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Abstract
In-context learning (ICL) enhances language model performance by providing relevant contextual information.
Recent works (Didolkar et al., 2024a;b) show that ICL performance can be improved by leveraging a frontier large
language model’s (LLM) ability to predict required skills to solve a problem, popularly referred to as an LLM’s
metacognition, and using the recommended skills to construct necessary in-context examples. While this improves
performance in larger models, smaller language models (SLMs) see minimal benefit, revealing a performance gap.

We show that skill-based prompting can hurt SLM performance on easy questions by introducing unnecessary
information, akin to cognitive overload. To mitigate this, we introduce AdaptMI, an Adaptive strategy for
selecting skill-based Math Instructions. Guided by cognitive load theory, AdaptMI introduces skill-based
examples only when the model performs poorly. We further propose AdaptMI+, which provides targeted
examples for specific missing skills. In 5-shot evaluations on popular math benchmarks and five SLMs (1B–7B;
Qwen, Llama), AdaptMI+ improves accuracy by up to 6% compared to naive skill-based methods.

1. Introduction
Human learning is driven by adaptive feedback (Hattie & Timperley, 2007; Bandura & Walters, 1977), often through
targeted examples in a classroom setting. Analogously, in-context learning (ICL) (Brown et al., 2020) enables language
models (Vaswani et al., 2017; Achiam et al., 2023; Team et al., 2023; Grattafiori et al., 2024) to adapt to new tasks by
conditioning on additional task-relevant information, potentially provided by a stronger model acting as a teacher.

While ICL emerges naturally in large models (Wei et al., 2022), small language models (SLMs) struggle. Their performance
is highly sensitive to the choice of context, limiting their ability to learn from in-context instructions. This paper investigates
how to improve SLMs’ ICL performance using careful in-context example selection for math tasks.

We build on skill-based in-context example selection from Didolkar et al. (2024a;b), which leverages the metacognitive
abilities of frontier large language models (LLMs) to predict the high-level skills required to solve a given task. After
annotating a pool of examples with the skill labels, in-context examples are selected at inference time by first predicting
the required skills and then retrieving matching examples. While skill-based in-context selection significantly boosts the
ICL performance of larger models, it fails to improve ICL performance in SLMs.

Ablation reveals an important insight: Skill-based strategy can hurt the performance of an SLM on easy questions, those
that an SLM can already solve without skill-based guidance. Across 5 SLMs on the MATH dataset (Hendrycks et al., 2021),
we observe an average 4% performance drop on easy questions when using skill-based selection, compared against non
skill-based in-context selection strategies.

Core Contribution: Motivated by Adaptive Teaching (Randi, 2022) and Cognitive Load Theory (Sweller, 2011), which
emphasizes effective human learning with targeted guidance on challenging tasks, we propose AdaptMI. It is a two-stage
in-context selection method that applies skill-based example selection only to difficult questions. To further align feedback
with model errors, we introduce AdaptMI+, which selects examples based on skills missing from the SLM’s response. An
overview is shown in Figure 1, with full details in Section 2.
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Figure 1. AdaptMI and AdaptMI+ are 2-stage adaptive in-context example selection methods. In the first stage, questions are classified
as easy and difficult using a reward model on the SLM’s responses and a threshold-based filtering. In the second stage, AdaptMI uses
skill-based in-context examples only for difficult questions. For AdaptMI+, we use an LLM to identify the key skills missing in the SLM’s
responses for difficult questions and use specific in-context examples targeted towards the missing skills. For easy questions, we use a
fixed set of in-context examples. We follow (Didolkar et al., 2024a) to get the Skill Bank, skill annotations for each question, and relevant
in-context examples for each skill.

Experiments on standard math datasets (Section 3) show that AdaptMI+ improves all five SLMs by up to 6%, with AdaptMI
achieving gains of up to 3.6%. We also explore iterative extensions for progressively training SLMs on harder problems and
provide a detailed analysis showing why adaptive selection outperforms naive skill-based methods.

2. Designing AdaptMI and AdaptMI+
Let Q be the set of evaluation questions. We study k-shot in-context learning, where given a pool P of question-answer
pairs, k examples are selected and included in the prompt for each evaluation question. There are two common strategies:

♦ Fixed k-shot examples: We fix a set of k examples from P and use them for inference on all evaluation questions. Our
experiments will use the examples used by Qwen models for evaluation (Yang et al., 2024).

♠ Random k-shot examples: We utilize k randomly selected examples from P for each evaluation question.

Our work builds on skill-based in-context selection from Didolkar et al. (2024a). A large model (e.g., GPT-4) identifies
skills needed for each question, creating a Skill-bank(Q). A mapping Skill-Map links each question (in Q and P) to a set
of k skills from this bank. Then:

♥ Skill-based k-shot examples: For each question q ∈ Q, we pick a set of k examples using Skill-Map(q), by randomly
picking one example for each skill in Skill-Map(q). This is formally outlined in Algorithm 1 in appendix.

AdaptMI and AdaptMI+ are built on the above-defined strategies, and consist of 2 primary stages.

Stage 1: Detection of easy and difficult questions. While one could simply define difficult questions as those set of
questions that the model gets wrong with fixed or random k-shot prompting, this requires access to the ground truth labels.
Instead, we use a process reward model (PRM) to score SLM responses, categorizing questions into easy (Qeasy) and difficult
(Qdifficult) via thresholding. Details are in Appendix B.

Stage 2: Skill-based selection of in-context examples. We build AdaptMI and AdaptMI+ as follows.

• AdaptMI: For difficult questions Qdifficult, we use skill-based k-shot examples. For easy questions Qeasy, we use fixed
k-shot examples.

• AdaptMI+: For each difficult question q, we identify missing skills in the model’s response using a large LLM (GPT-4o-
mini). Then, for each skill s that are missing, we randomly pick an example from the pool of in-context examples P which
is annotated with the skill s and return the union for all the missing skills. For easy questions, we use fixed k-shot examples.

2



AdaptMI: Adaptive Skill-based In-context Math Instructions for Small Language Models

Methods
MATH GSM8K

Geometry Precalculus Algebra Prealgebra
Number Intermediate Counting & Avg. Avg.
Theory Algebra Probability

# Qwen2.5-3B-Instruct
Fixed Examples 56.4 53.5 85.4 79.7 65.9 46.8 59.5 66.6 84.7
Random Examples 54.7 53.7 85.3 78.9 64.1 46.7 60.1 66.1 84.9
Skill-based Examples 53.4 55.7 86.2 80.7 66.1 45.9 60.3 66.9 85.4
Consistency@5 61.9 55.3 87.4 81.4 66.5 49.4 61.7 68.9 87.0
AdaptMI 54.9 56.2 87.7 81.8 66.7 46.5 60.6 67.8 87.4
AdaptMI+ 56.0 55.5 88.3 82.1 68.9 49.8 62.7 69.1 87.7

# Llama-3.2-3B-Instruct
Fixed Examples 26.1 29.8 63.8 67.6 38.7 22.6 42.7 46.2 75.8
Random Examples 34.1 26.9 61.9 55.3 29.3 18.5 33.7 41.3 76.2
Skill-based Examples 29.6 31.7 66.2 63.3 39.6 23.2 33.7 45.9 71.7
Consistency@5 36.1 23.9 60.0 61.9 35.0 21.1 46.7 44.1 80.7
AdaptMI 28.4 31.7 71.6 71.3 43.4 24.4 39.3 49.8 76.4
AdaptMI+ 29.6 35.6 68.1 71.3 43.4 24.4 39.3 49.4 80.7

Table 1. AdaptMI and AdaptMI+ demonstrate a consistent accuracy gain compared with baseline methods. We present all results as
Pass@1 accuracy unless otherwise indicated. Due to space limits, we provide the results on Qwen2.5-1.5B-Instruct, Qwen2.5-7B-Instruct,
and Llama-3.2-1B-Instruct in Table 6, Appendix D.1.

3. Experiment
Experimental Settings We evaluate our method on MATH (5k test samples) and GSM8K (1.3k test samples) on five
small language models with 5-shot prompting: Qwen2.5-1.5B-Instruct, Qwen2.5-3B-Instruct, Qwen2.5-7B-Instruct,
Llama-3.2-1B-Instruct, and Llama-3.2-3B-Instruct (Yang et al., 2024; Meta AI, 2024). In Stage 1, we adopt an process
reward model RLHFlow/Llama3.1-8B-PRM-Mistral-Data (Xiong et al., 2024) for question classification. More detailed
experimental settings are in Appendix C.1.

3.1. Performances of AdaptMI and AdaptMI+

Table 1 and Table 6 (Appendix D.1) report the main results of our adaptive in-context learning method. The baseline methods
with non-adaptive in-context examples (fixed, random, or skill-based) results in largely similar Pass@1 accuracy, while Con-
sistency@5 can improve accuracy by a few percentages. Across all model sizes, our methods AdaptMI and AdaptMI+ con-
sistently outperform the non-adaptive Pass@1 baselines, and are on par with Consistency@5 performance on most subareas.
The overall improvements are especially pronounced for smaller models, Qwen2.5-1.5B-Instruct and Llama-3.2-1B-Instruct.

Notably, AdaptMI+ brings significant performance gain across all areas by up to 6%, reflecting its strength in accurately
targeting model failures. AdaptMI also substantially improves performance by up to 3.6% for Qwen2.5-1.5B-Instruct,
Llama-3.2-1B-Instruct, and Llama-3.2-3B-Instruct on MATH. This indicates that our adaptive instruction methods are
effective on lower-performing models even without the aid of an LLM.

On stronger models such as Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct, however, AdaptMI shows smaller effectiveness
compared to AdaptMI+. This may suggest that higher-performing models require a more intelligent and target skill
identification process. Overall, these results demonstrate the effectiveness of adaptive example selection and highlight
the potential of our approach to elicit the full reasoning capabilities of small language models.

We further extend our method to an iterative teaching-refinement loop in Appendix D.2. The iterative AdaptMI+ method
shows up to 8% improvement on MATH, demonstrating its potential to progressively improve small language models to
tackle harder problems.
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Question MATH GSM8K

& Example Geometry Precalculus Algebra Prealgebra Number Intermediate Counting & Avg. Avg.Theory Algebra Probability

Diff-
Fixed 21.3 23.7 44.8 35.1 24.1 27.0 28.2 29.8 45.2
Random 23.2 25.3 53.9 40.5 21.9 23.0 27.2 31.2 46.1

icult Skill 28.4 28.9 55.1 45.5 31.2 27.4 32.1 35.7 48.0
+7.1 +5.2 +10.3 +10.4 +7.1 +0.4 +3.9 +5.9 +2.8

Easy

Fixed 82.1 81.8 94.6 93.7 84.6 80.7 92.2 90.2 96.3
Random 81.6 78.9 92.1 92.3 80.1 75.7 88.1 87.6 90.6

Skill 77.2 71.5 85.9 86.0 71.8 74.5 74.5 81.0 83.2
-4.9 -10.3 -8.7 -7.7 -12.8 -6.2 -17.7 -9.2 -13.1

Table 2. Accuracy of Qwen2.5-1.5B-Instruct on difficult and easy questions, respectively under fixed, random, and skill-based examples.
Skill-based examples boost performance on difficult questions across all categories, while significantly underperforming on easy questions.
We provide the results on other Qwen models in Table 7, Appendix D.3.

3.2. Why is AdaptMI better than non-adaptive example selection?

To better understand, we compare performance under fixed, random, and skill-based in-context examples on easy and
difficult questions. From Table 2, we observe a clear trend that skill-based examples harm an SLM’s performance on
the set of easy questions, while effectively boosting performance on the difficult ones. To gain deeper insight into how
skill-based in-context examples might harm performance on easy questions, we present two illustrative cases where the
model’s performance regresses when using such prompts.

Case Study 1: Skill-based examples lead the model to overlook key problem constraints. In this example (see
Appendix G.1), Qwen2.5-7B-Instruct is given an algebra question that includes geometric constraints. With fixed examples,
the model correctly uses the condition “both coordinates are negative”. However, when prompted with algebra-focused
skill examples, it overemphasizes algebraic procedures and overlooks the constraint, ultimately answering incorrectly.

Case Study 2: Symbol-heavy skill-based examples cause the model to overthink. This question (see Appendix G.2) is
best solved via plug-in-and-test. With fixed examples, the model tries out small values and succeeds. In contrast, skill-based
examples bias the model toward equation solving; after an initial failed plug-in, it shifts to an unnecessary algebraic
approach and fails.

To quantify where and why overthinking happens, we conduct a fine-grained analysis in Appendix E that splits the MATH
questions into 5 difficulty levels and compare models’ accuracy and average output length on those splits. We observe that
skill-based in-context examples encourage longer responses on all difficulty levels (see Figure 3). This effect may push the
models to tackle harder questions (levels 3–5), but can also elicit overthinking and hurt performance on easier questions (lev-
els 1–2). This aligns with recent findings that longer chain-of-thought from overthinking can degrade SLM performance (Liu
et al., 2024b) on easy questions, mirroring similar effects in humans under information overload (Diaconis & Mazur, 2003).

Additional ablations: In Appendix F, we also present:

• We ablate on different combinations of in-context example types for Stage 2. Our combination of “difficult + skill-based;
easy + fixed” consistently outperforms all other combinations in Figure 5.

• We compare natural language instructions versus few-shot instructions. While AdaptMI demonstrates the power of
targeted few-shot supervision, Table 9 shows that small language models do not benefit if the additional supervision was
provided in written in natural language.

4. Conclusion
Our work explores reasons behind the failure of skill-based in-context examples to boost ICL performance of SLMs.
We show that skill-based selection can make the model “overthink” on easier questions, which leads to a degradation in
ICL performance. We then propose adaptive in-context selection strategies, AdaptMI and AdaptMI+, that use skill-based
selection only for difficult questions.

Related Works: An extended discussion is provided in Appendix A. We review prior in-context example selection methods
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(Zhang et al., 2022; Cheng et al., 2023), which typically rely on semantic similarity between the question and retrieved
examples. We also review adaptive dataset construction approaches (Dinan et al., 2019; Nie et al., 2020), which focus on
supervised fine-tuning. Our work bridges these two directions by exploring how adaptive, skill-based in-context selection
can further enhance the performance of small language models.

Future directions: Beyond inference-time gains, an open question is whether such adaptive strategies can also improve
SLM training. While existing methods distill from frontier models using static prompts or curated data (Hsieh et al., 2023;
Ivison et al., 2023; Kaur et al., 2024; Zhu et al., 2025; Gao et al., 2025; Liao et al., 2024; Allen-Zhu & Li, 2024), our
approach offers a promising direction for incorporating dynamic, difficulty-aware supervision in training pipelines.
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AdaptMI: Adaptive Skill-based In-context Math Instructions for Small Language Models

A. Related works
In-context learning example selection. As a key feature of language models, the in-context learning ability (Brown et al.,
2020) enables models to improve performance without undergoing gradient-based training. This ability can be maximally
activated with carefully chosen in-context demonstrations. Prior works have extensively studied the dynamics of in-context
learning (Chen et al., 2024) and effective techniques of in-context example selection (Zhang et al., 2022; Cheng et al., 2023;
An et al., 2023; Didolkar et al., 2024a; Liu et al., 2024a) for larger models (>13B). These heuristics often simply rely on the
semantic relation between the question and examples, and they typically require training a dedicated example selection
model. Meanwhile, the in-context learning dynamics of small language models are understudied.

Classifying model failures. Identifying and understanding language model failures helps us adaptively improve model
performance, e.g., via targeted training data selection (Zeng et al., 2025). Prior works have utilized models’ test-time failure
patterns to build adaptive datasets with difficult questions (Dinan et al., 2019; Nie et al., 2020; Ribeiro & Lundberg, 2022;
Gao et al., 2023; Li et al., 2025). However, these failure identification and classification approaches have rarely been applied
to inform in-context example selection.

Symbolic and Skill-based Reasoning. Performing symbolic reasoning can largely enhance language models’ math
reasoning ability (Sullivan & Elsayed, 2024; Alotaibi et al., 2024; Xu et al., 2024; Shaik & Doboli, 2025). As SLMs
generally possess weaker capabilities to understand complex in-context information, symbolic knowledge aids SLM
reasoning by providing structured, less-noisy contextual information (Liao et al., 2024). Notably, the concept of “skill” was
proven effective as a useful criterion for clustering symbolic knowledge (Didolkar et al., 2024a), guiding contextual example
selection (Didolkar et al., 2024a; An et al., 2023) and mixture-of-experts routing (Chen et al., 2025).

B. Details on separating easy and difficult questions with a process reward model scoring
Because we primarily focus on math datasets, we assume that the model’s response is composed of k steps for a question q
and contains answer in its final step. We will use the reward model to output reward scores for each step. For simplicity, we
will refer to the scores of the reward model as {rq,1,⋯, rq,k}. Then, we use thresholds τ1, τ2 to classify whether a question
q is easy or difficult for the SLM. We will refer to the thresholding function as R ∶ Q → {0, 1}.

R(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, (if) rq,k ≤ τ1

(or)
1

k

k

∑
i=1

rq,i ≤ τ1

(or) ∃i < k s.t. rq,i ≤ τ2
1, otherwise.

(1)

The reward model need not be a perfect reward model, we give more details in Appendix F.2.

Difficult vs. easy questions. We define Qdifficult as the set of questions with low-reward model responses R. Accordingly,
Qeasy denotes all remaining questions.

Qdifficult = {q ∣ R(q) = 0}
Qeasy = {q ∣ R(q) = 1} (2)

C. Experimental Details
C.1. Experimental Settings

Datasets. We evaluate on the MATH (7.5k training samples and 5k test samples) (Hendrycks et al., 2021) and GSM8K (7.4k
training samples and 1.3k test samples) (Cobbe et al., 2021) datasets. We follow (Didolkar et al., 2024a) to label skills on
both the training and test sets using GPT-4o-mini (OpenAI, 2024), and run inference experiments on the whole test set. Ap-
pendix C.2 shows the prompt and examples of our skill annotation pipeline. We sample in-context examples from the training
set. These two datasets are not overly challenging for SLMs, which ensures relatively interpretable model outputs for stable
failure detection. Meanwhile, they are sufficiently representative to offer meaningful insights into our method’s efficacy.
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Model settings. We tested our methods on five instruction-tuned small language models: Qwen2.5-1.5B-Instruct, Qwen2.5-
3B-Instruct, Qwen2.5-7B-Instruct, Llama-3.2-1B-Instruct, and Llama-3.2-3B-Instruct (Yang et al., 2024; Meta AI, 2024). We
evaluate the models on 5-shot ICL performance. We use generation temperature at 0.0 for all experiments. We also compare
against consistency@5 voting (Wang et al., 2022) with 5-shot fixed examples, where we use 5 generations at temperature 1.0
and evaluate the consistent response. For classifying easy and difficult questions in the first stage, we use RLHFlow/Llama3.1-
8B-PRM-Mistral-Data (Xiong et al., 2024), an 8B process reward model fine-tuned from Llama-3.1-8B, with filtering
thresholds τ1 = 0.85, τ2 = 0.7. We use GPT-4o-mini for skill annotation as well as labeling missing skills in AdaptMI+.

Baselines. We compare our method to non-adaptive in-context example selection methods, respectively feeding in fixed
examples, random examples, and skill-based examples (Didolkar et al., 2024a) for all queries.

C.2. Skill Annotation on MATH and GSM8K

To construct the skill bank, we follow (Didolkar et al., 2024a) to label skills on both the training and test sets of MATH
and GSM8K using GPT-4o-mini (OpenAI, 2024). We enlist all skills that we used to annotate the questions in MATH and
GSM8K dataset in Tables 4 and 5 and Appendix C.2, which have been taken from (Didolkar et al., 2024a). We ask the LLM
to read the question and provide up to five skills required to solve this question, from the given existing skill list. We show
an example prompt for annotating MATH Number Theory questions as follows.

Example skill annotation prompt for MATH Number Theory questions

[TASK]
You’ll be given a math question. Your task is to output:
(1) < skill> list here up to five skill(s) that are required to solve this problem, seperated by commas </skill>.
(2) <reason> reason here why these skills are needed </reason>.

[SKILL LIST]
You should only choose the skills from this list:
[
”arithmetic sequences”,
”base conversion”,
”basic arithmetic”,
”division and remainders”,
”exponentiation”,
”factorization”,
”greatest common divisor calculations”,
”modular arithmetic”,
”number manipulation”,
”number theory”,
”polynomial operations”,
”prime number theory”,
”sequence analysis”,
”solving equations”,
”understanding of fractions”
]

[QUESTION]
{question}

[REASON AND SKILL(S)]

Table 3 shows some example MATH questions and their corresponding annotated skills. From the skill annotation, we
construct a Skill Bank (see Figure 1 and Section 2) that stores the required skills for each question.
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Question Annotated skills

What is the units digit of
3
1 + 3

3 + 3
5 + 3

7 + . . . + 3
2009?

exponentiation, modular arithmetic,
sequence analysis

In the addition problem each letter represents a
distinct digit. What is the numerical value of E?
[Figure]

basic arithmetic, number manipulation,
solving equations

In triangle ABC, tan(∠CAB) = 22
7

, and the
altitude from A divides BC into segments of
length 3 and 17. What is the area of triangle
ABC?

geometry and space calculation,
trigonometric calculations, arithmetic
operations

Table 3. Example MATH questions, and the annotated skills generated by GPT-4o-mini.

Subject List of Skills

Per subject split in MATH

Algebra algebraic expression skills,
algebraic manipulation skills, arithmetic skills,
calculation and conversion skills,
combinatorial operations and basic arithmetic,
complex number skills,
distance and midpoint skills,
exponent and root skills, factoring skills,
function composition skills, function skills,
geometric sequence skills,
graph and geometry skills, inequality skills,
logarithmic and exponential skills,
number theory skills, polynomial skills,
quadratic equation skills,
ratio and proportion skills,
sequence and series skills, solving equations

Counting and Probability calculating and understanding combinations,
combinatorial mathematics,
combinatorics knowledge, counting principals,
factorials and prime factorization,
number theory and arithmetic operations,
permutation and combinations,
probability calculation with replacement,
probability concepts and calculations,
probability theory and distribution,
understanding and applying combinatorics concepts

Geometry 3d geometry and volume calculation skills,
algebraic skills, area calculation skills,
circle geometry skills,
combinatorics and probability skills,
coordinate geometry and transformation skills,
other geometric skills, pythagorean skills,
quadrilateral and polygon skills,
ratio and proportion skills,
triangle geometry skills, trigonometry skills,
understanding circle properties and algebraic manipulation

Table 4. List of skills used for annotating questions in each subject in MATH dataset
10
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Subject List of Skills

Per subject split in MATH

Intermediate Algebra absolute value skills,
algebraic manipulation and equations,
calculus optimization skills,
complex number manipulation and operations,
function composition and transformation,
graph understanding and interpretation,
inequality solving and understanding,
polynomial skills,
properties and application of exponents,
quadratic equations and solutions,
recursive functions and sequences,
sequence and series analysis skills,
simplification and basic operations,
solving inequalities, solving system of equations,
summation and analysis of series,
understanding and application of functions,
understanding and applying floor and ceiling functions,
understanding and manipulation of rational functions,
understanding and utilizing infininte series,
understanding ellipse properties,
understanding logarithmic properties and solving equations

Number Theory arithmetic sequences, base conversion,
basic arithmetic, division and remainders,
exponentiation, factorization,
greatest common divisor calculations,
modular arithmetic, number manipulation,
number theory, polynomial operations,
prime number theory, sequence analysis,
solving equations, understanding of fractions

Pre-algebra average calculations, basic arithmetic operations,
circles, counting and number theory,
exponentiation rules, fractions and decimals,
geometry, multiples and zero properties,
multiplication and division, perimeter and area,
prime number theory, probability and combinatorics,
ratio and proportion, solving linear equation

Pre-calculus algebra and equations, basic trigonometry,
calculus, complex number operations,
complex numbers, coordinate systems,
determinant calculation, geometric relations,
geometry and space calculation,
geometry triangle properties, matrix operations,
parametric equations,
sequences series and summation,
three dimensional geometry,
trigonometric calculations, vector operations

Table 5. List of skills used for annotating questions in each subject of MATH dataset (continued from Table 4)
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List of skills used for annotating questions in GSM8K

advanced arithmetics, algebra, basic arithmetics, conversion unit operations,
division, equations, fractions, interest calculations, multiplication, percentage,
problem solving, profit loss, ratio proportion, time speed distance
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C.3. Missing skill Identification from Model Responses

In Stage 2 of AdaptMI+, we use GPT-4o-mini to label the skills that are missing from a model response. We ask the LLM
to read the question along with the SLM response and provide the skills that the model fails to leverage in the response,
from the given existing skill list. Below we show an example prompt for labeling missing skills for MATH Number Theory
questions, as well as an example LLM output.

Example missing skill identification prompt for a MATH Number Theory question

[TASK]
You’ll be given a math question and a step-by-step solution written by a Small Language Model. Your task is to
output:
(1) <judge > judge here whether the solution is correct or incorrect </judge >

(2) <reason > if it’s incorrect, reason here why the solution is incorrect </reason >,
(3) <skill > list here what skill(s) should the SLM enhance in order to answer correctly, seperated by commas
</skill >.

[SKILL LIST]
You should only choose the skills from this list:
[ ”arithmetic sequences”,
”base conversion”,
”basic arithmetic”,
”division and remainders”,
”exponentiation”,
”factorization”,
”greatest common divisor calculations”,
”modular arithmetic”,
”number manipulation”,
”number theory”,
”polynomial operations”,
”prime number theory”,
”sequence analysis”,
”solving equations”,
”understanding of fractions”]

[QUESTION]
Given that p ≥ 7 is a prime number, evaluate

1
−1

⋅ 2
−1

+ 2
−1

⋅ 3
−1

+ 3
−1

⋅ 4
−1

+⋯+ (p − 2)−1 ⋅ (p − 1)−1 (mod p).

[MODEL SOLUTION]
To evaluate the sum where p is a prime number greater than or equal to 7, we start by noting that for any integer a
not divisible by p, the modular inverse a

−1 is the integer b such that ab ≡ 1 (mod p). This means that a ⋅ a−1 ≡ 1
(mod p).
....
Thus, the value of the sum is −1 .

[REASON AND SKILL(S)]
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Example GPT-4o-mini output for missing skill identification

(1) <judge> incorrect </judge>
(2) <reason> The solution incorrectly simplifies the expression and misapplies properties of modular arithmetic.
The solution claims that the sum of the inverses from 1 to ( p-1 ) is (-1 pmodp), which is incorrect. The correct
approach involves recognizing that each term (a−1 ⋅ (a+ 1)−1) should be evaluated individually, and the sum should
be calculated directly without assuming incorrect simplifications. The solution also fails to correctly apply the
properties of modular inverses and does not properly evaluate the sum. </reason>
(3) <skill> modular arithmetic, number theory, understanding of fractions </skill>

C.4. Skill-based Example Retrieval

We outline our algorithm for retrieving in-context examples tailored to a specific set of skills. Leveraging the Skill-Map
definition in Section 2, which annotates each question with its associated skills, we construct an inverse mapping called
Example-Bank ∶ Skill-Bank(Q) → P . This map associates each skill s with the subset of in-context examples in the pool
P that are linked to s according to Skill-Map. Given a question q and a target skill set K, we retrieve in-context examples
by randomly selecting one example from Example-Bank(s) for each skill s in K. The algorithm is given in Algorithm 1.

Algorithm 1 Skill-based example retrieval
Input: List of skills K = [k1, ..., kn] (n ≤ 5)
Output: Selected 5-shot examples E = [e1, ..., e5]

0: E ← []
0: if K is not empty then
0: {We allow an additional repeated in-context example for the first 5 − n skills}
0: for i = 1 to 5 − n do
0: E

′
← Example-Bank(k1)

0: if E ′ is not empty then
0: e← random choice(E ′)
0: E ← E + [e]
0: end if
0: end for
0:
0: for each k in K do
0: E

′
← Example-Bank(k)

0: if E ′ is not empty then
0: e← random choice(E ′)
0: E ← E + [e]
0: end if
0: end for
0: end if
0:
0:
0: E ← Set(E) {Remove repeated instances}
0: if len(E) < 5 then
0: Append examples from fixed in-context examples to fill remaining shots
0: {This happens in the rarest of cases when we don’t have enough examples for a skill!}
0: end if
0: return E =0

14
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Methods
MATH GSM8K

Geometry Precalculus Algebra Prealgebra
Number Intermediate Counting & Avg. Avg.
Theory Algebra Probability

# Qwen2.5-1.5B-Instruct
Fixed Examples 39.7 38.3 72.2 67.3 45.2 36.5 47.3 52.8 71.5
Random Examples 42.8 41.0 73.1 68.1 43.7 35.1 47.3 53.3 70.9
Skill-based Examples 43.2 39.6 72.0 67.7 45.4 35.8 44.7 53.0 66.1
Consistency@5 44.5 43.5 77.6 70.8 50.0 39.8 47.8 56.9 75.6
AdaptMI 44.7 42.1 76.8 72.0 49.8 36.9 50.0 56.4 72.9
AdaptMI+ 44.5 42.1 78.2 72.8 49.1 38.4 51.5 57.2 75.8

# Qwen2.5-7B-Instruct
Fixed Examples 61.2 61.5 91.2 87.1 74.8 57.3 72.6 74.7 91.7
Random Examples 60.1 62.1 91.4 86.6 74.4 55.7 73.4 74.4 91.1
Skill-based Examples 61.2 64.3 90.6 87.7 73.0 55.9 71.1 74.4 91.7
Consistency@5 62.4 57.7 92.3 87.0 79.1 57.5 71.7 75.1 93.3
AdaptMI 62.2 64.7 91.5 87.6 73.5 57.6 71.5 75.9 92.3
AdaptMI+ 64.9 63.4 92.8 88.8 77.4 58.8 74.9 76.7 92.4

# Llama-3.2-1B-Instruct
Fixed Examples 8.0 11.1 19.6 21.3 10.3 7.8 11.5 13.8 26.8
Random Examples 10.2 6.5 24.0 20.9 7.3 7.9 6.9 13.7 19.3
Skill-based Examples 14.8 6.8 16.7 22.6 11.2 7.3 10.4 13.4 13.4
Consistency@5 13.6 13.3 28.8 28.2 21.4 6.7 14.3 19.4 29.9
AdaptMI 13.6 10.3 20.8 29.3 12.1 7.8 12.5 16.2 23.2
AdaptMI+ 17.1 11.1 29.6 35.4 10.3 8.9 13.5 19.8 26.0

Table 6. Additional results to Table 1. AdaptMI and AdaptMI+ demonstrate a consistent accuracy gain by up to 3.6% and 6% respectively,
compared with baseline methods. We present all results as Pass@1 accuracy unless otherwise indicated.

D. Additional Results
D.1. AdaptMI and AdaptMI+ performances

Table 6 shows AdaptMI and AdaptMI+ performances on Qwen2.5-1.5B-Instruct, Qwen2.5-3B-Instruct, and Llama-3.2-1B-
Instruct. These results align with each other—AdaptMI and AdaptMI+ yield substantial improvement compared with all
Pass@1 baseline, while being on par with the Consistency@5 results. Models with smaller size generally exhibit larger
performance gains. Notably, AdaptMI increased performance by 3.6% on Qwen2.5-1.5B-Instruct, and AdaptMI+ boosted
performance by 6% on Llama-3.2-1B-Instruct.

D.2. Iterative AdaptMI+

Our method can be extended to an iterative loop of adaptive example selection. Each iteration begins with model inference,
followed by detecting difficult questions and using GPT-4o-mini to select skill-based examples. The selected examples are
then fed in with difficult questions for model inference in the next iteration. This iterative AdaptMI+ is essentially pushing
the SLM to tackle a gradually refined set of difficult questions by adaptive teaching. We compare iterative AdaptMI+ with a
baseline of iterative random retrieval, where the loop involves inference, random example resampling, and re-inference.

Figure 2 shows that iterative AdaptMI+ consistently improves the reasoning performance on MATH for all three Qwen
small language models, while the baseline method struggles to keep pushing the accuracy boundary after the first few
iterations. For 1.5B and 3B models, the performance grows rapidly in the first four iterations, and improves more gradually
thereafter. The 7B model performance, while starting to degrade by the 10th loop, still increases substantially compared to
baseline. Through iterative re-selection of targeted in-context examples, iterative AdaptMI+ demonstrates the potential of
progressively guiding small language models to tackle unsolved problems.
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Figure 2. SLM performances under iterative skill-based example selection (AdaptMI+) vs. iterative random example retrieval. Each
iteration involves model inference, difficult question detection, and random/skill-based example re-selection with GPT-4o-mini. Iterative
AdaptMI+ yields a continuous accuracy gain by up to 7.2%, while the baseline leads to fluctuated performances.

D.3. Effect of skill-based examples on difficult and easy questions

In Section 3.2, we introduce our observation that skill-based examples only boost SLM performances on difficult questions
but harm performance on easier ones. We present the additional results on Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct
in Table 7. Similar to Table 2, there is a clear performance drop on easy questions with skill-based examples, although the
drop for Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct is less significant than Qwen2.5-1.5B-Instruct.

E. Fine-grained Analysis: Effect of skill-based examples across five difficulty levels
In Section 3.2, we observe that skill-based examples degraded SLM performances on easy questions, which motivates
a more fine-grained analysis. We partition our evaluation set into five levels of difficulty, based on the probability of success
under Best-of-n sampling (Gui et al., 2024), verified using ground-truth labels. Formally, a question belongs to Difficulty
Level ℓ (1 ≤ ℓ ≤ 4) if it can be solved with Best-of-2ℓ−1 sampling, but not with any lower n. Questions that belong to Level
5 can’t be solved with Best-of-8 sampling. We provide no in-context examples when measuring the success of Best-of-n
sampling and use temperature 1.0. Intuitively, questions in Level 2 are those where the model is more susceptible to minor
issues like formatting, where fixed in-context examples could help. For questions in higher levels, on the other hand, the
model might benefit more from guidance with carefully selected in-context examples.

After splitting the questions into 5 levels, we compare the effect of skill-based in-context examples with fixed in-context
examples on the model’s responses to questions in each difficulty level. Figure 3 reports the results on a Qwen-3B model
and MATH dataset.

Primary observations: We clearly observe that skill-based in-context examples can perform worse than fixed in-context
examples in levels 1 and 2. On the other hand, skill-based in-context examples can substantially help the model on questions
in levels 3–5. Furthermore, we observe that responses of the model are substantially longer with skill-based in-context
examples, when compared with model responses with fixed in-context examples.

This further shows that with skill-based examples, the model is more likely to “over-think” and make mistakes on easier
questions, when simple strategies like Best-of-2 sampling or prompting with fixed in-context examples would have sufficed.
This aligns with existing works on the issues of longer chain-of-thought reasoning in language models and how it relates
to “problems of over-thinking” in humans (Liu et al., 2024b; Diaconis & Mazur, 2003). 1

1We also present results using the difficulty split of questions annotated in the original MATH dataset in Appendix E.1. Differences
in performance and generation length of model’s responses with skill-based and fixed in-context examples are less pronounced across
difficulty levels. This is expected, as model’s own responses must be a better fine-grained indicator on question difficulty.
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Question MATH GSM8K

& Example Geometry Precalculus Algebra Prealgebra Number Intermediate Counting & Avg. Avg.Theory Algebra Probability

# Qwen2.5-3B-Instruct

Diff-
Fixed 36.5 37.9 60.6 48.1 49.5 35.5 40.3 42.9 51.6
Random 36.8 38.7 62.6 50.5 49.2 36.2 41.0 43.4 56.7

cult Skill 34.1 41.8 68.3 54.3 50.8 35.0 42.0 45.2 61.8
-2.4 +3.9 +7.7 +6.2 +1.3 -0.4 +1.69 +2.3 +10.2

Easy

Fixed 88.5 90.2 95.9 95.4 86.9 82.6 91.1 92.4 96.7
Random 83.6 86.5 94.0 94.0 84.1 81.8 90.9 91.8 95.6

Skill 84.7 88.3 93.8 93.8 85.7 79.8 90.5 90.4 93.9
-3.8 -1.8 -2.2 -1.6 -1.3 -2.8 -0.6 -2.0 -2.8

# Qwen2.5-7B-Instruct

Diff-
Fixed 50.0 51.3 80.1 71.6 66.8 50.0 61.5 60.7 74.1
Random 48.3 52.5 81.3 71.3 67.3 49.1 62.7 60.8 76.7

cult Skill 52.0 57.4 81.5 74.7 66.9 51.2 61.9 62.7 77.0
+2 +6.1 +1.4 +3.1 +0.1 +1.2 +0.4 +2 +2.9

Easy

Fixed 90.8 93.9 98.7 97.5 93.3 89.7 96.1 96.2 97.3
Random 92.6 93.4 99.2 97.7 91.9 86.5 97.1 95.3 96.4

Skill 89.8 91.4 96.0 94.7 91.5 86.1 94.7 94.1 95.5
-1.0 -2.5 -2.7 -2.8 -1.8 -3.6 -1.4 -2.1 -1.8

Table 7. Accuracy of Qwen2.5-1.5B-Instruct, Qwen2.5-3B-Instruct, and Qwen2.5-7B-Instruct on difficult and easy questions, respectively
under fixed, random, and skill-based examples (additional results for Table 2). Skill-based examples boost performance on difficult
questions across all categories, while significantly underperforming on easy questions. The gap between easy and difficult questions is
more pronounced for smaller models.
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Figure 3. Accuracy and average output length of Qwen2.5-3B-Instruct on questions of Difficulty Level 1–5, designed using its Best-of-n
performance, with fixed and skill-based examples. Skill-based examples hinder performance on Levels 1 and 2, while helping on Levels
3–5. On all difficulty levels, skill-based examples result in noticeably longer outputs.

E.1. Fine-grained analysis on original manual split of MATH dataset

We repeat our experiment with a different difficulty splitting strategy. Instead of using Best-of-n sampling to split the
evaluation set into 5 levels, we use the manual split of questions given in the original MATH dataset. We report comparisons
between skill-based and fixed in-context example selection strategies in Figure 4.

Interestingly, the differences between the ICL performance and generation length with skill-based and fixed in-context
examples for the SLM are less pronounced across the 5 difficulty levels, compared to the results in Figure 3. This suggests
that the manual difficulty split in the MATH dataset may not align well with the model’s own perception of question
difficulty. To capture more fine-grained distinctions between the two strategies, using the model’s own responses through
Best-of-n sampling serves as a more reliable indicator of question difficulty.
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Figure 4. Accuracy and average output length of Qwen2.5-3B-Instruct on questions of Level 1–5 defined in the MATH dataset. Compared
to Figure 3, the performance gap between fixed and skill-based examples is unnoticeable across all levels.
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Figure 5. ICL performance, measured in terms of accuracy, across different combinations of in-context examples for easy and difficult
questions on the MATH dataset. Across all models, we observe that skill-based in-context examples for difficult questions and fixed
in-context examples for the easy questions work the best.

F. Ablation Studies
F.1. Comparing different combinations of in-context example types in Stage 2.

Our main method combines difficult questions with skill-based examples and easy ones with fixed examples, based on the
observation that models only need targeted instructions on more challenging cases. To better understand its effectiveness,
we conduct an ablation study exploring alternative combinations of in-context examples. Our primary observations are

• As shown in Figure 5, our combination of “difficult + skill-based; easy + fixed” consistently outperforms all other
configurations. Notably, the accuracy gap between the best and worst-performing combination can reach 7.1%, which
stresses the importance of carefully choosing in-context examples for SLMs.

• The sensitivity to in-context example selection varies across model sizes, with the 1.5B model being the most sensitive
and the 7B model being the most stable.

F.2. Ablations on reward model configurations

Effect of threshold values on the reward model scores. We now investigate the effect of τ1 and τ2 (defined in Section 2)
on correct classification of easy or difficult questions. That is, we measure whether our classification of questions as easy
or difficult also corresponds to correct or incorrect validation of responses using ground-truth labels. Since our hope with
the reward model is to successfully detect model failures, without explicitly accessing the ground truth labels, we measure
the prediction accuracy of the reward model in terms of recall and F1 scores. In Table 8, we observe that our choice of the
threshold values gives the best tradeoff between recall and F1 scores.

Process reward vs. Outcome reward. We also compare the prediction accuracy of our process reward model (PRM)
with threshold filtering (see Section 2) against directly loading the reward model as an outcome reward model (ORM).
Our preliminary experiments indicated 0.9 as the optimal threshold for the outcome rewards. With τ = 0.9, the prediction
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τ1\τ2 0.6 0.7 0.8

0.80 0.76 / 0.85 / 0.80 0.72 / 0.90 / 0.80 0.66 / 0.96 / 0.78
0.85 0.72 / 0.90 / 0.80 0.70 / 0.92 / 0.80 0.65 / 0.96 / 0.78
0.90 0.64 / 0.95 / 0.77 0.64 / 0.96 / 0.77 0.62 / 0.97 / 0.75

Table 8. Reward model prediction metrics (precision / recall / F1) across different thresholds for Qwen2.5-1.5B-Instruct on MATH. Our
choice of the threshold values give the best tradeoff with recall and F1 scores.

metrics of the ORM are: Precision = 0.54 / Recall = 0.90 / F1 = 0.68, whereas the prediction metrics of the PRM with
optimal thresholds are Precision = 0.70 / Recall = 0.92 / F1 = 0.80. Therefore, our method using PRM with threshold
filtering is superior to directly using ORM.

F.3. Comparing few-shot instructions with natural language instructions

Here, we explore an alternative strategy to construct adaptive in-context instruction. We want to test whether additional
supervision from the LLM in AdaptMI+ could be provided in terms of feedback using natural language instructions.

MATH GSM8K

Fixed Examples 74.7 91.7
LLM Feedback 74.4 91.2
+ Fixed Examples 74.5 91.1
+ Skill Examples 74.5 91.1

Table 9. Qwen2.5-7B-Instruct accuracy under LLM-
generated natural language instructions.

For difficult questions, we modify our adaptive instruction as follows.
After getting the predicted missing skills on model’s response from
an LLM, we prompt the LLM back with the missing skills and the
corresponding skill-based in-context examples and ask the model
to return a concise natural language LLM feedback that contains
criticism on the model’s response, and hints on how to apply the
required skills. See below for an example prompt.

We report the behavior of modified AdaptMI+ on Qwen2.5-7B-
Instruct. Interestingly, we observe that even 7B models tend to not
benefit from the unstructured instructions (see Table 9). Furthermore,
even if skill-based in-context examples are utilized along with LLM feedback, the SLM’s performance remains nearly
unchanged, which suggests the model simply ignores in-context information that contains long, and unstructured natural
language feedback.
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Example feedback labeling prompt

[TASK]
You’ll be given a math question, a step-by-step solution written by a SLM, a step that is likely to be incorrect, the
missing skills in the solution that you identified earlier, and the skill-rated in-context examples. Your task is to
output:
(1) <comment> comment here about the SLM solution </comment>
(2) <hint> write here compactly the hints we should give the SLM to help it correctly answer this question next
time. You should not include the question or answer of this specific question. </hint>

[QUESTION]
Square ABCD has side length 2. A semicircle with diameter AB is constructed inside the square, and the tangent
to the semicircle from C intersects side AD at E. What is the length of CE? [Figure]

[SOLUTION]
To solve the problem, we start by identifying the coordinates of the points in the square ABCD . Let’s place the
square in the coordinate plane with A = (0,0) , B = (2,0) , C = (2,2) , and D = (0,2) . The semicircle is constructed
with diameter \overline{AB} , so its center is at the midpoint of \overline{AB} , which is (1,0) , and its radius is 1.
The equation of the semicircle is (x-1)ˆ2 + yˆ2 = 1 for y \geq 0 . We need to find the point E where the tangent from
C to the semicircle intersects side \overline{AD} . Since E lies on \overline{AD} , its coordinates are (0, y E) .
The slope of the line from C to E is \frac{y E - 2}{0 - 2} = \frac{2 - y E}{2} . The equation of the line CE is: \[ y
- 2 = \frac{2 - y E}{2}(x - 2). \] Since E = (0, y E) , substituting x = 0 and y = y E into the equation, we get: \[ y E
- 2 = \frac{2 - y E}{2}(-2) = y E - 2. \] This confirms that the point E lies on the line. To find the exact coordinates
of E , we use the fact that the tangent to the semicircle at a point (x 1, y 1) has the equation: \[ (x 1 - 1)(x - 1) + y 1
y = 1. \] Since the tangent passes through C = (2,2) , substituting x = 2 and y = 2 into the tangent equation, we get:
\[ (x 1 - 1)(2 - 1) + y 1 \cdot 2 = 1 \implies x 1 - 1 + 2y 1 = 1 \implies x 1 + 2y 1 = 2. \] Also, since (x 1, y 1)
lies on the semicircle, we have: \[ (x 1 - 1)ˆ2 + y 1ˆ2 = 1. \] We solve these two equations simultaneously. From
x 1 + 2y 1 = 2 , we get x 1 = 2 - 2y 1 . Substituting this into the semicircle equation, we get: \[ (2 - 2y 1 - 1)ˆ2
+ y 1ˆ2 = 1 \implies (1 - 2y 1)ˆ2 + y 1ˆ2 = 1 \implies 1 - 4y 1 + 4y 1ˆ2 + y 1ˆ2 = 1 \implies 5y 1ˆ2 - 4y 1 = 0
\implies y 1(5y 1 - 4) = 0. \] So, y 1 = 0 or y 1 = \frac{4}{5} . Since y 1 = 0 corresponds to the point A , which is
not a valid tangent point, we have y 1 = \frac{4}{5} . Then x 1 = 2 - 2 \cdot \frac{4}{5} = \frac{2}{5} . The
point of tangency is \left( \frac{2}{5}, \frac{4}{5} \right) . The length of \overline{CE} is the distance from C
= (2,2) to E = \left(0, \frac{4}{5}\right) : \[ CE = \sqrt{(2-0)ˆ2 + \left(2 - \frac{4}{5}\right)ˆ2} = \sqrt{4 +
\left(\frac{10}{5} - \frac{4}{5}\right)ˆ2} = \sqrt{4 + \left(\frac{6}{5}\right)ˆ2} = \sqrt{4 + \frac{36}{25}}
= \sqrt{\frac{100}{25} + \frac{36}{25}} = \sqrt{\frac{136}{25}} = \frac{2\sqrt{34}}{5}. \] Thus, the length
of \overline{CE} is \boxed{\frac{2\sqrt{34}}{5}} .

[INCORRECT STEP]
The slope of the line from C\) to E\) is \frac{y E - 2}{0 - 2} = \frac{2 - y E}{2}\). The equation of the line CE\)
is: \[ y - 2 = \frac{2 - y E}{2}(x - 2). \] Since E = (0, y E)\), substituting x = 0\) and y = y E\) into the equation,
we get: \[ y E - 2 = \frac{2 - y E}{2}(-2) = y E - 2. \] This confirms that the point E\) lies on the line.

[MISSING SKILLS]
triangle geometry skills,circle geometry skills,algebraic skills

[COMMENT AND HINT]
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Example feedback from GPT-4o-mini

<comment>The SLM’s solution is mostly correct but could benefit from a more detailed explanation of the triangle
inequality and how it affects the possible values of the third side. Additionally, the SLM might have overlooked the
strict inequality in the triangle inequality theorem, leading to the incorrect conclusion that the minimum value of BC
is exactly 2x .</comment>

<hint>
- Emphasize the importance of the triangle inequality theorem, specifically a + b > c , where a , b , and c are the
sides of a triangle.
- Explain why BC must be strictly greater than 2x to satisfy the inequality BC + x > 3x .
- Clarify that the smallest integer value for BC that satisfies this condition is 2x + 1 , leading to the calculation of the
maximum possible height h .
</hint>

G. Case Studies
In this section, we conduct case studies to gain deeper insight into how skill-based in-context examples might harm
performance on easy questions, as mentioned in Section 3.2. We present two questions where SLM successfully solves with
fixed examples, while failing with skill-based examples.

G.1. Skill-based examples lead the model to overlook key problem constraints

In the example below, the Qwen2.5-7B-Instruct model is given an algebra question that includes multiple geometric
constraints. While the question involves both Geometry and Algebra, it is only classified as an Algebra question in MATH,
hence being combined with algebraic skill examples. When prompted with fixed examples, the model correctly identifies two
possible answers and chooses the correct one according to the given condition ”both coordinates are negative.” On the other
hand, when conditioned by examples that represent algebraic skills, the model overly emphasizes algebraic completeness
but overlooks this important problem condition. It finally selects the incorrect answer by a random guess.

Case Study 1: An example skill-based prompt

< ∣im start ∣>system
Please reason step by step, and put your final answer within \boxed{}.
< ∣im end ∣>

< ∣im start ∣>user
[Example 1 with skill ”distance and midpoint skills”]
[Example 2 with skill ”distance and midpoint skills”]
[Example 3 with skill ”distance and midpoint skills”]
[Example 4 with skill ”algebraic expression skills”]
[Example 5 with skill ”arithmetic skills”]

A point (x, y) on the coordinate plane with both coordinates negative is a distance of 6 units from the x-axis. It is a
distance of 15 units from the point (8, 3). It is a distance

√
n from the origin. What is n?

< ∣im end ∣>

< ∣im start ∣>assistant
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Case Study 1: Correct model response under fixed example prompt

To solve the problem, we need to determine the coordinates (x, y) of the point that satisfies the given conditions and
then find the distance from the origin.

1. Distance from the x-axis:
The point (x, y) is 6 units away from the x-axis. Since the y-coordinate is negative, we have:
\[ ∣y∣ = 6 \imples y = -6 \]

2. Distance from the point \((8, 3)\):
The point \((x, y)\) is 15 units away from \((8, 3)\). Using the distance formula:
\[ \sqrt{(x - 8)ˆ2 + (y - 3)ˆ2} = 15 \]
....
This gives us two possible values for \(x\):
\[ x = 8 + 12 = 20 \quad \text{or} \quad x = 8 - 12 = -4 \]

3. Distance from the origin:
We need to find the distance from the origin \((0, 0)\) to the point \((x, y)\). The distance formula is:
\[ \sqrt{xˆ2 + yˆ2} \]
We have two possible points: \((20, -6)\) and \((-4, -6)\).

- For \((20, -6)\):
\[ \sqrt{20ˆ2 + (-6)ˆ2} = \sqrt{400 + 36} = \sqrt{436} \]
- For \((-4, -6)\):
\[ \sqrt{(-4)ˆ2 + (-6)ˆ2} = \sqrt{16 + 36} = \sqrt{52} \]

Since the problem states both coordinates are negative, only \sqrt{52} is valid.

The correct value of \(n\) is: n = 52

Thus, the final answer is: \boxed{52}

Case Study 1: Incorrect model response under skill-based example prompt

To solve the problem, we need to determine the coordinates \((x, y)\) of the point that satisfies the given conditions
and then find the distance from the origin.
1. Distance from the \(x\)-axis:

[Same as correct response]

2. Distance from the point \((8, 3)\):

[Long equation-solving process]

3. Distance from the origin:
We need to find the distance from the origin \((0, 0)\) to the point \((x, y)\). We have two possible points: \((20,
-6)\) and \((-4, -6)\). - For \((20, -6)\): \[ \sqrt{20ˆ2 + (-6)ˆ2} = \sqrt{400 + 36} = \sqrt{436} = 2\sqrt{109} \]
Thus, \(n = 436\). - For \((-4, -6)\): \[ \sqrt{(-4)ˆ2 + (-6)ˆ2} = \sqrt{16 + 36} = \sqrt{52} = 2\sqrt{13} \] Thus,
\(n = 52\). Since the problem does not specify which point to use, we consider the first solution where \(n =
436\).Therefore, the value of \(n\) is \(\boxed{436}\).
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G.2. Symbol-heavy skill-based examples cause the model to overthink.

The question below requires a plug-in-and-test approach instead of solving an equation. With fixed in-context examples, the
model is able to find out the correct answer by directly plugging in and trying out small values. However, the skill-based
examples that involve equation solving may have caused the model to overthink. After failing in the first plug-in-and-test, it
ended up attempting to solve the equation system and eventually failed.

Case Study 2: An example skill-based prompt

< ∣im start ∣>system
Please reason step by step, and put your final answer within \boxed{}.
< ∣im end ∣>

< ∣im start ∣>user
[Example 1 with skill ”sequence and series skills”]
[Example 2 with skill ”sequence and series skills”]
[Example 3 with skill ”sequence and series skills”]
[Example 4 with skill ”function composition skills”]
[Example 5 with skill ”solving equations”]

Charlize accidentally omitted two consecutive integers when adding the elements of the arithmetic sequence,
{1, 2, 3, . . . , n}. If the sum she obtained is 241, what is the smallest possible value of n?
< ∣im end ∣>

< ∣im start ∣>assistant

Case Study 2: Correct model response under fixed example prompt

To solve the problem, we first need to determine the sum of the arithmetic sequence \(\{1, 2, 3, \ldots, n\}\). The
sum of the first \(n\) positive integers is given by the formula: \[ S = \frac{n(n+1)}{2} \]

Let the two consecutive integers that Charlize omitted be \(k\) and \(k+1\). The sum of these two integers is:
\[ k + (k+1) = 2k + 1 \] Therefore, the sum of the sequence with these two integers omitted is: \[ S - (2k + 1)
= \frac{n(n+1)}{2} - (2k + 1) \] We know that this sum is 241, so we can write: \[ \frac{n(n+1)}{2} - (2k +
1) = 241 \] Rearranging this equation, we get: \[ \frac{n(n+1)}{2} = 242 + 2k \] Multiplying both sides by 2,
we obtain: \[ n(n+1) = 484 + 4k \] Since \(k\) is an integer, \(484 + 4k\) must be a product of two consec-
utive integers. We need to find the smallest \(n\) such that \(n(n+1)\) is close to 484 and is of the form \(484 + 4k\).

Let’s check the values of \(n\) starting from the smallest possible \(n\) that is greater than \(\sqrt{484} =
22\):

1. If \(n = 22\), then \(n(n+1) = 22 \times 23 = 506\). We need to check if \(506 = 484 + 4k\): \[ 506 - 484 = 22
\implies 4k = 22 \implies k = \frac{22}{4} = 5.5 \] Since \(k\) must be an integer, \(n = 22\) is not a solution.
2. If \(n = 23\), then \(n(n+1) = 23 \times 24 = 552\). We need to check if \(552 = 484 + 4k\): \[ 552 - 484 = 68
\implies 4k = 68 \implies k = \frac{68}{4} = 17 \] Since \(k = 17\) is an integer, \(n = 23\) is a solution. The
two consecutive integers omitted are 17 and 18. Therefore, the smallest possible value of \(n\) is: \[ \boxed{23} \]

Thus, the final answer is: \boxed{23}
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Case Study 2: Incorrect model response under skill-based example prompt

To solve the problem, we first need to determine the sum of the arithmetic sequence \( \{1, 2, 3, \ldots, n \} \).
The sum of the first \(n \) positive integers is given by the formula: \[ S = \frac{n(n+1)}{2} \]

Charlize omitted two consecutive integers, say \(k \) and \(k+1 \). Therefore, the sum she obtained is: \[ S
- (k + (k+1)) = S - (2k + 1) = \frac{n(n+1)}{2} - (2k + 1) \] We know that this sum is 241, so we have: \[
\frac{n(n+1)}{2} - (2k + 1) = 241 \] Rearranging the equation, we get: \[ \frac{n(n+1)}{2} = 242 + 2k + 1 = 243
+ 2k \] Multiplying both sides by 2, we obtain: \[ n(n+1) = 486 + 4k \] Since \(k \) is an integer, \(486 + 4k \)
must be a product of two consecutive integers. We need to find the smallest \(n \) such that \(n(n+1) \) is close to
486 and is of the form \(486 + 4k \).

Let’s check the values of \(n\) starting from the smallest possible \(n\) that makes \(n(n+1) > 486\): For \(n =
22\): \[ n(n+1) = 22 \times 23 = 506 \] We need to check if \(506\) can be written as \(486 + 4k\): \[ 506 = 486 +
4k \implies 4k = 20 \implies k = 5 \] So, \(n = 22\) works with \(k = 5\). The two consecutive integers omitted
are 5 and 6. Let’s verify the sum: The sum of the sequence \(\{1, 2, 3, \ldots, 22\}\) is: \[ \frac {22 \times 23 }
{2 } = 253 \] If we omit 5 and 6, the sum is: \[ 253 - (5 + 6) = 253 - 11 = 242 \] This is not correct.

Instead, let’s try to solve the equation:

[Model attempts the solve the equation]

[Model reaches maximum output length before finishing]
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