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Abstract001

Text Implicitness has always been challenging002
in Natural Language Processing (NLP), with003
traditional methods relying on explicit state-004
ments to identify entities and their relationships.005
From the sentence "Zuhdi attends church ev-006
ery Sunday", the relationship between Zuhdi007
and Christianity is evident for a human reader,008
but it presents a challenge when it must be in-009
ferred automatically. Large language models010
(LLMs) have proven effective in NLP down-011
stream tasks such as text comprehension and012
information extraction (IE).013

This study examines how textual implicitness014
affects IE tasks in pre-trained LLMs: LLaMA015
2.3, DeepSeekV1, and Phi1.5. We generate016
two synthetic datasets of 10k implicit and ex-017
plicit verbalization of biographic information018
to measure the impact on LLM performance019
and analyze whether fine-tuning implicit data020
improves their ability to generalize in implicit021
reasoning tasks.022

This research presents an experiment on the023
internal reasoning processes of LLMs in IE,024
particularly in dealing with implicit and ex-025
plicit contexts. The results demonstrate that026
fine-tuning LLM models with LoRA (low-027
rank adaptation) improves their performance028
in extracting information from implicit texts,029
contributing to better model interpretability030
and reliability. The implementation of our031
study can be found at anonymous/xAi-KE-032
ImplicitKnowledge033

1 Introduction034

Information Extraction (IE) seeks to identify, clas-035

sify, and represent entities from unstructured tex-036

tual sources. Large Language Models (LLMs)037

significantly improved Natural Language Process-038

ing (NLP) performance in IE, demonstrating re-039

markable capabilities in tasks such as text compre-040

hension, classification, Named Entity Recognition041

(NER) and Relationship Extraction (RE) (Niklaus 042

et al., 2018; Fu et al., 2023). Conventional ap- 043

proaches (e.g., rule-based, deep learning) predomi- 044

nantly rely on explicit statements to extract entities, 045

relations, and events (Alt et al., 2020). However, 046

real-world texts also convey information implic- 047

itly, requiring inferential processing to derive the 048

intended meaning. 049

Implicit meaning arises when information is 050

conveyed indirectly through linguistic and cog- 051

nitive mechanisms rather than explicitly stated 052

where contextual reasoning and pragmatic infer- 053

ence are required to perform correct interpretations 054

(Yule, 1996; Evans, 2012; Fischer, 2017). The 055

sentence "Zuhdi attends church every Sunday" sug- 056

gests Zuhdi is likely Christian, as this inference is 057

drawn from a religious frame, requiring additional 058

knowledge to make sense of what is not explicit. 059

Similarly, the statement "Sarah received her degree 060

from Oxford University on June 15, 2010, and cele- 061

brated her 20th birthday the same day" implies she 062

was born on June 15, 1990, establishing a temporal 063

entailment that is not explicitly stated. 064

Biographical texts present a challenging case 065

for information extraction due to their reliance on 066

the implicit use of language. Although these texts 067

do not require specialized domain knowledge for 068

comprehension, they present a moderate level of 069

complexity (Tint et al., 2024). Such complexity 070

arises from the relationships between entities, tem- 071

poral dependencies, and occupational references, 072

which are often inferred through contextual cues 073

rather than explicitly stated. 074

This study investigates the impact of textual im- 075

plicitness on LLM-based IE tasks, tackling two 076

main research questions (RQs): 077

• RQ1: How do implicit and explicit verbaliza- 078

tions affect LLM performance in information 079

extraction tasks? 080
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• RQ2: How does exposure to implicit data dur-081

ing fine-tuning affect an LLM’s ability to gen-082

eralize to implicit reasoning tasks?083

Since LLMs often exhibit difficulty in extract-084

ing information from implicit contexts (Tint et al.,085

2024), we explore whether fine-tuning can miti-086

gate this difficulty. Specifically, we investigate087

the impact of fine-tuning on well-known models088

from the community such as LLama3.2 (AI, 2024),089

DeepSeekV1 (DeepSeek-AI et al., 2025), and Phi1-090

5 (Li et al., 2023). This is particularly relevant for091

scenarios where critical information is conveyed092

implicitly rather than explicitly. Our findings con-093

tribute to improving model reliability and expand-094

ing potential applications.095

We focus on two datasets, one explicit and one096

implicit, containing natural language descriptions097

of people’s biographies. The texts were synthet-098

ically generated starting from a Wikidata triple099

dataset. By fine-tuning models on implicit patterns100

which mimic real-world scenarios, we assess their101

ability to extract information from implicit texts.102

This contribution is summarized as follows: Sec-103

tion 2 lays the background of this work, Section104

3 presents the adopted methodology to provide an105

answer to RQ1 and RQ2. Our results are presented106

and discussed in Section 4. Finally, 5 outlines our107

final remarks and future works.108

2 Background and Related Work109

IE focuses on structuring data, e.g. in the form of a110

triple, where two arguments are connected through111

a relation. Usually, this takes the form of a triple112

composed of a subject, a predicate and an object, as113

<s, p, o> (Niklaus et al., 2018). This task is usually114

defined as Relationship Extraction (RE). One inner115

distinction is the difference between Closed and116

Open RE. Closed RE focuses on finding arguments117

given one or more constraints (e.g., <s, p, ?o> -118

where the object is the only unknown value), while119

Open RE looks for any potential triple in a text120

(e.g. <?s, ?p, ?o>) instead. Traditional RE models121

primarily identify triples where elements (subjects,122

predicates, and objects) have explicit textual men-123

tions. These models are trained to recognize ex-124

plicit linguistic markers (such as verbs functioning125

as predicates) but often struggle with implicit rela-126

tionships that require common sense knowledge or127

deeper natural language understanding (Pei et al.,128

2023). Pre-trained Language Models (PTLMs) and129

LLMs represent the state-of-the-art for unsuper-130

vised Open IE tasks (Fu et al., 2023), as they can 131

process implicit information more effectively than 132

previous approaches. 133

The role of implicit and explicit knowledge has 134

been extensively studied in cognitive science. Ac- 135

cording to Dienes and Perner’s theory, implicit- 136

ness arises when information is conveyed indirectly 137

through the functional use or conceptual structure 138

of explicit representations, rather than being di- 139

rectly represented (Dienes and Perner, 1999). 140

In RE, being able to identify relationships with 141

different levels of explicitness presents a signifi- 142

cant challenge. LLMs have shown that while these 143

models can effectively process explicit informa- 144

tion, they still struggle with implicit knowledge that 145

requires commonsense reasoning (Ilievski, 2024). 146

The dimensions of implicit relationships can vary 147

significantly based on: 148

• The level of inference required (from simple 149

logical deduction to complex contextual rea- 150

soning) 151

• The type of background knowledge needed 152

(from common facts to domain expertise) 153

• The cultural and temporal context necessary 154

for understanding 155

The degree of implicitness in information also di- 156

rectly impacts the certainty with which models can 157

retrieve and reason about that information. While 158

explicit statements can be processed with high con- 159

fidence, implicit information introduces varying 160

levels of uncertainty that models must learn to han- 161

dle appropriately. Datasets for RE usually prior- 162

itize explicitly stated information. For instance, 163

RED (Huguet Cabot et al., 2023), a widely used 164

RE dataset, focuses on extracting triples that di- 165

rectly match sentences found in the text. RED 166

provides entity types and relationships without en- 167

forcing additional structural constraints, such as 168

predefined categories for entities or specific restric- 169

tions on how relationships should be formed - the 170

domain and range of the predicate (see Table 1)1. 171

This uncertainty increases proportionally with 172

the degree of inference required to extract the in- 173

formation. For example, consider these statements 174

about Gaia, from which we want to draw a state- 175

ment about her occupation: 176

• "Gaia works as a doctor at City Hospital" 177

1The dataset entry was extracted from https://
huggingface.co/datasets/Babelscape/REDFM
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Subject Predicate Object

Émilie
Andéol

sport judo

Source text: "Émilie Andéol [...]is
a French judoka competing in the
women’s +78 kg division."

Table 1: Example of a RED dataset triple-sentence pair

• "Gaia wears a white coat and sees patients178

daily"179

• "Gaia ran through the emergency room corri-180

dor, quickly reviewing charts"181

All the statements convey the same information182

with a different degree of implicitness. The first183

information is explicit, as the sentence is shaped184

similarly to the <s, p, o> structure, where ?o is185

equal to the attribute of the verb works. The oc-186

cupation, in the second case, is described by the187

daily routine of the occupation itself (metonymy).188

In the third case, the information is hid completely:189

even a human would not be able to discern her190

occupation with certainty. Different people could191

rush through an emergency room with a chart in192

hand, not necessarily a doctor (unless additional193

context provides more clues). The less a statement194

is explicit, the more uncertainty builds up.195

LLMs seem to struggle with processing implicit196

information, (Becker et al., 2021) we sought to197

better understand whether this limitation arises198

from the model’s architecture or its training data.199

Specifically, we investigate whether this issue re-200

flects aleatoric uncertainty—stemming from in-201

herent unpredictability in language—or epistemic202

uncertainty, where performance is limited by the203

model’s exposure to certain distributions during204

training (Hüllermeier and Waegeman, 2021).205

For this purpose, we fine-tune LLMs on RE tasks206

that include varying degrees of implicitness. This207

approach allows us to probe the model’s general-208

ization capacity and assess whether performance209

improvements emerge from better learning of the210

input-output mappings or from increased familiar-211

ity with implicit patterns. Rather than focusing212

on post-hoc interpretability methods (Barredo Ar-213

rieta et al., 2019; Molnar, 2022), we position our214

analysis as a behavioral study of LLMs in the con-215

text of information extraction, with a focus on how216

implicitness affects extraction reliability.217

In recent years, the development of robust IE sys- 218

tems has increasingly depended on the availability 219

of high-quality data. However, for many domains, 220

available datasets are limited in size, making data 221

augmentation and synthetic dataset generation tech- 222

niques gain traction as practical solutions. In NLP, 223

for instance, methods such as back translation and 224

synonym replacement have long been employed to 225

expand parallel corpora (Li et al., 2022). More re- 226

cently, Synthetic Dataset Generation has emerged 227

as a strategy that leverages LLMs to create train- 228

ing data for smaller models, especially for tasks 229

or domains with limited human-labeled examples 230

(Busker et al., 2025). This strategy has proven valu- 231

able in medical and low-resource contexts where 232

annotation is both expensive and time-consuming 233

(Chebolu et al., 2023). 234

This synthetic data generation approach is par- 235

ticularly relevant for addressing the challenges of 236

implicit RE discussed earlier. By generating di- 237

verse examples with varying degrees of implicit- 238

ness, we can potentially improve model perfor- 239

mance on the full spectrum of RE tasks—from 240

explicit statements to those requiring complex in- 241

ference and entailment. Typically, synthetic data is 242

generated starting from a single prompt or a mini- 243

mal set of guiding rules (Long et al., 2024), aiming 244

to steer the model toward desired outputs. However, 245

generating high-quality synthetic data for implicit 246

relationships remains challenging, as it requires 247

the generative model to simulate the complex rea- 248

soning processes that humans use to infer unstated 249

connections. 250

3 Method 251

This section outlines the design of a controlled 252

experiment conducted to examine the impact of 253

implicit and explicit IE in the performance of an 254

LLM, thereby addressing research questions RQ1 255

and RQ2. Figure 1 summarizes the overall method 256

employed to conduct this study. 257

First, a set of 10,000 random entities from Wiki- 258

data was extracted, specifically targeting entities of 259

the Human class2, e.g. Vincent Rodriguez III). The 260

entities’ biographical information3 have been ex- 261

tracted via the Wikidata API, filtering out irrelevant 262

information, such as identification parameters, vi- 263

sual references, and associated technical metadata. 264

2The Wikidata class "Human" is identified via the ID Q5
3Represented in Wikidata as Statements (https://www.

wikidata.org/wiki/Help:Statements)
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Figure 1: Dataset generation and Experiment setup

As shown in Table 2, 14 triples describe relevant265

information about the biography of Vincent Ro-266

driguez III (e.g., occupation, country of citizenship,267

sexual orientation), with 18 values. Our aim is to268

create two parallel sentences for each person, one269

that describes a fact or info about them explicitly,270

and the other implicitly. First, a random property is271

selected for each person. An example is shown in272

Table 2, where the selected information for Vincent273

Rodriguez III is his occupation as a television actor.274

Then, all the information about that person along-275

side which information needs to become implicit276

becomes the input of the prompt. GPT-4o is in-277

structed to generate two different sentences: an278

explicit one (similar to Wikipedia’s straightforward279

style), and an implicit one where the same informa-280

tion is conveyed through narrative context and indi-281

rect references. The prompt uses Few-Shot learn-282

ing (with 10 examples) and Chain-of-Thought. The283

examples for generating the implicit sentence are284

sentences with a paired rhetorical strategy (e.g. pe-285

riphrasis, metonymy, deduction)4. Table 3 presents286

the generated sentences about Vincent Rodriguez287

III. The selected property is stated explicitly in the288

first description, i.e. "he is a famous television289

actor", while in the second it is implied through a290

periphrasis (i.e. "showcasing his talent in various291

television productions").292

Finally, two IE tests were performed as Question-293

Answering. We test the model’s ability to retrieve294

the implicit and explicit information (e.g. "What’s295

Vincent Rodriguez III’s occupation?"). As an ad-296

ditional rule, both answer can be considered valid,297

4Refer to the following script for the complete prompt:
prompt_generation_implicit.py

but "television actor" is counted as the better an- 298

swer, being the more fine-grained answer compared 299

to simply "actor". Indeed, IE on implicit sentences 300

can exhibit reduced precision by retrieving only the 301

hypernym "actor" rather its more specific hyponym, 302

despite the presence of the modifier "television" as 303

shown in Table 4. 304

3.1 RQ1: Preliminary results and evalutation 305

Evaluation has been performed over answers pro- 306

vided on explicit and implicit descriptions. As 307

postprocessing, we performed lemmatization to 308

align model answers to the Wikidata vocabulary. 309

Then, the semantic distance between the expected 310

answer (e.g., Television actor) and LLM-generated 311

answers (e.g., Television actor from explicit de- 312

scription and actor from implicit description) has 313

been computed trough BLEURT (Sellam et al., 314

2020). We performed the Wilcoxon signed-rank 315

test to assess whether the difference between the 316

two distributions was statistically significant. This 317

non-parametric test compares two related samples 318

to determine if their population mean ranks differ. 319

Applying the Wilcoxon signed-rank test, the two 320

distributions are statistically significant consider- 321

ing a pvalue < 0.05. Moreover, the percentage 322

of NaN values given by the model when exposed 323

to the implicit text is way higher, with a value of 324

14.60% against 1.30% of the explicit. These evalu- 325

ations give us grounds to use the generated dataset 326

in the evaluation of RQ2. Details of the test and 327

the results can be found in the Github repository 328

anonymous/xAi-KE-ImplicitKnowledge. 329
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Subject Predicate Object Hidden info

Vincent Rodriguez
III

instance of human ×
place of birth San Francisco ×
sex or gender male ×
given name Vincent ×

occupation
actor ×
television actor ✓

country of citizen-
ship

United States ×

sexual orientation homosexuality ×
date of birth +1982-08-

10T00:00:00Z
×

educated at
Pacific Conservatory of
the Performing Arts

×

Westmoor High School ×
family name Rodriguez ×

residence
Daly City ×
New York City ×
North Hollywood ×

languages spoken,
written or signed

English ×

native language English ×
writing language English ×

Table 2: Selected information about Vincent Rodriguez III. The Table comprehends all triples (subject, predicate,
object) available for the entity Rogriguez III, excluding non-semantic information (e.g., resource identifiers, image
links)

3.2 RQ2: Approach to Fine Tuning330

The evaluation of our preliminary results (Section331

3.1) addresses RQ1, showing that statistically, the332

model struggles more with information extraction333

when sentences follow a pattern of implicitness.334

Hence our second research question (RQ2): How335

does exposure to implicit data during fine-tuning336

affect an LLM’s ability to generalize to implicit rea-337

soning tasks? To demonstrate this from the dataset338

validated above, we decided to take a subset of it339

where we select only a few occupations. To choose340

them, we took the 5 most common occupations341

‘actor’, ‘film actor’, ‘television actor’, ‘stage ac-342

tor’, ‘film director’ in the property values, i.e. in343

the ground truth and the respective Implicit and344

Explicit sentences as shown in Table 3.345

3.2.1 Experiment346

The experiment explores whether fine-tuning an347

LLM model can improve its ability to perform IE348

on implicit instances by training it in different set-349

tings:350

• Training on explicit IE, testing on explicit351

IE. We expect it to work correctly, as it should 352

be the easiest setting; 353

• Training on implicit IE, testing on implicit 354

IE. Again, we expect it to perform well by 355

training it directly on this task; 356

• Training on both explicit and implicit IE, 357

testing on both, one for explicit and one for 358

implicit. If trained together, is the model able 359

to classify the two different sets correctly? 360

• Training on explicit IE, testing on implicit 361

IE. From what we’ve seen above in RQ1, we 362

expect this one to be the hardest task for the 363

model as it requires to generalize the most. 364

3.2.2 Models 365

For the classification tasks in our study, we selected 366

three models that are significant and widely recog- 367

nized within the community. We selected LLaMA, 368

DeepSeek, and Phi for our experiments based on 369

their widespread adoption and their performance 370

within NLP research. At the time of writing (April 371

2025), both LLaMA and DeepSeek have shown 372
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Explicit Description
Vincent Rodriguez III, born on August 10,
1982, in San Francisco, has captivated audi-
ences with his performances since his early
days at the Pacific Conservatory of the Per-
forming Arts. Residing in vibrant cities like
New York and North Hollywood, he has em-
braced the world of entertainment; he is a fa-
mous television actor.
Implicit Description
Vincent Rodriguez III, born on August 10,
1982, in San Francisco, has captivated audi-
ences with his performances since his early
days at the Pacific Conservatory of the Per-
forming Arts. Residing in vibrant cities like
New York and North Hollywood, he has em-
braced the world of entertainment, showcas-
ing his talent in various television produc-
tions that highlight his dynamic range and
charisma.

Table 3: Implicit and Explicit Descriptions about Vin-
cent Rodriguez III

Question Explicit
Answer

Implicit
Answer

What does Vincent
do for a living?

Television
actor

Actor

Table 4: Comparison of Explicit and Implicit Answers

substantial popularity, with 2.1 million and 1.8 mil-373

lion downloads respectively in last month on the374

Hugging Face Platform, indicating broad usage and375

interest.376

Although Phi models (developed by Microsoft)377

have comparatively fewer downloads (∼ 100K),378

they remain a valuable inclusion due to their strong379

performance relative to their size. As highlighted380

by the Hugging Face model card Hugging Face381

and supporting benchmarks, Phi-1.5 achieves near382

state-of-the-art results among models with fewer383

than 10 billion parameters, making it a compelling384

lightweight alternative for evaluating instruction-385

tuned models.386

Overall, our selection balances community adop-387

tion, model diversity and openness, and parameter388

efficiency, allowing for a robust and representative389

evaluation across the current LLM landscape.390

• meta-llama/Llama-3.2-1B: Developed by391

Meta AI, this model is part of the Llama 3.2392

collection of multilingual LLMs. It is opti- 393

mized for multilingual dialogue use cases, in- 394

cluding agentic retrieval and summarization 395

tasks. (AI, 2024) 396

• DeepSeek-R1-Distill-Qwen-1.5B: Developed 397

by Deepseek AI, this is a distilled version 398

of the DeepSeek R1 model. Given its cost- 399

effectiveness and performance, it is a com- 400

petitive choice for NLP tasks. (DeepSeek-AI 401

et al., 2025) 402

• microsoft/phi-1_5 A transformer-based model 403

from Microsoft, trained using the same data 404

sources as Phi-1, augmented with new data. 405

It shows similar state-of-the-art performance 406

among models with less than 10 billion pa- 407

rameters. (Li et al., 2023) 408

Each of these models contains between 1 and 1.5 409

billion parameters, and they are hosted on the Hug- 410

ging Face platform (Wolf and et al., 2020). Given 411

our necessity to test fine-tuned performance, we 412

have chosen only open-source models, as we need 413

access to the weights and structure of the models. 414

This approach also ensures reproducibility. 415

3.2.3 LoRA fine-tuning 416

To build the classification model, we used finetuned 417

LLMs with Low-Rank Adaptation (LoRA) (Hu 418

et al., 2021) for the sequence classification task. 419

LoRA (Hu et al., 2021) is a parameter-efficient 420

fine-tuning technique that draws inspiration from 421

studies on the intrinsic dimensionality of hyper- 422

parametrised models. Research by (Li et al., 2018) 423

and (Aghajanyan et al., 2020) has shown that such 424

models operate in a low intrinsic dimension, sug- 425

gesting that vast parameter spaces can be efficiently 426

navigated in a more compact subspace. Building 427

on this insight, LoRA hypothesises that the weight 428

changes required during model fitting also have a 429

low ‘intrinsic rank’. Consequently, instead of up- 430

dating all model parameters during fitting, LoRA 431

introduces low-rank trainable matrices that approx- 432

imate these weight changes. The overview of the 433

parameters used is in Table 5 while the details are 434

provided in Table 9 in Appendix A 435

3.3 Training Details 436

We trained, in total, 9 classifiers, with different 437

training for each of the three models, Llama-3.2- 438

1B, DeepSeek-R1-Distill-Qwen-1.5B, and Phi-1.5, 439

as described in Section 3.2.1. Every fine-tune 440
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shared the same hyperparameters. While Llama441

and Deepseek had almost the same performance,442

Phi needed a different LoRA Rank to make the per-443

centage of training parameters closer to the others.444

For the latter, we increased the number of epochs445

as shown in Table 5 since it struggled in complet-446

ing the task reaching the same performance as the447

others. LoRA α is 64 among all the models.448

3.4 Ablation studies449

We conducted an ablation study to evaluate the450

model’s performance without fine-tuning. The re-451

sults showed that without fine-tuning, all models452

performed poorly, with accuracy ranging from 20%453

to 30%. This contrast highlights the essential role454

of fine-tuning in enabling the model to perform the455

task, specifically in processing implicit representa-456

tions, achieving an accuracy of approximately 90%457

when implicit data is shown during the fine-tuning458

process.459

4 Results and Discussion460

This work aimed to answer two main research ques-461

tions. Regarding RQ1: How do implicit and ex-462

plicit verbalizations affect LLM performance in463

information extraction tasks? we evaluated how464

well a language model (GPT-4o-mini) extracted tar-465

get information from both implicit and explicit tex-466

tual data. Specifically, we measured the semantic467

distance between the model’s predictions and the468

ground truth using Sentence-BERT. This yielded469

two sets of distance scores: one for explicit inputs470

and one for implicit inputs. A statistical compari-471

son (Wilcoxon signed-rank test) between the two472

distributions revealed significantly higher distances473

for implicit descriptions, indicating that the model474

struggled more when information was conveyed475

indirectly. Supporting this, the analysis in Sec-476

tion 3.1 highlights two patterns: (1) a higher rate477

of failure cases (14.6% ‘NaN’ values) for implicit478

texts compared to explicit ones (1.3%); and (2) a479

greater frequency of low semantic similarity scores480

(BLEURT distance below 0.6) in the implicit condi-481

tion. These results suggest areas where the model’s482

ability to handle indirect language remains limited.483

These findings indicate areas for improvement in484

IE tasks, which are explored further in RQ2: How485

does exposure to implicit data during fine-tuning486

affect an LLM’s ability to generalize to implicit487

reasoning tasks?488

Results shown in Tables [6, 7, 8] demonstrate489

that models trained on both explicit and implicit 490

data consistently outperform those whose training 491

rely only on explicit data when tested on implicit 492

reasoning tasks. For instance, the Llama 3.2-1B 493

model, fine-tuned on both types of data and tested 494

on implicit tasks, achieved an accuracy of 93.3%, 495

a balanced accuracy of 94.7%, and an F1 score 496

of 93.0%. These results show that exposure to 497

both explicit and implicit verbalization increases 498

the model’s ability to generalize effectively across 499

reasoning types. 500

Contrastingly, when models were trained on 501

explicit data only, their performance on implicit 502

data was significantly worse. For example, on 503

Llama 3.2-1B, a model trained only on explicit 504

data and tested on implicit data achieved an accu- 505

racy of only 71.6%, and other performance metrics 506

such as recall and F1 also suffered. Similarly, on 507

DeepSeek R1 Distill Qwen-1.5B and Phi 1_5B, 508

models trained on explicit data showed similar 509

difficulties, with accuracy dropping to 67.1% and 510

58.1%, respectively, when tested on implicit data. 511

In summary, the results demonstrate the effects 512

of fine-tuning on LLMs for implicit reasoning tasks. 513

In particular, we observe that when models are 514

tuned on both explicit and implicit data, they show 515

high performance in inference for both cases. How- 516

ever, models trained exclusively on explicit data 517

have significant difficulties when confronted with 518

implicit tasks. These results are in line with the 519

findings of RQ1. 520

It is indeed not surprising from the evidence in 521

Tables [6 ,7,8] that if the model sees in the training 522

phase and in the testing phase, the same data distri- 523

butions (test and train on implicit, test and train on 524

epxlicit) it is able to perform well on the required 525

task. This points towards the conclusion that this 526

difficulty in implicit IE is due to poor exposure in 527

the training phase of implicit texts, making a fine- 528

tuning phase necessary when handling texts with 529

implicit information. 530

5 Conclusion 531

The results suggest that LLMs’ difficulty with im- 532

plicit information may be primarily due to insuffi- 533

cient exposure to implicit patterns during training 534

rather than an inherent limitation of the model ar- 535

chitecture. This test was carried out on LLama3.2 536

1B, DeepSeekV1-DistilledQwen1B, and Phi1-5, 537

popular models in the community used for classifi- 538

cation and generation. The successful improvement 539
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Model N param. % param. trained LoRA r Epochs
Llama-3.2-1B 1.24B 6.80 % 128 3
DeepSeek-R1-Distill-Qwen-1.5B 1.78B 8.73 % 128 3
phi-1_5 1.42B 5.43 % 256 6

Table 5: Overview of the models models parameters used in our experiments, including their number of parameters,
rank, and number of training epochs. Hyperparameters such as target modules, α value, dropout rate, learning rate
are held constant across all configurations and are detailed Table 9 in Appendix A

Mode Acc. Bal. Acc. Precision Recall F1
Train and test explicit 0.888 0.922 0.889 0.922 0.903
Train and test implicit 0.911 0.914 0.890 0.914 0.900
Train explicit implicit, test explicit 0.892 0.928 0.892 0.928 0.907
Train explicit implicit, test implicit 0.933 0.947 0.915 0.947 0.930
Train explicit, test implicit 0.716 0.636 0.862 0.636 0.686

Table 6: Results on Llama 3.2-1B

Mode Acc. Bal. Acc. Precision Recall F1
Train and test explicit 0.883 0.923 0.882 0.923 0.900
Train and test implicit 0.896 0.864 0.884 0.864 0.873
Train explicit implicit, test explicit 0.900 0.939 0.897 0.939 0.915
Train explicit implicit, test implicit 0.907 0.894 0.891 0.894 0.891
Train explicit, test implicit 0.671 0.588 0.732 0.588 0.598

Table 7: Results on DeepSeek R1 Distill Qwen-1.5B

Mode Acc. Bal. Acc. Precision Recall F1
Train and test explicit 0.889 0.906 0.899 0.906 0.902
Train and test implicit 0.911 0.884 0.921 0.884 0.900
Train explicit implicit, test explicit 0.896 0.925 0.897 0.925 0.910
Train explicit implicit, test implicit 0.925 0.921 0.921 0.921 0.921
Train explicit, test implicit 0.581 0.382 0.903 0.382 0.415

Table 8: Results on Phi 1_5B

through fine-tuning proposes a practical path for-540

ward for adapting existing LLMs to better handle541

implicit information in specific domains, as in our542

biographical data case.543

Future developments could explore how differ-544

ent types of implicit patterns influence the implicit545

information extraction task.546

Limitations547

The results of this work are limited to biographical548

data. While many other types of text could be ana-549

lyzed, retrieving such datasets is not as straightfor-550

ward as generating a synthetic one using a specific551

subset of Wikidata. An additional limitation is the552

synthetic generation of the dataset: it may not fully553

reflect the complexity of naturally occurring im-554

plicit information in human-generated language.555
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A Appendix A680

target_modules "self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj", "self_attn.o_proj",
"mlp.gate_proj", "mlp.up_proj", "mlp.down_proj"

LoRA alpha 64
LoRA dropout 0.15
learning rate 3e−5

Table 9: Hyperparameters held constant across all model
configurations. For model-specific settings such as rank
and number of training epochs, please refer to Table 5
in the main text.
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