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Abstract

Text Implicitness has always been challenging
in Natural Language Processing (NLP), with
traditional methods relying on explicit state-
ments to identify entities and their relationships.
From the sentence "Zuhdi attends church ev-
ery Sunday", the relationship between Zuhdi
and Christianity is evident for a human reader,
but it presents a challenge when it must be in-
ferred automatically. Large language models
(LLMs) have proven effective in NLP down-
stream tasks such as text comprehension and
information extraction (IE).

This study examines how textual implicitness
affects IE tasks in pre-trained LLMs: LLaMA
2.3, DeepSeekV1, and Phil.5. We generate
two synthetic datasets of 10k implicit and ex-
plicit verbalization of biographic information
to measure the impact on LLM performance
and analyze whether fine-tuning implicit data
improves their ability to generalize in implicit
reasoning tasks.

This research presents an experiment on the
internal reasoning processes of LLMs in IE,
particularly in dealing with implicit and ex-
plicit contexts. The results demonstrate that
fine-tuning LLM models with LoRA (low-
rank adaptation) improves their performance
in extracting information from implicit texts,
contributing to better model interpretability
and reliability. The implementation of our
study can be found at anonymous/xAi-KE-
ImplicitKnowledge

1 Introduction

Information Extraction (IE) seeks to identify, clas-
sify, and represent entities from unstructured tex-
tual sources. Large Language Models (LLMs)
significantly improved Natural Language Process-
ing (NLP) performance in IE, demonstrating re-
markable capabilities in tasks such as text compre-
hension, classification, Named Entity Recognition

(NER) and Relationship Extraction (RE) (Niklaus
et al., 2018; Fu et al., 2023). Conventional ap-
proaches (e.g., rule-based, deep learning) predomi-
nantly rely on explicit statements to extract entities,
relations, and events (Alt et al., 2020). However,
real-world texts also convey information implic-
itly, requiring inferential processing to derive the
intended meaning.

Implicit meaning arises when information is
conveyed indirectly through linguistic and cog-
nitive mechanisms rather than explicitly stated
where contextual reasoning and pragmatic infer-
ence are required to perform correct interpretations
(Yule, 1996; Evans, 2012; Fischer, 2017). The
sentence "Zuhdi attends church every Sunday" sug-
gests Zuhdi is likely Christian, as this inference is
drawn from a religious frame, requiring additional
knowledge to make sense of what is not explicit.
Similarly, the statement "Sarah received her degree
from Oxford University on June 15, 2010, and cele-
brated her 20th birthday the same day" implies she
was born on June 15, 1990, establishing a temporal
entailment that is not explicitly stated.

Biographical texts present a challenging case
for information extraction due to their reliance on
the implicit use of language. Although these texts
do not require specialized domain knowledge for
comprehension, they present a moderate level of
complexity (Tint et al., 2024). Such complexity
arises from the relationships between entities, tem-
poral dependencies, and occupational references,
which are often inferred through contextual cues
rather than explicitly stated.

This study investigates the impact of textual im-
plicitness on LLM-based IE tasks, tackling two
main research questions (RQs):

* RQ1: How do implicit and explicit verbaliza-
tions affect LLM performance in information
extraction tasks?
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* RQ2: How does exposure to implicit data dur-
ing fine-tuning affect an LLM’s ability to gen-
eralize to implicit reasoning tasks?

Since LLMs often exhibit difficulty in extract-
ing information from implicit contexts (Tint et al.,
2024), we explore whether fine-tuning can miti-
gate this difficulty. Specifically, we investigate
the impact of fine-tuning on well-known models
from the community such as LLama3.2 (Al, 2024),
DeepSeekV1 (DeepSeek-Al et al., 2025), and Phil-
5 (Li et al., 2023). This is particularly relevant for
scenarios where critical information is conveyed
implicitly rather than explicitly. Our findings con-
tribute to improving model reliability and expand-
ing potential applications.

We focus on two datasets, one explicit and one
implicit, containing natural language descriptions
of people’s biographies. The texts were synthet-
ically generated starting from a Wikidata triple
dataset. By fine-tuning models on implicit patterns
which mimic real-world scenarios, we assess their
ability to extract information from implicit texts.

This contribution is summarized as follows: Sec-
tion 2 lays the background of this work, Section
3 presents the adopted methodology to provide an
answer to RQ1 and RQ2. Our results are presented
and discussed in Section 4. Finally, 5 outlines our
final remarks and future works.

2 Background and Related Work

IE focuses on structuring data, e.g. in the form of a
triple, where two arguments are connected through
a relation. Usually, this takes the form of a triple
composed of a subject, a predicate and an object, as
<s, p, 0> (Niklaus et al., 2018). This task is usually
defined as Relationship Extraction (RE). One inner
distinction is the difference between Closed and
Open RE. Closed RE focuses on finding arguments
given one or more constraints (e.g., <s, p, 70> -
where the object is the only unknown value), while
Open RE looks for any potential triple in a text
(e.g. <7s, 7p, 70>) instead. Traditional RE models
primarily identify triples where elements (subjects,
predicates, and objects) have explicit textual men-
tions. These models are trained to recognize ex-
plicit linguistic markers (such as verbs functioning
as predicates) but often struggle with implicit rela-
tionships that require common sense knowledge or
deeper natural language understanding (Pei et al.,
2023). Pre-trained Language Models (PTLMs) and
LLMs represent the state-of-the-art for unsuper-

vised Open IE tasks (Fu et al., 2023), as they can
process implicit information more effectively than
previous approaches.

The role of implicit and explicit knowledge has
been extensively studied in cognitive science. Ac-
cording to Dienes and Perner’s theory, implicit-
ness arises when information is conveyed indirectly
through the functional use or conceptual structure
of explicit representations, rather than being di-
rectly represented (Dienes and Perner, 1999).

In RE, being able to identify relationships with
different levels of explicitness presents a signifi-
cant challenge. LLMs have shown that while these
models can effectively process explicit informa-
tion, they still struggle with implicit knowledge that
requires commonsense reasoning (Ilievski, 2024).
The dimensions of implicit relationships can vary
significantly based on:

* The level of inference required (from simple
logical deduction to complex contextual rea-
soning)

* The type of background knowledge needed
(from common facts to domain expertise)

* The cultural and temporal context necessary
for understanding

The degree of implicitness in information also di-
rectly impacts the certainty with which models can
retrieve and reason about that information. While
explicit statements can be processed with high con-
fidence, implicit information introduces varying
levels of uncertainty that models must learn to han-
dle appropriately. Datasets for RE usually prior-
itize explicitly stated information. For instance,
RED (Huguet Cabot et al., 2023), a widely used
RE dataset, focuses on extracting triples that di-
rectly match sentences found in the text. RED
provides entity types and relationships without en-
forcing additional structural constraints, such as
predefined categories for entities or specific restric-
tions on how relationships should be formed - the
domain and range of the predicate (see Table 1).

This uncertainty increases proportionally with
the degree of inference required to extract the in-
formation. For example, consider these statements
about Gaia, from which we want to draw a state-
ment about her occupation:

» "Gaia works as a doctor at City Hospital"

'The dataset entry was extracted from https://

huggingface.co/datasets/Babelscape/REDFM
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Subject Predicate Object
Emilie sport judo
Andéol

Source text: "Emilie Andéol [...]is
a French judoka competing in the
women’s +78 kg division."

Table 1: Example of a RED dataset triple-sentence pair

» "Gaia wears a white coat and sees patients
daily"

* "Gaia ran through the emergency room corri-
dor, quickly reviewing charts"

All the statements convey the same information
with a different degree of implicitness. The first
information is explicit, as the sentence is shaped
similarly to the <s, p, 0> structure, where ?0 is
equal to the attribute of the verb works. The oc-
cupation, in the second case, is described by the
daily routine of the occupation itself (metonymy).
In the third case, the information is hid completely:
even a human would not be able to discern her
occupation with certainty. Different people could
rush through an emergency room with a chart in
hand, not necessarily a doctor (unless additional
context provides more clues). The less a statement
is explicit, the more uncertainty builds up.

LLMs seem to struggle with processing implicit
information, (Becker et al., 2021) we sought to
better understand whether this limitation arises
from the model’s architecture or its training data.
Specifically, we investigate whether this issue re-
flects aleatoric uncertainty—stemming from in-
herent unpredictability in language—or epistemic
uncertainty, where performance is limited by the
model’s exposure to certain distributions during
training (Hiillermeier and Waegeman, 2021).

For this purpose, we fine-tune LLMs on RE tasks
that include varying degrees of implicitness. This
approach allows us to probe the model’s general-
ization capacity and assess whether performance
improvements emerge from better learning of the
input-output mappings or from increased familiar-
ity with implicit patterns. Rather than focusing
on post-hoc interpretability methods (Barredo Ar-
rieta et al., 2019; Molnar, 2022), we position our
analysis as a behavioral study of LLMs in the con-
text of information extraction, with a focus on how
implicitness affects extraction reliability.

In recent years, the development of robust IE sys-
tems has increasingly depended on the availability
of high-quality data. However, for many domains,
available datasets are limited in size, making data
augmentation and synthetic dataset generation tech-
niques gain traction as practical solutions. In NLP,
for instance, methods such as back translation and
synonym replacement have long been employed to
expand parallel corpora (Li et al., 2022). More re-
cently, Synthetic Dataset Generation has emerged
as a strategy that leverages LLMs to create train-
ing data for smaller models, especially for tasks
or domains with limited human-labeled examples
(Busker et al., 2025). This strategy has proven valu-
able in medical and low-resource contexts where
annotation is both expensive and time-consuming
(Chebolu et al., 2023).

This synthetic data generation approach is par-
ticularly relevant for addressing the challenges of
implicit RE discussed earlier. By generating di-
verse examples with varying degrees of implicit-
ness, we can potentially improve model perfor-
mance on the full spectrum of RE tasks—from
explicit statements to those requiring complex in-
ference and entailment. Typically, synthetic data is
generated starting from a single prompt or a mini-
mal set of guiding rules (Long et al., 2024), aiming
to steer the model toward desired outputs. However,
generating high-quality synthetic data for implicit
relationships remains challenging, as it requires
the generative model to simulate the complex rea-
soning processes that humans use to infer unstated
connections.

3 Method

This section outlines the design of a controlled
experiment conducted to examine the impact of
implicit and explicit IE in the performance of an
LLM, thereby addressing research questions RQ1
and RQ2. Figure 1 summarizes the overall method
employed to conduct this study.

First, a set of 10,000 random entities from Wiki-
data was extracted, specifically targeting entities of
the Human class?, e.g. Vincent Rodriguez III). The
entities’ biographical information® have been ex-
tracted via the Wikidata API, filtering out irrelevant
information, such as identification parameters, vi-
sual references, and associated technical metadata.

>The Wikidata class "Human" is identified via the ID Q5
3 Represented in Wikidata as Statements (https://www.
wikidata.org/wiki/Help:Statements)
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Figure 1: Dataset generation and Experiment setup

As shown in Table 2, 14 triples describe relevant
information about the biography of Vincent Ro-
driguez III (e.g., occupation, country of citizenship,
sexual orientation), with 18 values. Our aim is to
create two parallel sentences for each person, one
that describes a fact or info about them explicitly,
and the other implicitly. First, a random property is
selected for each person. An example is shown in
Table 2, where the selected information for Vincent
Rodriguez I1I is his occupation as a television actor.

Then, all the information about that person along-
side which information needs to become implicit
becomes the input of the prompt. GPT-4o is in-
structed to generate two different sentences: an
explicit one (similar to Wikipedia’s straightforward
style), and an implicit one where the same informa-
tion is conveyed through narrative context and indi-
rect references. The prompt uses Few-Shot learn-
ing (with 10 examples) and Chain-of-Thought. The
examples for generating the implicit sentence are
sentences with a paired rhetorical strategy (e.g. pe-
riphrasis, metonymy, deduction)*. Table 3 presents
the generated sentences about Vincent Rodriguez
III. The selected property is stated explicitly in the
first description, i.e. "he is a famous television
actor", while in the second it is implied through a
periphrasis (i.e. "showcasing his talent in various
television productions").

Finally, two IE tests were performed as Question-
Answering. We test the model’s ability to retrieve
the implicit and explicit information (e.g. "What’s
Vincent Rodriguez IIT’s occupation?"). As an ad-
ditional rule, both answer can be considered valid,

“Refer to the following script for the complete prompt:
prompt_generation_implicit.py

but "television actor” is counted as the better an-
swer, being the more fine-grained answer compared
to simply "actor”. Indeed, IE on implicit sentences
can exhibit reduced precision by retrieving only the
hypernym "actor" rather its more specific hyponym,
despite the presence of the modifier "television" as
shown in Table 4.

3.1 RQ1: Preliminary results and evalutation

Evaluation has been performed over answers pro-
vided on explicit and implicit descriptions. As
postprocessing, we performed lemmatization to
align model answers to the Wikidata vocabulary.
Then, the semantic distance between the expected
answer (e.g., Television actor) and LLM-generated
answers (e.g., Television actor from explicit de-
scription and actor from implicit description) has
been computed trough BLEURT (Sellam et al.,
2020). We performed the Wilcoxon signed-rank
test to assess whether the difference between the
two distributions was statistically significant. This
non-parametric test compares two related samples
to determine if their population mean ranks differ.
Applying the Wilcoxon signed-rank test, the two
distributions are statistically significant consider-
ing a pvalue < 0.05. Moreover, the percentage
of NaN values given by the model when exposed
to the implicit text is way higher, with a value of
14.60% against 1.30% of the explicit. These evalu-
ations give us grounds to use the generated dataset
in the evaluation of RQ2. Details of the test and
the results can be found in the Github repository
anonymous/xAi-KE-ImplicitKnowledge.


https://anonymous.4open.science/r/xAi-KE-ImplicitKnowledge-C65A/

Subject Predicate Object Hidden info
instance of human X
place of birth San Francisco X
sex or gender male X
given name Vincent X
. actor X
oceupation television actor v
country of citizen- | United States X
ship
Vincent Rodriguez | sexual orientation | homosexuality X
111 date of birth +1982-08- X
10T00:00:00Z
educated at Pacific Conservatory of X
the Performing Arts
Westmoor High School X
family name Rodriguez X
Daly City X
residence New York City X
North Hollywood X
languages spoken, | English X
written or signed
native language English X
writing language English X

Table 2: Selected information about Vincent Rodriguez III. The Table comprehends all triples (subject, predicate,
object) available for the entity Rogriguez III, excluding non-semantic information (e.g., resource identifiers, image

links)

3.2 RQ2: Approach to Fine Tuning

The evaluation of our preliminary results (Section
3.1) addresses RQ1, showing that statistically, the
model struggles more with information extraction
when sentences follow a pattern of implicitness.
Hence our second research question (RQ2): How
does exposure to implicit data during fine-tuning
affect an LLM’s ability to generalize to implicit rea-
soning tasks? To demonstrate this from the dataset
validated above, we decided to take a subset of it
where we select only a few occupations. To choose
them, we took the 5 most common occupations
‘actor’, ‘film actor’, ‘television actor’, ‘stage ac-
tor’, ‘film director’ in the property values, i.e. in
the ground truth and the respective Implicit and
Explicit sentences as shown in Table 3.

3.2.1 Experiment

The experiment explores whether fine-tuning an
LLM model can improve its ability to perform IE
on implicit instances by training it in different set-
tings:

* Training on explicit IE, testing on explicit

IE. We expect it to work correctly, as it should
be the easiest setting;

* Training on implicit IE, testing on implicit
IE. Again, we expect it to perform well by
training it directly on this task;

* Training on both explicit and implicit IE,
testing on both, one for explicit and one for
implicit. If trained together, is the model able
to classify the two different sets correctly?

* Training on explicit IE, testing on implicit
IE. From what we’ve seen above in RQ1, we
expect this one to be the hardest task for the
model as it requires to generalize the most.

3.2.2 Models

For the classification tasks in our study, we selected
three models that are significant and widely recog-
nized within the community. We selected LLaMA,
DeepSeek, and Phi for our experiments based on
their widespread adoption and their performance
within NLP research. At the time of writing (April
2025), both LLaMA and DeepSeek have shown



Explicit Description

Vincent Rodriguez III, born on August 10,
1982, in San Francisco, has captivated audi-
ences with his performances since his early
days at the Pacific Conservatory of the Per-
forming Arts. Residing in vibrant cities like
New York and North Hollywood, he has em-
braced the world of entertainment; he is a fa-
mous television actor.

Implicit Description

Vincent Rodriguez III, born on August 10,
1982, in San Francisco, has captivated audi-
ences with his performances since his early
days at the Pacific Conservatory of the Per-
forming Arts. Residing in vibrant cities like
New York and North Hollywood, he has em-
braced the world of entertainment, showcas-
ing his talent in various television produc-
tions that highlight his dynamic range and
charisma.

Table 3: Implicit and Explicit Descriptions about Vin-
cent Rodriguez 11T

Question Explicit Implicit

Answer  Answer
What does Vincent Television Actor
do for a living? actor

Table 4: Comparison of Explicit and Implicit Answers

substantial popularity, with 2.1 million and 1.8 mil-
lion downloads respectively in last month on the
Hugging Face Platform, indicating broad usage and
interest.

Although Phi models (developed by Microsoft)
have comparatively fewer downloads (~ 100K),
they remain a valuable inclusion due to their strong
performance relative to their size. As highlighted
by the Hugging Face model card Hugging Face
and supporting benchmarks, Phi-1.5 achieves near
state-of-the-art results among models with fewer
than 10 billion parameters, making it a compelling
lightweight alternative for evaluating instruction-
tuned models.

Overall, our selection balances community adop-
tion, model diversity and openness, and parameter
efficiency, allowing for a robust and representative
evaluation across the current LLM landscape.

* meta-llama/Llama-3.2-1B: Developed by
Meta Al this model is part of the Llama 3.2

collection of multilingual LLMs. It is opti-
mized for multilingual dialogue use cases, in-
cluding agentic retrieval and summarization
tasks. (Al 2024)

* DeepSeek-R1-Distill-Qwen-1.5B: Developed
by Deepseek Al, this is a distilled version
of the DeepSeek R1 model. Given its cost-
effectiveness and performance, it is a com-
petitive choice for NLP tasks. (DeepSeek-Al
et al., 2025)

* microsoft/phi-1_5 A transformer-based model
from Microsoft, trained using the same data
sources as Phi-1, augmented with new data.
It shows similar state-of-the-art performance
among models with less than 10 billion pa-
rameters. (Li et al., 2023)

Each of these models contains between 1 and 1.5
billion parameters, and they are hosted on the Hug-
ging Face platform (Wolf and et al., 2020). Given
our necessity to test fine-tuned performance, we
have chosen only open-source models, as we need
access to the weights and structure of the models.
This approach also ensures reproducibility.

3.2.3 LoRA fine-tuning

To build the classification model, we used finetuned
LLMs with Low-Rank Adaptation (LoRA) (Hu
et al., 2021) for the sequence classification task.
LoRA (Hu et al., 2021) is a parameter-efficient
fine-tuning technique that draws inspiration from
studies on the intrinsic dimensionality of hyper-
parametrised models. Research by (Li et al., 2018)
and (Aghajanyan et al., 2020) has shown that such
models operate in a low intrinsic dimension, sug-
gesting that vast parameter spaces can be efficiently
navigated in a more compact subspace. Building
on this insight, LORA hypothesises that the weight
changes required during model fitting also have a
low ‘intrinsic rank’. Consequently, instead of up-
dating all model parameters during fitting, LoORA
introduces low-rank trainable matrices that approx-
imate these weight changes. The overview of the
parameters used is in Table 5 while the details are
provided in Table 9 in Appendix A

3.3 Training Details

We trained, in total, 9 classifiers, with different
training for each of the three models, Llama-3.2-
1B, DeepSeek-R1-Distill-Qwen-1.5B, and Phi-1.5,
as described in Section 3.2.1. Every fine-tune
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shared the same hyperparameters. While Llama
and Deepseek had almost the same performance,
Phi needed a different LoORA Rank to make the per-
centage of training parameters closer to the others.
For the latter, we increased the number of epochs
as shown in Table 5 since it struggled in complet-
ing the task reaching the same performance as the
others. LoRA « is 64 among all the models.

3.4 Ablation studies

We conducted an ablation study to evaluate the
model’s performance without fine-tuning. The re-
sults showed that without fine-tuning, all models
performed poorly, with accuracy ranging from 20%
to 30%. This contrast highlights the essential role
of fine-tuning in enabling the model to perform the
task, specifically in processing implicit representa-
tions, achieving an accuracy of approximately 90%
when implicit data is shown during the fine-tuning
process.

4 Results and Discussion

This work aimed to answer two main research ques-
tions. Regarding RQ1: How do implicit and ex-
plicit verbalizations affect LLM performance in
information extraction tasks? we evaluated how
well a language model (GPT-40-mini) extracted tar-
get information from both implicit and explicit tex-
tual data. Specifically, we measured the semantic
distance between the model’s predictions and the
ground truth using Sentence-BERT. This yielded
two sets of distance scores: one for explicit inputs
and one for implicit inputs. A statistical compari-
son (Wilcoxon signed-rank test) between the two
distributions revealed significantly higher distances
for implicit descriptions, indicating that the model
struggled more when information was conveyed
indirectly. Supporting this, the analysis in Sec-
tion 3.1 highlights two patterns: (1) a higher rate
of failure cases (14.6% ‘NaN’ values) for implicit
texts compared to explicit ones (1.3%); and (2) a
greater frequency of low semantic similarity scores
(BLEURT distance below 0.6) in the implicit condi-
tion. These results suggest areas where the model’s
ability to handle indirect language remains limited.
These findings indicate areas for improvement in
IE tasks, which are explored further in RQ2: How
does exposure to implicit data during fine-tuning
affect an LLM’s ability to generalize to implicit
reasoning tasks?

Results shown in Tables [6, 7, 8] demonstrate

that models trained on both explicit and implicit
data consistently outperform those whose training
rely only on explicit data when tested on implicit
reasoning tasks. For instance, the Llama 3.2-1B
model, fine-tuned on both types of data and tested
on implicit tasks, achieved an accuracy of 93.3%,
a balanced accuracy of 94.7%, and an F1 score
of 93.0%. These results show that exposure to
both explicit and implicit verbalization increases
the model’s ability to generalize effectively across
reasoning types.

Contrastingly, when models were trained on
explicit data only, their performance on implicit
data was significantly worse. For example, on
Llama 3.2-1B, a model trained only on explicit
data and tested on implicit data achieved an accu-
racy of only 71.6%, and other performance metrics
such as recall and F1 also suffered. Similarly, on
DeepSeek R1 Distill Qwen-1.5B and Phi 1_5B,
models trained on explicit data showed similar
difficulties, with accuracy dropping to 67.1% and
58.1%, respectively, when tested on implicit data.

In summary, the results demonstrate the effects
of fine-tuning on LLMs for implicit reasoning tasks.
In particular, we observe that when models are
tuned on both explicit and implicit data, they show
high performance in inference for both cases. How-
ever, models trained exclusively on explicit data
have significant difficulties when confronted with
implicit tasks. These results are in line with the
findings of RQI.

It is indeed not surprising from the evidence in
Tables [6,7,8] that if the model sees in the training
phase and in the testing phase, the same data distri-
butions (test and train on implicit, test and train on
epxlicit) it is able to perform well on the required
task. This points towards the conclusion that this
difficulty in implicit IE is due to poor exposure in
the training phase of implicit texts, making a fine-
tuning phase necessary when handling texts with
implicit information.

5 Conclusion

The results suggest that LLMs’ difficulty with im-
plicit information may be primarily due to insuffi-
cient exposure to implicit patterns during training
rather than an inherent limitation of the model ar-
chitecture. This test was carried out on LLama3.2
1B, DeepSeekV1-DistilledQwen1B, and Phil-5,
popular models in the community used for classifi-
cation and generation. The successful improvement



Model N param. % param. trained LoRA r Epochs
Llama-3.2-1B 1.24B 6.80 % 128 3
DeepSeek-R1-Distill-Qwen-1.5B  1.78B 8.73 % 128 3
phi-1_5 1.42B 543 % 256 6

Table 5: Overview of the models models parameters used in our experiments, including their number of parameters,
rank, and number of training epochs. Hyperparameters such as target modules, « value, dropout rate, learning rate
are held constant across all configurations and are detailed Table 9 in Appendix A

Mode Acc. Bal. Acc. Precision Recall F1

Train and test explicit 0.888  0.922 0.889  0.922 0.903
Train and test implicit 0911 0914 0.890 0914 0.900
Train explicit implicit, test explicit 0.892  0.928 0.892  0.928 0.907
Train explicit implicit, test implicit 0.933  0.947 0.915 0.947 0.930
Train explicit, test implicit 0.716  0.636 0.862  0.636 0.686

Table 6: Results on Llama 3.2-1B

Mode Acc. Bal. Acc. Precision Recall F1

Train and test explicit 0.883  0.923 0.882  0.923 0.900
Train and test implicit 0.896 0.864 0.884 0.864 0.873
Train explicit implicit, test explicit 0.900  0.939 0.897  0.939 0915
Train explicit implicit, test implicit 0.907  0.894 0.891 0.894 0.891
Train explicit, test implicit 0.671  0.588 0.732  0.588 0.598

Table 7: Results on DeepSeek R1 Distill Qwen-1.5B

Mode Acc. Bal. Acc. Precision Recall F1

Train and test explicit 0.889  0.906 0.899  0.906 0.902
Train and test implicit 0911 0.884 0.921 0.884  0.900
Train explicit implicit, test explicit 0.896  0.925 0.897 0.925 0.910
Train explicit implicit, test implicit  0.925  0.921 0.921  0.921 0.921
Train explicit, test implicit 0.581  0.382 0.903  0.382 0415

Table 8: Results on Phi 1_5B

through fine-tuning proposes a practical path for-
ward for adapting existing LLMs to better handle
implicit information in specific domains, as in our
biographical data case.

Future developments could explore how differ-
ent types of implicit patterns influence the implicit
information extraction task.

Limitations

The results of this work are limited to biographical
data. While many other types of text could be ana-
lyzed, retrieving such datasets is not as straightfor-
ward as generating a synthetic one using a specific
subset of Wikidata. An additional limitation is the
synthetic generation of the dataset: it may not fully
reflect the complexity of naturally occurring im-
plicit information in human-generated language.
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A  Appendix A

target_modules "self_attn.q_proj", "self_attn.k_proj", "self_attn.v_pro

moon moon

"mlp.gate_proj", "mlp.up_proj", "mlp.down_proj"

mon
’

self_attn.o_proj",

LoRA alpha 64

LoRA dropout 0.15

learning rate 3670

Table 9: Hyperparameters held constant across all model
configurations. For model-specific settings such as rank
and number of training epochs, please refer to Table 5
in the main text.
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