗(X ′), Y ′

)]]
︸ ︷︷ ︸

Local vs Global Optimal Risk

+
∑

F∈{Fglobal,Floc}

E(X,Y )∼D

[
sup
f∈F

∣∣E(X′,Y ′)∼DX,r
[
`
(
f(X ′), Y ′

)]
− `(f(X), Y )

∣∣]
︸ ︷︷ ︸

Global and Local: Sample vs Retrieved Set Risk

+ E(X,Y )∼D

[
sup
f∈Floc

∣∣∣E(X′,Y ′)∼DX,r [`(f(X ′), Y ′)]− 1
|RX |

∑
(x′,y′)∈RX

`
(
f(x′), y′

)∣∣∣]
︸ ︷︷ ︸

Generalization of Local ERM

+ E(X,Y )∼D

[∣∣∣E(X′,Y ′)∼DX,r [`(f
X,∗(X ′), Y ′)]− 1

|RX |

∑
(x′,y′)∈RX

`
(
fX,∗(x′), y′

)∣∣∣]
︸ ︷︷ ︸

Central Absolute Moment of fX,∗

.

We delegate the proof of Lem. 3.3 to Appendix B. Now, as a strategy to obtain desired excess risk
bounds, we separately bound the four terms appearing in Lem. 3.3. Note that the first term captures
the expected difference between the loss incurred by global population optima f∗ ∈ Fglobal and the
local population optima fx,∗ ∈ Floc in a local region around test instance x.The second term aims to
capture the loss for a scorer evaluated at x vs. the expected value of the loss for the scorer at a random
instance sampled in the local region of x based on Dx,r. The third term corresponds to the standard
‘generalization error’ for the local ERM with respect to the local data distribution DX,r, whereas the
fourth term is the empirical variation of the true local function fX,∗ around its true mean under DX,r.

Let the coordinate-Lipschitz constants for scorers in Floc and Fglobal be Lloc and Lglobal, respectively.
We define a function class G(X,Y ) = {(x′, y′) 7→ `(γf (·, ·)) − `(γf (X,Y )) : f ∈ Floc}. Here,
by subtracting `

(
f(X), Y

)
from the loss, we center the losses on RX for any function f ∈ Floc,

and obtain a tighter bound by utilizing the local nature of the distribution DX,r. For any L > 0, for
notational convenience let us define

Mr(L; `, ftrue,F) = 2L`

(
Lr +

(
max{Lr, 2‖F‖∞} − Lr

)
ctrue

(
2Ltruer

)αtrue
)
. (13)

Now, by controlling different terms appearing in the bound in Lem. 3.3, we obtain the following.

Theorem 3.4. For any δ > 0, the expected excess risk of the local ERM solution f̂X is bounded as

E(X,Y )∼D

[
`(f̂X(X), Y )− `(f∗(X), Y )

]
≤ (εX + εloc)︸ ︷︷ ︸

Local vs Global Optimal loss (I)

+Mr(Lloc; `, ftrue,F
loc) + Mr(Lglobal; `, ftrue,F

global)︸ ︷︷ ︸
Global and Local: Sample vs Retrieved Set Risk (II)

+ 2E(X,Y )∼D

[
RRX

(
G(X,Y )

)]
+ 5Mr(Lloc; `, ftrue,F

loc)

√
2 ln(4/δ)

N(r, δ)
+ 4δL`‖Floc‖∞(2 +

√
2 ln(4/δ))︸ ︷︷ ︸

Generalization of Local ERM (III)

,

where RRX
(
G(X,Y )

)
is the empirical Rademacher complexity of G(X,Y ).

Before discussing the implications of the aforementioned excess risk bound, we instantiate Floc with
a few common function classes from the literature (see Appendix B for the detailed proof of Thm. 3.4,
and about the descriptions of these specific instances).
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Kernel-based classifiers. When fy(·) belongs to a bounded RKHS with `∞ norm bound B (Zhang,
2004), for some universal constant C > 0 and any δ > 0,

E(X,Y )∼DRRX
(
G(X,Y )

)
≤ C

(√
|Y|L`Bln(n+ 1)3/2/

√
|N(r, δ)|+ 2δB

)
.

Similarly, when fy(·) belongs to a bounded RKHS with `2 norm bound B (Lei et al., 2019), for
some universal constant C ′ > 0 and any δ > 0,

E(X,Y )∼DRRX
(
G(X,Y )

)
≤ C ′

(
L`Bln(n|Y|)3/2/

√
|N(r, δ)|+ 2δB

)
.

Feed-forward classifiers. Assume that fy(·) is an L layer feed-forward network with 1-Lipschitz
non-linearities (Bartlett et al., 2017). Let, for layers l = 1 to L, the dimension of the weight matrix
be (dl × dl−1) with dL = |Y|. Also, let bl and sl be the `2,1 norm and spectral norm upper bounds
for layer l weight matrix, respectively, with bl/sl ≤ κ. We define dmax = maxl∈[L] dl and let
B̃ = maxx∈X ‖x‖2

∏L
l=1 sl. Then, for some universal constant C ′′ > 0 and any δ > 0,

E(X,Y )∼DRRX
(
G(X,Y )

)
≤ C ′′

(
L`B̃
√
κ ln(dmax)L3/4ln(L`B̃

√
n)3/2/

√
N(r, δ) + 2δB̃

)
.

Implications of the excess risk bound. Our main result for local-ERM highlights the trade-offs in
approximation vs. generalization as the retrieval radius r varies. To further elaborate, note that the
approximation error comprises two components, defined by (I) and (II) in Thm. 3.4. εX shows the
gap in approximating the r-radius neighborhood around X with a simple local function class FX
which vary with X ∈ X. εloc shows the gap in approximating the union of the local function class
∪x∈XFX with a single function class Floc (possibly with smaller complexity) but while allowing for
choosing a different optimizer fX ∈ Floc for each X ∈ X. As r increases, both the terms εX and εloc

typically increase. For example, in approximating a polynomial function locally with linear function
εX increases as the radius increases. Thus, (I) increases with r. Note that the second component of
the approximation error (II) corresponds to the difference of risk for the sample X and the retrieved
set RX for Fglobal and Floc, i.e., Mr(Lglobal; `, ftrue,F

global) and Mr(Lloc; `, ftrue,F
loc). As we

increase r, Eq. (13) suggests that the terms increase as O(poly(r)).

On the other hand, the generalization error (III) depends on the size of the retrieved set RX and the
Rademacher complexity of G(X,Y ) which is induced by Floc. With increasing radius r, the term
N(r, δ) increases. The Rademacher complexity decays with increasing radius, r, typically at the
rate of O(1/

√
N(r, δ)). Thus, under the local ERM setting the total approximation error increases

with increasing radius r, given Floc is fixed. On the contrary, the generalization error decreases
with increasing radius r for a fixed Floc. This suggests a trade-off between the approximation and
generalization error as we make a design choice about r. (We empirically validate this in Figure 2.)

Also, it’s worth comparing local-ERM with conventional (non-local) ERM. Under the local-regularity
condition assumption (Sec. 2.2), one would utilize a simple Floc for local-ERM, which would
correspond to the Rademacher complexity term in Theorem 3.4 being small. In contrast, the
generalization bound for the traditional (non-local) ERM approach would depend on the Rademacher
complexity of a function class Fglobal that can achieve a low approximation error on the entire
domain. Such a function class (even under the regularity assumption) would be much more complex
than Floc, resulting in a large Rademacher complexity. For the right design choice of r, and Floc, the
approximation error increase of local-ERM can be offset by large generalization error of Fglobal. As
a consequence, local ERM with simple function class Floc can outperform (non-local) ERM with a
complex class Fglobal.

3.2 ENDOWING LOCAL ERM WITH GLOBAL REPRESENTATIONS

Note that the local ERM method takes a somewhat myopic view and does not aim to learn a global
hypothesis that (partially or entirely) explains the entire data distribution. Such an approach may
potentially result in poor performance in those regions of input domains that are not well represented
in the training set. Here, we explore a two-stage learning approach as to leverage the global pattern
present in the training data in order to address this apparent shortcoming of local ERM.

Given the training data S and a simple function class Gloc : Rd → R|Y|, the first stage involves
learning a d-dimensional feature map ΦS : X→ Rd that simultaneously ensures good representation
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for the entire data distribution (Radford et al., 2021; Grill et al., 2020; Cer et al., 2018; Reimers
& Gurevych, 2019). Subsequently, given a test instance x and its retrieved neighboring points
Rx = {(x′j , y′j)} ⊆ S, one employs local ERM with the function class:

FΦS
= {x 7→ g ◦ ΦS(x) : g ∈ Gloc}. (14)

At this point, it is tempting to invoke the proof strategy outlined following Lem. 3.3, with Floc

replaced with FΦS
to characterize the performance of the aforementioned two-stage method. Note

that one can indeed bound the first two terms appearing in Lem. 3.3 for the two-stage method
as well. However, bounding the third term that corresponds to generalization gap for local ERM
becomes challenging as FΦS

depends on S via the global representation ΦS learned in the first stage.
Interestingly, Foster et al. (2019) explored a general framework to address such dependence for
standard (non retrieval-based) learning. In fact, as an instantiation of their general framework, Foster
et al. (2019, Sec. 5.4) considers the ERM in feature space defined by a representation. We employ
their techniques to obtain the following result on the generalization gap for local ERM with FΦS

.
Proposition 3.5. Assume that the representation learned duing the first stage is ∆-sensitive, i.e., for
S and S′ that differ in a single example, we have ‖ΦS(x) − ΦS′(x)‖ ≤ ∆ ∀x ∈ X. Furthermore,
we assume that each g ∈ Gloc (cf. 14) is L-Lipschitz, the loss ` : R|Y| × |Y| → R is L`,1-Lipschitz
w.r.t. ‖ · ‖∞-norm in the first argument, and ` is bounded by M`. Then, the following holds with
probability at least 1− δ.

sup
f∈FΦS

∣∣∣E(X′,Y ′)∼Dx,r [`(f(X ′), Y ′)]− R̂x` (f)
∣∣∣ ≤ (M` + 2∆LL`,1|Rx|

)√ log(1/δ)

2|Rx|
+

ERx∼Dx,r
[

sup
f∈FΦS

∣∣∣E(X′,Y ′)∼Dx,r [`(f(X ′), Y ′)]− R̂x` (f)
∣∣∣]. (15)

Furthermore ERx∼Dx,r
[

sup
f∈FΦS

∣∣∣E(X′,Y ′)∼Dx,r [`(f(X ′), Y ′)]− R̂x` (f)
∣∣∣] ≤ 2R�(` ◦ FΦS

), (16)

where ` ◦ FΦS
= {(x, y) 7→ `(f(x), y) : f ∈ FΦS

} and R� denotes the Rademacher complexity of
data dependent hypothesis sets Foster et al. (2019).

We defer the proof of Prop. 3.5 and necessary background on Foster et al. (2019) to Appendix C.

As a potential advantage of utilizing a global representation with local ERM, one can realize high-
performance local learning with an even simpler function class. For example, it’s a common approach
to only train a linear classifier on learned representations. Furthermore, a high-quality global
representation can ensure good performance for those local regions that are not well represented in
the training set. We leave a formal treatment of these topics for a longer version of this manuscript.

4 CLASSIFICATION IN EXTENDED FEATURE SPACE

Next, we focus on a family of retrieval-based methods that directly learn a scorer to map an input
instance and its neighboring labeled instance to a score vector (cf. (10)). In fact, as discussed in
Sec. 1, many successful modern instances of retrieval-based models such as REINA (Wang et al.,
2022) and KATE (Liu et al., 2022) belong to this family. In this section, we provide the first rigorous
treatment (to the best of our knowledge) for such models.

Note that our objective is to learn a function f : X× (X× Y)? → R|Y| (cf. Sec. 2.3). In this work,
we restrict ourselves to a sub-family of such retrieval-based methods that first map Rx ∼ Dx,r to
D̂x,r — an empirical estimate of the local distribution Dx,r, which is subsequently utilized to make a
prediction for x. In particular, the scorers of interest are of the form:

(x,Rx) 7→ f(x, D̂x,r) =
(
f1(x, D̂x,r), . . . , f|Y|(x, D̂

x,r)
)
∈ R|Y|, (17)

Note that the general framework for learning in the extended feature space X̃ := X×∆X×Y provides
a very rich class of functions. Here, we focus on a specific form of learning methods in X̃ by using
the kernel methods, adapting the work on kernel methods for domain generalization (Deshmukh et al.,
2019). In particular, we study generalization of a kernel-based classifier over X̃ learnt via regularized
ERM. Due to space constraint, we present an informal version of our result below. See Appendix D
for the precise statement (cf. Thm. D.4), necessary background, and detailed proof.
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Theorem 4.1 (Informal). Let 0 ≤ δ ≤ 1 and N(r, δ) be as defined in (8). Then, under appropriate
assumptions, with probability at least 1− δ, we have

sup
f∈F

∣∣R̂ex
` (f)−Rex

` (f)
∣∣ . C1n

− 1
2

(
1 + log

3
2

√
2n|Y|

)
+ C2

√
log(nδ )

N(r, δn )
+ C3

√
log( 1

δ )

n
,

where F is the extended feature kernel function class; and R̂ex
` (f) and Rex

` (f) are empirical and
population risks, respectively.

Interestingly, the bound in Thm. 4.1 implies that the size of the retrieved set Rx (as captured by
N(r, δn )) has to scale at least logarithmically in the size of the training set n to ensure convergence.

5 EXPERIMENTS

There have been numerous successful practical applications of retrieval-based models in the literature
(e.g., Wang et al., 2022; Das et al., 2021). Here, we present a brief empirical study for such models in
order to corroborate the benefits predicted by our theoretical results.

Task and dataset. We perform experiments on both synthetic and real datasets, as summarized below.
Further details are relegated to Appendix E.
(i) Synthetic. We consider a task of binary classification on a Gaussian mixture. Each mixture
component is endowed with its local linear decision boundary. We randomly generate a train set of
n = 10000 in a 10-dimensional space. We use Euclidean distance for retrieval and perform a 10-fold
cross-validation.
(ii) CIFAR-10. Next, we consider a task of binary classification on a real data for object detection.
In particular, we consider a subset of CIFAR-10 dataset where we only restrict to images from "Cat"
and "Dog" classes. We randomly partition the data into a train set of n = 10000 points and remaining
2000 points for test. We use Euclidean distance for retrieval and do a 10-fold cross-validation.
(iii) ImageNet. Finally, we consider 1000-way classification task on ImageNet dataset. We use the
standard train-test split with n = 1281167 training and 50000 test examples. Following standard
practice in literature, we use unsupervised but globally learned features from ALIGN (Jia et al., 2021)
to do image retrieval. This also showcases benefits of endowing local ERM with global representation
(Sec. 3.2). Given large computational cost, we could only run each experiment once in this setting.

Methods On all datasets, as baseline, we consider simple linear classifier and multi-layer perceptron
(MLP) of two layers. For retrieval-based models, we consider each of the above methods as the local
model to fit on retrieved data points via local ERM framework (Sec. 3). For synthetic datasets, we
also considered support vector machines with polynomial kernel (of degree 3) and with radial basis
function (RBF) kernel, both for baseline and local ERM. For ImageNet, we additionally consider the
state-of-the-art (SoTA) single model published for this task, which is from the most recent CVPR
2022 (Zhai et al., 2022) as a baseline. In addition, for ImageNet, we also consider the pretrain-finetune
version of local ERM, where using the retrieved set we fine-tune a MobileNetV3 (Howard et al.,
2019) model that has been pretrained on entire ImageNet.

Observations. In Fig. 2, we observe the tradeoff of varying the size of the retrieved set (as dictated
by the neighborhood radius) on the performance of retrieval-based methods across all settings. We
see that when the number of retrieved samples is small, local ERM has lower accuracy, this is due to
large generalization error. When the size of the retrieved sample space is high, local ERM fails to
minimize the loss effectively due to the lack of model capacity. We see that this effect being more
pronounced for simpler function classes such as linear classifier as compared to MLP. In Fig. 2c, we
see that, via local ERM with a small MobileNet-V3 model, we are able to achieve the top-1 accuracy
of 82.78 whereas a regularly trained MobileNet-V3 model achieves the top-1 accuracy of only 65.80.
Also the result is very competitive with SoTA of 90.45 with a much larger model. Thus, our empirical
evaluation demonstrates the utility of retrieval-based models via simple local ERM framework. In
particular, it allows small sized models to attain very high performance.

6 RELATED WORK AND DISCUSSION

Local polynomial regression. Perhaps the most similar problem to our setup is the rich set of work
on local polynomial regression, which has been around for a long time since the pioneering works

8
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Figure 2: Performance of local ERM with size of retrieved set across models of different complexity.

of Stone (1977; 1980). This line of work aims to fit a low-degree polynomial at each point in the data
set based on a subset of data points. Such approaches gained a lot of attention as parametric regression
was not adequate in various practical applications of the time. The performance of this approach
critically depends on subset selected to locally fit the data. Towards this, various selection approaches
have been considered: fixed bandwidth (Katkovnik & Kheisin, 1979), nearest neighbors (Cleveland,
1979), kernel weighted (Ruppert & Wand, 1994), and adaptive methods (Ruppert et al., 1995). So far,
the analysis of local polynomial regression has been mainly restricted to classical techniques like
minimax estimation, on which the literature is a vast for various settings. First results on asymptotic
minimax risks were established by Pinsker (1980) over Bobolov spaces. Minimax risks over more
general classes were studied by Ibragimov & Has Minskii (2013), Donoho & Liu (1988), among
others, for estimating an entire function. But none of these works provide finite sample generalization
bounds, which we obtain in this work.

Multi-task and meta learning At a surface level, our setup might resemble multi-task and meta
learning frameworks. In multi-task learning, we are given the examples from T tasks/distributions
and the objective is to ensure good classification performance on all the tasks. In meta-learning, the
setting is made harder by requiring good performance on a new target task. As a common approach in
these settings, we learn a shared representation across the tasks and then learn a simple task-specific
mapping on top of these learned shared features (Vilalta & Drissi, 2002, interalia). While there is
a vast literature on multi-task and meta-learning methods, the number of theoretical investigations
is quite limited. There are a few works studying upper-bounds on generalization error in multi-task
environments (Amit & Meir, 2017; Ben-David & Borbely, 2008; Ben-David et al., 2010; Pentina &
Lampert, 2014), and even fewer in case of meta-learning (Balcan et al., 2019; Khodak et al., 2019;
Tripuraneni et al., 2021; Du et al., 2020). However, most of these works assume linear or other
classes of very simple models, whereas we consider general function class using kernel methods.
Moreover, recall that our assumption on the underlying data distribution (Sec. 2.2) implies that it can
be approximated by a mixture of tasks. However, by design most of these tasks have a very little
overlap in the instance space. Additionally, the number of tasks can be very large in our case. Finally,
it’s not a priori clear which task a particular example belongs to. Thus, it is not straightforward to
employ the aforementioned representation based approach for multi-task or meta-learning approaches
for our setting. Interestingly, in this work, we show that retrieval-based approach alleviate the needs
to identify the task-membership. By relying on retrieved neighboring instance, it is possible to obtain
performance guarantees on their data domain which are attuned to local structure of the problem
(cf. Sec. 3).

Conclusion and future direction. In this work, we initiate the development of a theoretical frame-
work to study the generalization behavior of retrieval-based modern machine learning models. Our
treatment of an explicit local learning paradigm, namely local-ERM, establishes an approximation
vs. generalization error trade-off. This highlights the advantage realized by access to a retrieved
set during classification as it enables good performance with much simpler (local) function classes.
As for the retrieval-based models that leverage a retrieved set without explicitly performing local
learning, we present a systematic study by considering a kernel-based classifier over extended feature
space. Studying end-to-end retrieval-based models beyond kernel-based classification is a natural
and fruitful direction for future work. It’s also worth exploring if existing retrieval-based end-to-end
models inherently perform implicit local learning via architectures such as Transformers.
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A PRELIMINARIES

Definition A.1 (Rademacher complexity). Given a sample S = {zi = (xi, yi)}i∈[n] ⊂ Z and a
real-valued function class F : Z→ R, the empirical Rademacher complexity of F with respect to S is
defined as

RS(F) =
1

n
Eσ

[
sup
f∈F

n∑
i=1

σif(zi)

]
, (18)

where σ = {σi}i∈[n] is a collection of n i.i.d. Bernoulli random variables. For n ∈ N, the
Rademacher complexity R̄n(F) and worst case Rademacher complexity Rn(F) are defined as
follows.

R̄n(F) = ES∼Dn [RS(F)] , and Rn(F) = sup
S∼Zn

RS(F). (19)

Definition A.2 (Covering Number). Let ε > 0 and ‖ · ‖ be a norm defined over Rn. Given a
function class F : Z → R and a collection of points S = {zi}i∈[n] ⊂ Z, we call a set of points
{uj}j∈[m] ⊂ Rn an (ε, ‖ · ‖)-cover of F with respect to S, if we have

sup
f∈F

min
j∈[m]

‖f(S)− uj‖ ≤ ε, (20)

where f(S) =
(
f(z1), . . . , f(zn)

)
∈ Rn. The ‖ · ‖-covering number N‖·‖(ε,F, S) denotes the

cardinally of the minimal (ε, ‖·‖)-cover of F with respect to S. In particular, if ‖·‖ is an normalized-`p
norm (‖v‖ = ( 1

dim(v)

∑dim(v)
i=1 |vi|p)1/p), then we simply useNp(ε,F, S) to denote the corresponding

`p-covering number.

B PROOFS FOR SECTION 3.1

B.1 PROOF OF LEMMA 3.3

Note that

E(X,Y )∼D

[
`(f̂X(X), Y )− `(f∗(X), Y )

]
// We add and subtract loss of the local optimizer fX,∗(·) expected over DX,r

= E(X,Y )∼D

[
`(f̂X(X), Y )− E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)]
+ E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)]
− `(f∗(X), Y )

]
// We add and subtract loss of the global optimizer f∗(·) expected over DX,r

= E(X,Y )∼D

[
`(f̂X(X), Y )− E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)]
+ E(X′,Y ′)∼DX,r

[
`
(
f∗(X ′), Y ′

)]
− `(f∗(X), Y )

+ E(X′,Y ′)∼DX,r
[
`
(
fX,∗(X ′), Y ′

)]
− E(X′,Y ′)∼DX,r

[
`
(
f∗(X ′), Y ′

)]]
// We group (1) local vs global optimizer, (2) global optimizer at X vs expected over DX,r,

// and (3) ERM loss at X vs local optimizer loss expected over DX,r

= E(X,Y )∼D

[
E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)
− `
(
f∗(X ′), Y ′

)]]
+ E(X,Y )∼D

[
E(X′,Y ′)∼DX,r

[
`
(
f∗(X ′), Y ′

)]
− `(f∗(X), Y )

]
+ E(X,Y )∼D

[
`(f̂X(X), Y )− E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)]]
// We add and subtract loss of the empirical optimizer f̂X(·) expected over DX,r

= E(X,Y )∼D

[
E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)
− `
(
f∗(X ′), Y ′

)]]
14
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+ E(X,Y )∼D

[
E(X′,Y ′)∼DX,r

[
`
(
f∗(X ′), Y ′

)]
− `(f∗(X), Y )

]
+ E(X,Y )∼D

[
`(f̂X(X), Y )− E(X′,Y ′)∼DX,r [`

(
f̂X(X ′), Y ′

)
]

+ E(X′,Y ′)∼DX,r [`
(
f̂X(X ′), Y ′

)
]− E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)]]
// We (1) bound difference of loss at X and loss expected over DX,r by maximizing over function class,
// and (2) Subtract empirical loss of empirical optimizer and add (larger) empirical loss of local optimizer

≤ E(X,Y )∼D

[
E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)
− `
(
f∗(X ′), Y ′

)]]
+ E(X,Y )∼D

[
sup

f∈Fglobal

∣∣E(X′,Y ′)∼DX,r
[
`
(
f(X ′), Y ′

)]
− `(f(X), Y )

∣∣]
+ E(X,Y )∼D

[
sup
f∈Floc

∣∣`(f(X), Y )− E(X′,Y ′)∼DX,r [`
(
f(X ′), Y ′

)
]|
]

+ E(X,Y )∼D

[
E(X′,Y ′)∼DX,r [`

(
f̂X(X ′), Y ′

)
]− 1

|RX |
∑

(x′,y′)∈RX
`
(
f̂X(x′), y′

)]
+ E(X,Y )∼D

[ 1

|RX |
∑

(x′,y′)∈RX
`
(
fX,∗(x′), y′

)
− E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)]]
(21)

// We (1) bound difference of empirical vs expected loss of empirical optimizer by maximizing over function class,

≤ E(X,Y )∼D

[
E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)
− `
(
f∗(X ′), Y ′

)]]
+ E(X,Y )∼D

[
sup

f∈Fglobal

∣∣E(X′,Y ′)∼DX,r
[
`
(
f(X ′), Y ′

)]
− `(f(X), Y )

∣∣]
+ E(X,Y )∼D

[
sup
f∈Floc

∣∣`(f(X), Y )− E(X′,Y ′)∼DX,r [`
(
f(X ′), Y ′

)
]|
]

+ E(X,Y )∼D

[
sup
f∈Floc

∣∣∣E(X′,Y ′)∼DX,r [`
(
f(X ′), Y ′

)
]− 1

|RX |
∑

(x′,y′)∈RX
`
(
f(x′), y′

)∣∣∣]
+ E(X,Y )∼D

[∣∣∣E(X′,Y ′)∼DX,r
[
`
(
fX,∗(X ′), Y ′

)]
− 1

|RX |
∑

(x′,y′)∈RX
`
(
fX,∗(x′), y′

)∣∣∣] (22)

B.2 PROOF OF THEOREM 3.4

As discussed in Sec. 3, the proof of Theorem 3.4 requires bounding three terms in Lemma 3.3. We
now proceed to establishing the desired bounds.

Local vs global loss. The local vs global loss can bounded easily using the local regularity condition,
and due to the fact that Floc ≈ ∪xFx. Let

fX,loc = arg min
f∈FX

E(X′,Y ′)∼DX,r
[
`
(
f(X ′), Y ′

)]
.

E(X,Y )∼D

[
E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)
− `
(
f∗(X ′), Y ′

)]]
≤ E(X,Y )∼D

[
E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)
− `
(
fX,loc(X ′), Y ′

)]]
+ E(X,Y )∼D

[
E(X′,Y ′)∼DX,r

[
`
(
fX,loc(X ′), Y ′

)
− `
(
f∗(X ′), Y ′

)]]
≤ εloc + εX.

Global and local: Sample vs retrieved set risk. The following lemma bounds the second term in
Lemma 3.3. Recall the definition, for any L > 0,

Mr(L; `, ftrue,F) = 2L`

(
Lr +

(
max{Lr, 2‖F‖∞} − Lr

)
ctrue

(
2Ltruer

)αtrue
)
. (23)
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Lemma B.1. Under Assumption 3.2, for a L-coordinate Lipschitz function class F with ‖F‖∞ :=
supx∈X supf∈F ‖f(x)‖∞ we have

E(X,Y )∼D

[
sup
f∈F

∣∣`(f(X), Y )− E(X′,Y ′)∼DX,r [`
(
f(X ′), Y ′

)
]|
]

≤ 2L`

(
Lr +

(
max{Lr, 2‖F‖∞} − Lr

)
ctrue(2Ltruer)

αtrue

)
.

Proof. We are given the example (X,Y ). Let us fix an arbitrary f ∈ F, and any arbitrary example
(x′, y′) in the r neighborhood of X .

We first bound the perturbation in γf (·) for a given label Ỹ .

|γf (X1, Ỹ ))− γf (X2, Ỹ )| ≤ |fỸ (X1)−max
s6=Ỹ

fs(X1)− fỸ (X2) + max
s′ 6=Ỹ

fs′(X2)|

≤ |fỸ (X1)− fỸ (X2)|+ |max
s6=Ỹ

fs(X1)−max
s′ 6=Ỹ

fs′(X2)|

≤ |fỸ (X1)− fỸ (X2)|+ max
s6=Ỹ
|fs(X1)− fs(X2)|

≤ 2L‖X1 −X2‖2

We can now proceed with bounding the loss.

|`(f(X), Y )− `(f(x′), y′)| = |`(γf (X,Y ))− `(γf (x′, y′))|
≤ L`|γf (X,Y )− γf (x′, y′)|

≤
{

4L`‖f‖∞;Y 6= y′

2L`Lr;Y = y′

Under Assumption 3.2, if we have γftrue(X,Y ) > 2Ltruer, then following the above argument we
have γftrue(X ′, Y ) > 0, thus Y is the true label of X ′. In other words, γftrue(X,Y ) > 2Ltruer
imply for any X ′ in the r neighborhood of X its true label Y ′ = Y .

|`(f(X), Y )− `(f(x′), y′)|
≤ 2L`Lr1(γftrue(X,Y ) > 2Ltruer) + 2L` max{r, 2‖f‖∞}1(γftrue(X,Y ) ≤ 2Ltruer)

≤ 2L`Lr + 2L`
(

max{Lr, 2‖f‖∞} − Lr
)
1(γftrue(X,Y ) ≤ 2Ltruer)

As (x′, y′) was an arbitrary r-neighbor, we have

|`(f(X), Y )− E(X′,Y ′)∼DX,r`(f(X ′), Y ′)|
≤ E(X′,Y ′)∼DX,r |`(f(X), Y )− `(f(X ′), Y ′)|
≤ 2L`Lr + 2L`

(
max{Lr, 2‖f‖∞} − Lr

)
1(γftrue(X,Y ) ≤ 2Ltruer)

Furthermore, as f was arbitrary, we have

sup
f∈F
|`(f(X), Y )− E(X′,Y ′)∼DX,r`(f(X ′), Y ′)|

≤ sup
f∈F

2L`Lr + 2L`
(

max{Lr, 2‖f‖∞} − Lr
)
1(γftrue(X,Y ) ≤ 2Ltruer)

= 2L`Lr + 2L`
(

max{Lr, 2‖F‖∞} − Lr
)
1(γftrue(X,Y ) ≤ 2Ltruer).

Note f true is independent of f , which was used in the derivation of above inequalities. Taking
expectation over (X,Y ), and using the margin condition as given in assumption 3.2 we obtain

E(X,Y )∼D

[
sup
f∈F
|`(f(X), Y )− E(X′,Y ′)∼DX,r`(f(X ′), Y ′)|

]
= 2L`Lr + 2L`

(
max{Lr, 2‖F‖∞} − Lr

)
P(X,Y )∼D

[
γftrue(X,Y ) ≤ 2Ltruer

]
≤ 2L`Lr + 2L`

(
max{Lr, 2‖F‖∞} − Lr

)
ctrue(2Ltruer)

αtrue = Mr(L; `, ftrue,F).
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Plugging in the Lipschitz bounds for the function classes Floc and Fglobal in the above lemma bounds
the second term.

Generalization of Local ERM. Recall the function class G(X,Y ) = {`(γf (·, ·)) − `(γf (X,Y )) :
f ∈ Floc}. Here G(X,Y ) : X × Y → R. Note that the function class is parameterized by (X,Y ).
Let us define some quantities of the function class on a set S ⊆ X× Y as

Gmax((X,Y );S) = sup
g∈G(X,Y )

sup
(x′,y′)∈S

|g(x′, y′)|

By centering each function f ∈ Floc at the point (X,Y ) we can transform the generalization over
the function class Floc, to the generalization over the function class G(X,Y ). In particular, we have

E(X,Y )∼D

[
sup
f∈Floc

∣∣∣E(X′,Y ′)∼DX,r [`
(
f(X ′), Y ′

)
]− 1

|RX |
∑

(x′,y′)∈RX
`
(
f(x′), y′

)∣∣∣]
= E(X,Y )∼D

[
sup
f∈Floc

∣∣∣E(X′,Y ′)∼DX,r [`
(
f(X ′), Y ′

)
− `
(
f(X), Y

)
]

− 1

|RX |
∑

(x′,y′)∈RX
`
(
f(x′), y′

)
− `
(
f(X), Y

)∣∣∣]
= E(X,Y )∼D

[
sup

g∈G(X,Y )

∣∣∣E(X′,Y ′)∼DX,r [g(X ′, Y ′)]− 1

|RX |
∑

(x′,y′)∈RX
g(x′, y′)

∣∣∣].
We next state a standard result of learning theory that bounds the final term using the Rademacher
complexity of the function class G(X,Y ) (Shalev-Shwartz & Ben-David, 2014).
Lemma B.2 (Adapted from Theorem 26.5 in Shalev-Shwartz & Ben-David (2014).). For any
(X,Y ) ∈ X× Y and a neighborhood set RX , and any function g ∈ G(X,Y ), for each δ > 0 with
probability at least (1− δ) the following holds∣∣∣E(X′,Y ′)∼DX,r [g

(
X ′, Y ′

)
]− 1

|RX |
∑

(x′,y′)∈RX
g
(
x′, y′

)∣∣∣
≤ 2RRX

(
G(X,Y )

)
+ 4Gmax((X,Y );RX)

√
2 ln(4/δ)

|RX |
.

Taking expectation with respect to (X,Y ), we obtain

E(X,Y )∼D

[
sup

g∈G(X,Y )

∣∣E(X′,Y ′)∼DX,r [g
(
X ′, Y ′

)
]− 1

|RX |
∑

(x′,y′)∈RX
g
(
x′, y′

)∣∣]
≤ 2E(X,Y )∼D

[
RRX

(
G(X,Y )

)]
+

4E(X,Y )∼D

[
Gmax((X,Y );RX)

√
2 ln(4/δ)

|RX |

]
+ 4δL`‖Floc‖∞

≤ 2E(X,Y )∼D

[
RRX

(
G(X,Y )

)]
+

4E(X,Y )∼D

[
Gmax((X,Y );RX)

]
E(X,Y )∼D

[√2 ln(4/δ)

|RX |

]
+ 4δL`‖Floc‖∞

≤ 2E(X,Y )∼D

[
RRX

(
G(X,Y )

)]
+ 4Mr(Lloc; `, ftrue,F

loc)

√
2 ln(4/δ)

N(r, δ)

+ 4δL`‖Floc‖∞E(X,Y )∼D

[√2 ln(4/δ)

|RX |

∣∣∣||RX | ≤ N(r, δ)
]

+ 4δL`‖Floc‖∞

≤ 2E(X,Y )∼D

[
RRX

(
G(X,Y )

)]
+ 4Mr(Lloc; `, ftrue,F

loc)

√
2 ln(4/δ)

N(r, δ)
+ 4δL`‖Floc‖∞(1 +

√
2 ln(4/δ)).
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In the first inequality, we condition on retrieved sets of size at least N(r, δ) which happens with
probability at least δ, by assumption. In the second inequality, with probability (1 − δ) we apply
the bound from Lemma B.2, whereas we use the bound 4L`‖Floc‖∞ with remaining probability
δ. For the second inequality, with probability δ we use 4L`‖Floc‖∞. Further, we use that the
|RX | ≤ N(r, δ) with probability at least (1− δ). Also from the proof of Lemma B.1 we have that

Gmax((X,Y );RX) ≤ 2L`

(
Lr +

(
max{Lr, 2‖Floc‖∞} − Lr

)
1
(
γftrue(X,Y ) ≤ 2Ltruer

))
.

Taking expectation with respect to D completes the bound.

Central Absolute Moment of fX,∗. As the function fX,∗ is fixed using centering, and then Hoeffding
bound, we can directly bound the remaining term. We have with probability at least (1− δ)∣∣∣E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)]
− 1

|RX |
∑

(x′,y′)∈RX
`
(
fX,∗(x′), y′

)∣∣∣
=
∣∣∣E(X′,Y ′)∼DX,r

[
`
(
fX,∗(X ′), Y ′

)
− `
(
fX,∗(X), Y

)]
− 1

|RX |
∑

(x′,y′)∈RX
`
(
fX,∗(x′), y′

)
− `
(
fX,∗(X), Y

)∣∣∣
≤ Gmax((X,Y );RX)

√
ln(2/δ)

|RX |

Taking expectation similar to the previous case we obtain,

E(X,Y )∼D

[∣∣∣E(X′,Y ′)∼DX,r
[
`
(
fX,∗(X ′), Y ′

)]
− 1

|RX |
∑

(x′,y′)∈RX
`
(
fX,∗(x′), y′

)∣∣∣]

≤ E(X,Y )∼D

[
Gmax((X,Y );RX)

√
ln(2/δ)

|RX |

]
≤Mr(Lloc; `, ftrue,F

loc)

√
ln(2/δ)

N(r, δ)
+ 4δL`‖Floc‖∞.

This concludes the proof of Theorem 3.4.

B.3 BOUNDING THE RADEMACHER COMPLEXITY RRX
(
G(X,Y )

)
We now derive bounds on the Rademacher complexity of the class G(X,Y ). We use the covering
number based bounds for that purpose. We then start by relating it to the covering number of the
Floc function class. Finally, we provide a bound on the class of functions residing in bounded norm
Reproducing Kernel Hilbert Space.

We will use Gmax(X,Y ) instead of Gmax((X,Y );RX) when the context is clear. Similar to G(X,Y ),
we define the function class G = {`(γf (·, ·)) : f ∈ Floc} which does not depend on the locality cen-
tered around (X,Y ). On a set S ⊆ X× Y we can define Gmax(S) = supg∈G sup(x′,y′)∈S |g(x′, y′)|.
Lemma B.3. Under Assumption 3.2 we have for any retrieved set within radius r of X , RX , for any
p ≥ 1

RRX
(
G(X,Y )

)
≤ inf
ε∈[0,Gp,max(X,Y )/2]

(
4ε+ 12√

|RX |

∫ Gp,max(X,Y )/2

ε

√
log
(

2Gmax

ν

)
log
(
Np(ν/2,G,RX)

)
dν
)
.

Furthermore, we have

RRX
(
G(X,Y )

)
≤ inf
ε∈[0,Gmax(X,Y )/2]

(
4ε+ 12√

|RX |

∫ Gmax(X,Y )/2

ε

√
log
(
N∞(ν/2,G,RX ∪ {(X,Y )})

)
dν
)
.
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Proof. Given the set RX , and some function g ∈ G(X,Y ) let us define for p ≥ 1

‖g‖p,RX =
(

1
|RX |

∑
(x′,y′)∈RX

|g(x′, y′)|p
)1/p

.

Then, we have Gp,max

(
(X,Y );RX

)
= maxg∈G ‖g‖p,RX for all g ∈ G(X,Y ). For the sake of

brevity we will use Gp,max(X,Y ) in place of Gp,max

(
(X,Y );RX

)
. Note that we have from previous

definition Gmax(X,Y ) = G∞,max(X,Y ) ≥ Gp,max(X,Y ) for any p ≥ 1.

Thus using the Chaining method (Shalev-Shwartz & Ben-David, 2014, Chapter 27) we can bound the
Radamacher complexity as

RRX
(
G(X,Y )

)
≤ inf
ε∈[0,Gp,max(X,Y )/2]

(
4ε+ 12√

|RX |

∫ Gp,max(X,Y )/2

ε

√
logNp(ν,G(X,Y ),RX)dν

)
.

To finish the proof we need to show, for p ≥ 1

Np(ν,G(X,Y ),RX) ≤ Np(ν/2,G,RX)Np(ν/2,G, {(X,Y )}).

First we fix any p ≥ 1. Let Û (a set of real numbers) be a ν/2 cover (in `p norm) of G with respect to
{(X,Y )}. We have Np(ν,G(X,Y ),RX) ≤ 2Gmax

ν for any p ≥ 1 and any ν > 0. Further, let Ũ be a
ν/2 cover of G with respect to RX . Note for any ũ ∈ Ũ we have ũ ∈ R|RX |.

Now, we fix any g′ ∈ G. We have at least one ũ ∈ Ũ, and û ∈ Û such that(
1
|RX |

∑
(x′,y′)∈RX

|g′(x′, y′)− ũ(x′, y′)|p
)1/p

≤ ν/2, and |g′(X,Y )− û| ≤ ν/2.

Therefore, (
1
|RX |

∑
(x′,y′)∈RX

|
(
g′(x′, y′)− g′(X,Y )

)
−
(
ũ(x′, y′)− û

)
|p
)1/p

=
(

1
|RX |

∑
(x′,y′)∈RX

|
(
g′(x′, y′)− ũ(x′, y′)

)
+
(
û− g′(X,Y )

)
|p
)1/p

≤
(

1
|RX |

∑
(x′,y′)∈RX

|g′(x′, y′)− ũ(x′, y′)|p
)1/p

+ |û− g′(X,Y )|

≤ ν/2 + ν/2 ≤ ν

The first inequality follows by applying Minkowski’s inequality. Whereas, for the second inequality
we apply Jensen’s inequality for (·)1/p being a concave function for p ≥ 1, and applying the
appropriate scaling. Therefore, given the covers Ũ and Û , we can construct the set U′ with entries
u′ ∈ R|RX | as: U′ := {u′ = (ũ(x, y) − û) : ũ ∈ Ũ, û ∈ Û}. In particular, |U′| = |Û||Ũ|. As the
choice of g′ ∈ G and (x′, y′) ∈ RX were arbitrary, we have U′ to be the cover of G(X,Y ).

For p = ∞ we can specialize the bound. In particular, consider U to be a ν/2 cover (in `∞ norm)
of G with respect to RX ∪ {(X,Y )}. Then U′ := {u′ = (ũ(x, y) − û(X,Y )) : ũ ∈ U} creates a
(normalized) `∞ cover for G with respect to RX . This is true because

(
1
|RX |

∑
(x′,y′)∈RX |g′(x′, y′)−

ũ(x′, y′)|p
)1/p

≤ |g′ − ũ|∞ = ν/2 and |û − g′(X,Y )| ≤ |g′ − ũ|∞ = ν/2. This concludes the
proof.

The first term in the above Lemma is similar to the Chaining based Rademacher bounds (Shalev-
Shwartz & Ben-David, 2014, Chapter 28) for G, but the ε (in inf and in the integral) varies in
[0,Gmax(X,Y )] instead of [0,Gmax]. For small r we have Gmax(X,Y ) << Gmax, which can be
leveraged to give tight bounds in certain situations.
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Example: Floc ≡ `∞-bounded RKHS (Zhang, 2004): Let us consider the setting of Zhang
(2004). In this setting, given some Reproducing Kernel Hilbert Space (RKHS) H , and a function
f̃ ∈ H , we can define the function f̃(·) = f̃ ◦ hx where for some h ∈ H . We further define the set
of functions with bounded norm

HA = {f̃(·) ∈ H : ‖f̃‖H sup
x∈X
‖hx‖H ≤ A}.

Finally, our local function class can be defined as

Floc = H
|Y|
A = {f(·) : fy(·) ∈ HA,∀y ∈ Y}.

We have ‖Floc‖∞ = A. Recall that loss function for any y ∈ Y is given as `(γf (x, y)), for any
f ∈ Floc. We also have for all y ∈ Y, |`(γf (x, y)) − `(γf ′(x, y))| ≤ 2L` supy |fy(x) − f ′y(x)|
(Zhang, 2004, Assumption 15) with γA = 2L`).

Given the above setting, following Lemma 17 in Zhang (2004) 2, we have for a universal constant c

log
(
N∞(2L`ν,G,R

X ∪ {(X,Y )})
)
≤ c|Y|‖Floc‖2∞

ln(2 + ‖Floc‖∞/ν) + ln(|RX |+ 1)

ν2
.

This gives us the following bound for the Rademacher complexity of Floc

RRX ≤ O
(√
|Y|L`‖Floc‖∞ ln(|RX |+1)3/2√

|RX |

)
. (24)

Proof of Equation (24). Without optimizing over ε above, we plug in ε = Gmax(X,Y )√
|RX |

. We obtain

RRX
(
G(X,Y )

)
≤ 4Gmax(X,Y )√

|RX |
+ 12√

|RX |

∫ Gmax(X,Y )/2

Gmax(X,Y )√
|RX |

√
log
(
N∞

(
ν/2,G,RX ∪ {(X,Y )}

))
dν

≤ 4Gmax(X,Y )√
|RX |

+
48
√
c|Y|L`‖Floc‖∞√
|RX |

∫ Gmax(X,Y )/2

Gmax(X,Y )√
|RX |

√
ln(2 + 4L`‖Floc‖∞/ν) + ln(|RX |+ 1)

ν2
dν

≤ 4Gmax(X,Y )√
|RX |

+
48
√
c|Y|L`‖Floc‖∞√
|RX |

∫ Gmax(X,Y )/2

Gmax(X,Y )√
|RX |

√
ln((Gmax(X,Y )+4L`‖Floc‖∞)/ν)+ln(|RX |+1)

ν2 dν

≤ 4Gmax(X,Y )√
|RX |

+
48
√
c|Y|L`‖Floc‖∞√
|RX |

∫ 1/2

1√
|RX |

√
ln((1+4L`‖Floc‖∞/Gmax(X,Y ))/ν′)+ln(|RX |+1)

ν′2 dν′

≤ 4Gmax(X,Y )√
|RX |

+
32
√
c|Y|L`‖Floc‖∞√
|RX |

(
ln
(
(1 + 4L`‖Floc‖∞/Gmax(X,Y ))

√
|RX |

)
+ ln(|RX |+ 1)

)3/2

We use
∫
x

√
ln(a/x) + b/xdx = −2/3(ln(a/x) + b)3/2 for the final inequality, and ignore the

negative part.

Example: Floc ≡ `2 bounded RKHS (Lei et al., 2019): We consider a fixed kernel K(x, x′) =
〈φ(x), φ(x′)〉 for x, x′ ∈ X, and let HK be the RKHS induced by K. Let us define the `p,q norm for
the vectors W = (w1, w2, . . . , w|Y|) ∈ H

|Y|
K as ‖(w1, . . . , w|Y|)‖p,q = ‖(‖w1‖p, . . . , ‖w|Y|‖p)‖q .

For some norm bound Λ > 0, the local hypothesis space is defined as

Floc = {f(·) : fy(·) = 〈wy, φ(·)〉, wy ∈ HK ,∀y ∈ Y, ‖(w1, . . . , w|Y|)‖2,2 ≤ Λ}.

Recall that we have the loss function class G = {`(γf (·, ·)) : f ∈ Floc}, where the loss function `(·)
is assumed to be L-Lipschitz continuous w.r.t. `∞ norm.

2We correct for a typographical error in Zhang (2004), where the n ≡ |RX | comes in the denominator of the
bound presented in Lemma 17. But Theorem 4 of Zhang (2002) shows this is a typographical error. Indeed, the
covering number is not suppossed to decrease with increasing number of points.
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Given the retrieved set RX for some positive integer n ≥ 1, F̃X after Equation (8) in Lei et al. (2019)
induced by RX . 3 Let the worst case Rademacher complexity of a function class F over n points be
defined as Rn(F). Also, for a set S let B̂(S) = max(x,y)∈S supW :‖W‖2,2≤Λ〈wy, φ(x)〉. We have
from Theorem 23 in Lei et al. (2019) that the covering number is bounded as follows: for any set
S = {(xi, yi) : i = 1, . . . , n} of size n ≥ 1, for any ε > 4LRn|Y|

(
F̃X
)

log
(
N∞

(
ε,G, S

))
≤ 16n|Y|L2(Rn|Y|

(
F̃X
)

)2

ε2 log
( 2en|Y|B̂(S)L

ε

)
.

Furthermore, from equation (18) in Lei et al. (2019) we have for any set
Λ max(x,y)∈S ‖φ(x)‖2√

2n|Y|
≤ Rn|Y|

(
F̃X
)
≤ Λ max(x,y)∈S ‖φ(x)‖2√

n|Y|
.

Therefore, we have for all ε ≥ 4L
Λ max(x,y)∈S ‖φ(x)‖2√

2n|Y|

log
(
N∞

(
ε,G, S

))
≤ 16 max(x,y)∈S ‖φ(x)‖22Λ2L2

ε2 log
( 2en|Y|B̂(S)L

ε

)
.

Plugging this covering number in in our Rademacher bound with ε ≥ 4L
Λ max(x,y)∈S ‖φ(x)‖2√

2(|RX |+1)|Y|
and

taking S = RX ∪ {(X,Y )} we get

RRX
(
G(X,Y )

)
≤ inf
ε∈[0,Gmax(X,Y )/2]

(
4ε+ 12√

|RX |

∫ Gmax(X,Y )/2

ε

√
logN∞(ν/2,G,RX ∪ {(X,Y )})dν

)
≤

16 max(x,y)∈RX∪{(X,Y )} ‖φ(x)‖2ΛL√
2(|RX |+ 1)|Y|

+
12× 16 max(x,y)∈RX∪{(X,Y )} ‖φ(x)‖ΛL√

|RX |
×

×
∫ Gmax(X,Y )/2

4LΛ max(x,y)∈RX∪{(X,Y )} ‖φ(x)‖2√
2(|RX |+1)|Y|

1
ν

√
log
( 4e(|RX |+1)|Y|B̂(RX∪{(X,Y )})L

ν

)
dν

≤
16 max(x,y)∈RX∪{(X,Y )} ‖φ(x)‖2ΛL√

2(|RX |+ 1)|Y|
+

8× 16 max(x,y)∈RX∪{(X,Y )} ‖φ(x)‖ΛL√
|RX |

×

×
(

log
( 4
√

2eLB̂(RX∪{(X,Y )})(|RX |+1)|Y|
√

(|RX |+1)|Y|
4LΛ max(x,y)∈RX∪{(X,Y )} ‖φ(x)‖2

))3/2

≤
16 max(x,y)∈RX∪{(X,Y )} ‖φ(x)‖2ΛL√

2(|RX |+ 1)|Y|
+

8× 16 max(x,y)∈RX∪{(X,Y )} ‖φ(x)‖ΛL√
|RX |

×

×
(

log
(√

2e
(
(|RX |+ 1)|Y|

)3/2))3/2

In the final inequality we use the fact that

B̂(RX ∪ {(X,Y )}) ≤ max
(x,y)∈RX∪{(X,Y )}

‖φ(x)‖2 sup
W :‖W‖2,2≤Λ

‖W‖2,∞

≤ max
(x,y)∈RX∪{(X,Y )}

‖φ(x)‖2Λ

Therefore, the final bound on the Rademacher complexity can be given as

RRX ≤ O
(
L`‖Floc‖∞ ln(|Y||RX |)3/2√

|RX |

)
. (25)

Example: Floc ≡ L-layer Fully Connected Deep Neural Network (DNN)(Bartlett et al.,
2017): Following Bartlett et al. (2017), we consider a L-layer deep neural network (DNN)
fA = σL(ALσL−1(AL−1σL−2(. . . A1x)) for x ∈ X where A = (A1, A2, . . . , AL) is the sequence

3We need F̃X only to state some theorems in Lei et al. (2019). We refer interested readers to Lei et al. (2019)
for the details.
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of weight matrices. The matrix Al ∈ Rdl−1×dl for l = 1 to L, with dL = |Y|, and d0 = d given
X ⊆ Rd. Furthermore, σl(·) : Rdl → Rdl denotes the non-linearity (including pooling and activa-
tion), σl-s are taken to be 1-Lipschitz, and σl(0) = 0. We assume that the Al matrix is initialized at
M l, for each l = 1 to L. We consider the local function class

Floc = {fA : ‖Al −M l‖2,1 ≤ bl, ‖Al‖σ ≤ sl, ∀l ≤ l ≤ L− 1}.

Furthermore, we have for any f ∈ Floc and any x ∈ X the function (f(x), y)→ `(γf (·, ·)) is 2L`
-Lipschitz. Therefore, for a fixed set S, we have from Theorem 3.3 in Bartlett et al. (2017) that the
covering number of the G = {`(γf (·, ·)) : fA ∈ Floc} is given as

log
(
N2

(
ε,G, S

))
≤ 4L2

`B
2ln(2d2

max)

ε2

( L∏
l=1

sl
)2( L∑

l=1

(bl/sl)
2/3
)3/2

=
R

ε2
,

where dmax = maxLl=1 dl,
√

1
|S|
∑
x∈S ‖x‖22 ≤ B, and

R = 4L2
`B

2ln(2d2
max)

( L∏
l=1

sl
)2( L∑

l=1

(bl/sl)
2/3
)3/2

.

Using a the covering number based bound on Rademacher complexity we obtain
RRX

(
G(X,Y )

)
≤ inf
ε∈[0,G2,max(X,Y )/2]

(
4ε+ 12√

|RX |

∫ G2,max(X,Y )/2

ε

√
log(

4L`B
∏L
l=1 sl

ν ) log
(
N2

(
ν/2,G,RX

))
dν
)

≤ inf
ε∈[0,G2,max(X,Y )/2]

(
4ε+ 12√

|RX |

∫ Gmax(X,Y )/2

ε

√
log(

4L`B
∏L
l=1 sl

ν ) Rν2 dν
)

≤ inf
ε∈[0,G2,max(X,Y )/2]

(
4ε+ 8

√
R√
|RX |

log3/2(
4L`B

∏L
l=1 sl

ε )
)
− 8

√
R√
|RX |

log3/2(
8L`B

∏L
l=1 sl

G2,max(X,Y ) )

≤
(

4G2,max(X,Y )√
|RX |

+ 8
√
R√
|RX |

log3/2(
4L`B

∏L
l=1 sl
√
|RX |

G2,max(X,Y ) )
)
− 8

√
R√
|RX |

log3/2(
8L`B

∏L
l=1 sl

G2,max(X,Y ) )

C PROOFS FOR SECTION 3.2

This section focuses on providing a proof of Proposition 3.5. It follows the proof technique of (Foster
et al., 2019, Eq. (9)). Before presenting the proof of Proposition 3.5, we need to introduce a slight
variation of the Rademacher complexity for data-dependent hypothesis set.

Let Z = X× Y. Let R = {zRj },T = {zTj } ∈ Zm be two m-sized samples and σ ∈ {+1,−1}m be a

vector of independent Rademacher variables. Now define RT,σ = {zRT,σ

j } ∈ Zm such that

z
RT,σ

j =

{
zRj , if σj = 1,

zTj , if σj = −1,
(26)

i.e., RT,σ is obtained by replacing i-th element of R by i-th element of T iff σi = −1. Let U ∈ Zn−m

be an m− n-sized sample; for R ∈ Zm, SR = U ∪ R ∈ Zn. Note that, following this notation, we
have SRT,σ

= U ∪ RT,σ . For S ∈ Zn, let H(S) be a data dependent function class (hypothesis set),
which does not depend on the ordering of the elements in S.
Definition C.1 (Rademacher complexity for data-dependent function class). Let H = {H(S)}S∈Zn
be a family of data dependent function classes. Given R = {zRj∈[m]},T = {zTj∈[m]} ∼ Dm and
U = {zUm+i}i∈[n−m], the empirical Rademacher complexity R�U,R,T(H) and Rademacher complexity
R�U,m(H) are defined as follows.

R�U,R,T(H) =
1

m
Eσ

[
sup

h∈H(SRT,σ
)

m∑
i=1

σih(zTi )

]

R�U(H) =
1

m
ER,T∼Dm

σ

[
sup

h∈H(SRT,σ
)

m∑
i=1

σih(zTi )

]
(27)
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C.1 PROOF OF PROPOSITION 3.5

We are now ready to establish the proof of Proposition 3.5. As discussed above, we extend the proof
technique of (Foster et al., 2019, Eq. (9)) to obtain this result. Our setting differs from that of Foster
et al. (2019) as the local ERM objective only depends on the retrieve samples Rx while the function
class of interest FS = FΦS

in (14) depends on the entire training set S via representation ΦS. We
suitably modify the proof techniques of Foster et al. (2019) to handle this difference.

Let |Rx| := m and U = S\Rx. For R,T ∈ Zm, we define

Ξ(R,T) = sup
f∈FΦU∪R

∣∣∣∣E(X′,Y ′)∼Dx,r [`(f(X ′), Y ′)]︸ ︷︷ ︸
:=R`(f ;Dx,r)

− 1

m

∑
(x′,y′)∈T

`(f(x′), y′)

︸ ︷︷ ︸
:=R̂`(f ;T)

∣∣∣∣
= sup
f∈FΦU∪R

∣∣R`(f ;Dx,r)− R̂`(f ;T)
∣∣.

Note that we are interested in bounding

Ξ(Rx,Rx) = sup
f∈FΦS

∣∣∣∣E(X′,Y ′)∼Dx,r [`(f(X ′), Y ′)]︸ ︷︷ ︸
R`(f ;Dx,r)

− 1

m

∑
(x′,y′)∈T

`(f(x′), y′)

︸ ︷︷ ︸
R̂`(f ;Rx)=R̂x` (f)

∣∣∣∣,

where we have used the fact that U ∪ Rx = S. Towards this, we first establish that Ξ(R,R) satisfies
the

(
M`

m + 2∆LL`,1
)
-bounded difference property, i.e., for R,R′ ∈ Zm that only differ in one

element, we have

Ξ(R,R)− Ξ(R′,R′) ≤ M`

m
+ 2∆LL`,1. (28)

Note that

Ξ(R,R)− Ξ(R′,R′) ≤ Ξ(R,R)− Ξ(R,R′)︸ ︷︷ ︸
I

+ Ξ(R,R′)− Ξ(R′,R′)︸ ︷︷ ︸
II

. (29)

Now, we will separately bound the two terms in the RHS. Let z̆ = (x̆, y̆) ∈ R\R′ and z̆′ = (x̆′, y̆′) ∈
R′\R. Thus, we have the following bound on the first term.

I = Ξ(R,R)− Ξ(R,R′)

= sup
f∈FΦU∪R

∣∣R`(f ;Dx,r)− R̂`(f ;R)
∣∣− sup

f∈FΦU∪R

∣∣R`(f ;Dx,r)− R̂`(f ;R′)
∣∣

≤ sup
f∈FΦU∪R

∣∣∣∣∣R`(f ;Dx,r)− R̂`(f ;R)
∣∣− ∣∣R`(f ;Dx,r)− R̂`(f ;R′)

∣∣∣∣∣
≤ sup
f∈FΦU∪R

[
R`(f ;Dx,r)− R̂`(f ;R)−R`(f ;Dx,r) + R̂`(f ;R′)

]
= sup
f∈FΦU∪R

∣∣R̂`(f ;R′)− R̂`(f ;R)
∣∣

= sup
f∈FΦU∪R

1

m

∣∣`(f(x̆′), y̆′)− `(f(x̆), y̆)
∣∣ ≤ M`

m
, (30)

where the last inequality follows from our boundedness assumption for the loss function `.

Now we move to term II. Towards this, note that, it follows from the definition of supremum that, for
any ε > 0, there exists f̃ ∈ FΦU∪R such that

sup
f∈FΦU∪R

∣∣R`(f ;Dx,r)− R̂`(f ;R′)
∣∣− ε ≤ ∣∣R`(f̃ ;Dx,r)− R̂`(f̃ ;R′)

∣∣ (31)

Let f̃ = g̃ ◦ ΦU∪R ∈ FΦU∪R and f̃ ′ = g̃ ◦ ΦU∪R′ ∈ FΦU∪R′ . Note that, for any (x, y) ∈ Z,∣∣`(f̃(x), y
)
− `
(
f̃ ′(x), y

)∣∣ =
∣∣`(g̃ ◦ ΦU∪R(x), y

)
− `
(
g̃ ◦ ΦU∪R′(x), y

)∣∣
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(i)

≤ L`,1‖g̃ ◦ ΦU∪R(x)− g̃ ◦ ΦU∪R′(x)‖∞
≤ L`,1‖g̃ ◦ ΦU∪R(x)− g̃ ◦ ΦU∪R′(x)‖2
(ii)

≤ L`,1L‖ΦU∪R(x)− ΦU∪R′(x)‖2
(iii)

≤ L`,1L∆, (32)

where we use L`,1-Lipschitzness of ` w.r.t. ‖ · ‖∞ norm, L-Lipschitzness of g, and ∆-sensitivity of
the representation Φ in (i), (ii), and (iii), respectively.

Now, we have

II = Ξ(R,R′)− Ξ(R′,R′)

= sup
f∈FΦU∪R

∣∣R`(f ;Dx,r)− R̂`(f ;R′)
∣∣− sup

f∈FΦ
U∪R′

∣∣R`(f ;Dx,r)− R̂`(f ;R′)
∣∣

(i)

≤
∣∣R`(f̃ ;Dx,r)− R̂`(f̃ ;R′)

∣∣+ ε− sup
f∈FΦ

U∪R′

∣∣R`(f ;Dx,r)− R̂`(f ;R′)
∣∣

≤
∣∣R`(f̃ ;Dx,r)− R̂`(f̃ ;R′)

∣∣+ ε−
∣∣R`(f̃ ′;Dx,r)− R̂`(f̃ ′;R′)∣∣

=
∣∣∣[R`(f̃ ;Dx,r)−R`(f̃ ′;Dx,r)

]
−
[
R̂`(f̃ ;R′)− R̂`(f̃ ′;R′)

]∣∣∣+ ε

≤
∣∣R`(f̃ ;Dx,r)−R`(f̃ ′;Dx,r)

∣∣+
∣∣R̂`(f̃ ;R′)− R̂`(f̃ ′;R′)

∣∣+ ε

(ii)

≤ 2L`,1L∆ + ε, (33)

where (i) and (ii) follow from (31) and (32), respectively. Now, since ε in (31) can be chosen
arbitrarily small, it follows from (29), (30), and (33) that

Ξ(R,R)− Ξ(R′,R′) ≤ M`

m
+ 2∆LL`,1,

i.e., Ξ(R,R) indeed satisfies the
(
M`

m + 2∆LL`,1
)
-bounded difference property. Now, it follows

from the McDiarmid’s inequality that, for δ > 0, we have with probability at least 1− δ:

Ξ(Rx,Rx) ≤ E
[
Ξ(Rx,Rx)

]
+
(
M` + 2∆LL`,1m

)√ log(1/δ)

2m

or

sup
f∈FΦS

∣∣R`(f ;Dx,r)− R̂x` (f)
∣∣ ≤ ERx

∣∣∣ sup
f∈FΦS

[
R`(f ;Dx,r)− R̂x` (f)

]∣∣∣ +

(
M` + 2∆LL`,1m

)√ log(1/δ)

2m
. (34)

Now, first statement of Proposition 3.5 follows from (34) and the fact that m = |Rx|.
It follows from the proof steps in (Foster et al., 2019, Section E.1) that

ERx

[
sup

f∈FΦS=U∪Rx

∣∣R`(f ;Dx,r)− R̂x` (f)
∣∣] ≤ 2R�U(` ◦ F), (35)

where F = {FΦU∪R}R∈Zm and R�U is defined in (27). This completes the proof of Proposition 3.5.

D CLASSIFICATION IN EXTENDED FEATURE SPACE: A KERNEL-BASED
APPROACH

As introduced in Sec. 2.3, our objective is to learn a function f : X× (X× Y)? → R|Y|. For a given
instance x, such a function can leverage its neighboring set Rx ∈ (X× Y)? to improve the prediction
on x. In this work, we restrict ourselves to a sub-family of such retrieval-based methods that first map
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Rx ∼ Dx,r to D̂x,r — an empirical estimate of the local distribution Dx,r, which is subsequently
utilized to make a prediction for x. In particular, the scorers of interest are of the form:

(x,Rx) 7→ f(x, D̂x,r) =
(
f1(x, D̂x,r), . . . , f|Y|(x, D̂

x,r)
)
∈ R|Y|, (36)

where fy(x, D̂x,r) denotes the score assigned to the y-th class. Thus, assuming that ∆X×Y denotes
the set of distribution over X× Y, we restrict to a suitable function class in {f : X×∆X×Y → R|Y|}.
Note that, given a surrogate loss ` : R|Y| × Y → R and scorer f , the empirical risk R̂ex

` (f) and
population risk Rex

` (f) take the following form:

R̂ex
` (f) =

1

n

∑
i∈[n]

`
(
xi, D̂

xi,r
)

and Rex
` (f) = E(X,Y )∼D

[
`
(
f(X,DX,r), Y

)]
. (37)

Note that that the general framework for learning in the extended feature space X̃ := X ×∆X×Y
provides a very rich class of functions. In this paper, we focus on a specific form of learning methods
in the extended feature space by using the kernel methods. The method as well as its analysis is
obtained by adapting the work on utilizing kernel methods for domain generalization (Blanchard
et al., 2011; Deshmukh et al., 2019).

D.1 KERNEL-BASED CLASSIFICATION

Before introducing a kernel method for the classification, we need to define a suitable kernel
k : X̃ × X̃ → R on the extended feature space X̃ := X ×∆X×Y. Towards this, let kZ be a kernel
over Z := X× Y. Assuming that HkZ is the reproducing kernel Hilbert space (RKHS) associated
with kZ, we can define a kernel mean embedding (Smola et al., 2007) Ψ : ∆Z → HkZ as follows:

Ψ(P ) =

∫
Z

kZ
(
z, ·
)
dP. (38)

For an empirical distribution D̂x,r defined by Rx, kernel embedding in (38) takes the following form.

Ψ(D̂x,r) =
1

|Rx|
∑

(x′,y′)∈Rx
kZ
(
(x′, y′), ·

)
. (39)

Now, using a kernel kX over X and a kernel-like function κ over Ψ(∆Z), we define a desired kernel
k : X̃× X̃→ R as follows:

k
(
X̃1, X̃2

)
= k

(
(X1,D

X1,r), (X2,D
X2,r)

)
= kX(X1, X2) · κ

(
Ψ(DX1,r),Ψ(DX2,r)

)
. (40)

Let Hk be the RKHS corresponding to the kernel k in (40), and ‖ · ‖Hk be the norm associated with
Hk. Equipped with the kernel in (40) and associated Hk, for λ > 0, we propose to learn a scorer
f = (f1, . . . , f|Y|) ∈ H

|Y|
k := Hk × · · · ×Hk via the following regularized ERM problem.

f̂ ex = arg min
f∈H|Y|k

1

n

n∑
i=1

`
(
f(x̃i), yi

)
+ λ · Ω(f), (41)

where x̃i = (xi, D̂
xi,r) and Ω(f) := ‖f‖2

H
|Y|
k

:=
∑
y∈Y ‖fy‖2Hk . It follows from the representer

theorem that the solution of (41) takes the form f̂ ex(·) =
∑
i∈[n] αik

(
(xi, D̂

xi,r), ·
)
. One can apply

multiclass extensions of SVMs to learn the weights {αi} (Deshmukh et al., 2019). Next, we focus on
studying the generalization behavior of the scorer f̂ ex recovered in (41).

D.2 GENERALIZATION BOUNDS FOR KERNEL-BASED CLASSIFICATION

Before presenting a generalization bound for kernel-based classification over the extended feature
space X̃, we state the three key assumptions that are utilized in our analysis.

Assumption D.1. The loss function ` : R|Y| × Y is L`,1-Lipschitz w.r.t. the first argument, i.e.,

|`(s1, y)− `(s2, y)| ≤ L`,1 · ‖s1 − s2‖∞ ∀s1, s2 ∈ R|Y| and y ∈ Y. (42)

Furthermore, assume that sup(x,y) `(x, y) := M` ≤ ∞.
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Assumption D.2. Kernels kX, kZ, and κ are bounded by MkX ,MkZ , and Mκ, respectively.

Assumption D.3. Let HkZ and Hκ be the RKHS associated with kZ and κ, respectively. Then, the
canonical feature map ϕκ : HkZ → Hκ is α-Hölder continuous with α ∈ (0, 1], i.e.,

‖ϕκ(h1)− ϕκ(h2)‖Hκ ≤ L′ · ‖h1 − h2‖αHkZ ∀h1, h2 ∈ {h ∈ HkZ : ‖h‖HkZ ≤MkZ} (43)

The following result states our generalization bound for the kernel-based classification method
described in Sec. D.1.
Theorem D.4. Let 0 ≤ δ ≤ 1 and Assumptions D.1–D.3 hold. Furthermore, let N(r, δ) be as
defined in (8). Then, for any B > 0, the following holds with probability at least 1− 3δ

sup
f∈Fk

B
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` (f)−Rex

` (f)
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log( 1
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2n
,

where FkB =
{
f = (f1, . . . , f|Y|) ∈ H

|Y|
k : Ω(f) ≤ B2

}
and M := M` + L`,1BMkXMκ.

Before presenting the proof of Theorem D.4, we state two key results from the literature that are used
in our analysis.

Proposition D.5 (Steinwart & Christmann (2008)). Let (Ω,A, P ) be a probability space, H be a
separable Hilbert space, and M > 0. Let η1, . . . , ηm : Ω→ H be m independent H-valued random
variables satisfying ‖ηj‖∞ ≤M , for all j ∈ [m]. The, for δ > 0, the following holds with probability
at least 1− δ.∥∥∥ 1

m

m∑
j=1

(ηj − EP [ηj ]
∥∥∥
H
≤M

√
2 log(1/δ)

m
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√
1

m
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4M log(1/δ)

3m
. (44)

Proposition D.6. (Deshmukh et al., 2019; Lei et al., 2019) Let Z̃ = X̃ × Y be (extended) input
and output space pair and S̃ =

{
z̃1, . . . , z̃n

}
. Let Hk be a RKHS defined on X̃, with k being the

associated kernel. Let

FkB =
{

(f1, . . . , f|Y|) : fy ∈ Hk ∀y ∈ Y and
(∑
y∈Y

‖fy‖pHk
)1/p

≤ B
}

and ` : R|Y| × Y→ R be a Lipschitz function in its first argument, i.e.,

|`(s1, y)− `(s2, y)| ≤ L`,1‖s1 − s2‖∞ ∀s1, s2 ∈ R|Y| and y ∈ Y.

Then the Rademacher complexity of the induced function class ` ◦ FkB := {` ◦ f : f ∈ FkB} satisfies
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. (45)

Note that σ = (σ1, . . . , σn) denotes n i.i.d. Rademacher random variable.

Proof of Theorem D.4. Note that

sup
f∈FkB
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` (f)
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sup
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Bounding the term-I in (46). Note that

I = sup
f∈FkB
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It follows from the reproducing property of the kernel k that, for any y ∈ Y,

|fy(xi, D̂
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xi,r), ·)− k((xi,D
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Now,
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By combining (48) and (49), we obtain that
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xi,r)− fy(xi,D

xi,r)| ≤ L′MkX · ‖fy‖Hk · ‖Ψ(D̂xi,r)−Ψ(Dxi,r)‖αHkZ . (51)

Now, Hoeffding’s inequality in Hilbert spaces (cf. Proposition D.5) implies that, for i ∈ [n], the
following holds with probability at least 1− δ.
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It follows from (51) and (52) that, for each i ∈ [n],

|fy(xi, D̂
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≤ L′MkX · ‖fy‖Hk ·
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)α
∀ y ∈ Y (53)

holds with probability at least 1− δ. Next, taking union bound over i ∈ [n] implies that the following
holds for all i ∈ [n] and y ∈ Y with probability at least 1− δ.

|fy(xi, D̂
xi,r)− fy(xi,D

xi,r)|
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Recall that, for each i ∈ [n], we have |Rxi | ≥ N(r, δ) with probability at least 1− δ (cf. (8)). Using
union bound, we have |Rxi | ≥ N(r, δ/n), ∀ i ∈ [n], with probability at least 1 − δ. Thus, the
following holds for all i ∈ [n] and y ∈ Y with probability at least 1− 2δ
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By using ‖fy‖Hk ≤ B and combining (47) with (55), we obtain that
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holds with probability at least 1− 2δ.

Bounding the term-II in (46). Note that
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Using the Assumptions D.1 and D.2 and the fact that f ∈ FkB , we can argue that
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Now, it follows from the Azuma-McDiarmid’s inequality that the following holds with probability at
least 1− δ.
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Using the standard symmetrization procedure, we get that
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Now, using Proposition D.6 with p = 2 and Assumption D.2, we have
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Now, by combining (57), (58), and (59), we obtain that with probability at least 1− δ
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Finally, combining (46), (56) and (60) completes the proof.

E ADDITIONAL DETAILS FOR EXPERIMENTS

E.1 SYNTHETIC

Task and data. We consider the task of binary classification on mixtures using synthetic data: In
particular, we assume k = 100 clusters in a D = 10-dimensional space. Each cluster is specified by a
mean parameter µi ∈ RD ∼ Uniform(−10, 10) and a classification weight vectorwi ∈ Rd ∼ N (0, I)
for i = 1, 2, · · · , k. We randomly generate a train set of n = 10000 points as follows: To generate
a labeled example (xj , yj), j ∈ [n]: 1) select a cluster i uniformly at random, and 2) sample
xj ∼ N (µi, I) and its label yj = sign(wTi (xj − µi)). Additionally, we also generate another set of
points as test set using the same procedure.
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Figure 3: Performance of ERM and
local ERM for various models on
synthetic data.

Methods As baseline, we consider models of various com-
plexity, starting from simple linear classifier, to support vector
machines with polynomial kernel (of degree 3) and with ra-
dial basis function (RBF) kernel, to a multi-layer perceptron
(MLP) of two layers. For retrieval-based models, we consider
each of the above method as the local model to fit on retrieved
data points via local ERM framework (Sec. 3). Additionally,
we also report simple kNN baseline. We compare all these
methods using classification accuracy on the held out test set.
We repeat all the experiments 10 times.

Observations In Figure 3, we observe the tradeoff of varying
the size of the retrieved set (as dictated by the neighborhood
radius) on the performance of the proposed algorithms. We see
that when the number of retrieved samples is small the local
methods have lower accuracy, this is due to large generaliza-
tion error. When the size of the retrieved sample space is high,
the local methods fail to minimize the loss effectively due to
the lack of model capacity. We see that this effect being more
pronounced for simpler function classes such as linear classifier as compared to RBF or polynomial
classifiers.

E.2 CIFAR-10

Task and data. We consider the task of binary classification on a real image data for object detection.
In particular, we consider a subset of CIFAR-10 dataset where we only restrict to images from "Cat"
and "Dog" classes. We randomly partition the data into a train set of n = 10000 points and remaining
2000 points for test. We do a 10-fold cross-validation.

Methods We consider a subset of method from Appendix. E.1. In particular, we only consider a
simple linear classifier and a multi-layer perceptron (MLP) of two layers. For retrieval-based models,
we consider each of the above methods as the local model to fit on retrieved data points via local ERM
framework (Sec. 3). The retrieval is done using L2 distance in the input space directly (no features is
extracted). Additionally, we also report simple kNN baseline. We compare all these methods using
classification accuracy on the held out test set. We repeat all the experiments 10 times.
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Figure 4: Performance of ERM and
local ERM for various models on
(binary) CIFAR-10.

Observations Similar to Figure 3, Figure 4 exhibits a tradeoff,
where varying the size of the retrieved set (as dictated by the
neighborhood radius) impacts the performance of the proposed
algorithms. We see when the number of retrieved samples is
small the local methods have lower accuracy, this is due to
large generalization error; and when the number of retrieved
samples is large, simple local function class incurs a large
approximation error.

E.3 IMAGENET

Task and data. We consider the task of 1000-way image clas-
sification on ImageNet ILSVRC-12 dataset. We use the stan-
dard train-test set split, where we have of n = 1281167 points
for training and 50000 points for test. Given large computa-
tional cost, we could only run each experiment once.
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Figure 5: Performance of ERM and
local ERM for various models on on
ImageNet.

Methods We compare proposed Local ERM (Sec. 3) to state-
of-the-art (SoTA) single model published for this task, which
is from the most recent CVPR 2022 (Zhai et al., 2022). For
the local parametric model we use a small MobileNetV3 ar-
chitecture (Howard et al., 2019) with 4.01M parameters and
156 MFLOPs compute cost. Contrast this to SoTA model
ViT-G/14 with 1.84B parameters and 938 GFLOPs compute
cost. Following standard practice in literature, we use unsu-
pervised learned features from ALIGN (Jia et al., 2021) to
do image retrieval using L2 distance. For solving the local
ERM, we fine-tune a MobileNetV3 model, which has been
pretrained on ImageNet, on the retrieved set using Adam op-
timizer with a linear decay schedule. Additionally, we also
report simple kNN baseline. We compare all these methods
using classification accuracy on the held out test set.

Observations In Figure 5, we see that local ERM with a small
MobileNet-V3 model is able to achieve the top-1 accuracy of 82.78 whereas a regularly trained
MobileNet-V3 model achieves the top-1 accuracy of only 65.80. Also the result is very competitive
with SoTA of 90.45 with a much larger model. Thus, the result suggest that the simple local ERM
framework (analyzed in our work) is able to demonstrate the utility of retrieval-based models. In
particular, it allows a realistic small sized model to attain very competitive numbers on the popular
ImageNet benchmark. Furthermore, as pointed at end of Sec. 3.2, using global representation from
ALIGN embeddings help simplest linear model to outperform MobileNet-V3 working directly on
image input, thereby showcasing the benefits of endowing local ERM with global representation.
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