
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENT RESOURCE-CONSTRAINED TRAINING OF
VISION TRANSFORMERS VIA SUBSPACE OPTIMIZA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

As AI increasingly shapes daily life, energy consumption and data privacy have
become pressing concerns. On-device learning trains models directly on edge de-
vices, cutting energy consumption and safeguarding data privacy. However, the
expanding scale of modern neural networks creates a major obstacle for on-device
training. Although prior work has concentrated on compact convolutional archi-
tectures, we instead apply subspace-based training to transformer models. Mo-
tivated by the idea that a model’s essential information lies in a fixed subspace,
we introduce Weight-Activation Subspace Iteration (WASI), a method that miti-
gates the memory bottleneck of backpropagation and boosts inference efficiency
in transformer models by restricting training to this subspace. Our results demon-
strate that WASI maintains accuracy comparable to vanilla training while reducing
memory usage by up to 62× and computational cost (FLOPs) by up to 2×. On
a Raspberry Pi 5, WASI achieves roughly 1.5× faster training and inference than
vanilla training. The code is provided in the Supplementary Material zip file and
we commit to open-sourcing our full code upon paper acceptance.

1 INTRODUCTION

Memory

Forward Backward
Low-rank
activation

Subspace

Original
space

Subspace

Original
space

Figure 1: Overview of WASI in a
single training iteration.

On-device learning has recently emerged as a promising re-
search direction, enabling deep learning models to be fine-
tuned directly on resource-constrained edge devices. This ap-
proach addresses critical issues such as privacy and energy
consumption, improves scalability, and places control of AI
capabilities directly “in user’s hands” (Dhar et al., 2021). Prior
work on on-device learning has largely focused on vision tasks
using convolutional neural network models, primarily because
of their compact architectures (Lin et al., 2022; Nguyen et al.,
2024; Yang et al., 2023b; Quélennec et al., 2024; Bragagnolo
et al., 2022; Nguyen et al., 2025).

In many real-world applications, however, transformer-based
models have become the de facto choice due to their unique
architectural mechanisms (Vaswani et al., 2017). Specifically,
these models employ efficient forward propagation through the
composition of linear layers, process large-scale data in par-
allel, and alleviate the vanishing gradient problem thanks to
self-attention – key advantages that make them well-suited for
handling long-range dependencies, whether in extended text
sequences or high-resolution images. Notable examples of
such models include GPT (Brown et al., 2020), Gemini (Team et al., 2023), LLaMA (Touvron
et al., 2023), and DeepSeek (Liu et al., 2024a). Nevertheless, these mechanisms make training and
deployment of transformer models resource-intensive. This is even worse when considering the on-
device learning context, where models need to be trained on separate edge devices and are often
resource-constrained.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

A significant fraction of training costs arises from backpropagation, especially the memory and com-
putations needed for storing tensors in model layers (Lin et al., 2022). Various research has emerged
to address the inefficiencies of backpropagation and enable learning directly on devices. For in-
stance, Lin et al. (2022) demonstrated the feasibility of fine-tuning a predefined subnetwork under
a 256KB memory constraint device while still maintaining competitive performance. Quélennec
et al. (2024) took this further by dynamically adapting the subnetwork during training rather than
relying on a static one, leading to better accuracy within tight memory budgets. Beyond the scope
of on-device learning, many methods aim to reduce training overhead through parameter-efficient
approaches, such as LoRA (Hu et al., 2022) and its variants (Xu et al., 2023; Zhang et al., 2023;
Hayou et al., 2024; Liu et al., 2024b). While these techniques successfully limit the number of pa-
rameters updated at training time, they often overlook the cost of storing intermediate calculations
(activation maps). Nguyen et al. (2024) address this by compressing activation maps under a con-
trolled information-loss constraint, but lack robust memory budget control and incur considerable
compression overhead.

None of these methods enhances the neural architecture itself, and inference proceeds as usual,
resulting in high deployment costs on edge devices. This issue has been further addressed by
ASVD (Yuan et al., 2023) and FWSVD (Hsu et al., 2022), which employ truncated Singular Value
Decomposition (SVD) to decompose the model architecture, but lack a theoretical basis for choos-
ing which singular values to truncate. Subsequently, SVD-LLM (Wang et al., 2024) was developed
to overcome this limitation and outperforms the aforementioned approaches. However, these meth-
ods are specifically designed for large language models (LLMs) and are not readily applicable to
all vision transformer-based models (see Appendix. A.4). Another similar effort, ESPACE (Sakr &
Khailany, 2024), requires access to a downstream dataset, which is not feasible in on-device learning
scenarios.

Inspired by prior studies on the stability of parameter subspaces during fine-tuning (Radiya-Dixit
& Wang, 2020; Li & Zhang, 2021), we present WASI (Fig. 1), the first method for efficient model-
activation-decomposition-aware training. WASI enables transformer models to be fine-tuned and
executed entirely in a low-rank representation, substantially reducing hardware costs and making
vision transformer tasks feasible on edge devices. We assess its effectiveness on vision trans-
former models, including the Swin Transformer (SwinT) (Liu et al., 2021), the Vision Transformer
(ViT) (Dosovitskiy et al., 2020), and even TinyLlama (Zhang et al., 2024).

Our main contributions are summarized as follows.

• Based on the previous studies, we formulate that the essential information of a model pa-
rameters resides in a stable subspace throughout fine-tuning (Sec. 3.3), which is then veri-
fied in Sec. 4.2.

• Leveraging this hypothesis, we propose Weight-Activation Subspace Iteration (WASI) in
Sec. 3.3 to effectively compress the model architecture under a controlled information-loss
constraint.

• We showcase the effectiveness of our approach through extensive experiments on multiple
tasks (Sec. 4.3 and Sec. 4.4).

2 RELATED WORKS

In this section, we review low-rank decomposition techniques as applied to two key components
of deep learning models: model weights and activation maps. Other research directions such as
compact model design, quantization, sparsification, and knowledge distillation also exist, but they
fall outside the scope of this work–low-rank decomposition (Cheng et al., 2017; Deng et al., 2020).
Therefore they are not discussed here (see Appendix A.5 for details).

Low-rank Decomposition for Model Weights. Low-rank approximation methods for model
weights have been extensively studied and can generally be categorized into two main approaches:
Low-rank Adapters and Low-rank Models.
LoRA (Hu et al., 2022) is the most prominent example of the first category, which introduces an
additional low-rank adapter while freezing the original model architecture. This strategy can reduce
the number of trainable parameters by up to four orders of magnitude, but comes with two notable
drawbacks. During training, memory usage grows because both the frozen weights and the new

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

adapter must co-exist in memory. At inference time, the adapter is merged back into the model,
resulting in inference performance that is identical to the original model, and thus losing the com-
putational advantages of low-rank decomposition.
Low-rank Models are an alternative line of research that factorizes the weight matrices themselves
and trains only the low-rank components, enabling inference to run directly on the compressed repre-
sentation. Methods such as ASVD (Yuan et al., 2023) and FWSVD (Hsu et al., 2022) achieve this by
applying truncated SVD to each layer. These approaches, however, lack a theoretical link between
the truncation loss and model performance loss, which is latter addressed by SVD-LLM (Wang et al.,
2024). It is important to note that, except for SVD-LLM, all aforementioned methods are specifically
tailored for LLMs, and even SVD-LLM cannot be directly applied to all vision transformer-based
models with activation maps of four or more dimensions (see Appendix A.4).

Low-rank Decomposition for Activation Maps. In addition to model weights, activation maps are
a major contributor to memory consumption during training. Gradient Filter (Yang et al., 2023b) is
a pioneering work that addresses this issue in on-device learning by generating approximated ver-
sions of activation maps through pooling operations with a predefined patch size, aiming to reduce
memory usage and FLOPs during fine-tuning. However, this method is limited to convolutional
models, and also has the drawback of the accumulated errors as fine-tuning progresses deeper into
the model (Nguyen et al., 2024). To overcome this drawback, Nguyen et al. (2024) introduced
Activation Map Compression (AMC), which applies High-Order Singular Value Decomposition
(HOSVD) to compress activation maps while controlling the information loss via a threshold pa-
rameter ε. While AMC achieves impressive memory savings up to 120×, it incurs significant com-
putational overhead due to the need for full HOSVD at every iteration. Additionally, the varying
ranks required to meet the error threshold lead to fluctuating memory usage, which complicates de-
ployment on devices with fixed memory budgets.
Activation Subspace Iteration (ASI) (Nguyen et al., 2025) addresses both of these issues. Instead of
controlling the reconstruction error, ASI fixes the activation ranks using a perplexity-based heuristic.
This approach stabilizes memory usage throughout fine-tuning and allows for replacing the expen-
sive HOSVD with subspace iteration. As a result, ASI preserves the high compression ratio of AMC
while reducing computational cost by up to 252.65×. On a Raspberry Pi 5, fine-tuning with ASI is
1.56× faster than vanilla training when being tested on a highly compact convolutional model.
Beyond this scope, LBP-WHT (Yang et al., 2023b) has also been explored. However, it focuses
solely on reducing computational cost during training by applying the Walsh-Hadamard Transfor-
mation to tensors in gradient computations, and does not address memory bottlenecks.

Our proposed WASI overcomes the limitations posed by prior works. Hypothesizing the stabil-
ity of the essential subspace of model weights, we introduce a novel method that simultaneously
compresses the model architecture and activation maps while carefully controlling information loss
throughout the fine-tuning process. This capability makes it feasible to fine-tune transformer-based
models in on-device learning scenarios.

3 METHOD

In this section, we first identify the computational bottlenecks of training and inference (Sec. 3.1).
Next, we review how activation maps can be efficiently compressed (Sec. 3.2). We then introduce
a compression-aware-training strategy for both model weights and activation maps that controls
information loss (Sec. 3.3). Finally, we analyze the computational complexity of our method and
discuss its practical advantages (Sec. 3.4).

3.1 BOTTLENECKS IN TRAINING AND INFERENCE

Consider a deep transformer-based model, where i denotes the index of a linear layer. This layer is
represented by a weight matrix Wi ∈ ROi×Ii , which takes as input a tensor Ai ∈ RB×Ni×Ii and
produces an output tensor Ai+1 ∈ RB×Ni×Oi . Here, B is the batch size, Ni is the sequence length
(or number of tokens), Ii is the input feature dimension, and Oi is the output feature dimension. We
denote the dimensionality of the input as Di = {B,Ni, Ii}.

During the forward pass (similarly in inference), the output of this layer is computed as:

Ai+1 = AiWT
i , (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Weight Subspace Iteration - WSI at iteration t

1: Input:
Weight Wi,(t) at iteration t,
Explained variance threshold ε ∈ [0, 1].

2: Function:
3: if t = 0 then
4: Li,(t), Ri,(t) = SVD

(
Wi,(t), ε

)
(see Eqs. 5, Eq. 6, and Eq. 7)

5: else
6: RT

i,(t) = WT
i,(t) · Li,(t−1)

7: Li,(t) = Orthogonalize
(
Wi,(t) ·RT

i,(t)

)
(Using Gram-Schmidt)

8: endif
9: return Li,(t), Ri,(t)

where symbol T denotes the matrix transpose. Eq. 1 presents a batch matrix multiplication applied
over the last two dimensions of Ai; that is, for each sample in the batch and each token, a matrix
multiplication is performed between a 1×Ii vector and the transposed weight matrix of size Ii×Oi.

Similarly, in the backward pass the chain rule of backpropagation is computed as follows:

∂L
∂Wi

=
∂L

∂Ai+1
· ∂Ai+1

∂Wi
= AT

i · ∂L
∂Ai+1

, (2)

∂L
∂Ai

=
∂L

∂Ai+1
· ∂Ai+1

∂Ai
=

∂L
∂Ai+1

· Wi, (3)

where L is the loss computed at the output of the model. Apparently, to compute ∂L
∂Wi

and ∂L
∂Ai

during the backward pass, Ai and Wi must be stored during the forward pass. The large size of
these tensors is the primary cause of memory bottlenecks during backpropagation (Lin et al., 2022).
Additionally, it also contributes to high inference costs, as multiplying between large Wi and Ai

requires significant computational resources.

3.2 ACTIVATION SUBSPACE ITERATION

Here, we recap how activation maps can be decomposed by subspace iteration. Given an activation
memory budget B, ASI performs brute-force optimization before fine-tuning to find an optimal rank
vector ri ∈ N3 for each layer such that the resulting memory does not exceed B. Then, for each
mode m ∈ {1, 2, 3}, the activation map Ai is unfolded into a matrix Ai,m ∈ Rai,m×bi,m , where

(ai,m, bi,m) =
(
Di,m,

∏
j ̸=m Di,j

)
.

Vogels et al. (2019) showed that warm-started subspace iteration matches SVD performance on
stable tensors at much lower cost. Exploiting the stability of activation maps during fine-tuning,
ASI applies this technique to each Ai,m. The resulting approximation takes the form of a Tucker
decomposition (Tucker, 1966):

Ai ≈ S̃i ×1 Ũ
(1)
i ×2 Ũ

(2)
i ×3 Ũ

(3)
i , (4)

where S̃i ∈ Rri,1×ri,2×ri,3 is the core tensor, representing a compressed version of Ai, and each
factor matrix Ũ

(m)
i ∈ Rai,m×ri,m contains the principal components along the mth mode.

Consequently, instead of storing all Θspace

(∏3
m=1 Di,m

)
elements of Ai, ASI reduces the storage

requirement to Θspace

(∏3
m=1 ri,m +

∑3
m=1 Di,mri,m

)
.

Details of the algorithm can be found in Appendix A.2.

3.3 WEIGHT - ACTIVATION SUBSPACE ITERATION

Stability of Model Parameters Subspace. While prior work has shown that over-parameterized
models in fact reside in a low-dimensional intrinsic subspace (Aghajanyan et al., 2020; Li et al.,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1 5 9 13

102

104
C

tr
ai

n
in

g

1 5 9 13
100

101

102

C
in

fe
re

n
ce

1 5 9 13
0

50

S
tr

ai
n

in
g

1 5 9 13
0

100

S
in

fe
re

n
ce

Ki = ri,1 = ri,2 = ri,3

Di,m = Oi = 32 | m ∈ [1, 3]

Di,m = Oi = 64 | m ∈ [1, 3]

Di,m = Oi = 128 | m ∈ [1, 3]

Di,m = Oi = 256 | m ∈ [1, 3]

Figure 2: For the linear layer i with a single data batch of size B, given varying dimensions of Wi

and Ai and different values of ri,m, Ctraining and Cinference illustrate the evolution in compression
rates for training and inference, respectively; while Straining and Sinference forecast the speedup ratios
for these processes.

2018), we further observe that fine-tuning introduces only minor updates at each training step due
to the use of a small learning rate. As a result, our key insight is that the intrinsic subspace re-
mains relatively stable after each training iteration and can therefore be reused in the following one
(confirmed in Sec. 4.2 - Fig. 3). This is supported by the findings of Radiya-Dixit & Wang (2020)
and Li & Zhang (2021), who showed that the fine-tuned models are close in parameter space to the
pre-trained counterpart.

Weight Subspace Iteration. Besides activation maps, model parameters (weights) Wi are another
major source of memory bottlenecks during training. To address this, we propose a low-rank weight
decomposition strategy that projects each weight tensor into a smaller subspace at every training
iteration, thereby preserving the meaningful subspace. The method works as follows:

Step 1. For the weight tensor Wi at layer i, its SVD form is given by:

Wi = UiΣiV
T
i , Ui ∈ ROi×Oi , Σi ∈ ROi×Ii , Vi ∈ RIi×Ii , (5)

where Σi is a diagonal matrix containing ri singular values si,j∈[1,ri], and ri is the rank of Wi.
As shown in Eq. 3, truncating Ui, Σi, and V T

i inevitably introduces error into ∂L
∂Ai

, which then
propagates backward during training. In other words, low-rank decomposition of the weights affects
model convergence due to the accumulation of truncation error.
To control this effect, we constrain the truncation error by enforcing a target explained variance
threshold ε, similar to the strategy used in Nguyen et al. (2024). Specifically, we measure the
variance explained by the jth singular value as σ2

i,j = s2i,j/
∑

k s
2
i,k. Assuming the singular values

are sorted in descending order (si,j ≥ si,k, ∀j ≤ k), the optimal rank is defined as the smallest
integer Ki ∈ [1, ri] such that

∑Ki

j=1 σ
2
i,j ≥ ε. We then identify the essential subspace with rank Ki

of Wi, represented by Li and Ri such that:

Wi ≈ W̃i = LiRi, (6)

where

Li = Ui,(Ki)Σi,(Ki), Ri = V T
i,(Ki)

| Ui,(Ki) ∈ ROi×Ki , Σi,(Ki) ∈ RKi×Ki , Vi,(Ki) ∈ RIi×Ki .
(7)

Step 2. Performing full SVDs at every iteration, however, is computationally prohibitive for on-
device training (Nguyen et al., 2025). Leveraging the stability of parameter subspaces established
above, Σi can be expected to remain relatively stable. Thus, for a fixed ε, the optimal rank Ki

should also remain consistent (verified in Sec. 4.2). Consequently, instead of recomputing the SVD
at every iteration, we compute it once at the beginning to determine the essential subspace. Subspace
iteration is applied during training to minimize computational overhead. We refer to this method as
Weight Subspace Iteration (WSI), with the full procedure outlined in Algorithm 1.

Weight-Activation Subspace Iteration. While WSI reduces weight-related overhead, activa-
tion maps also dominate memory usage in backpropagation (Sec. 3.1). Previous work has shown
that most of the energy in activation maps is concentrated in the first few principal components
across all modes (Nguyen et al., 2024). Such a distribution makes them highly compressible while

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

still achieving high-fidelity reconstruction (confirmed in Sec. 4.2 - Fig. 4 and Sec. 4.3). Motivated
by this property, we propose a unified framework in which both weights and activations are com-
pressed under stable low-rank subspaces. Specifically, we redesign ASI with two improvements: (i)
a dynamic-programming strategy that determines ri by minimizing memory usage under a target
pre-tuning perplexity, rather than relying on a fixed budget B, thereby reducing the search cost from
exponential to linear (Appendix A.2); and (ii) an extension to support 3D activation tensors (Ap-
pendix A.1).
Together, WSI and ASI form the proposed Weight-Activation Subspace Iteration (WASI), a novel
framework for low-rank training that jointly leverages the stability of both weights and activations.
Under this scheme, the forward and backward passes are computed as follows:

Ai+1 = AiR
T
i L

T
i , (8)

∂̃L
∂Wi

= fLR

(
Ãi,

∂̃L
∂Ai+1

)
, (9)

∂̃L
∂Ai

=
∂̃L

∂Ai+1
· LiRi, (10)

where fLR(.) denotes a linear operator applied in the low-rank space (see Appendix A.1). With
learning rate η, the weight update is then computed as:

LiRi = LiRi + η · ∂̃L
∂Wi

. (11)

3.4 MEMORY EFFICIENCY AND COMPUTATIONAL COMPLEXITY ANALYSIS

For simplicity, we assume that the same optimal rank is applied to both Ai and Wi. By varying
this value, we can predict total memory usage and speedup for WASI compared to vanilla training
(Fig. 2). As model size grows and the optimal rank decreases, WASI delivers greater memory
compression (Ctraining, Cinference) and speedup (Straining, Sinference), a property especially valuable in
on-device learning where models are typically over-parameterized and reside in low-dimensional
subspaces (Aghajanyan et al., 2020; Li et al., 2018). Conversely, as the optimal rank increases,
WASI’s computational cost approaches that of vanilla training, and the speedup ratios converge to
1, reflecting the upper bound set by vanilla training.

Detailed derives of Ctraining, Cinference, Straining, and Sinference can be found Appendix A.3.

4 EXPERIMENTS

In this section, we present experiments designed to demonstrate the effectiveness of WASI. We
begin by outlining the experimental setup in Sec. 4.1. Then, in Sec. 4.2, we conduct experiments to
validate the assumptions introduced in Sec. 3.3 and Sec. 3.3. Sec. 4.3 compares WASI with various
state-of-the-art methods across multiple datasets. Finally, all methods are evaluated in a real-world
deployment scenario (Sec. 4.4. All simulation experiments are conducted using PyTorch 1.13.1 on
an NVIDIA Quadro RTX A4500 with 20 GB of VRAM, while on-device experiments are run on a
Raspberry Pi 5 equipped with a Cortex-A76 CPU and 8 GB of RAM.

4.1 EXPERIMENTAL SETUP

Our goal is to enable on-device training of transformer models, where networks pretrained on large-
scale datasets are fine-tuned locally with task-specific data (Murshed et al., 2021). We evaluate
WASI on image classification using ViT and SwinT, both pretrained on ImageNet-1K (Deng et al.,
2009), across five downstream datasets: CIFAR-10/100 (Krizhevsky, 2009), CUB (Wah et al., 2011),
Flowers (Nilsback & Zisserman, 2008), and Pets (Zhang et al., 2022).
Comparisons are made against three directly comparable baselines at the time of conducting experi
ments: ASI, SVD-LLM, and vanilla training (as discussed in Secs. 1, 2, Appendix A.5). We mea-
sure memory and computation costs during training and inference, focusing on linear layers within
multi-perceptron blocks for fair comparison with previous methods (extended results with attention
layers in Appendix B.3). All experiments are run with the same set of hyperparameters, detailed in
Appendix B.1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 10 20 30 40

Epoch

0

100

200

300

400

500

600

700

S
in

gu
la

r
V

al
u

e
In

d
ex

1

2

3

4

S
in

gu
la

r
V

al
u

e

(a)

1012 1.2× 1012 1.4× 1012 1.6× 1012 1.8× 1012

FLOPs

20

30

40

50

60

70

80

90

T
op

1
V

al
id

at
io

n
A

cc
u

ra
cy

(%
)

1.36 × smaller
in FLOPs

35.36 % higher
in Acc

WSI

SVD

(b)

Figure 3: When fine-tuning ViT on the Pets dataset, (a) illustrates the evolution of singular values of
W6 across epochs; (b) compares WSI and full SVD in terms of accuracy and training FLOPs under
varying explained variance thresholds, ε ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Layer Index 0

10

20

Singular Value

Index

0

50

100

E
x
p

la
in

ed
V

ar
ia

n
ce

0.0

0.2

0.4

0.6

Mode 1

(a)

Layer Index 0

10

20

Singular Value

Index

0

20

40

E
x
p

la
in

ed
V

ar
ia

n
ce

0.0

0.2

0.4

0.6

Mode 2

(b)

0

10

20

Layer Index

0
200

400
600

800 Singular Value

Index

0.0

0.2

0.4

0.6

E
x
p

la
in

ed
V

ar
ia

n
ce

Mode 3

(c)

Figure 4: Explained variance of each singular value of Ai across all of its modes when fine-tuning
ViT on the Pets dataset.

4.2 PRELIMINARY RESULTS

In these experiments, we focus on fine-tuning ViT model using Pets dataset.

Stability of Layer Ranks. We apply truncated SVD to the weight tensors of the linear layers within
ViT’s MLP blocks at each training iteration. We constrain the decomposition by setting ε = 0.8
and monitor the layer ranks Ki throughout the course of training. As shown in Fig. 3a, we observe
that the ranks exhibit remarkable stability across epochs. This observation validates our insight in
Sec. 3.3, confirming the stability of layer ranks during training.

WSI vs SVD. Next, we compare two strategies: (1) reapplying truncated SVD at every training
iteration, and (2) WSI. We evaluate their performance across a range of ε values - specifically, 0.4,
0.5, 0.6, 0.7, 0.8, and 0.9 - with each value represented by a different marker in Fig. 3b. The results
demonstrate that incorporating subspace iteration through WSI leads to a significant reduction in
computational complexity compared to performing a full SVD at every iteration. Specifically, WSI
requires 1.36× fewer FLOPs than SVD to achieve the same level of accuracy. Moreover, when both
methods are constrained to use the same amount of FLOPs, WSI outperforms SVD by approximately
35% in terms of accuracy. This result verifies that reusing the subspace in subsequent training
iterations does not degrade model convergence.

Explained Variance Distribution of Activation Maps. Fig. 4 illustrate the explained variances
σi,j,m of each singular value j in mode m of the activation map Ai. As anticipated in Sec. 3.3, most
activation-map energy lies in the first few singular values, which capture the key information during
fine-tuning.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

102 103

Training Mem (MB)

80

90

A
cc

u
ra

cy
(%

)

102

Inference Mem (MB)

80

90

1011 1012

Training FLOPs

80

90

1011

Inference FLOPs

80

90

WASI ASI SVD-LLM VanillaWASI ASI SVD-LLM VanillaWASI ASI SVD-LLM VanillaWASI ASI SVD-LLM Vanilla

Figure 5: Resource consumption during fine-tuning and inference of ViT on the CIFAR-10 dataset.
Each marker in the plots corresponds to a different compression rate, with the red diamond indicating
vanilla training.

102 103

Training Mem (MB)

60

80

100

A
cc

u
ra

cy
(%

)

2× 101 3× 101 4× 101 6× 101

Inference Mem (MB)

60

80

100

10126× 1011 2× 1012

Training FLOPs

60

80

100

2× 1011 3× 10114× 1011 6× 1011

Inference FLOPs

60

80

100

Pets Flowers CUB CIFAR-10 CIFAR-100Pets Flowers CUB CIFAR-10 CIFAR-100Pets Flowers CUB CIFAR-10 CIFAR-100Pets Flowers CUB CIFAR-10 CIFAR-100

Figure 6: Resource consumption when applying WASI for fine-tuning and inference of SwinT across
different datasets. Each marker along the curves represents a different compression rate, while the
final marker on each curve corresponds to vanilla training.

4.3 MAIN RESULTS

ViT on CIFAR-10. Fig. 5 presents the results of fine-tuning a ViT pretrained on ImageNet-1K
using CIFAR-10. Each curve for WASI and ASI contains six markers, corresponding to explained
variance thresholds ε ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9} from left to right. The red diamond indicates
vanilla training, and for fairness, the same compression ratios are applied to SVD-LLM.
WASI achieves up to 100× higher memory efficiency than SVD-LLM at similar accuracy, owing
to its avoidance of LoRA adapters. Its accuracy also improves steadily as ε increases. In contrast,
at the lowest compression rates (last two markers), SVD-LLM consumes even more memory than
vanilla training because of the overhead of storing sub-layer activations.
In terms of computation, LoRA adapters allow SVD-LLM to achieve the lowest FLOPs, followed
by WASI, which jointly compresses weights and activations into a low-rank subspace. Since ASI
only compresses activations while keeping weights intact, its computational cost is higher, and at
ε = 0.9, it even exceeds vanilla training (confirmed in Tab. 2). On the other hand, ASI maintains
stable accuracy across compression rates, supporting the stability assumption discussed in Sec. 3.3.
At inference, both WASI and SVD-LLM achieve similar memory/FLOPs savings, while ASI resem-
bles vanilla since the architecture is unchanged.

SwinT on Multiple Datasets. Fig. 6 compares WASI and vanilla across datasets, additional
baselines are in Appendix B.3. Each marker along a curve from left to right, indicates different
ε ∈ {0.4, . . . , 1.0}, with 1.0 as vanilla. Across all datasets, WASI consistently provides a better
accuracy-efficiency trade-off. At ε = 0.9, it matches vanilla accuracy while cutting memory by up
to 62× and FLOPs by 1.5×, and even surpasses vanilla on CUB.

WASI on TinyLlama. The initial goal of WASI was to enable training transformer-based models on
edge devices, so we focused on ViT and SwinT. To test its generality, we extended our experiments
to TinyLlama, a decoder-only transformer model. The downstream dataset used is BoolQ (Clark
et al., 2019). Due to limited resources, we only fine-tune up to the last 5 layers of the model and
set the WASI ε to 0.1. All other training hyperparameters followes the same configuration as in our
previous experiments. For comparison, we log the resource consumption only at the layers that are
fine-tuned. The results are shown in Fig. 7.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

100 102

Activation Mem (MB)

64

66

A
cc

u
ra

cy
(%

)

101 102

Weight Mem (MB)

64

66

1010 1011

Training FLOPs

64

66

109 1010 1011

Inference FLOPs

64

66

WASI VanillaWASI VanillaWASI VanillaWASI Vanilla

Figure 7: Performance of WASI vs. vanilla training when fine-tuning TinyLlama on BoolQ. Each
marker indicates the number of layers fine-tuned from the last layer upward: the marker closest to
the y-axis of each figure corresponds to fine-tuning only the last layer, the next marker corresponds
to the last two layers, and so on.

WASI again outperforms vanilla: activation and weight memory drop by up to 953.86× and 30.12×,
while training and inference FLOPs fall by 13.11× and 30.27×, all without accuracy loss.

Additional results, including ViT on more datasets and extended baselines for SwinT are in Ap-
pendix B.3.

4.4 ON-DEVICE LATENCY

0.4 0.5 0.6 0.7 0.8 0.9 vanilla

ε

5

10

15

20

T
im

e
(s

)
Training time

Inference time

Figure 8: Training and inference time per itera-
tion for ViT on CIFAR-10 (batch size = 128) us-
ing a Raspberry Pi 5, measured under different ex-
plained variance thresholds ε. The final marker on
each curve represents vanilla training.

We evaluate the practical efficiency of WASI on
resource-constrained hardware by fine-tuning
ViT on CIFAR-10 using a Raspberry Pi 5.
Fig. 8 reports the average time required to com-
plete a single iteration of both training and
inference across different explained variance
thresholds ε ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9},
along with vanilla training.
As expected, the runtime for both training
and inference under WASI increases as ε be-
comes larger. This trend aligns with the intu-
ition that higher ε values retain more informa-
tion and thus result in higher-rank approxima-
tions, which require more compute and mem-
ory. However, despite this increase, WASI consistently outperforms vanilla training in terms of
speed. For instance, even at ε = 0.9, which corresponds to the least aggressive compression setting
in this experiment, WASI remains approximately 30% faster than vanilla training. Thus, WASI de-
livers clear benefits even when preserving much of the original information.
Importantly, WASI helps to reduce runtime without causing significant accuracy degradation, as dis-
cussed in earlier sections. This ability makes it a strong candidate for the deployment of transformer-
based model in real-world on-device learning scenarios, where computational resources are severely
constrained. Further numerical results can be found in Appendix. B.3.

5 CONCLUSION

In this work, we introduced WASI, an efficient training method for resource-constrained fine-
tuning of transformer models. Assuming that essential parameter information lies in a stable low-
dimensional subspace, WASI applies SVD and subspace iteration to obtain low-rank approximations
of both weights and activations during each training iteration. This yields significant gains in mem-
ory and computation while tightly controlling information loss.
Building on prior theory and validated through extensive experiments, WASI outperforms state-
of-the-art methods, reducing training memory usage by up to 62× and achieving 1.5× speedup
over vanilla training on a Raspberry Pi 5. These results show the potential of WASI for enabling
on-device learning with transformers, a domain traditionally dominated by CNNs. While our exper-
iments focus on transformers, the underlying principles apply broadly to any neural network trained
with backpropagation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Detailed description of our algorithm is provided in Sec. 3.3, Appendix A.1, and Appendix A.2. Full
details of the training policy, including hyperparameters, datasets, and other configurations, are pre-
sented in Appendix B.1. Code to reproduce the main experiments is included in the Supplementary
Material zip file. We commit to open-sourcing the complete code upon acceptance of this paper.

REFERENCES

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the ef-
fectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

Andrea Bragagnolo, Enzo Tartaglione, and Marco Grangetto. To update or not to update? neurons
at equilibrium in deep models. Advances in neural information processing systems, 35:22149–
22160, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model compression and hardware
acceleration for neural networks: A comprehensive survey. Proceedings of the IEEE, 108(4):
485–532, 2020.

Sauptik Dhar, Junyao Guo, Jiayi Liu, Samarth Tripathi, Unmesh Kurup, and Mohak Shah. A survey
of on-device machine learning: An algorithms and learning theory perspective. ACM Transactions
on Internet of Things, 2(3):1–49, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Marawan Gamal Abdel Hameed, Marzieh S Tahaei, Ali Mosleh, and Vahid Partovi Nia. Convo-
lutional neural network compression through generalized kronecker product decomposition. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 771–779, 2022.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. arXiv preprint arXiv:2207.00112, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes. arXiv preprint arXiv:1804.08838, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dongyue Li and Hongyang Zhang. Improved regularization and robustness for fine-tuning in neural
networks. Advances in Neural Information Processing Systems, 34:27249–27262, 2021.

Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song Han. On-device
training under 256kb memory. Advances in Neural Information Processing Systems, 35:22941–
22954, 2022.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Ivan Markovsky. Structured low-rank approximation and its applications. Automat-
ica, 44(4):891–909, 2008. ISSN 0005-1098. doi: https://doi.org/10.1016/j.automatica.
2007.09.011. URL https://www.sciencedirect.com/science/article/pii/
S0005109807003950.

MG Sarwar Murshed, Christopher Murphy, Daqing Hou, Nazar Khan, Ganesh Ananthanarayanan,
and Faraz Hussain. Machine learning at the network edge: A survey. ACM Computing Surveys
(CSUR), 54(8):1–37, 2021.

Le-Trung Nguyen, Aël Quélennec, Enzo Tartaglione, Samuel Tardieu, and Van-Tam Nguyen.
Activation map compression through tensor decomposition for deep learning. arXiv preprint
arXiv:2411.06346, 2024.

Le-Trung Nguyen, Aël Quélennec, Van-Tam Nguyen, and Enzo Tartaglione. Beyond low-rank de-
composition: A shortcut approach for efficient on-device learning. In Forty-second International
Conference on Machine Learning, 2025.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In Indian Conference on Computer Vision, Graphics and Image Processing, 2008.

Aël Quélennec, Enzo Tartaglione, Pavlo Mozharovskyi, and Van-Tam Nguyen. Towards on-device
learning on the edge: Ways to select neurons to update under a budget constraint. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 685–694, 2024.

Evani Radiya-Dixit and Xin Wang. How fine can fine-tuning be? learning efficient language models.
In International Conference on Artificial Intelligence and Statistics, pp. 2435–2443. PMLR, 2020.

Charbel Sakr and Brucek Khailany. Espace: Dimensionality reduction of activations for model
compression. arXiv preprint arXiv:2410.05437, 2024.

GW Stewart and JH Miller. Methods of simultaneous iteration for calculating eigenvectors of ma-
trices. Topics in Numerical Analysis II, 2, 1975.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):
279–311, 1966.

11

https://www.sciencedirect.com/science/article/pii/S0005109807003950
https://www.sciencedirect.com/science/article/pii/S0005109807003950

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. Advances in Neural Information Processing Systems, 31, 2018.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient
compression for distributed optimization. Advances in Neural Information Processing Systems,
32, 2019.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset, 2011.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024.

Ou Xinwei, Chen Zhangxin, Zhu Ce, and Liu Yipeng. Low rank optimization for efficient deep
learning: Making a balance between compact architecture and fast training. Journal of Systems
Engineering and Electronics, 2023.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen, Xi-
aopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language
models. arXiv preprint arXiv:2309.14717, 2023.

Jian Xue, Jinyu Li, and Yifan Gong. Restructuring of deep neural network acoustic models with
singular value decomposition. In Interspeech, pp. 2365–2369, 2013.

Yuedong Yang, Hung-Yueh Chiang, Guihong Li, Diana Marculescu, and Radu Marculescu. Efficient
low-rank backpropagation for vision transformer adaptation. Advances in Neural Information
Processing Systems, 36:14725–14736, 2023a.

Yuedong Yang, Guihong Li, and Radu Marculescu. Efficient on-device training via gradient filtering.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3811–3820, 2023b.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd:
Activation-aware singular value decomposition for compressing large language models. arXiv
preprint arXiv:2312.05821, 2023.

Hui Zhang, Shenglong Zhou, Geoffrey Ye Li, and Naihua Xiu. 0/1 deep neural networks via block
coordinate descent. arXiv preprint arXiv:2206.09379, 2022.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303,
2023.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024.

Hengling Zhao, Yipeng Liu, Xiaolin Huang, and Ce Zhu. Semi-tensor product-based tensordecom-
position for neural network compression. arXiv preprint arXiv:2109.15200, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ADDITIONAL THEORETICAL DETAILS

A.1 DETAILS OF BACKPROPAGATION IN LOW-RANK SUBSPACE

In this section, we explain the definition of fLR(.) in Eq. 9. For simplicity, we denote the activation
tensor Ai as I, the output gradient ∂L

∂Wi
as ∆W , and the gradient with respect to the output ∂L

∂Ai+1

as ∆Y .

3D Activation Maps. For each activation map I ∈ RB×N×I , applying ASI with optimal rank
r ∈ R3, resulting in the following approximation:

Ĩb,n,i =
r1∑

r1=1

r2∑
r2=1

r3∑
r3=1

S̃r1,r2,r3Ũ
(1)
b,r1

Ũ (2)
n,r2Ũ

(3)
i,r3

(12)

which transforms the weight gradient calculation (Eq. 9) into:

∆̃Wo,i =

B∑
b=1

N∑
n=1

O∑
o=1

I∑
i=1

Ĩb,n,i∆̃Yb,n,o (13)

=

B∑
b=1

N∑
n=1

O∑
o=1

I∑
i=1

r1∑
r1=1

r2∑
r2=1

r3∑
r3=1

S̃r1,r2,r3Ũ
(1)
b,r1

Ũ (2)
n,r2Ũ

(3)
i,r3

∆̃Yb,n,o (14)

By reordering and grouping terms, we obtain:

Z(1)
n,o,r1 =

B∑
b=1

∆̃Yb,n,oŨ
(1)
b,r1

, (15)

Z(2)
r1,r3,n =

r2∑
r2=1

S̃r1,r2,r3Ũ
(2)
n,r2 , (16)

Z(3)
r1,i,n

=

r3∑
r3=1

Z(2)
r1,r3,nŨ

(3)
i,r3

, (17)

∆̃Wo,i =

N∑
n=1

r1∑
r1=1

Z(1)
n,o,r1Z

(3)
r1,i,n

. (18)

4D Activation Maps. In some transformer-based models, such as SwinT, the activation maps are
4D: I ∈ RB×H×W×I . When applying ASI with optimal rank r ∈ R4, the activation map is
approximated as:

Ĩb,h,w,i =

r1∑
r1=1

r2∑
r2=1

r3∑
r3=1

r4∑
r4=1

S̃r1,r2,r3,r4Ũ
(1)
b,r1

Ũ
(2)
h,r2

Ũ (3)
w,r3Ũ

(4)
i,r4

(19)

Reorganizing the terms yields:

∆̃Wo,i =

B∑
b=1

H∑
h=1

W∑
w=1

O∑
o=1

I∑
i=1

Ĩb,h,w,i∆̃Yb,h,w,o (20)

=

B∑
b=1

H∑
h=1

W∑
w=1

O∑
o=1

I∑
i=1

r1∑
r1=1

r2∑
r2=1

r3∑
r3=1

r4∑
r4=1

S̃r1,r2,r3,r4Ũ
(1)
b,r1

Ũ
(2)
h,r2

Ũ (3)
w,r3Ũ

(4)
i,r4

∆̃Yb,h,w,o

(21)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Again, by reordering and grouping operator, Eq. 21 becomes:

Z(1)
r1,h,w,o =

B∑
b=1

∆̃Yb,h,w,oŨ
(1)
b,r1

, (22)

Z(2)
r1,h,r3,r4

=

r2∑
r2=1

S̃r1,r2,r3,r4Ũ
(2)
h,r2

, (23)

Z(3)
r1,h,r3,o

=

r3∑
r3=1

Z(1)
b,h,w,oŨ

(3)
w,r3 , (24)

Z(4)
r1,h,i,r3

=
∑

Z(2)
r1,h,r3,r4

Ũ
(4)
i,r4

, (25)

∆̃Wo,i =

H∑
h=1

r1∑
r1=1

r3∑
r3=1

Z(3)
r1,h,r3,o

Z(4)
r1,h,i,r3

. (26)

A.2 ADDITIONAL ALGORITHMIC DETAILS

The i-Mode Product Operation. The i-mode product “×i” of a nth-order tensor G ∈
RP1×P2×···×Pn and a matrix B ∈ RQ×Pi is a nth-order tensor R ∈ RP1×···×Pi−1×Q×Pi+1×···×Pn

can be expressed as:

Rp1,...,pi−1,q,pi+1,...,pn
= G ×i Q =

Pi∑
pi=1

gp1,p2,...,pn
bq,pi

. (27)

Subspace Iteration. Here, we present how can activation maps be compressed by the subspace iter-
ation technique of PowerSGD (Vogels et al., 2019). The underlying idea remains the same: a single
step of subspace iteration (Stewart & Miller, 1975) is used to obtain a fast low-rank approximation
of a matrix, which in this case corresponds to an unfolding of the activation maps along their respec-
tive modes. As noted in the original work, however, a single iteration often yields an approximation
that is not sufficiently accurate. To address this, Vogels et al. propose initializing each step with the
low-rank approximation obtained in the previous iteration.
This reuse is particularly well justified in activation maps. While activation maps evolve as the net-
work parameters are updated, the changes across consecutive iterations remain small. This stability
arises from the Lipschitz continuity of activation functions (Virmaux & Scaman, 2018) together with
the incremental nature of parameter updates during optimization. By reusing the previous approxi-
mation, the sequence of activation maps across iterations can be effectively smoothed and reduced
the variance of the low-rank approximation compared to the case without reuse. A formal proof of
this property is provided in (Vogels et al., 2019).

Perplexity for Activation Compression. The perplexity of activation PAi
is defined as the differ-

ence between ∂L
∂Wi

and ∂̃L
∂Wi

to represent the error introduced when performing activation compres-
sion.
Estimating perplexity over compression levels requires HOSVD on four-dimensional activation ten-
sors, which naively induces an exponential number of rank combinations across modes and layers.
To avoid this combinatorial blow-up, the search over ranks is replaced by a set E of explained-
variance thresholds. Let E ∈ (0, 1]E denote the E thresholds evaluated; each threshold yields a
consistent set of truncation ranks for all considered layers. The procedure has two steps:
Step 1. For each threshold εj ∈ E , run a forward pass on a held-out batch. At layer i, cache the orig-
inal activation (Ai)j and its low-rank approximation (Ãi)j , obtained via HOSVD with components
truncated according to εj .
Step 2. During backpropagation, compute the exact gradient (∂L

∂Wi
)j and its approximated counter-

part (∂̃L
∂Wi

)j . The layer-wise perplexity at threshold εj is the Frobenius norm of their difference:

Pi,j =

∥∥∥∥∥∥
(

∂L
∂Wi

)
j

−
(

∂̃L
∂Wi

)
j

∥∥∥∥∥∥
F

. (28)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 ASI for layer i with set of rank ri ∈ Ropt

1: Input:
Activation map A(t)

i ∈ RB×Ni×Oi at epoch t.
Target ranks for 3 modes ri ∈ N3 ∩ [1,min(ai,m, bi,m)], where (ai,m, bi,m) is the shape of

A(t)
i at mode m.

2: Function:
3: Initialize Si = A(t)

i
4: for m = 1 to 3 do
5: Ai,m = unfold A(t)

i along mode m, Ai,m ∈ Rai,m×bi,m

6: if t = 0 then
7: Initialize V ∈ Rbi,m×ri,m from an i.i.d. standard normal distribution.
8: else
9: V = AT

i,mU
(t)
i,m

10: end if
11: U

(t)
i,m = Orthogonalize(Ai,mV)

12: Si = Si ×m U
(t)
i,m

13: end for
14: return Si, U

(t)
i,m with m = 1, . . . , 3

This process is repeated across all layers, resulting in a perplexity matrix P ∈ RN×E and a cor-
responding rank tensor RN×E×3, containing the selected ranks across the 3 modes of activation
tensors for each combination of layer and explained variance threshold.

Rank Selection. Given a memory budget B for activations over the fine-tuned layer set F , the goal
is to choose mode-wise truncation ranks that satisfy the budget while minimizing total perplexity. A
recursive backtracking routine identifies an index set J ∈ N∩ [1, E] and the corresponding optimal
ranks r such that

ri,m = Ri,j,m | j ∈ J ∗, (29)

J ∗ = arg min
J ,

∑|F|
i=1 Mi≤B

 |F|∑
i=1

∑
j∈J

Pi,j

 (30)

where

Mi =

3∏
m=1

ri,m +

3∑
m=1

Di,mri,m (31)

denotes the activation memory induced by the chosen ranks ri for layer i.
Detail of ASI is shown Algorithm 2.

Rank Selection in WASI. For WASI, J ∗ is found such that:

J ∗ = argmin
J

 |F|∑
i=1

(
3∏

m=1

Ri,j,m +

3∑
m=1

Di,mRi,j,m

) (32)

A.3 DETAILS OF COMPUTATIONAL SPEEDUP AND SPACE COMPLEXITY

Computational Speedup. We derive the computational speedup as the ratio between the total
FLOPs required for vanilla training and those required by WASI.

First, the number of FLOPs required to perform forward pass in vanilla training (Eq. 1) is:

Fvanilla ≈ 2BNiIiOi (33)

Meanwhile, the backward pass includes Eq. 2 and Eq. 3, costing:

Bvanilla ≈ 4BNiIiOi (34)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

In contrast, WASI performs the forward pass in a low-rank subspace (Eq. 8) with a complexity of:

FWASI ≈ 2BNiKi(Ii +Oi) (35)

However, this does not account for the overhead from weight subspace decomposition (Algorithm 1)
and ASI decomposition. These add the following costs:

OWSI = 4IiOiKi + 2OiK
2
i , (36)

OASI =

3∑
m=1

(
4dd′ri,m + 2dr2i,m

)
, where d = Di,m, ; d′ = Di \ {d} (37)

The backward pass in WASI follows Eq. 10, Eq. 15, Eq. 16, Eq. 17, and Eq. 18, with a total FLOPs
cost of:

BWASI = 2BNiKi(Ii +Oi)︸ ︷︷ ︸
Eq. 10

+BNiOiri,1 + ri,1ri,2ri,3Ni + ri,1ri,3IiNi + ri,1IiOiNi︸ ︷︷ ︸
Eq. 15 to Eq. 18

(38)

The speedup ratios between vanilla training and WASI are defined as:

Straining =
Fvanilla +Bvanilla

FWASI +OWSI +OASI +BWASI
(39)

Sinference =
Fvanilla

FWASI
(40)

Memory Usage. In vanilla training, the total memory consists of the memory for weights and the
memory for storing activations:

M
(Wi)
vanilla = IiOi (41)

M
(Ai)
vanilla = BNiIi (42)

In WASI, these become:

M
(Wi)
WASI = Ki(Ii +Oi) (43)

M
(Ai)
WASI =

3∏
m=1

ri,m +

3∑
m=1

Di,mri,m (44)

Thus, the memory reduction ratios between vanilla and WASI are:

Ctraining =
M

(Wi)
vanilla +M

(Ai)
vanilla

M
(Wi)
WASI +M

(Ai)
WASI

(45)

Cinference =
M

(Wi)
vanilla

M
(Wi)
WASI

(46)

Similar ratios can be derived for the case of 4D activation maps.

A.4 LIMITATIONS OF SVD-LLM

We analyze the 3D activation map Ai ∈ RB×Ni×Ii , as considered throughout the paper. The core
idea of SVD-LLM is to incorporate “Truncation-aware Data Whitening” mechanism that enables a
direct relationship between singular values and the resulting compression loss.

To do this, SVD-LLM whitens the activation using a transformation of the form S−1
i Xi, where

Xi ∈ RNi×Ii is obtained by summing Ai over the batch dimension. The goal is to make the trans-
formed activation orthonormal, i.e., (S−1

i Xi)(S
−1
i Xi)

T = I . Here, Si is computed via Cholesky
decomposition on X .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

SVD is then applied to the transformed weight matrix WiSi, resulting in Ui, Σi, and Vi. Based on
the optimal rank Ki found by a desired compression ratio, the smallest singular values in Σi are
truncated (denoted by Σi,(Ki)) to obtain two low-ranking matrices:

W ′(u)
i = Ui,(Ki)Σ

1/2
i,(Ki)

, W ′(v)
i = Σ

1/2
i,(Ki)

V T
i,(Ki)

S−1
i (47)

and the final compressed matrix is given by:

W̃i = W ′(u)
i W ′(v)

i = Ui,(Ki)Σi,(Ki)V
T
i,(Ki)

S−1
i . (48)

However, a current limitation of SVD-LLM is that “Truncation-aware Data Whitening” is only
defined for 3D activation maps. It does not generalize to 4D activations, which are common in
certain architectures such as SwinT. As a result, SVD-LLM cannot be directly applied to models
that rely on 4D activation structures.

A.5 OTHER RESEARCH DIRECTIONS

Model compression and acceleration have become central topics in deep learning research, with
efforts ranging from hardware improvements to algorithmic techniques. On the algorithmic side, the
main directions include compact model design, quantization, sparsification, knowledge distillation,
and low-rank decomposition (Cheng et al., 2017; Deng et al., 2020). The shared goal of these
approaches is to shrink the size of neural networks while keeping their accuracy intact. Among
them, low-rank decomposition has gained particular attention because it combines solid theoretical
foundations with practical advantages for deployment (Xinwei et al., 2023). Originally developed in
systems theory and signal processing (Markovsky, 2008), low-rank methods were first used in deep
learning to compress fully connected layers through singular value decomposition (SVD) (Xue et al.,
2013). Since then, more advanced forms such as generalized Kronecker product decomposition
(GKPD) (Hameed et al., 2022), semi-tensor products (STP) (Zhao et al., 2021), and applications to
vision transformers (Yang et al., 2023a) have pushed the field forward. Progress is largely measured
in terms of compression ratio, inference speed, and power efficiency, with the challenge being to
achieve these gains while minimizing performance loss.

Note that the research directions mentioned above are orthogonal to each other and can be combined
to leverage their respective strengths.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 DETAILS OF EXPERIMENTAL SETUP

To ensure a fair comparison, we follow the same experimental setup as described in (Nguyen et al.,
2024). The key details are as follows:

General hyperparameters. All models are first pretrained on ImageNet-1K, then fine-tuned on a
different downstream dataset using an 80%− 20% train-validation split in 50 epochs. We use cross-
entropy loss and optimize the models with SGD. The initial learning rate is set to 0.05 and decayed
using a cosine annealing schedule. Momentum is set to 0, and weight decay is fixed at 1×10−4. We
apply L2 gradient clipping with a threshold of 2.0. For data augmentation, we use random resizing,
horizontal flipping, normalization, and a mini-batch size of 128.

ASI. We follow the same strategy as proposed in (Nguyen et al., 2025). Specifically, in our main
experiments, we apply AMC with a range of ε values: 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. For each
value of ε, we record the peak activation memory consumption of AMC and use it as the activation
memory budget for ASI. The perplexity of ASI is also measured based on these ε values.

SVD-LLM. Unlike WASI, SVD-LLM compresses models based on a fixed compression ratio. To
compare fairly, we compute the compression ratios achieved by WASI at each ε and use the same
ratios for SVD-LLM. We also adopt the same LoRA adapter settings as used in their original paper:
α = 16 and rank = 8.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

102 103

Training Mem (MB)

25

50

75

100

A
cc

u
ra

cy
(%

)

102

Inference Mem (MB)

25

50

75

100

1012

Training FLOPs

25

50

75

100

1011

Inference FLOPs

25

50

75

100

Pets Flowers CUB CIFAR-10 CIFAR-100Pets Flowers CUB CIFAR-10 CIFAR-100Pets Flowers CUB CIFAR-10 CIFAR-100Pets Flowers CUB CIFAR-10 CIFAR-100

Figure 10: WASI performance when fine-tuning ViT across multiple datasets. In each plot, markers
from left to right represent increasing values of ε; the rightmost marker corresponds to vanilla train-
ing.

102 103

Training Mem (MB)

95

96

97

98

A
cc

u
ra

cy
(%

)

2× 101 3× 101 4× 101 6× 101

Inference Mem (MB)

95

96

97

98

10126× 1011 2× 1012 3× 1012

Training FLOPs

95

96

97

98

2× 1011 3× 10114× 1011 6× 1011

Inference FLOPs

95

96

97

98

WASI ASI VanillaWASI ASI VanillaWASI ASI VanillaWASI ASI Vanilla

Figure 11: Comparison of different methods when fine-tuning SwinT on CIFAR-10. For each plot,
markers from left to right correspond to increasing values of ε.

B.2 VARIANCE ACROSS DIFFERENT RANDOM SEEDS

40 60 80 100 120

Training Mem (MB)

20

30

40

50

60

70

80

T
op

1
V

al
id

at
io

n
A

cc
(%

)

Mean Accuracy ± Std

Figure 9: WASI performance on the with differ-
ent ε values, showing mean accuracy and memory
usage across three random seeds. Error bars rep-
resent standard deviation.

Fig. 9 presents the results of fine-tuning a ViT
model pretrained on ImageNet-1K using WASI
on Pets dataset. We test different values of
ε from {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, with each
marker on the plot (from left to right) corre-
sponding to one of these settings. For each
ε, we report the average accuracy and peak
training memory usage over three random seeds
(233, 234, and 235), with error bars represent-
ing standard deviation.
As expected, increasing ε leads to higher ac-
curacy and greater memory usage, reflecting
the trade-off between compression and per-
formance. Importantly, the variance across
seeds is minimal, which is reasonable given
that WASI mainly uses deterministic compo-
nents such as SVD, Gram-Schmidt orthogonal-
ization, and matrix multiplications. Therefore, we fix the random seed to 233 in all other experi-
ments.

B.3 ADDITIONAL RESULTS

Additional Transformer-based Results. We conduct experiments similar to those in Sec. 4.3.
Fig. 10 and Fig. 11 show consistent trends with our earlier findings. Note that due to the architec-
tural design of SwinT, which generates 4-dimensional activation maps, the “Truncation-Aware Data
Whitening” mechanism used in SVD-LLM is not applicable (see Appendix. A.4). Therefore, this
method is excluded from the experiments in Fig. 11.
The accuracy of WASI improves steadily as ε increases, demonstrating the effectiveness of control-
ling compression error through the explained variance threshold. Overall, WASI achieves up to one

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 1: Performance of WASI with different ε values on all linear layers (including attention blocks
and MLP blocks) of ViT using the CIFAR-10 dataset. Note that ε = 1.0 corresponds to vanilla
training.

ε Train Mem (MB) Infer Mem (MB) Train FLOPs Infer FLOPs Acc. (%)
0.4 39.39 32.43 3.92×1011 1.08×1011 68.99
0.5 54.02 47.06 4.99×1011 1.57×1011 78.53
0.6 72.28 65.32 6.33×1011 2.19×1011 85.50
0.7 95.70 88.74 8.06×1011 2.97×1011 90.52
0.8 127.85 120.89 1.04×1012 4.05×1011 94.07
0.9 179.61 172.65 1.43×1012 5.79×1011 96.24
1.0 2349.00 324.00 3.26×1012 1.09×1012 97.32

order of magnitude reduction in training memory when fine-tuning ViT, with similarly favorable
results observed in terms of computational cost and inference memory.

Weight Mem (MB)
38

40

42

44

46

48

A
cc

u
ra

cy
(%

)

1

2

3

4

1
2

3

4

1
2

3

4

1

2

3

4

Vanilla training

ε = 0.8

ε = 0.9

ε = 0.75

Figure 12: Performance of WSI when applied to
fine-tune MCUNet (pretrained on ImageNet-1K)
on Pets dataset. The number next to each marker
indicates how many convolutional layers WSI was
applied to.

WSI on Convolutional Neural Network. In
this experiment, we extend the application
scope of WSI to convolutional neural networks.
Specifically, we use MCUNet (Lin et al., 2022),
pretrained on ImageNet-1K, with Pets dataset
as the downstream task. WSI is applied to fine-
tune the last 1 to 4 convolutional layers of the
model. When ε = 0.9, applying WSI unex-
pectedly increases the weight memory. This
is due to the fact that the optimal rank found
is too high, resulting in principal components
whose total number of elements exceeds that
of the original weight tensor. In contrast, for
smaller values of ε (0.75 and 0.8), applying
WSI to more layers leads to reduced memory
usage for the weights, as expected, at the cost
of some accuracy degradation. However, this
trade-off is not worthwhile, as the memory sav-
ings are marginal and the convolutional layers
are already highly compact by design.

Extending WASI to multi-head attention projections. For a fair comparison with state-of-the-art
baselines, we relied on their efficient implementations and applied WASI only to the linear layers in
MLP blocks for the main experiments. To demonstrate the broader applicability of WASI, we then
extended the experiments to attention blocks as well. The setup was identical to that described in
Fig. 5, and the results are summarized in Tab. 1.

Numerical On-device Latency. Tab. 2 reports the latency results of WASI, ASI, and vanilla training
when fine-tuning ViT on a Raspberry Pi 5. We used the same setup as in Sec. 4.4. As the compres-
sion rank increases (i.e., larger ε), ASI becomes progressively slower, eventually even slower than
vanilla training. In contrast, WASI consistently maintains its speed. These findings are further
confirmed by Fig. 5 and Fig. 10.

C LIMITATIONS

Our goal is to enable the training of transformer models on edge devices. So far, our experiments
have primarily focused on vision tasks, which allows for direct comparison with existing work in
this domain. While our experiments with TinyLlama demonstrate the potential of WASI for LLMs
(Fig. 7), current hardware limitations prevent us from evaluating larger-scale models. In future work,
we plan to extend our approach to a broader range of tasks, with a particular emphasis on LLMs.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 2: Comparison of inference and training time (s) when applying WASI, ASI, and vanilla
training to fine-tune ViT on Raspberry Pi 5 at different ε values.

ε
WASI ASI Vanilla

Infer. Train. Infer. Train. Infer. Train.
0.4 3.15 8.49 7.69 18.35 – –
0.5 3.35 9.54 7.76 18.38 – –
0.6 3.56 10.21 7.94 19.22 – –
0.7 3.88 11.61 7.85 21.30 – –
0.8 4.49 13.75 7.71 22.57 – –
0.9 5.58 16.57 7.91 25.52 – –
N/A – – – – 7.87 23.87

D LLM USAGE

We used LLM for grammar editing. All research ideas and the article structure were conceived and
developed by the authors.

20

	Introduction
	Related Works
	Method
	Bottlenecks in Training and Inference
	Activation Subspace Iteration
	Weight - Activation Subspace Iteration
	Memory Efficiency and Computational Complexity Analysis

	Experiments
	Experimental Setup
	Preliminary Results
	Main Results
	On-device Latency

	Conclusion
	Additional Theoretical Details
	Details of Backpropagation in Low-rank Subspace
	Additional Algorithmic Details
	Details of Computational Speedup and Space Complexity
	Limitations of SVD-LLM
	Other Research Directions

	Additional Experimental Details
	Details of Experimental Setup
	Variance Across Different Random Seeds
	Additional Results

	Limitations
	LLM Usage

