
ExPLoit: Extracting Private Labels in Split Learning

Abstract—Split learning is a popular technique used to perform
vertical federated learning, where the goal is to jointly train
a model on the private input and label data held by two
parties. To preserve privacy of the input and label data, this
technique uses a split model trained end-to-end, by exchanging
the intermediate representations (IR) of the inputs and gradients
of the IR between the two parties. We propose ExPLoit – a
label-leakage attack that allows an adversarial input-owner to
extract the private labels of the label-owner during split-learning.
ExPLoit frames the attack as a supervised learning problem by
using a novel loss function that combines gradient-matching and
several regularization terms developed using key properties of
the dataset and models. Our evaluations on a binary conversion
prediction task and several multi-class image classification tasks
show that ExPLoit can uncover the private labels with near-
perfect accuracy of up to 99.53%, demonstrating that split
learning provides negligible privacy benefits to the label owner.
Furthermore, we evaluate the use of gradient noise as a defense
and show that the protection against our attack comes at the cost
of a significant loss in model utility. Our findings underscore
the need for better privacy-preserving training techniques for
vertically split data.

Index Terms—Federated Learning, Split Learning, Data Pri-
vacy, Label Leakage

I. INTRODUCTION

The plethora of apps and services that we use for our
everyday needs, such as online shopping, social media, com-
munication, healthcare, finance, etc., have created distributed
silos of user data. While aggregating this distributed data
would improve the performance of machine learning models,
doing so is not always feasible due to privacy constraints.
For instance, in healthcare, laws like HIPAA require hospitals
to keep medical records private. For finance and internet
companies, user agreements and privacy laws might prevent
them from sharing data. These challenges have led to the
development of several techniques for federated learning,
which allow models to be trained on distributed private data,
without the data owner having to share their data explicitly.
Split learning [12], [26] is one such technique that allows
federated learning to be performed when the inputs and the
corresponding labels are held by two different parties. Split
learning uses a composition of two models f : X → Z
and g : Z → Y that is split between the input and label
owners as shown in Fig. 1. The composition network g ◦ f
is trained end-to-end by requiring the input owner to transmit
the embedding zi (intermediate representation) to the label
owner in the forward pass and the label owner returning the
gradient ∇zLi to the input owner during the backward pass.
This allows the parameters of the split model to be trained on
the distributed data while keeping the sensitive data with their
respective owners.

Unfortunately, split learning does not have formal privacy
guarantees, and it is not clear if it allows the input and label
owners to hide their private data from each other. We set
out to answer this question by considering an adversarial
input owner who wants to break label privacy by extracting
the private labels in two-party split learning. To this end,
we propose ExPLoit– a label-leakage attack that frames the
problem of learning the private labels as a supervised learning
task, by leveraging the gradient information (∇zLi) obtained
during split learning. ExPLoit “replays” split learning by
replacing the label owner’s model g and labels {yi} with a
randomly initialized surrogate model g′ (with parameters θg′ )
and surrogate labels {y′i} respectively. We aim to learn the
private labels by training these surrogate parameters using the
following key objectives:

1) Gradient Matching Objective: The gradient computed
using the surrogate model and labels during replay split
learning should match the gradients received from the
label owner during the original split learning process.

2) Label Prior Objective: The distribution of surrogate la-
bels must match the expected label prior distribution. For
instance, if the classification problem in consideration has
a uniform label prior, the surrogate labels must also have
a uniform distribution.

3) Label Entropy Objective: Since we consider datasets with
hard labels, each individual surrogate label y′i must have
low entropy.

4) Accuracy Objective: The predictions made by the sur-
rogate model must be close to the surrogate labels,
achieving high accuracy.

Combining the above objectives yields a loss function that
can be used to train the surrogate parameters and labels. By
minimizing this loss function over all the embedding, gradient
pairs {zi,∇zLi} received during split learning, the surrogate
labels {y′i} can be trained to match the private labels of the
label owner {yi}, allowing an adversarial input owner to carry
out a label leakage attack with high accuracy. Our paper makes
the following key contributions:

Contribution 1: We propose ExPLoit – a label-leakage
attack for two-party split learning. Our proposal replaces the
label owner’s private labels and model with trainable surrogate
parameters and frames the attack as a supervised learning
problem. We combine gradient-matching and regularization
terms obtained by leveraging several key properties of the
model and dataset to develop a novel loss function. By training
the surrogate parameters to minimize this loss function, our
attack uncovers the private labels of the label owner corre-
sponding to each input.
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Fig. 1. Split learning can be used for vertical federated learning by training a composition model g ◦ f , split between the input and model owner. In this
work, we demonstrate that an adversarial input owner can learn the private labels using gradient information obtained during split learning, compromising the
label owner’s privacy.

Contribution 2: We carry out extensive evaluations on
the Criteo conversion prediction [24] task, and several image
classification datasets, including FashionMNIST, CIFAR-10,
CIFAR-100 and Tiny-ImageNet to show that ExPLoit can leak
private labels with near-perfect accuracy (up to 99.53%) for
most datasets. Our attack is effective across multiple model
architectures and also outperforms several recently proposed
label-leakage attacks for split learning.

Contribution 3: We evaluate perturbing the gradient with
noise as a defense against our attack. Our results show that
gradient noise allows the label owner to trade off model
accuracy (lower utility) for improved privacy against ExPLoit
(better label privacy). However, our results show that a large
amount of noise is necessary to offer protection against our
attack. This results in a significant degradation of accuracy
for several datasets like CIFAR-10, CIFAR-100 and Tiny-
Imagenet.

Our findings in this work demonstrate that split learning
does not protect the privacy of labels, emphasizing the need
for better techniques for VFL.

II. RELATED WORK

We discuss prior work on label leakage attacks and describe
their limitations. For an overview of techniques besides split
learning that can be used to learn on vertically partitioned data,
we refer the reader to Section X.

AD

Advertising Website/App Product Website/App

Purchase

No purchase

CLICK

Purchase Data
(labels)

User Attributes
(inputs)

Fig. 2. Conversion prediction estimates the likelihood of a purchase when a
user clicks on an ad. The training data is vertically partitioned, with the user
attributes (inputs) held by the ad company and the purchase data (outputs)
held by the product company (Figure adapted from [16]).

A. Norm-Based Attack for Conversion Prediction

Recently, Li et al. proposed Norm-Based Attack [17] – a
label leakage attack on two-party split learning, specifically
for the conversion prediction problem. We first provide back-
ground on the conversion prediction problem and then describe
the Norm-Based attack.

Conversion Prediction: Given the attributes of a user and
an ad, conversion prediction estimates the likelihood of a user
purchasing the product. Conversion prediction is an essential
component of ad-ranking algorithms, as ads with a high
likelihood of conversion are more relevant to the user and need
to be ranked higher. The data required to train the model are
split between the advertising and product websites, as depicted
in Fig. 2. The user attributes, which serve as the inputs, are
stored with the advertising company, while the purchase data,
which serve as the labels, are held with the product company.
The companies are interested in training a model to predict
the conversion likelihood while keeping their datasets private.

Norm-based Attack: Norm-based attack [17] leverages the
observation that only a small fraction of ad clicks result in a
purchase. Consequently, there is a high class imbalance in
the training dataset of the conversion prediction task. This
imbalance results in the magnitude of the gradients being
higher when the infrequent class is encountered. Thus, by
considering the norm of the loss gradient (∥∇zLi∥2), an
adversarial input owner can infer the private labels. Note
that a key limitation of this attack is that it only works on
binary classification problems with high class imbalances. In
contrast, our proposed ExPLoit attack does not require a class
imbalance and works for multi-class classification problems.

B. UnSplit: Gradient Matching Attack

Similar to our attack, a recent concurrent work UnSplit [9]
also proposes to learn the private labels in split learning using
a gradient-matching objective [32] by minimizing the mean
squared error (MSE) between the surrogate and true gradients
using the following objective: minθ′

g,{y′
i} MSE(∇zL

′
i,∇zLi).

Here, θ′g are the parameters of the surrogate model and {y′i}
are the surrogate labels. Results from this work show that



UnSplit only works well when the label-owner’s model g is
one-layer deep. In contrast, ExPLoit provides high accuracy
of up to 99.53%, even when the label owner uses multi-layer
networks (up to 8 layers deep in our experiments). This is
because ExPLoit uses additional regularization terms in the
loss that help avoid poor local minima during training.

C. Model Completion Attack

Model Completion Attack [10] uses unlabeled embeddings
D = {zi} and a small number of labeled embeddings
Dl = {zli, yli} to train a surrogate model g′ : Z → Y using
semi-supervised learning. Since g′ functionally approximates
the label-owner’s model g, it can be used to predict the labels
for the input embeddings y′i = g′(zi), allowing the input owner
to guess the private labels. This proposal suffers from two key
drawbacks. First, it requires the adversary to have access to
labeled examples, which may not always be available. For
instance, in case of conversion prediction, labels for the input
data cannot be gathered even using human annotators, as it
is not readily apparent from the data. Second, the efficacy of
this attack is limited by the accuracy of the model that can be
trained by the adversary. Thus, the attack accuracy is highly
dependent on the number of labeled examples available to the
attacker and the difficulty of the prediction problem at hand.
For example, this attack provides a label leakage accuracy
of 75.06% for FashionMNIST, where a high-accuracy g′ can
be trained with just a few labeled examples. However, the
accuracy is much lower (15.3%) for CIFAR-100, where the
surrogate model is harder to train. In contrast, ExPLoit does
not require any labeled examples and can achieve a high
accuracy of 94.38% even for complex datasets like CIFAR-
100 (after 10 training epochs of the split-model).

III. PRELIMINARIES

In this section, we provide background on the two-party
split learning framework and formally state the objectives of
the label leakage attack and defense.

A. Two-Party Split Learning

Two-party split learning is used for VFL, where the data is
vertically partitioned between the input and label owner. The
input owner owns the inputs Dinp = {xi} and the label owner
owns the labels Dlabel = {yi}, corresponding to each input.
The goal of split learning is to train a composition model
g ◦f that is distributed between the two parties. Training with
supervised learning requires mapping the entries in the input
set to the corresponding entries in the label set. If this mapping
is not known, private set intersection algorithms [6] can be
used to link the corresponding entries in the two datasets. A
single training iteration involves a forward and a backward
pass (as shown in Fig. 1), which proceeds as follows:

• Forward pass: The input owner samples a batch of inputs
{x}batch ∼ Dinp and performs forward propagation
through f : X → Z and produces the corresponding
embeddings {z}batch. These embeddings, along with the
corresponding inputIDs are sent to the label owner. The

label owner feeds the embeddings to g : Z → Y to
produce the predictions {p}batch, which along with the
labels {y}batch are used to compute the model’s loss
L = E[H(y, p)].

• Backward pass: The label owner initiates backpropaga-
tion and returns the loss gradient {∇zL}batch to the
input owner. Both the label and input owner compute the
gradient of the loss with respect to the model parameters
and update model parameters using gradient descent as
shown below:

θt+1
g = θtg − η∇θgL; θt+1

f = θtf − η∇θfL. (1)

Privacy Objectives: There are two key privacy objectives
that split learning aims to achieve:

1) Input privacy: The label owner should not be able to infer
the input owner’s private inputs {xi}.

2) Label privacy: The input owners should not be able to
infer the label owner’s private labels {yi}.

B. Label Leakage Attack Objective

In this work, we propose a label leakage attack, where an
adversarial input owner tries to learn the label owner’s private
labels Dlabel = {yi}. We consider an honest-but-curious
adversary, where the input owner tries to infer the private
labels while honestly following the split learning protocol.
During the training process of split learning, for each input
xi, the adversarial input owner transmits the embeddings zi
and receives the gradient ∇zLi from the label owner. The
adversary uses an algorithm A to estimate the private labels
y′i for each input using these {zi,∇zLi} pairs obtained during
split learning as shown below:

A(Dgrad)→ Dy′ , where Dgrad = {zi,∇zLi}, Dy′ = {y′i}.
(2)

The attack objective is to maximize the accuracy of estimated
labels as follows:

max E
yi∼Dlabel

[Acc(yi, y
′
i)]. (3)

Since the private labels {yi} are unavailable to the input owner,
evaluating Eqn. 3 is not possible. Instead, our proposed attack
uses a surrogate objective that can be optimized to uncover
the private labels with high accuracy.

Attack Constraints: We assume that the parameters and
architecture of the label-owner’s model g is unknown to the at-
tacker. While hiding the label-owner’s model architecture does
not provide any theoretical security benefits, our assumption
is intended to simulate a hard setting for the attacker. The
number of output classes and the class prior distribution are
assumed to be known1.

1We refer the reader to Section VIII) for a justification of this assumption.
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Fig. 3. (a) Split Learning: The adversarial input owner collects the embedding and gradient data {zi,∇zLi} when performing split learning with the label
owner. (b) ExPLoit Attack: The embedding and gradient data is used to train surrogate model and label parameters (g′ and {y′i}) and uncover the private
labels.

C. Label Leakage Defense Objective

Defending against label leakage attack requires balancing
the following utility and privacy objectives:

Utility Objective: Train the composition model g ◦ f to
have high classification accuracy on an unseen validation set
associated with the classification task (Eqn. 4).

max E
xi,yi∼Dval

[Acc(yi, g(f(xi))] (4)

Privacy Objective: Minimize the accuracy of the estimated
labels {y′i} that can be recovered from the gradient information
used in split learning (Eqn. 5).

min E
yi∼Dlabel

[Acc(yi, y
′
i)] (5)

IV. OUR PROPOSAL: EXPLOIT

We propose ExPLoit– a label leakage attack that can be
used by a malicious input-owner to learn the private labels in
split learning. Our key insight is that the label leakage attack
can be framed as a supervised learning problem by replacing
the unknown parameters of the label owner with learnable
surrogate parameters. This allows the adversarial input owner
to “replay” the split learning process with surrogate parame-
ters. We train these surrogate parameters by using a novel loss
function that uses gradient-matching and several regularization
terms that leverage key properties of the model and training
data. By optimizing the surrogate parameters to minimize this
loss function, we can recover the label owner’s private labels
with high accuracy. The rest of this section describes our
proposed attack in greater detail.

A. Surrogate Parameter Substitution

From the input owner’s point of view, the split learning
process has two sets of unknown parameters associated with
the label-owner: the label owner’s model g and the private
labels {yi} (see Fig. 3a). Our goal is to uncover these unknown
values by treating them as learnable parameters. To do so, we
start by substituting these unknowns with randomly initialized
surrogate parameters, as shown in Fig. 3b. We replace g with a
surrogate model g′ (with parameters θg′ ), and {yi} with a set

of surrogate labels {y′i}. We want y′i to be a point on an n−1
dimensional probability simplex for an n-class classification
problem. To enforce this property, we set y′i = Softmax(ŷi),
where ŷi ∈ Rn. With the surrogate parameters in place, the
goal of our attack is to learn the surrogate labels {y′i} (or
equivalently to learn {ŷi}).

B. Replay Split Learning

To train the surrogate parameters, we first “replay” the split
learning process using the surrogate parameters (Fig. 3b). First,
in the forward pass, the embedding zi (collected during split
learning) is fed into g′ to get the prediction p′i, which along
with the surrogate labels y′i can be used to compute the loss
L′
i = H(y′i, p

′
i). Next, we perform backpropagation through

g′ and compute the gradient of the loss with respect to the
embedding ∇zL

′
i. We use this gradient data as part of our

loss function to learn the private labels, as described below.

C. ExPLoit Loss

To train the surrogate parameters θg′ and ŷ, we formulate
a loss function using four key objectives:

1. Gradient Objective: The loss gradient ∇zL
′
i, obtained

during replay split learning, must match the original gradients
∇zLi, obtained during the original split learning process. This
can be achieved by minimizing the l2 distance between ∇zL

′
i

and ∇zLi as shown below:

min
θ′
g,{ŷi}

E ∥∇zL
′
i −∇zLi∥2 . (6)

2. Label Prior Objective: The distribution of surrogate labels
must match the label prior Py of the dataset. The probability
distribution of the surrogate labels can be computed by taking
the expectation of the surrogate labels2 Py′ = E(y′i). We
perform the following optimization to match the distributions
of the original and surrogate labels:

min
θ′
g,{y′

i}
DKL(Py∥Py′). (7)

2Each surrogate label y′i is a n-dimensional probability vector that repre-
sents the probability distribution over the n output classes.



3. Label Entropy Objective: Each individual surrogate label
y′i must have low entropy as the datasets we consider have
zero entropy one-hot labels.

4. Accuracy Objective: The surrogate model must have high
prediction accuracy with respect to the surrogate labels. In
other words, the predictions of the surrogate model p′i must
be close to the surrogate labels y′i.

To achieve the label entropy and accuracy objectives, we
can minimize the normalized cross-entropy loss between p′i
and y′i as follows:

min
θ′
g,{y′

i}i

E[H(y′i, p
′
i)]

H(Py)
. (8)

Note that the cross-entropy term H(y′i, p
′
i) in Eqn. 8 can be

expressed as a sum of the label entropy and KL divergence
between the surrogate label and prediction: H(y′i, p

′
i) =

H(y′i) +DKL(y
′
i∥p′i). Thus, by minimizing cross-entropy, we

can minimize the entropy of surrogate labels (label entropy
objective) and match the model’s predictions with the surro-
gate labels (accuracy objective). We normalize cross-entropy
with the entropy of the label prior H(Py) to ensure that the
metric is insensitive to the number of label classes and the
label priors [14].

We combine all the learning objectives described above to
derive the final loss function as shown below:

LExP = E
[
∥∇zLi −∇zL

′
i∥2

]
+ (9)

λce · E
[
H(y′i, p

′
i)/H(Py)

]
+ λp · DKL(Py∥Py′).

Here, λce and λp dictate the relative importance of the cross-
entropy and label prior terms compared to the gradient loss
term (first term in Eqn. 9). By optimizing the surrogate model
and label parameters using this loss function, we can recover
the private labels of the label owner with high accuracy. We
consider the gradient loss term to be the primary optimization
objective of our loss function. The cross-entropy and label
prior terms act as regularizers and help us achieve a better
label leakage accuracy (see Section VII for an ablation study).

D. Putting It All Together

The individual components described thus far can be com-
bined to carry out our label leakage attack. Our attack starts
with the input owner performing split learning process with
the label owner, as shown in Fig. 3a. During this process, the
input owner collects the embedding zi and the corresponding
loss gradient ∇zLi for each input. Using this data, the input
owner can use the ExPLoit attack to leak the private labels.
Our attack is described in Algorithm 1. In the outer loop,
we pick values for λp, λce and the learning rates ηg′ , ηŷ
using a Bayesian hyperparameter optimization algorithm. The
surrogate parameters {ŷi}i and θg′ are randomly initialized,
and each inner loop of the attack proceeds as follows:

1) Replay split learning with surrogate parameters with the
following steps:
a. Sample a batch of embeddings, gradients and surrogate

labels: {z,∇zL, ŷ}batch.

b. Perform forward pass and compute loss {L′} using
predictions {p′} and surrogate labels {y′}.

c. Perform backpropagation to compute the loss gradients
{∇zL

′}.
2) Compute the ExPLoit loss: LExP (Eqn. 9).
3) Update surrogate parameters θg′ and {ŷi} to minimize

LExP .
We repeat the above steps until the values of the surrogate
parameters converge.

Algorithm 1: ExPLoit Attack
Input: {zi}, {∇zLi}, Py, Niter

Output: {y∗i }
Dtrain = {zi,∇zLi, y

′
i}

for i← 0 to Niter do
λp, λce, ηg′ , ηŷ ← BayesOpt()
Initialize {ŷi}, g′(·; θg′)
repeat

for {z,∇zL, ŷ}batch in Dtrain do
{y′i} = {Softmax(ŷi)}
Py′ = E(y′i)

// 1. Replay Split Learning
for {z,∇zL, ŷ}i in {z,∇zL, ŷ}batch do

p′i = g′(zi; θg′)
L′
i = DKL(y

′
i∥p′i)

Compute ∇zL
′
i

end

// 2. Compute ExPLoit loss (Eqn. 12)
LExP = E[∥∇zL

′
i −∇zLi∥2] + λce ·

E[H(y′i, p
′
i)/H(Py)] + λp · DKL(Py∥Py′)

// 3. Update surrogate model, label
parameters
θg′ ← θg′ − ηg′ · ∇θg′LExP

ŷ ← ŷ − ηŷ · ∇ŷLExP

end
until Convergence;
NewBest =
UpdateBayesOpt(E[∥∇zL

′
i −∇zLi∥2])

if NewBest then
{y∗i } ← {Softmax(ŷi)}

end
end

Hyperparameter Optimization: We learn a set of surrogate
labels {y′i} in each outer loop for different selections of
the hyperparameters. Unfortunately, evaluating the accuracy
of the surrogate labels produced in each iteration is not
possible since the input owner is unaware of any of the
true labels. Consequently, we cannot use accuracy to guide
the hyperparameter search. Instead, we evaluate the gradient
loss term E[∥∇zL

′
i −∇zLi∥2] after completing each outer

iteration and use this as our objective function to be minimized



TABLE I
DATASETS AND THE CORRESPONDING SPLIT-MODELS USED IN OUR EXPERIMENTS.

Dataset Config-1 Config-2
g′

f g f g

FashionMNIST Conv × 4 FC × 2 Conv × 3 Conv − FC × 2 FC × 3
CIFAR-10 Conv −Res× 9 FC × 2 Conv −Res× 6 Res× 3− FC × 2 FC × 3

CIFAR-100 Conv −Res× 9 FC × 2 Conv −Res× 6 Res× 3− FC × 2 FC × 3
Tiny-ImageNet Conv −Res× 9 FC × 2 Conv −Res× 6 Res× 3− FC × 2 FC × 3

Criteo Emb− FC × 2 FC × 2 Emb− FC FC × 3 FC × 4

by tuning the hyperparameters. We report the accuracy of the
surrogate labels obtained for the best set of hyperparameters
that minimizes this objective.

V. EXPERIMENTS

We evaluate ExPLoit with multiple datasets and model
architectures to show that it can leak private labels with high
accuracy, across different settings. We describe our experimen-
tal setup followed by the results in this section.

A. Experimental Setup

The datasets and the corresponding split-models (f ◦g) used
in our evaluations are shown in Table I.

Datasets: FashionMNIST, CIFAR-10, CIFAR-100, and
Tiny-ImageNet are computer vision datasets used to perform
multi-class image classification. The Criteo dataset consists of
conversion logs for online ad-clicks, with each entry consisting
of 3 continuous, and 17 categorical features, along with a
binary label indicating if the ad-click resulted in a purchase
(conversion). Note that the Criteo dataset has a large class
imbalance ( 90% of the labels are 0’s, and the rest are 1’s).

Models: We use a 4-layer convolutional neural network for
FashionMNIST and a 21-layer ResNet model for CIFAR-10,
CIFAR-100 and Tiny-ImageNet. The model for the conversion
prediction task (Criteo) consists of a learnable embedding
layer (to handle categorical features) followed by four fully
connected (FC) layers. All the models are split into two sub-
models f (input-owner’s model) and g (label-owner’s model),
which are jointly trained using split learning. The layer at
which the model is split is referred to as the cut-layer. To
test the sensitivity of our attack to the cut-layer, we perform
experiments with two different configurations: Config-1 and
Config-2, which splits the model at different points as shown in
Table I. The label-owner’s model g only consists of FC layers
in Config-1. In contrast, the g model in Config-2 is larger
and consists of both convolutional (Conv) and FC layers. The
vision models are trained for 10 epochs and the CVR model
for 5 epochs using the Adam optimizer with a learning rate
of 0.001. We evaluate the efficacy of label leakage attacks at
different points during the split-model training by carrying out
the attack after each training epoch.

Attack parameters: We assume that the architecture of
the label owner’s model g is not known to the input owner.
Thus, we use a 3-layer fully connected DNN (FC[128-64-10]
for image classification and FC[32-32-10] for Criteo) as the

surrogate model g′. We set Niter = 500, and the learning
rate range to [10−5, 10−4] for ηg′ and [10−2, 10−1] for ηŷ .
The range for λce and λp is set to [0.1, 3]. We carry out the
ExPLoit attack for each training epoch of split learning.

Evaluation Metric: By learning the surrogate labels asso-
ciated with each input, ExPLoit groups the inputs that belong
to the same class together. However, the true class labels
corresponding to each input group remains to be determined.
For an unbalanced dataset, the label prior information can
be used to infer the label by considering the size of each
input group. For a balanced dataset, the adversary can use
inputs with known labels (one for each output class) to
determine the label associated with each input group. We
report the clustering accuracy [29] obtained with the best
hyperparameters (corresponding to the lowest gradient loss)
in our results below.

B. Results

We plot label leakage accuracy for ExPLoit and other
label leakage attacks and compare it with the test accu-
racy/normalized cross entropy3 of the split-model, across
various datasets and model configurations in Fig. 4. ExPLoit
achieves near-perfect label leakage accuracy for most datasets
(99.53% for CIFAR-10) and significantly outperforms all prior
works. We provide explanations for the attack sensitivity to
various parameters like dataset, split-model training epoch,
cut layer, and a detailed comparison with recent prior works
below. We use the accuracy numbers from Config-1 (Fig. 4a),
Epoch-10 to discuss the results, unless specified otherwise.

Sensitivity to Split-model Training Epoch: Our results
show that the efficacy of ExPLoit improves when attacking the
later epochs of the split-model training. For instance, the label
leakage accuracy of ExPLoit for CIFAR-100 is just 30.65% for
Epoch-1 and improves to 94.4% for Epoch-10. The reason for
this trend is because our attack approximates the label owner’s
model g using a fixed surrogate model g′. However, in reality,
g is not fixed, and changes as training progresses. The rate
of this change is smaller for the latter epochs. Consequently,
our ability to approximate g with a fixed surrogate model
improves for the later epochs, which improves our attack’s
efficacy. While ExPLoit already achieves near perfect accuracy
for most datasets with just 10 epochs of split-model training,

3We use normalized cross-entropy (NCE) instead of test accuracy to
measure the model performance for the Criteo dataset as it has a high class
imbalance. A lower value of NCE indicates better performance.
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Fig. 4. Results comparing ExPLoit with the K-means baseline and prior works (UnSplit, Model Completion and Norm-based attacks) for two configurations
of the split model: (a) Config-1 and (b) Config-2 (see Table I). ExPLoit significantly outperforms prior works and can leak private labels with a high accuracy
(up to 99.53%) for most datasets.

we expect this accuracy to improve further as the split-model
is trained for a greater number of epochs.

Sensitivity to Datasets: ExPLoit is more effective for
datasets with lower input dimensionality and fewer classes.
For instance, ExPLoit has a label leakage accuracy of 99.5%
for FashionMNIST, whereas the accuracy drops to 94.38% for
CIFAR-100 and 80.61% for Tiny-ImageNet. This is because
our attack has a higher number of surrogate parameters for
CIFAR-100 and Tiny-ImageNet compared to FashionMNIST
(due to larger input size and number of output classes), which
increases the difficulty of the learning problem in our attack.

Sensitivity to Cut layer and Model Architecture: We
evaluate our attack on two split network configurations:
Config-1 and Config-2, which represent two different choices
of the cut layer. ExPLoit achieves a higher label-leakage
accuracy for Config-1 compared to Config-2. For instance, in
the case of CIFAR-100, our attack produces a label leakage
accuracy of 94.38% for Config-1 and 65.74% for Config-2.
The reason for this discrepancy is two-fold. First, g is much
denser for Config-2, compared to Config-1, which makes it
harder to approximate with a surrogate model g′ for Config-2.
Second, our g′ model is architecturally similar to the g model
in Config-1 as both these models use fully connected layers,
while the g models in Conv-2 uses FC and Conv layers.

Thus, the efficacy of our attack reduces when g is larger
and has a dissimilar model architecture compared to g′. This
highlights a limitation of ExPLoit under our threat model,
where the architecture of the label-owner’s model is assumed
to be unknown to the attacker. However, we note that, while
we use a single shallow network for g′ in our evaluations,
a motivated adversary could repeat the ExPLoit attack with

different architectures for g′, and pick the one that produces
the lowest loss. This would result in a better attack accuracy.

Comparisons with Baseline and Prior Work: We compare
the performance of ExPLoit against an unsupervised learning
baseline (K-Means Clustering) and three recent attacks: Un-
Split, Model Completion and Norm based attack. The experi-
mental setup for these prior works is described in Section IX.

K-Means Attack: Through the split-learning process, the
label-owner is able to generate embeddings zi = f(xi), for
each input xi. One way to estimate the private labels is by
using unsupervised learning to group these embeddings. We
perform K-Means clustering using the embeddings {zi} and
report the resulting label leakage accuracy in Fig. 4. The
efficacy of the attack improves with the quality of embeddings.
Consequently, the attack performs well for simpler datasets
like FashionMNIST, where it is easier to learn good embed-
dings with relatively few training epochs. The attack accuracy
accuracy also improves for later epochs as the model f learns
better embeddings as training progresses.

UnSplit Attack [9]: The UnSplit attack uses the gradient
matching loss to learn the private labels. The authors of [9]
showed that this technique is effective only when g is a single
layer network and does not work for multi-layer networks.
Consistent with their results, our experiments with the UnSplit
attack also showed very low efficacy (10.99% attack accuracy
for CIFAR-10, which is comparable to a random guess).

Model Completion Attack [10]: This attack proposes to train
a surrogate model g′ using semi-supervised learning to predict
the private labels corresponding to the inputs. Similar to the K-
Means attack, the efficacy of this attack depends on the quality
of emebddings produced by f . Consequently, this attack works
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Fig. 5. Results showing the utility-privacy trade-off for various attacks under the gradient noise defense. A larger gradient noise reduces the efficacy of label
leakage attacks at the cost of degradation in model accuracy.

well for simpler datasets, providing an accuracy of 75.06%
for FashionMNIST, while the accuracy degrades for more
complex datasets like CIFAR-10 (61.3% accuracy), CIFAR-
100 (15.3% accuracy) and Tiny-ImageNet (6.875% accuracy).

Norm-based attack [17] : The norm-based attack uses
gradient norm to predict the labels in imbalanced binary clas-
sification problems. Evaluations on the Criteo dataset shows
that this attack can achieve high accuracy (comparable with
ExPLoit). The leakage accuracy also improves for the later
epochs of the split-model training as the difference in gradient
norms becomes more pronounced.

ExPLoit significantly outperforms all prior works, providing
a near-perfect label leakage accuracy for most datasets. E.g.
ExPLoit achieves a label-leakage accuracy of 99.53% for
CIFAR-10, which is 32.38% higher than the next best attack.
This difference is even more pronounced when the attack is
carried out at an earlier training epoch (67.2% higher accuracy
compared to next best attack at Epoch-1 for CIFAR-10). This
is because, unlike prior works, the efficacy of ExPLoit does
not depend on the quality of embeddings produced by f . The
efficacy of our attack demonstrates that split learning offers
negligible privacy benefits for the label owner.

VI. GRADIENT NOISE DEFENSE

ExPLoit uses the gradient information obtained from the
label owner during split learning to leak the private labels.
One way to defend against ExPLoit is by adding noise to the
gradients, similar to DP-SGD [1]. We perturb the clipped loss
gradients with Gaussian noise as shown in Eqn. 10.

∇zL̂i =
∇zLi

max(∥∇zLi∥2, 1)
+ η, where η ∼ N (0, σ2I)

(10)

The label owner can transmit these noisy gradients ∇zL̂i

to the input owner to perform split learning. Adding noise
prevents the input owner from having reliable access to the
true gradients. This reduces the efficacy of ExPLoit, providing
better privacy to the label owner. On the other hand, noisy
gradients are detrimental to training the split model and results
in lower accuracy, thus impacting utility. To evaluate the
utility-privacy trade-off offered by this defense, we perform
split learning with different amounts of gradient noise by

sweeping σ in Eqn. 10. For each value of σ, we train the
split-model for 50 epochs and report the test and label leakage
accuracy with ExPLoit. Since the gradients obtained during
split learning are noisy, optimizing the hyperparameters of our
attack using the gradient loss objective is not optimal. Instead
we tune the hyperparameters using LExP (λce = 1, λp = 1)
as the optimization objective.

The utility-privacy trade-off with gradient noise defense
for ExPLoit is shown in Fig. 5. Against the ExPLoit attack,
this defense provides a better utility-privacy trade-off for
lower dimensional datasets like Criteo and FashionMNIST. For
instance, gradient noise degrades the label leakage accuracy
for FashionMNIST by 51.8% with only a 2.26% reduction of
test accuracy. In contrast, for CIFAR-10, a 79% reduction in
label leakage accuracy incurs a 38% reduction in test accuracy.
We hypothesize that this discrepancy could be attributable to
the degradation in the quality of the input owner’s model f .
Lower-dimensional datasets could be more resilient to this
degradation, whereas higher-dimensional datasets like CIFAR-
10, CIFAR-100 and Tiny-ImageNet may be impacted more if
f is not trained properly.

Additionally, we evaluate the gradient noise defense against
other attacks. While the gradients are not directly used by
the K-Means and model completion attacks, gradient noise
reduces the quality of embeddings learnt by f , which degrades
the efficacy of these attacks. We find that these attacks are
more resilient to gradient noise for FashionMNIST, as the
quality of the embeddings does not degrade significantly.
However, ExpLoit performs better than these two attacks for
datasets like CIFAR-100 and Tiny-ImageNet. The UnSplit
attack continues to provide no benefit under gradient noise.

VII. ABLATION STUDY

ExPLoit replaces the unknown labels and model parame-
ters of the label owner with surrogate parameters and uses
the gradient information obtained during split learning to
train these surrogate parameters. In addition to matching the
surrogate gradients obtained during “replay” split learning
with the original gradients, our loss function consists of two



TABLE II
ABLATION STUDY SHOWING THE LABEL LEAKAGE ACCURACY OF EXPLOIT WHEN THE TWO REGULARIZATION TERMS: LABEL PRIOR

REGULARIZATION (LPR) AND CROSS ENTROPY REGULARIZATION (CER), ARE NOT USED.

Dataset Original (%) No LPR (%) No CER (%) No LPR, CER (%)

FashionMNIST 99.84 69.78 59.31 27.83
CIFAR-10 99.96 99.28 99.35 99.84

CIFAR-100 94.38 60.78 17.04 20.38
Tiny-ImageNet 80.61 23.58 10.08 8.88

Criteo 99.68 99.65 99.87 97.75

regularization terms as shown in Eqn. 11.

LExP =E
[
∥∇zLi −∇zL

′
i∥2

]
+

λce · E
[
H(y′i, p

′
i)/H(Py)

]
+ λp · DKL(Py∥Py′)

(11)

The cross-entropy regularization (CER) term
E
[
H(y′i, p

′
i)/H(Py)

]
achieves the dual objective of

minimizing the entropy of the individual surrogate labels and
improving the accuracy of the surrogate model (g′). The label
prior regularization (LPR) term DKL(Py∥Py′ ) tries to match
the distribution of the surrogate labels with the label prior.
We conduct an ablation study to understand the importance
of the two regularization terms by carrying out ExPLoit
without using LPR, without using CER, and without using
both LPR and CER. The resuls of this study are shown in
Table II. As expected, we find that there is a degradation in
accuracy when regularization terms are not used. CER seems
to be more important compared to LPR as the degradation
is higher when CER is not used. For CIFAR-10 and Criteo,
the regularization terms seem to matter less as the accuracy
is high even when we disable both regularization terms.

VIII. LIMITATIONS

Our proposed ExPLoit Attack uses the gradient information
obtained during split learning to leak the private labels. We
assume that the input owner has knowledge of the number of
classes and the distribution of the labels over these classes
(prior information) to develop our loss function (Eqn. 9).
If the attacker is completely unaware of the downstream
classification task, this information could be hard to estimate,
making our attack less effective (see Section VII). However,
we argue that it is rare for the input owner (attacker) to
be completely unaware of the downstream classification task.
Even if the label prior is unknown, knowledge of the task in
itself might be sufficient to make an educated guess about the
label prior. For instance, in conversion prediction, the average
conversion rate for online advertising is publicly available [5].
For disease prediction, the prevalence rate of a disease is often
known and can be used as the label prior. Developing attacks
that do not require label prior information is an interesting
avenue of exploration for future work.

IX. EXPERIMENTAL SETUP FOR PRIOR WORKS

We describe the experimental setup and evaluation method-
ology for the prior works used in our experiments. The Unsplit

and Model Completion attacks both require a surrogate model.
To have a fair comparison, we use the same surrogate model
as ExPLoit (see Table I) for both of these attacks.

UnSplit Attack: The UnSplit attack [9] aims to learn
the surrogate labels {y′} and model parameters θg′ by min-
imizing the mean square error loss between the original
and the surrogate gradients using the following objective:
minθ′

g,{y′
i} MSE(∇zL

′
i,∇zLi). We use an Adam optimizer

with a learning rate of 0.001 and train for 50 epochs.
Model Completion Attack: Model completion attack [10]

trains the surrogate model using semi-supervised learning by
using a small number of labeled embeddings Dl = {zli, yli}
and unlabeled embeddings D = {zi}. We assume that the
attacker has 4 labeled examples per class for the vision datasets
and 50 examples per class for the Critio dataset. We use the
parameters from the original paper [10] to perform semi-
supervised learning. We set temperature T=0.8 for sharpening
the predictions, λu = 50 as the weight for the loss on the
unlabeled dataset and α = 0.5 for MixUp. We train all the
models for 100 epochs and report the accuracy by using the
predictions of this trained model.

Norm-Based Attack: The norm-based attack uses the dif-
ference in the magnitude of gradient norms in imbalanced
binary datasets to predict the private labels. This difference
can be seen clearly from Fig. 6, which shows the distribution
of gradient norms ∥∇zL∥2 obtained during split learning for
different epochs of the conversion prediction model trained
on the Criteo dataset. The norm-based attack exploits this
difference in the gradient norms and uses it to infer the private
labels in split learning. This attack uses a threshold T to
classify the examples into positive and negative classes as
shown below.

y′ =

{
1 ∥∇Lz∥2 > T

0 otherwise
(12)

We sweep the value of T and pick a value that yields the
best accuracy to report the Norm-based attack results in
Section V-B. Note that in a real attack setting, the adversary
does not have the ability to check the accuracy for different
values of T . However, we pick an ideal value of T in our
experiments to understand the best possible accuracy that can
be obtained with the Norm-based attack.

X. OTHER RELATED WORK

We describe prior works in vertical federated learning that
are not directly related to our proposed attack in this section.
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A. Privacy-Preserving Training Techniques for Vertical Fed-
erated Learning

In addition to split learning, several methods have been
proposed to train a model on vertically partitioned private data.
These methods can broadly be classified into three categories:
1. Differential Privacy (DP) 2. Multi-Party Compute (MPC)
and 3. Trusted Execution Environment (TEE). We discuss
solutions in each category and describe their limitations.

Label Differential Privacy: Differential privacy [8] is
a principled system for training on a private database that
restricts the influence of any single entry of the database on
the outcome by adding noise to a query’s response. A recent
work [11] proposed Label Differential Privacy (LDP) to train
a model on vertically partitioned data with sensitive labels.
LDP relies on a randomized response algorithm to provide a
noisy version of the labels to the input owner by defining a
probability distribution over the class labels as follows:

Pr[ỹ = ŷ] =

{
eε

eε+K−1 for ŷ = y
1

eε+K−1 otherwise
(13)

The label owner uses the noisy labels sampled from this
distribution and the input data to train a model. To prevent
the model from overfitting on the incorrect labels, the authors
propose using the Mixup technique [31] to train the model,
which provides resilience to label noise. One drawback of this
technique is that it allows the input owner to have complete
ownership of the model. In contrast, split learning enables the
input and label owners to jointly own the model, which might
be desirable if the label owner wants to exercise control over
the usage of the model.

Multi-Party Compute (MPC): Several works [19], [21],
[28] have proposed using cryptographic techniques to enable
private computations over distributed data held by multiple
parties. These works use a combination of cryptographic
primitives such as oblivious transfer [3], [15], [23], garbled
circuits [30], secret sharing [7] and homomorphic encryp-
tion [22] to train the model. Unfortunately, these methods
have significant computational overheads and require multi-
ple rounds of communication between the parties involved.
Consequently, even training a simple 2-layer network incurs
a 30× overhead [19] compared to training without privacy,
making it impractical for training larger networks.

Trusted Execution Environment (TEE): Trusted Execu-
tion Environments use hardware enclaves to enable remote
computations with confidentiality and integrity. A centrally
hosted TEE can be used to train a model on distributed
data. The data owners can communicate data securely over an
encrypted channel to the trusted enclave. Training is performed
while ensuring data confidentiality, and the resulting model
is transmitted securely to the data owners. Unfortunately,
TEEs have slow memory due to the overheads associated
with encryption and integrity checks [13], [20]. Moreover,
commercially available TEEs such as Intel SGX [18] and
Arm Trustzone [27] are CPU-based and offer less parallelism
compared to GPUs. The combination of these two factors
results in orders of magnitude [4] increase in training times
of models. Additionally, this solution requires specialized
hardware, which adds to the cost of implementation.

B. Input Privacy Attacks and Defenses in Split Learning

Recent works have proposed attacks to break input privacy
in split learning. The goal of these attacks (a.k.a model
inversion attack) is for an adversarial label owner to re-
cover the private inputs {xi} of the input owner using the
embedding information {zi} obtained during split learning.
A recent work [2] showed that, for simple 1-d time-series
signals, the embedding data obtained in split learning might
not preserve privacy as it has a high distance correlation with
the original input data. Model inversion attacks have also been
demonstrated on split learning with more complex datasets in
the image domain [25]. To carry out the attack, the adversary
uses examples from the input data distribution {x′

i} to query
the input owner’s model and generate embeddings z′i = f(x′

i).
The input and embedding data can be used to train an inversion
model finv that maps the embedding to the input: Z → X .
This inversion model can be used to reconstruct the input data
using the embeddings during the attack. Note that such attacks
require access to the examples from the input data distribution
and black-box query access to the input owner’s model. In
contrast, our label leakage attack does not require black-box
access to the label owner’s model or access to the ground truth
label data. [2] also proposes using additive noise to perturb
the embedding to defend against such attacks. This is similar
in spirit to our work, which uses gradient noise to deter label
leakage attacks.



XI. CONCLUSION

Split learning has been proposed as a method to train a
model on vertically split data while keeping the data private.
We investigate the privacy properties of two-party split learn-
ing by proposing ExPLoit – a label-leakage attack that allows
an adversarial input owner to learn the label owner’s private
labels during split learning. Our key insight is that the attack
can be framed as a learning problem by substituting the un-
known parameters of the label owner with learnable surrogate
parameters. We use the gradient data collected during split
learning and a novel loss function to train these surrogate
parameters. Our evaluations on several image-classification
tasks and a converstion prediction task show that ExPLoit can
leak private labels with near-perfect accuracy of up to 99.53%,
proving that split learning provides a negligible amount of
label privacy. ExPLoit also outperforms recent prior works,
offering up to 67.2% improvement in label leakage accuracy.
We also evaluate gradient noise as a defense to improve
label privacy. While this provides a reasonable defense for
simpler datasets, we find that the utility-privacy tradeoff of
this technique is unfavorable for more complex datasets. Our
findings in this work underscore the need for better techniques
to perform vertical federated learning.
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