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ABSTRACT

Preference alignment is pivotal for empowering large language models (LLMs) to
generate helpful and harmless responses. However, the performance of preference
alignment is highly sensitive to the prevalent noise in the preference data. Recent
efforts for this problem either marginally alleviate the impact of noise without the
ability to actually reduce its presence, or rely on costly teacher LLMs prone to
reward misgeneralization. To address these challenges, we propose the RObust
Preference Optimization (ROPO) framework, a novel iterative alignment approach
that integrates noise-tolerance and filtering of noisy samples without the aid of
external models. Specifically, ROPO first formulates the training process with
adaptive noise reduction as an optimization problem, which can be efficiently
solved in an iterative paradigm. Then, to enhance this iterative solving process
with noise-tolerance and noise-identification capabilities, we derive a robust loss
that suppresses the gradients from samples with high uncertainty. We demonstrate
both empirically and theoretically that the derived loss is key to the noise-tolerance
and effective filtering of noisy samples. Furthermore, inspired by our derived loss,
we propose a robustness-guided rejection sampling technique to compensate for
the potential important information in discarded queries. Experiments on three
widely-used datasets of dialogue and post-summarization demonstrate that ROPO
significantly outperforms existing preference alignment methods in the practical
noise setting and under artificial random symmetric noise, with its advantage
increasing as the noise rate increases.

1 INTRODUCTION

Recent research indicates that the significant achievements of Large Language Models (LLMs) in
understanding various queries and providing helpful responses [1]] rely on the preference alignment,
which aligns LLMs’ responses with human values and expectations [63;6;28]]. A typical preference
alignment approach is Reinforcement Learning from Human Feedback (RLHF) [7;[76], which first
trains a reward model to fit human preferences and subsequently employs an RL algorithm [44] to
guide LLMs to generate high-reward responses. However, due to the potential risks of misgeneralized
reward modeling [7] and the unstable training [29} 45] of RLHF, various ranking-based methods
represented by Direct Preference Optimization (DPO) [42] bypass the explicit reward modeling stage
and eschew RL techniques via directly optimizing the implicit reward margins between preferred and
dis-preferred responses [69; 59;47]]. Owing to the stable and computationally lightweight supervised
learning paradigm, ranking-based methods have emerged as competitive alternatives to RLHF, thus
drawing increasing attention recently [45;163]].

Despite their impressive performance on preference alignment, ranking-based methods heavily rely
on high-quality preference data, which is costly and limited in practice [215 |8]. First, the noise
(e.g., incorrect or ambiguous preferences) in the preference data is unavoidable [S8]]. Many recent
studies have observed the presence of preference noise at levels of 20%-40% across various scenarios
(16512351745 1555 1115725 136], whether the annotators are humans or LLMs. Second, the performance of
LLMs will significantly deteriorate when trained with noisy preferences [[10;|16; 23]]. For instance, a
10% increase in the noise rate may lead to a 30% decrease in the performance of DPO in terms of win
rate [[16]. Therefore, it is highly desirable to develop noise-robust preference alignment techniques.
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To address these problems, some recent studies have explored the label smoothing [[10; 135] and
regularization [16]] techniques to alleviate the impact of preference noise. However, these methods
can only marginally mitigate the side effects of noise, as the noisy samples are still involved in the
training phase. Besides, [16]] also attempts to filter out noisy samples but requires another teacher
LLM (i.e., a reward model serving as the proxy of the Bradley-Terry model [S]) to assign confidence
values to samples, which introduces additional computational costs. Moreover, the teacher LLM may
not necessarily provide the correct preference direction on some specific domain [7], and this method
is shown to be ineffective at reducing random symmetric noise [16].

In this paper, we propose the RObust Preference Optimization (ROPO) framework, an iterative
alignment approach that unifies noise-tolerance and filtering of noisy samples without the aid of
external models. We first provide a general formulation of learning from noisy preference data
as a constrained optimization problem, where we dynamically assign a quality-aware weight for
each sample (see Section[3.1). Then, we solve the problem through a provably convergent iterative
paradigm, consisting of two alternating steps: noise-tolerant model training and noisy sample filtering.
The main contributions of our method are as follows.

* We propose a robust preference alignment framework that unifies noise-tolerance and filtering of
noisy samples. Without the need for any external LLM, the model’s robustness and discrimination
ability against noisy samples gradually improve as the alternating iterative training proceeds.

* We derive a robust loss function by suppressing the gradients of samples with high uncertainty.
The loss contains a noise-aware term, which not only prevents the model from over-fitting to noisy
samples but also facilitates identifying noisy samples versus clean samplesﬂ (see Section 3.2).

* We propose a robustness-guided rejection sampling technique to compensate for the potential
important information in discarded queries (see Section[3.3)), which improves the data quality and
thus leads to further improvement in alignment performance.

* We conduct extensive experiments on three widely-used datasets (i.e., UltraFeedback Binarized,
Alpaca Comparison, and TL;DR) with Mistral-7B, Llama-2-7B, Llama-3-8B, Llama-2-13B, and
Llama-3-70B. The evaluation results on AlpacaEval, Arena-Hard, and MT-Bench show that the
performance of ROPO remains stable in both practical and artificial noisy scenarios.

2 PRELIMINARIES AND PROBLEM SETTINGS

Given a query X = [z1,...,%y], an LLM 7y (with parameters #) generates a response y =
[y1,-..,Ym], where the tokens (z;);_; and (y;)jL; come from a predefined vocabulary, in an
autoregressive paradigm. Specifically, the model samples y; from the conditional probability distribu-
tion my (- | X, y1:j—1), where y1.o isnull and y1.;—1 = [y1,...,y;j—1] for j = 2,..., m. Finally, we

m

can decompose the conditional probability 7y (y | x) into m(y | x) = [[;2; mo(y; | X, y1:5-1)-

2.1 ALIGNMENT OF LARGE LANGUAGE MODELS

Most of the existing LLM alignment frameworks first fine-tune a pre-trained model on high-quality
datasets of downstream tasks (e.g., dialogue and post-summarization) via maximum likelihood, in
order to teach the model to respond to queries. We denote the supervised fine-tuned model my¢. Then,
we train the model 7y (initialized by 74 ) based on human preference data. Specifically, a preference
sample contains a query x, responses y; and ys, and a ranking label c provided by annotators. We
use ¢ = 0 to indicate that y; is preferred to yo (denoted y; > y2 | x) and use ¢ = 1 to indicate the
opposite. We assume that the preference data (x,y1,yz2, ¢) is sampled from a distribution D.

A popular formulation of the generation of preferences is the Bradley-Terry (BT) model [3]], i.e.,
P*(y1 = y2 | x) = o(r*(y1,%x) — r*(y2,x)), where o is the sigmoid function, and r* is a latent
and inaccessible reward function. The key to existing preference learning methods is to explicitly or
implicitly approximate 7* or P*. RLHF [37] approximates r* by training a parameterized reward
model r4 via maximum likelihood on preference data, then uses the well-trained 74 to provide signals
for the reinforcement learning of my.

'In Section we demonstrate that the cross-entropy loss (i.e., DPO loss) cannot distinguish between noisy
samples and clean samples in the context of preference learning, even though it is widely used for learning from
noisy data in other scenarios such as image classification [20;30].
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Figure 1: Framework of ROPO and a comparison between the gradient weighting strategies of ROPO
and DPO [42]]. Left: ROPO alternates between noise-tolerant model training and noisy sample
filtering and integrates the online rejection sampling paradigm to further improve the data quality.
Please see Appendix [A]for the detailed description and pseudocode of the framework. Right: Unlike
Wdpo, Which increases with respect to A = #(y2,X) — #(y1,X), Wropo decreases when A is large.
Given a noisy sample (x,y1,y2,y1 = Y2 | X), whose preference label contradicts the comparison of
implicit rewards, ROPO suppresses its gradient. A larger o implies a stronger suppressive effect.

Due to the complexity and instability of RLHF, some recent works [42; [2;|59] directly learn human
preferences from offline collected response pairs by optimizing the implicit reward margins between
preferred and dis-preferred responses. For example, the objectives of DPO [42] is given by

mo(y1 | x) mo(y2 | x) ), )

Lipo = —1lo o’<ﬁlo ——F—— —flo
AN N CAES Tt (72 [ %)
where y1 > y» | %, 0 is a hyperparameter, and 7. is a fixed reference model (usually the SFT
model). Ranking-based methods are more computationally lightweight and stable than RLHF, thus
drawing increasing attention recently. Thus, we mainly focus on ranking-based methods in this paper.

2.2 PREFERENCE LEARNING WITH NOISY DATA

Preferences are unavoidably noisy due to the cognitive bias among annotators (see Appendix [B]for
detailed discussion). Thus, we have no access to the clean dataset D = {(x(¥), ygi), ygi), NN~
D and can only obtain a noisy dataset D, = {(x®,y{",y{? é)}¥ | ~ D, where &) = ¢
with probability 1 — 7 and ¢(9) = 1 — ¢() with probability 7.

Remark. (1) We assume the random symmetric noise in our theoretical analysis because it is the
standard assumption for learning from noisy data [32}[70] and existing research on LLM alignment
has indicated the challenges posed by this kind of noise [16]. Besides, in the context of preference
alignment, the symmetric and asymmetric (or class-conditional) noise is equivalent, as the ground
truth label is changed if we swap the positions of y; and y». (2) In addition to this artificially
introduced random noise, our experiments also include four types of practical noise settings, covering
a variety of unavoidable noises from human and LLM annotations. For more details, please refer to

Section[.T]and Appendix [D.3]

3 ROBUST PREFERENCE OPTIMIZATION

We propose RObust Preference Optimization (ROPO), an iterative preference alignment framework.
ROPO alternates between noise-tolerant model training and noisy sample filtering, as shown in Figure
[l which is mathematically equivalent to iteratively solving a constrained optimization problem
(Section [3.1). In the model training step, we introduce a robust loss function by suppressing the
gradients of samples with high uncertainty, which prevents the model from over-fitting to the noisy
preference. In the sample filtering step, we filter out noisy samples based on the magnitude of their
training losses. The key to ROPO is that our proposed loss contains a noise-aware term, which not
only features noise-tolerance, but also facilitates identifying noisy samples versus clean samples
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(Section[3.2). Further, we propose a robustness-guided rejection sampling technique to compensate
for the potential important information in discarded queries and thus improve the data quality (Section
[3.3). For detailed proofs of the theorems in this section, please refer to Appendix [E]

3.1 A GENERAL FORMULATION

Given N preference samples { (x(*), y( ( ), e (D)}N |, we hope that the weights of noisy samples in

the preference optimization are smaller than those of others, thereby reducing the impact of noise on
the alignment performance. Without prior knowledge of which samples are noisy, a natural approach
would be to assign a dynamic quality-aware weight to each sample and constrain the sum of these
weights to a constant, which can also prevent the weights from tending toward zero. Therefore, we
formulate learning from noisy preference samples as the following constrained optimization problem:

T 2 (0 () a0 ) 2
I;}gl Z w; ( X 7 yl bl y2 7 y 7o ) ( )
st. €0, wel0,1],i= N, Zwl: 2 |(1-p)N|,
where w1, . .., wy are dynamic weights, © is compact, and p € [0, 1] is the proportion of the samples

we aim to filter out. Please note that we minimize Problem (2) with respect to both 6 and w, resulting
in a training process that learns the weights adaptively. Hence, we expect that Problem will
gradually lead to much smaller weights for noisy samples than those for others. To achieve this, we
first analyze the properties of the optimal solution to Problem (2). As shown in Theorem[3.1] Problem
admits an optimal solution and the elements in its minimizer w* are either O or 1.

Theorem 3.1. Assume that ((0) is continuous on a compact parameter space ©, then Problem
admits an optimal solution (0*,w*). Suppose that { (9*;x(i1 (“),yé v *) < e <

1 (9*;X(iN),y§iN),y§iN)77rg*>, then wj, =1for1 <k < N,and w; =0 for N, <k < N.

We solve Problem (2)) in an iterative paradigm, which consists of two alternating steps: model training
and sample filtering. In the step of model training, we fix w and learn model parameters 6. In the
step of sample filtering, we fix 6 and assign weights wq, ..., wy for samples based on their loss
values. Because the objective in Problem (2 is non-negative and its value does not increase during
the iteration, the iterative solving process is guaranteed to converge.

3.2 A NOISE-TOLERANT LOSS

To guarantee the effectiveness of the iterative solving process within the preference alignment
framework, we delve into identifying additional conditions that should be imposed on ¢. Here, we
discuss the properties of ¢ in the context of minimizing its expected risks under distributions of noisy
and clean preference data, i.e., finding the optimal solutions 6" and 6}, by solving

0" = arg min E(xm ,ya,c)~D M(QQ X,¥1,¥Y2,6, 779)]7 3
0coO
0; - arggenelin ]E(xah ,¥2,6)~Dy [6(9; X, ¥1,¥2: 6, 71'9)]. )

Requirement 1: Noise-tolerance. It cannot be guaranteed that the sample filtering stage will
eliminate all noise samples (e.g., when p is less than the actual noise proportion in the preference
data). Consequently, it is crucial that the presence of noisy preferences does not significantly impact
the model training stage, i.e., £ is noise-tolerant.

Requirement 2: Distinguishable losses for clean and noisy samples. As noisy samples generally
exhibit larger loss values [30], in the sample filtering step, we filter out the N — N, samples with the
largest losses. It is noteworthy that this step takes place midway through training, hence ¢ needs to
exhibit distinguishable loss values for clean and noisy samples prior to the convergence of the model.

As DPO is one of the most popular preference alignment methods, it is natural for us to explore
the effectiveness of the DPO loss {4, (as shown in Eq. ) within our iterative solving process.
However, our findings show that {4, does not satisfy the aforementioned requirements.
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Finding 1: DPO is not noise-tolerant.
Theorem 3.2. Assume n < % Consider Lapo and the corresponding minimizer 8}, to Problem @)
Given a query x and responses (y1,y2), the relationship between the preference probability given by

the optimal model, i.e., Py- (y1 > y2 | x), and that given by the BT model, i.e., P*(y1 = y2 | X) is
Pos(y1 = y2 | x) = P*(y1 = y2 [ x) + (1 = 2P"(y1 = y2 | x)) -, (5)

hence we have | Py (y1 = y2 | X) — Po-(y1 = ya | X)| = 20| P*(y1 > y2 [ x) = 1/2].

As shown in Theorem the impact of noise on the optimal solution corresponding to £qy,, increases

as the noise rate increases. Specifically, the difference between the optimal probabilities under noisy

and clean distributions, i.e., }Pg; (y1 > y2 | x) = Py« (y1 = y2 | x)|, is proportional to the label

flipping probability 7.

Finding 2: DPO faces challenges in distinguishing between noisy and clean samples.

Theorem 3.3. Assume n < 1 Consider Lap, and the corresponding minimizer 0;, to Problem @)

For samples (x(!) y( ) (1) e = M)y gnd (x(2),y(2) (2) @ =1 — @), suppose that 0 is

not 0y, but satisfies .IE?X ‘Pg <y§) - ygi) | x(i)) — Py: (y(l) - y | x( )) ‘ < 6, then if we want

to ensure that Lqp, ( X ( M y(l),yél), c(1 )) < Lgpo | x ( ) y (2) e ), 0 must satisfy
1-2

§< 20 (P*(c(l)) + PH(c®) - 1) . ©6)
As shown in Theorem the distance between my and Tpx We need for {45, to differentiate
between clean and noisy samples decreases as the BT probability approaches 50% and the noise rate
increases. Specifically, Eq. (@) shows that the upper bound of ¢ is proportional to (1 — 217)/2 and
(P*(cW) —1/2+ P*(c®) -1/ 2) Due to the intrinsic diversity and stochastic nature of human
preferences, the BT distribution is usually not a “hard” distribution with probabilities close to O or
1, but rather a “soft” one [52;51]. This brings difficulties to unconverged DPO-trained model in
identifying noisy samples. For example, when 1) = 30% and P* (c(V)) = P* (¢(?) = 60%, we need
d < 4%, which is a challenging requirement for a model that has not yet converged.

The gradient weighting strategy of DPO may amplify the impact of noise. Given a sample
(X,¥1,¥2, ¢ = 0), according to [42], the gradient of £ap, in Eq. (1)) is given by
mo(y1 | )

veﬂdpo = —BU(T(Y27X) — T(YMX)) VIOg We(}’z | X)7

Wdpo (xvyl 7y2)

@)

where 7(y,x) = (log ”9((3;,‘7)2) is the implicit reward function of DPO. Intuitively, the greater the

discrepancy between the reward function’s comparison of y; and y» and the label y; > y2 | x, the
greater the weight wapo (X, y1,y2) of the DPO gradient becomes. This aggressive weighting strategy
can be risky if the label is incorrect, as the model may imply a high uncertainty about the sample by
giving a higher reward to y» than to y1, increasing wqp, and thus amplifying the impact of the noise.

Conservative gradient weighting strategy. A simple and straightforward idea is that when the
implicit reward margin A(y2,y1,X) 2 7#(y2,X) — 7(y1, X) is excessively positive, we should assign
a conservative weight to the gradient. Based on this idea, we propose the conservative gradient weight

4o
TR ~0(Ay2,y1,%)) - (1 + aoc(=A(y2,y1,%))), @
where o > 2 controls the conservatism of weighting and 4a/(1 + «)? is used to normalize the
maximum value of w,p, (see Appendix |[E.9). As illustrated in Figure [I| unlike the monotonous
increase of Wapo, Wropo decreases when A(ys2,y1, %) is large. Then, the corresponding loss function
can be decomposed as

Wropo =

/v i N )
ropo = 6 ropo (1+a) na (1+a)2 dpo>

2As ¢V and ¢ are clean labels, we have P*(c™V) > 1/2 and P*(¢'?) > 1/2.
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Figure 2: Loss distributions of Llama-2-7B trained with DPO and ROPO at different training epochs
(epl and ep2) on TL;DR. We denote ~y as the proportion of noisy samples in the 20% of samples that
are filtered out. Larger v indicates better discrimination between clean and noisy samples.

where {,,, = o (ﬁ log % — Blog %) and we omit the constant term of the primitive

function (see Appendix for details). The introduced loss consists of £45,, and a noise-aware term
£, whose weight is o times that of £4,,,. We claim that £,,, has the following advantages.

Advantage 1: ¢, , is noise-tolerant.

Theorem 3.4. Assume that n < % Consider ., and the corresponding minimizer 0;‘; to Problem (EI)

Given a query x and responses (y1,y2), the relationship between the preference probability given by
the optimal model, i.e., Py- (y1 > y2 | x), and that given by the BT model, i.e., P*(y1 = y2 | X) is

1

Pry(yi = v |30 =1 (Pl -2 10> 3 ). (10)

hence we have Ppx(y1 = y2 | x) = Pp«(y1 = y2 | x).

As shown in Theorem [3.4] contrary to the conclusion in Theorem [3.2] that the optimal solution
corresponding to £qp,, is affected by the noise, the optimal preference probability corresponding to £;,,,
i.e., Py« (y1 > y2 | x), remains unchanged when the label flipping probability n < 1/2. Specifically,

Eq. (10) shows that Py (y1 > y2 | x) is an indicator function of P*(y1 > y2 [ x) > 1/2.
Advantage 2: /., can distinguish noisy samples from clean ones.

Theorem 3.5. Assume that n < % Consider 0., and the corresponding minimizer 9;‘; to Problem (@)
For samples (xV), ygl), ygl), ¢V = W)Y and (x?), y§2), yg2), ) =1 — ), suppose that 0 is

< 6, then if we want

not 0, but satisfies max ‘Pg (ygi) - ygi) | x(i)) - Py (ygi) - yg) | x(i))

to ensure that £, (x(l), ygl), yél), 6(1)> < lpa (x(2), y§2), y;Q), 6(2)), we must have § < %

As shown in Theorem contrary to the challenging requirement /g, places on an unconverged
model in Theorem [3.3] we can expect that £,,, yields a larger value for noisy samples than for others
as long as the difference between the preference probability given by an unconverged model and that
of the optimal model is less than 50%. We verify our theoretical analysis in experiments, as shown in
Figure 2| For details about the experiments, please refer to Section

Discussion. 7, , is capable of improving noise-tolerance and separating noisy samples from clean
samples. However, compared with ¢,,,, £qp,, leads to a “softer” optimal preference probability, which
could potentially avoid discrimination against minorities by LLMs. Besides, the aggressive weighting
strategy may be useful for clean preference datasets (although they are rare). Thus, it is considered
necessary to incorporate a minor component of {4, into the final loss. From this perspective, the
hyperparameter o plays an important role in trading-off between aggressive (¢4p,) and conservative
(¢na) gradient weighting strategy. Given that the weight of ¢,,, is o > 2 times greater than that of
L4po (in our experiments and ablations, o > 6), £,,, dominates the optimization process. Thus, the
incorporation of {4p, does not hurt the noise-tolerance and noise filtering too much.
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3.3 ROBUSTNESS-GUIDED REJECTION SAMPLING

The sample filtering step effectively reduces the proportion of noise but may also discard some
important queries. For example, a query designed to eliminate the occupational discrimination in
LLMs may be filtered out because the ranking label of its associated responses is incorrect. Thus,
inspired by the sample distinguishing ability of our proposed ¢,,p,,, We propose a rejection sampling
technique to compensate for the essential but discarded information and thus improve the robustness
of our ROPO framework. Specifically, we sample K responses yi, ...,y k to x for each sample
(x,¥1,y2) that is filtered out and generate 2K candidate samples

{(X7 ylﬁ?lﬁYl - yk | X)}le U {(X7 y2’ykaY2 - yk | X)}szl'

Then, we compute their loss values and add the sample with the minimum loss to the dataset. Note
that we treat the model’s responses as dis-preferred ones compared to the original responses, which
suppresses the potential unsatisfactory or even harmful information in the model’s outputs.

Discussion. The rejection sampling is a popular approach of data augmentation to improve the data
quality and performance in existing preference alignment methods [12f 13151655 167; 60]]. Specifically,
[12] ranks newly-collected responses based on their rewards and selects the highest ranked one to
add to the dataset. To address the issue of the excessively high rejection rate and thus improve
the effectiveness of rejection sampling, [[65] proposes a multi-step sampling technique, which also
requires an external reward model. Besides, [60] and [67] consider rejection sampling for the
multi-objective preference alignment, where [[60] projects multi-objective reward vectors onto one
dimension and then selects samples based on the scalar rewards, while [67] augments samples near the
Pareto front of multi-dimensional rewards, leading to a strong multi-objective alignment performance.
Compared to the aforementioned methods, which all rely on rewards provided by external models, our
robustness-guided rejection sampling technique selects new samples based on loss values that reflect
the quality of the samples. Moreover, our technique benefits from being independent of external
LLMs, thus leading to computational and memory efficiency.

3.4 ROPO FRAMEWORK AND COMPLEXITY ANALYSIS

For the detailed description, pseudocode, and complexity analysis of the overall ROPO framework,
please refer to Appendix |A|due to space limitations in the main text.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Tasks and Datasets. We focus on two dialogue datasets (i.e., UltraFeedback Binarizecﬂ (UFB) and
Alpaca Comparison [39]) and one post-summarization dataset (i.e., Reddit TL;DR [S7; [50]]). For
details about the datasets, please refer to[C.1}

Noise Settings. As stated in Section [} the original datasets unavoidably contain noise introduced by
annotators (see Appendix [D.3|for details about the two related practical noise settings). To further
explore the performance of ROPO and baselines under noise, we randomly alter preference labels at
different proportions (20% and 40%) within the three datasets to produce more challenging symmetric
noise [16]. Besides, in Appendices and [D.3.2] we supplement experiments in another two
practical settings, where the noise comes from annotators’ trust in larger models over smaller models
and LLM preference comparisons. Please refer to the supplementary material for more details.

Baselines, Models, and Hyperparameters. Our baselines are DPO [42], [PO [2], and two approaches
that use the label smoothing technique to alleviate the impact of noise, i.e., rDPO [10] and cDPO
[35]. Besides, we supplement experiments on reward modeling in Appendix

We use Mistral-7B [[19] and Llama-2-7B [55]] as base models for all baselines and datasets in the
main text. For experiments on Llama-2-13B and Llama-3-70B, please refer to Appendix On
UFB, we use Zephyr-7B-SFT-3 [56]] as the SFT model for experiments with Mistral-7B, and adopt
the result of Zephyr-7B-5 [S6] on AlpacaEval (90.60) as the performance of DPO under no artificial

*https://huggingface.co/datasets/HuggingFaceH4 /ultrafeedback_binarized
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Table 1: Win rates (%) of different methods vs SFT targets under different proportions (i.e., 0,
20%, and 40%) of artificial noise, evaluated by GPT-4. The bold font indicates the best result and
an underline indicates the second-best result. Please note that 0% represents no artificial noise,
which does not mean that the dataset is clean.

Dataset UFB Alpaca Comparison TL;DR
Model Method | 0% 20%  40% | 0% 20%  40% | 0% 20%  40%

DPO 90.60 86.21 82.67 | 73.66 70.19 65.84 | 63.00 56.80 49.60
IPO 88.45 87.32 82.86 | 7292 7081 6733 | 62.00 57.00 48.80
Mistral-7B. rDPO 88.07 8745 84.72 | 72.55 72.05 7031 | 6240 58.20 52.60
cDPO 88.82 86.96 83.35 | 73.04 7130 6994 | 5940 57.40 53.00
ROPO | 91.06 88.63 87.70 | 75.40 76.27 74.04 | 79.00 77.80 75.80

DPO 68.57 66.71 62.36 | 53.42 50.68 48.20 | 56.80 42.40 35.20
IPO 67.70 66.09 64.35 | 53.54 50.56 49.19 | 5420 50.80 51.60
Llama-2-7B  rDPO 68.07 67.83 65.59 | 52.80 51.18 50.31 | 54.80 54.00 50.40
cDPO 68.20 67.33 65.09 | 53.79 50.81 49.81 | 52.20 52.00 49.80
ROPO | 68.94 69.44 66.71 | 5590 54.41 54.53 | 78.80 78.00 79.20

noise. In other cases, we fine-tune base models on the preferred responses (SFT targets) to form the
SFT models. For details about our baselines, models, and hyperparamters, please refer to Appendix
[C2] We run all experiments on 16 NVIDIA A100 GPUs (80 GB).

Evaluation. For models trained on UFB and Alpaca Comparison, we evaluate them on the AlpacaEval
benchmark [26] by comparing their outputs with those of text-davinci-003 (recommended by the
benchmark for comparison). For models trained on TL;DR, we evaluate them by comparing their
outputs with the SFT targets (chosen responses) on the test split of TL;DR. Following [42; 56], we
employ GPT-4 as the referee for head-to-head comparisons, using the win rate as the metric. The win

rate can be computed by 2 = %ﬁm, where #(Win), #(Tie), and #(Comparisons) are

the numbers of wins, ties, and comparisons, respectively. For evaluation details, experiments on more
benchmarks, and human evaluation, please refer to Appendices|C.3] and [D.6] respectively.

4.2 MAIN RESULTS

ROPO is robust to noisy preferences. We present the win rates of different methods vs SFT targets
under different proportions of artificial noise in Table[I] From the table, we have several interesting
observations: (1) For all preference alignment methods, their win rates show a decreasing trend as
the noise rate increases. (2) Compared to the competitors, our proposed ROPO demonstrates a more
stable performance under noisy preference data. (3) ROPO consistently outperforms the baselines
under different proportions of artificial noise in all the three datasets. Even without artificial noise,
ROPO still outperforms DPO by 16.0% on TL;DR and 2.5% on Alpaca Comparison, which indicates
that the datasets inherently contain noise. (4) Baselines that use the label smoothing technique
(i.e., rDPO and cDPO) mostly outperform other baselines under 20% and 40% artificial noise, but
underperform ROPO. We speculate that the reasons for their limited effectiveness are as follows. First,
rDPO and cDPO are noise-tolerant only when the hyperparameter € exactly equals the proportion of
noise and when ¢ = 0.5, respectively (see Appendix [E.7), which is difficult to achieve in practice, as
we have no prior knowledge of the exact noise proportion. Second, they do not reduce the presence
of noise and thus can only marginally mitigate the side effects of noise. In contrast, ROPO exhibits
noise-tolerance without the priors on the noise proportion and iteratively reduces the noise proportion
as the training proceeds, thus leading to superior performance to rDPO and cDPO.

ROPO distinguishes noisy samples from clean samples. In Section we have theoretically
shown that ¢,,, can distinguish noisy samples from clean ones, while /4, cannot. Besides, we
also claim that the minor incorporation of £4p, in £;0p, does not hurt the noise filtering ability. To
support our analysis, we report the loss distributions for Llama-2-7B trained with ROPO and DPO on
TL;DR in Figure 2| Specifically, for models trained for one (two) epoch, we use the SFT model (the
model trained for one epoch) as the reference model and compute the losses for all noisy and clean
samples. The results in Figuredemonstrate three important observations: (1) £;op, can distinguish
between noisy and clean samples by yielding larger values for noisy samples than for others. (2) The
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Table 2: Win rates (%) of ROPO and DPO vs SFT targets under different proportions (i.e., 0, 20%,
and 40%) of artificial noise at different training epochs on TL;DR, evaluated by GPT-4.

0% 20% 40%
Model Method epl ep2 ep3 | epl ep2 ep3 | epl ep2 ep3
Mistral-7B DPO 62.60 60.20 63.00 | 56.80 51.00 48.60 | 49.60 44.40 44.60
ROPO | 7540 75.60 79.00 | 68.80 76.40 77.80 | 61.60 70.80 75.80
Llama-2-7B DPO 49.00 53.60 56.80 | 42.40 38.40 39.20 | 32.00 3520 33.60
ROPO | 74.00 82.00 78.80 | 58.40 76.40 78.00 | 46.00 70.80 79.20
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Figure 3: Ablations on p and «. (a) and (b) respectively show the performance of ROPO-trained
Mistral-7B and Llama-2-7B on UFB with different proportions of artificial noise and sample filtering
ratio p. (c) and (d) respectively show the performance of ROPO-trained Mistral-7B on UFB and
TL;DR with different proportions of artificial noise and c.

distributions of £4;,, on noisy and clean samples are similar and the gap between them narrows as
training progresses. (3) ROPO has a stronger capability for filtering out noisy samples compared to
DPO. Specifically, in the top 20% of samples with the largest £.,p,, noisy samples make up 60%;
whereas in the top 20% of samples with the largest {4, noisy samples account for about 34%.

ROPO gradually improves the performance. In Table[2] we report the win rates of ROPO and DPO
vs SFT targets under different proportions of artificial noise at different training epochs on TL;DR.
From the results, we find that the performance of ROPO gradually improves as training progresses
in most cases, while DPO does not exhibit the same trend. Specifically, the performance of DPO
at the second and third epochs is generally lower than that at the first epoch under 20% and 40%
artificial noise. As a comparison, the second epoch training of ROPO brings an 8%-24% increase
in the win rate, and the third epoch also leads to a 5%-9% improvement under 40% artificial noise.
These results demonstrate that the iterative training of ROPO effectively reduces the impact of noise
and thus consistently improves the alignment performance.

4.3 ABLATIONS

Effectiveness of components in ROPO. To
evaluate the effectiveness of different compo-
nents of our ROPO framework, we compare the
performance of our proposal with and without:
(a) noise-aware term ¢,,, (b) noisy sample fil-
tering stage, and (c) rejection sampling stage.
As shown in Table 3] all components improve

Table 3: Ablations on different components of
ROPO for Mistral-7B on UFB. NSF and RS stand
for the noisy sample filtering and rejection sam-
pling stages, respectively.

, CoE . Method | 0% 20%  40%
ROPO’s performance, validating the rationale
of our robust framework. Compared to the ag- ggg 0 zg?g gggé Sggz
gressive DPO loss, our proposed noise-aware ROPO E Z"a)+ NSF) 2044 8820 88.07
term ¢y, consistently improves the performance,  papQ ( 42: + NSF + RS) 91.06 88.63 87.70

which indicates that a proper trade-off between
aggressive and conservative gradient weighting
strategy effectively prevents the model from over-fitting to noise. Besides, the results also show
that the noisy sample filtering is the most effective part of our method, which also makes ROPO
significantly superior to other label smoothing-based methods [10; [35].
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How many noisy samples should we filter out? The sample filtering ratio p is a key factor to the
data filtering stage. In the main experiments, we only report the results with p = 0.2. Here, we
also present the results of filtering 10% and 30% samples with larger loss values. The results in
Figures [3(a)] and [3(b)| show that better performance could be achieved when filtering 20% or 30%
samples. We attribute the reason for this result to the noise ratio in the preference data, which is
generally between 20%-30% [16]. There’s a substantial risk of eliminating a considerable amount of
high-quality data if we set a larger ratio p. Thus, we recommend using p = 0.2 in practice.

Sensitivity to hyperparameters a. The trade-off hyperparameter o controls the importance of the
conservative noise-aware term. A larger « indicates a more conservative gradient weighting strategy.
As C £ lima 00 Wropo(A) = 4ar/(a + 1)2, we search the best « in the range of {6, 14, 30}, which
corresponds to C' € {1/2,1/4,1/8}. Then, we use « = 14 in our main experiments (see Appendix
[C.2]for the settings of hyperparameters). To explore the effect of o, we provide ablations on « in
Figures and As observed, the model’s performance remains largely unaffected for o within
an appropriate range, as the loss scale does not change significantly (note that «C' € [2.94, 3.75] for
« € [6,30]). Besides, for the dialogue task, a smaller « results in better performance, as a smaller
« will lead to more diverse answers. In contrast, a larger « results in better performance in the
summarization task. As the summarization task is more objective than the dialogue task, the results
are more sensitive to noise, and hence we need a model that is more robust to the noise.

5 RELATED WORK

Preference Alignment of LL.LMs. The most representative paradigm of preference alignment is
RLHF [76} 1377]], which involves training a reward model to capture human preferences and then
steering LLMs towards producing high-reward responses through RL algorithms [44]. However, in
real applications, RL-based methods are complex and prone to instability during training [42} |64} 69].
Therefore, many recent studies have explored more straightforward and stable alternatives for RLHF
[69; 142} 47; 1615 1285 275 163; [71]. Among these studies, the most promising direction is to use a
contrastive or ranking loss to calibrate the likelihood of the output sequence. Specifically, RRHF [69]]
introduces a ranking loss to encourage larger likelihoods for better responses and smaller likelihoods
for worse responses. Besides, another important work is DPO [42], which implicitly optimizes the
same objective as existing RLHF-based methods and enables human preference alignment directly
with a simple cross-entropy loss. In addition to the aforementioned methods using data in the form of
(x,¥1,Y¥2, c), where c is the preference label, some recent studies [13} 15} [8]] have also used data in
the form of (x,y, ¢), where ¢ is an annotation of the response y, for preference alignment.

Learning from Noisy Data. In the era of deep learning, there is an urgent demand for large-scale
training samples, and the cost of manually annotating or filtering data is prohibitively expensive in
most circumstances [48]]. Therefore, learning from noisy data has become increasingly important,
which primarily falls into three categories. The first category is sample-selection based methods
[53; 141k 138 149]], which identify high-quality samples before training and filter out noisy samples.
For example, [53] uses the training dynamics to identify valuable samples. The second category is
weighting-based methods, which assign greater weights for important samples and lesser weights for
noisy samples [43} 18} 46]. Besides, another important area of research is dedicated to the design of
loss functions that are robust to noise [[L7;162;70]. The findings in [[17]] indicate that the traditional
cross-entropy loss is sensitive to the label noise, while symmetric loss functions are robust to such
noise. Furthermore, recent advances in LLMs have also underscored the essential role of data quality
in both pre-training and supervised fine-tuning (SFT) phases of LLMs [34;[75; 22].

6 CONCLUSION

Robust preference optimization is critical for the LLM alignment, as noisy preferences are inevitable
in practical scenarios. Unlike existing methods, which rely on label smoothing or external LLMs for
the sample selection, we propose a robust preference alignment framework that unifies noise-tolerant
model training and effective filtering of noisy samples. Specifically, we incorporate a noise-aware loss
term to prevent the model from over-fitting to noise. Besides, we demonstrate that the proposed noise-
aware term plays a crucial role in distinguishing noisy samples from clean ones. Furthermore, we
propose a robustness-guided rejection sampling technique to compensate for the potential information
reduction caused by the filtering stage. We provide extensive theoretical and empirical evidence to
demonstrate the effectiveness of our proposed ROPO framework.

10
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7 ETHICS STATEMENT

This paper studies LLM alignment with noisy preferences. In our experiments, we introduce artificial
noise by randomly flipping the annotated preferences in the datasets and use the obtained noisy
datasets to train language models. The models trained on such noisy datasets may tend to output
responses that are inconsistent with human values or even harmful. We discourage readers from using
models trained on noisy datasets for purposes other than scientific research.

8 REPRODUCIBILITY STATEMENT

In this paper, to ensure the reproducibility of our work, we provide key information in the main text
and the supplementary material, as summarized as follows.

* Details about experiments. We provide details about tasks and datasets, baselines, models,
hyperparameters, and the evaluation in Appendix |[C] We also provide corresponding details for
the experiments in Appendix [D]

* Details about the method and theoretical analysis. In Section2} we clearly present preliminaries
and problem settings. In Section |3} we introduce our method in detail and provide theoretical
assumptions and theorems. We also provide rigorous proofs of the claims in Appendix
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A ROPO FRAMEWORK

In this section, we describe the overall iterative framework, provide the pseudocode, and analyze the
computational cost for ROPO.

Algorithm 1 ROPO

Input: dataset D, 3, a, p, K, number of epochs M, SFT model 7y,
Initialization:
DO+ D
T éO) < Tsft
form=1,...,M —1do
Wﬁgfl) — Wém_l) with frozen parameters 6
» Noise-tolerant Training:
Obtain 7)™ by training 75" " on D=1 with 7" and £,p, in Eq. (EI) for one epoch
» Noisy Sample Filtering:
Compute £yop, With ﬁém) and wr(:fl) for D

DEZ:;)_ , < samples with top-p ROPO loss value in D

D}(Jmt),(l, <+ samples with bottom-(1 — p) ROPO loss value in D
o P)
» Robustness-guided Rejection Sampling:

Dnew <_ @

for (X7 Y1, y2) in D‘E(?;)—p do
(m)

Sample responses y1, . ..,y k to x using
Dcand — {(X,yhyk?yl - y]f | X)}?:l U {(X>Y27§k7}’2 - yk? | X)}i(:1
Dhew  Dpew U {argming p  liopo(2, W(Sm))}
end for (m)
m m
D(m) Dyt 1y Y Dnew
end for
(M)
T T
Obtain wéM) by training wéM_l) on DM =1 with wﬁé\f) and {yop, in Eq. (EI) for one epoch
Output: 7"
put: 7,

cand

éM_l) with frozen parameters 6

Noise-tolerant :> Noisy Sample :> Robustness-guided Epoch
Training Filtering Rejection Sampling

¢
i Noise-tolerant :> Noisy Sample :> Robustness-guided Epoch
! Training Filtering Rejection Sampling

¢
i i
!l Noise-tolerant :> Noisy Sample :c[ Robustness-guided ] Epoch |
! Training Filtering Rejection Sampling ) Af—1 |
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Figure 4: The iterative process of ROPO.

As shown in Figure ] and Algorithm [T} ROPO iteratively carries out three stages: noise-tolerant
training, noisy sample filtering, and robustness-guided rejection sampling. Specifically, in the Ist to
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Table 4: Notations in the computational cost analysis.

Notation Description

N,M,p,K Please see Algorithm

CRroPO Cost of ROPO

Chon—it Cost of non-iterative methods

Ci Cost of (noise-tolerant) training per epoch

Chl Cost of noisy sample filtering per epoch

Crs Cost of robustness-guided rejection sampling per epoch

Closs Cost of computing the loss for a sample (x,y1,y2) without gradient propagation
Coen Cost of generating a response y for a query x

Crorward Cost of computing the log-likelihood for a query-response pair (x,y)

Chackward Cost of computing the gradient and updating parameters for a sample (x,y1,y2)

(M — 1)th epochs, we first train the model using the ROPO loss ¢,p,,. After training for one epoch,
we compute the value of ROPO loss for all samples in the original dataset and divide them into two
subsets (i.e., Diop—p and Dy,o;—(1—p)) according to their loss values. Then, the robustness-guided
rejection sampling stage generates new samples Dy,e based on Dy, ,. The new samples are used
together with Dy, (1) as training samples for the next epoch. In the last epoch, we only perform
the noise-tolerant training stage and then get the final model.

Computational Cost Analysis. ROPO introduces additional costs for the noisy sample filtering and
robustness-guided rejection sampling stages compared with non-iterative methods. However, these
additional costs are acceptable compared to the training cost and almost negligible in the entire chain
of real-world large-scale LLM training. The notations in the computational cost analysis is shown in
Table @l We have

Croro _ MCiy + (M —1)(Cr1 + Cys)
Cnonfit Mctr

. (11)

Since the main cost of the noisy sample filtering stage per epoch is to compute the loss of N
samples, we have Cg ~ NCoss = 4NCrorward- As for the rejection sampling stage, the
main costs per epoch come from p/N K response generation and 2p/N K loss computations, hence
C'rs ~ pNKCgen + 2pNKcloss ~ pNKCforward + 8pNchorward = 9pNKCforward- Because
the training process mainly involves loss computation for two models (i.e., the reference model
and the model being trained) and gradient propagation, we have Ct, ~ N (Closs + Chackward) =
N (4Ctorward + Chackward )- Therefore, Eq. leads to

CYROPO ~ M(4Cforward + Cbackward) + (M - 1)(4 + ng)Cforward

~

Cnon—it M(4Cf0rward + Cbackward)
- 4 (4 + 9[)K)(M - 1) . CVforward
M 4Cforward + Cbackward
4 K) (M —1 1
:1_|_( + 9pK)( ) ’ (12)
M 4+ Cbackward/cforward

where the ratio Chackward/Crorward 1S approximately 2 — 3 for LLMs. Take p = 0.2, K =2, M = 3
as an example, without considering inference acceleration, we can estimate that Cropo ~
1.6ChLon—is- In practice, we can use inference acceleration methods to increase Chackward /Corwards
thereby further reducing the additional cost of ROPO. Compared with the computational cost of the
entire chain of real-world LLM training (including continual pre-training and SFT), the additional
cost is almost negligible.
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Figure 5: The inter-annotator agreement heap map on the TL;DR dataset. The “Label”, “Llama”, and
“Qwen” refer to the original labels in the dataset, Llama-2-70B, and Qwen-Max, respectively. We
assess the preferences of human annotators across 200 randomly selected samples and extend the
evaluation to 1,000 samples for LLMs, which include the initial 200 samples.

Table 5: The estimated noise rate in commonly-seen datasets. This table is from [16]].

Dataset Noise rate (%) Reference
MT-Bench 15.0-37.0 [73]
TL;DR 21.3-27.0 (23]
CBArena  22.0-36.0
AntHH 27.9-30.9
SHP 35.5-41.9 [11]
WebGPT 34.8 i

B DISCUSSION ON PREFERENCE NOISE

Due to the inherent differences in annotators’ preferences, the preference noise is usually unavoidable.
In this section, we discuss the definition and identification of preference noise.

Before giving the definition of preference noise, we invite our readers to pay attention to the following
two points.

1. This paper focuses on noisy preferences rather than the more general noisy preference data. The
former refers specifically to the noise in preference labels, while the noise corresponding to the
latter may come from multiple factors such as preference labels, text quality, and the matching
degree between queries and responses. It is interesting and meaningful to study a wider range of
noisy data, but it is beyond the scope of our paper and related work [35} [10; [16]).

2. Like related work [33} [10; [T6]], this paper is based on the Bradley-Terry (BT) model. The BT
model assumes the existence of a “gold”, latent, and inaccessible reward model r*. Then, we
can express the BT preference probability P*(y; = y2 | x) for a sample (x,y1,y2) using the
reward model r*. Intuitively, the BT model assumes that there are mainstream preferences in
human society that reflect values such as peace, friendliness, honesty, etc. Differently, there are
also studies on multifaceted or multidimensional preferences [24], but defining noise for them
is challenging because it is difficult to have a “ground truth” label. Therefore, our following
discussion is based on the assumption of the BT model.
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Definition of preference noise. For a sample (x,y1,y2,¢), if P*(¢) > 0.5, then the sample is
clean; otherwise, the sample is noisy. Because the BT model usually represents preferences that are
consistent with mainstream values of human society, so the formation of such noise is usually caused
by the personal preferences or cognitive biases of annotators. Please note that the annotators can be
humans or LLMs.

Identification and detection of preference noise. As mentioned above, the definition of preference
noise is based on the inaccessible reward model, so we can never identify preference noise accurately.
However, we can estimate the noise rate by using advanced LLMs as the proxy for the BT model or
computing the inter-annotator agreement.

* Using advanced LLMs as the proxy for the BT model [16]. Given a dataset, we can prompt
advanced LLMs (e.g., GPT-4, Llama-3-70B-Instruct [14], and Qwen-2-72B-Instruct [66]]) to
identify the noise. For example, we can provide them with rules and ask them to rate or rank the
responses in the dataset. If a sample’s new label is different from its original label, it is identified
as noisy. The stronger the proxy LLM, the more reliable the noise identification.

» Computing the inter-annotator agreement [58} 4. We can employ different annotators (humans
or LLMs) to relabel the dataset and calculate the agreement between them. For this approach, we
should try to ensure that all annotators have the same criteria, and similar cognition and ability.
Suppose that we have n annotators and the agreement between annotators 7 and j is 0 < a;; < 1,

then the estimated noise rate is ﬁ Z:’ j=1,ij(1—ai;). Take the TL;DR dataset as an example.

We employ GPT-4, Llama-2-70B [33]], Qwen-Max [3]], and three human annotators to relabel the

TL;DR dataset. The human annotators are three of the four volunteers mentioned in Appendix [D.6]

The inter-annotator agreement heat map is shown in Figure[5} which indicates an estimated noise

rate of 17.6%.

Besides, Table|§|fr0m summarizes the estimated noise rate in some commonly-seen datasets. As
can be seen, the existence of preference noise is ubiquitous and cannot be ignored, which highlights
the importance of studying robust preference optimization approaches.

C MORE DETAILS ABOUT EXPERIMENTS

C.1 TASKS AND DATASETS

We run experiments on two dialogue datasets (i.e., UltraFeedback Binarized and Alpaca Comparison)
and one post summarization dataset (i.e., TL;DR).

* The UltraFeedback Binarized dataseﬂ is a pre-processed version of the UltraFeedback dataset
[11]], which contains 64,000 prompts and each prompt has four model responses from various
LLMs. Based on the score assigned by GPT-4, [36] selects two responses for each prompt and
construct UltraFeedback Binarized for the preference alignment.

* The Alpaca Comparison dataset contains 52,000 queries from the widely-used Stanford Alpaca
dataset [54]]. [39] generates several responses using GPT-4 and other LLMs including text-davinci-
003 to each query and employs GPT-4 to assign a score for each response.

* Inthe TL;DR dataset, each prompt is a forum from Reddit, and the model is required to summarize
the given forum. Following [42]], we use the Reddit TL;DR summarization dataset [57] along
with human preferences collected by [50].

C.2 BASELINES, MODELS, AND HYPERPARAMETERS

Baselines. Our baselines are DPO [42], TPO [2], and two approaches that use the label smoothing
technique to alleviate the impact of noise, i.e., rDPO [10] and cDPO [33].

*nttps://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
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Specifically, given a preference data (x,y1, y2) with the ranking label y; > y2 | x, the objectives of
our baselines are

gdpo == _IOgU(BIOg ﬂ-e(}q | X) - /Blog 779(3’2 | X) )a (13)
’/Trcf(y1 | X) '/Trcf(yQ | X)
mo(y1 | %) moly2 [x) 1 )
lino = | log ——~ —log ————~ — — | , 14
P < & 7Tref(yl ‘ X) & 71—ref(y2 | X) 25 ( )
1—¢ mo(y1 | X) 7o (Y2 ‘X)
lrapo = - log o flog T2 T — flog T 2L
dpo =TT 08 Og"(ﬁ i 1% rya %)
T 1oga<510g Tolz]X) gy oY1 X) ) (15)
1—2¢ 7Tref(yQ | X) Wref(Yl | X)
To(y1 | x) mo(y2 | X) >
gc o= — 1- 1 1 ———— — Bl T o 1<)
dp ( 6) Oga(ﬁ Og ﬂ_ref(yl | X) /B Og Wref(y2 | X)
- 510gg<5 log 21X gy, o(y1|x) ) (16)
71-ref(YQ | X) 7Tref<y1 | X)

where ¢ € (0, 1) and 3 € (0, 1) are hyperparameters.

Models. We use Mistral-7B [[19] and Llama-2-7B [55]] as base models for all baselines and datasets.
On UFB, we use Zephyr-7B-SFT-3 [56] as the SFT model for experiments with Mistral-7B, and
adopt the result of Zephyr-7B-g [56] on AlpacaEval (90.60) as the performance of DPO under no
artificial noise. In other cases, we fine-tune base models on the preferred responses (SFT targets) to
form the SFT models.

Hyperparameters. We run all experiments on 16 NVIDIA A100 GPUs (80 GB). Unless otherwise
noted, we use a global batch size of 512 to train all models. For all hyperparameters except for ¢ of
label smoothing, we search for the best one on each dataset without artificial noise and use the
same setting for 20% and 40% artificial noise.

For all methods, we search the best learning rate in {1e-5, 5e-6, le-6, 5e-7, le-7} and the best /3 in
{0.1, 0.5}. We find that the best performing learning rate is le-6, and the best /3 for dialogue and post
summarization are 0.1 and 0.5, respectively. This conclusion is consistent with that in [42].

For ROPO, we use « = 14 and p = 0 2 in the main experlments. In ablations (Section4.3), we
tune « in {6, 14, 30}, which makes (1+a) be around %, I 8, respectively, and tune p in {0.1, 0.2,
0.3}. We set K = 3 for the rejection sampling. For rDPO and cDPO, we search the best ¢ in {0,05,

0.1,0.15,0.2, 0.25, 0.3, 0.35, 0.4, 0.45} for each dataset and each proportion of artificial noise.

C.3 EVALUATION

For models trained on UFB and Alpaca Comparison, we evaluate them on the AlpacaEval benchmark
[26]—a widely used dialogue benchmark—by comparing their outputs with those of text-davinci-003
(recommended by the benchmark for comparison). AlpacaEval contains 805 queries in various
domains and exhibit a strong concordance with ground truth human annotators. For TL;DR, we
randomly select 500 queries from the test split of it and evaluate ROPO and baselines by comparing
their outputs with the chosen responses (SFT targets) for the queries.

Following existing studies [42; [56], we employ GPT-4 as the referee to conduct head-to-head
comparisons, using the win rate as the metric. On AlpacaEval, we conduct evaluations using the API
provided by AlpacaEval. On TL;DR, we use the following prompt, which is similar to that used by
AlpacaEval, to conduct GPT-4 evaluation.
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Table 6: Win rates (%) of different methods vs SFT targets under different proportions (i.e., 0 and
20%) of artificial noise, evaluated by GPT-4 on AlpacaEval.

Dataset UFB
Model Method | 0% 20%
DPO 82.98 80.50
IPO 81.99 79.75

Llama-2-13B  rDPO 81.37 80.87
cDPO 82.36  80.50
ROPO | 83.23 82.98

Table 7: Win rates (%) of ROPO/DPO vs SFT targets under different proportions (i.e., 0 and 20%)
of artificial noise, evaluated by GPT-4 on AlpacaEval.

Dataset UFB
Model Method | 0% 20%

DPO 9429 88.70
ROPO | 95.53 94.04

Llama-2-70B

You are a helpful assistant that ranks models by the
quality of their summaries of given forum posts.

I want you to create a leaderboard of different of

large-language models. To do so, I will give you the
instructions (forum posts) given to the models, and the
responses of two models. Please rank the models based on

which responses would be preferred by humans.

Here is the post:
<Forum Post>

Here are the outputs of the models:
Model 1: <Summary 1>
Model 2: <Summary 2>

Now please rank the models by the quality of their answers,
so that the model with rank 1 has the best output. Please
provide the ranking that the majority of humans would give.
Your response should use the format:

Better: <Model 1 or Model 2>

D MORE EXPERIMENTS

D.1 EXPERIMENTS ON LLAMA-2-13B-BASE AND LLAMA-3-70B-BASE

To evaluate ROPO and baselines on models larger than 7B, we supplement experiments on Llama-2-
13B-Base and Llama-3-70B-Base.

Experiments on Llama-2-13B-Base. We run SFT on UltraChat-200k for one epoch with the learning
rate of le-5, the global batch size of 128, the weight decay of 0.1, and a cosine-type learning rate
scheduler. Then, we fine-tune the SFT model with ROPO and baselines for two epochs on UFB
(under artificial noise ratio of 0 and 20%) with the learning rate of 1e-6 and the global batch size of
512. In the experiments, we fix o = 14 and p = 0.2 for ROPO without tuning them, and tune /3 in
[0.1,0.5,1.0] for IPO and tune ¢ in [0.1, 0.2, 0.3, 0.4] for cDPO and rDPO. The results are shown in
Table
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Table 8: Win rates (%) of different methods vs SFT targets under different proportions (i.e., 0 and
20%) of artificial noise, evaluated by GPT-4 on AlpacaEval.

Dataset UFB
Model Method | 0% 20%

DPO-RM 69.69 68.32
cPPO-RM 68.45 67.95
rPPO-RM 68.70 67.33
ROPO-RM | 69.94 70.43

Mistral-7B

Table 9: Win rates (%) of different methods vs SFT targets under noise coming from the annotators’
trust in larger models over smaller ones, evaluated by GPT-4 on AlpacaEval.

Dataset UFB

Model Method |
DPO 75.16
PO 72.55
Mistral-7B ¢cDPO 76.27
rDPO 78.26
ROPO | 80.50

Experiments on Llama-3-70B-Base. We run SFT on UltraChat-200k for one epoch with the learning
rate of le-5, the global batch size of 128, the weight decay of 0.1, and a cosine-type learning rate
scheduler. Then, we fine-tune the SFT model with ROPO and DPO for two epochs on UFB (under
artificial noise ratio of 0 and 20%) with the learning rate of 5e-7 and the global batch size of 512.
We fix @ = 14 and p = 0.2 for ROPO without tuning them. The results are shown in Table[7} From
the results we can conclude that: (1) 70B models outperform 7B/13B models in terms of win rate.
However, the performance of the models trained with DPO still has a non-negligible drop under 20%
artificial noise. (2) Our ROPO still significantly exceeds DPO on the scale of 70B.

D.2 EXPERIMENTS ON REWARD MODELING

In the main text of our paper, the baselines are reward-free. Considering the reward modeling
(RM) still plays an important role in many real-world LLM applications, although RM is not our
focus, we supplement experiments on RM with Mistral-7B-Base to test the potential of ROPO
in scenarios including reward modeling. Given a sample (x,y1,y2,¢ = 0), if we denote P =
o(r(x,y1) — r(xX,y2)), then the RM-training losses of ROPO and our baselines are as follows.

¢ DPO-RM: —log P

cPPO-RM: —(1 —¢)log P — elog(1l — P)

* rPPO-RM: —{=£ log P + =5 log(1 — P)

ROPO-RM (Ours): —(4a/(1 4 )?) - P + (402 /(1 + «)?) - (1 — P)

We train Mistral-7B-v0.1 on UFB for two epochs with the aforementioned losses to obtain reward
models. Then, we use Best of N Sampling (N = 16) to generate responses based on RMs and
Mistral-7B-SFT-Beta (SFT model). We use the learning rate of 5e-6, the batch size of 512, and a
cosine-type learning rate scheduler. The results are shown in Table[§]

D.3 MORE PRACTICAL NOISE SETTINGS
The experiments in the main text cover two types of practical noise as follows.

1. Practical noise coming from human comparisons. In the original TL;DR dataset, the preferences
are labeled by human annotators who compare the post-summaries generated by different models
in pairs. This leads to unavoidable noise due to the diversity of human preferences.

2. Practical noise coming from LLM (GPT-4) rating. Each query (instruction) in the original
UltraFeedback dataset has four responses coming from different models. GPT-4 scores them
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Table 10: Win rates (%) of different methods vs SFT targets under noise coming from LLM
preference comparisons, evaluated by GPT-4 on AlpacaEval.

Dataset UFB

Model Method |
DPO 84.22
IPO 84.84
Mistral-7B ¢cDPO 85.22
rDPO 86.21
ROPO | 88.07

based on criteria such as instruction-following, honesty, helpfulness, etc. Then, for each query, the
highest ranked response is selected as “preferred”, and one of the remaining responses is randomly
selected as “dis-preferred”. This leads to unavoidable noise due to the bias of GPT-4.

In this section, we explore another two practical noise settings in Appendices[D.3.1]and[D.3.2]

D.3.1 EXPERIMENTS UNDER NOISE COMING FROM ANNOTATORS’ TRUST IN LARGER MODELS
OVER SMALLER ONES

It is common practice to treat the response from a larger model as the chosen (preferred) one and
the response from a smaller model as the rejected (dis-preferred) one. Therefore, we obtain new
noisy preferences from UFB (each of query has four LLM responses) based on the sizes of models
that generate the responses. As shown in Table 9] under this practical noise setting, ROPO still
significantly outperforms DPO and other baselines.

D.3.2 EXPERIMENTS UNDER NOISE COMING FROM LLM PREFERENCE COMPARISONS

We use Llama-3-70B-Instruct [14]], which is one of the most advanced open source LLM, to relabel
the preferences in UFB. To make the labels as reliable as possible, we instruct the model to list the
advantages of each response. The prompt we use is as follows.

For the given instruction and two responses (A and B),
please answer: (1) which response is better overall,

(2) the aspects in which A is superior to B, and (3) the
aspects in which B is superior to A.

Strictly adhere to the following rules:

1. Answer in bullet points, with each point starting with
a gerund or adjective, excluding the words ‘‘response A’’
and ‘‘response B’’.

2. If a response has no superior aspects over another,
output NONE.

Instruction:
{instruction}

Response A
{responseA}

Response B
{responseB}

Your answer MUST STRICTLY follow the format as follows:
**xBetterxx

<Choose A or B>

**Why A is better than Bxx
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-<First aspect for which A is superior to B>
- <Continue with other points if any>

*xWhy B is better than Axx
-<First aspect for which B is superior to A>
- <Continue with other points if any>

However, we observe that about 30% of the labels are different from those in the original UFB
dataset. This shows that noise are unavoidable due to the diversity in LLM preferences. Then, we
train Mistral-7B with different methods on the new noisy dataset. As shown in Table[I0] under this
practical noise setting, ROPO still significantly outperforms DPO and other baselines.

Table 11: Performance of difference methods on Arena-Hard and MT-Bench. The bold font indicates
the best result and an underline indicates the second-best result.

Benchmark Arena-Hard MT-Bench
Model Method \ 0% 20% 40% \ 0% 20% 40%
DPO 10.7 8.5 63 |73 5.7 4.3
1PO 9.2 7.9 73 | 7.2 59 4.9

Mistral.7B. tDPO | 98 92 89 | 7.1 64 58
¢cDPO | 103 90 84 |72 62 52
ROPO | 131 126 118 |73 69 6.5

DPO 179 153 14.1 |78 6.1 4.6
PO 186 168 160 |74 63 50
Llama-3-88 DPO | 183 17.5 17.1 |75 69 6.1
¢cDPO | 175 164 153 |77 67 58
ROPO |205 196 185 |77 170 6.7

D.4 EXPERIMENTS ON MORE BENCHMARKS

To comprehensively explore the performance of ROPO and baseline methods, we evaluate them on
another two widely-used benchmarks, i.e., Arena-Hard and MT-Bench [[73]]. The details of the
benchmarks are as follows.

* MT-Bench [73]] contains 80 two-turn conversations, each of which has an open-ended instruction
and a corresponding follow-up question. Due to the well-designed questions and the wide
coverage of topics, MT-Bench has become a widely-used benchmark to evaluate the multi-turn
conversational and instruction-following abilities of AI models.

* Arena-Hard [23] is a challenging benchmark containing 500 single-turn conversations. Compared
to AlpacaEval and MT-Bench, Arena-Hard features better model separability, tighter confidence
intervals, and achieves a correlation of 98.6% with Chatbot Arena rankings [9].

We evaluate ROPO and baseline methods using Mistral-7B and Llama-3-8B [14]]. For Mistral-7B, we
use the same models as evaluated on AlpacaEval in the main experiments. For Llama-3-8B, we first
train a Llama-3-8B—BaseE| on UltraChat—ZOOkEl to obtain an SFT model (one epoch with the learning
rate of le-5, global batch size of 128, weight decay of 0.1, and a consine-type learning rate scheduler),
and then continue training with ROPO and baseline methods. The results are shown in Table[IT} As
observed, under various artificial noise levels, ROPO consistently outperforms baseline methods in
most cases and demonstrates superior robustness in noisy scenarios.

D.5 EXPERIMENTS OF COMBINING DPO WITH NOISY SAMPLES FILTERING AND REJECTION
SAMPLING

As shown in Figure[2] the distributions of the DPO loss on clean and noisy samples are very similar,
and the difference gradually decreases as the training proceeds. This shows that the DPO loss is

Shttps://huggingface.co/meta—1llama/Meta—Llama-3-8B
®https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k
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Table 12: Win rates (%) of different variants of DPO vs SFT targets under 0% and 20% artificial
noise, evaluated by GPT-4 on AlpacaEval. The base model is Mistral-7B and the training dataset is
UFB.

| 0% 20%
DPO 90.60  86.21
DPO + NSF 90.06  85.09
DPO + NSF+RS | 90.31  84.97

Table 13: Human evaluation of ROPO vs DPO and ROPO vs rDPO on AlpacaEval. The base model
is Mistral-7B and the training dataset is UFB. The #(Win), #(Tie), and #(Lose) are the numbers of
ROPO’s wins, ties, and ROPO’s losses.

Artificial Noise Ratio | 0% 20%

| #(Win) #(Tie) #(Lose) WR (%) | #(Win) #(Tie) #(Lose) WR (%)
ROPO vs DPO 77 69 54 55.8 103 59 38 66.5
ROPO vs rDPO 84 63 53 57.8 89 64 47 60.5

prone to overfitting to noise, hence cannot serve as a reliable measure of model uncertainty in noisy
scenarios. In this section, to further support our claim, we conduct experiments of combining DPO
with noisy samples filtering (NSF) and rejection sampling (RS) using Mistral-7B as the base model
and UFB as the training dataset. Please note that our proposed robustness-guided RS only works on
the filtered samples, so we do not conduct experiments combining DPO and RS alone. The results
are shown in Table[T2] As can be seen, the incorporation of noisy samples filtering and rejection
sampling degrades the performance of DPO, especially at 20% artificial noise.

D.6  HUMAN EVALUATION

We invite four lab members with no conflicts of interest to this paper to serve as volunteers to conduct
human evaluations. Two of them are PhDs and the other two are doctoral students, so we believe that
they have the ability to understand the evaluation rules and make reliable judgments.

We randomly select 200 queries from the AlpacaEval benchmark. Then, we pair the corresponding
responses of ROPO, DPO, and rDPO under 0% and 20% artificial noise to form four groups: (1)
ROPO vs DPO under 0% artificial noise, (2) ROPO vs rDPO under 0% artificial noise, (3) ROPO vs
DPO under 20% artificial noise, and (4) ROPO vs rDPO under 20% artificial noise.

For each group, we randomly shuffle the order of the queries and the order of responses in each pair.
Each volunteer is in charge of one group. None of the volunteers know which method corresponds to
each response. They are asked to compare the responses in 200 pairs and choose the better one. If
they are unsure about which response is better, they can choose “Tie”. During the evaluation process,
we allow the volunteers to use translation tools and search engines.

We count the number of ROPO’s wins, ties, and losses, and compute the win rate of ROPO by

Q= W. The results are shown in Table We have the following interesting
observations from the table: (1) The win rate of ROPO against DPO and rDPO is consistently over
55%, demonstrating ROPO’s advantages over the baselines. (2) As the artificial noise rate increases,
the win rate of ROPO increases to more than 60%, which shows the superiority of ROPO in noisy
scenarios. (3) All four volunteers give at least 29% tie judgments, indicating the limitations of human
evaluation: it is challenging for most human evaluators to make reliable evaluations on difficult
tasks such as long-context reasoning, coding, mathematics, etc. This highlights the importance of
developing automated LLM evaluation tools.

D.7 EXPERIMENTS OF APPLYING REGULARIZATION STRATEGIES TO DPO

In experiments in the main text, we have evaluate the performance of label smoothing (i.e., cDPO
and rDPO) under noisy scenarios. The label smoothing techniques can be seen as regularization
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Table 14: Win rates (%) of DPO with confidence penalty vs SFT targets under 20% and 40%
artificial noise, evaluated by GPT-4 on AlpacaEval. The base model is Mistral-7B and the training
dataset is UFB.

| 20%  40%

DPO 86.21 82.67
DPO +CP | 86.96 81.86

strategies applied to DPO. As shown in the experiments, they bring performance improvements over
DPO under 20% and 40% artificial noise, but underperform ROPO. Their limited effectiveness might
be attributed to the fact that rDPO and cDPO are noise-tolerant only under specific conditions: when
the hyperparameter ¢ exactly matches the noise proportion for rDPO, and when € = 0.5 for cDPO.
Achieving these conditions in practice is challenging due to the lack of prior knowledge about the
exact noise proportion.

In this section, we explore another two widely-used types of regularization strategies in noisy
scenarios, i.e., the normalized negative loss and confidence penalty.

¢ Normalized negative loss (NNL) [68]], such as normalized negative cross entropy (NNCE) and
normalized negative focal loss (NNFL), are shown to be effective when combined with the cross-
entropy loss (i.e., the DPO loss in preference optimization). However, when the problem is
binary classification like preference comparison, NNCE and NNFL degenerate into constant terms.
Specifically, for a sample (x,y1,y2,y1 > ¥2 | X), if we denote P = o(r(x,y1) — (X, y2)), then
we have

¢ 1 —logmin(P,1 — P) +log P
mmee —2logmin(P,1 — P) + log P + log(1 — P)

1, if P<0.5,
N {0, if P> 0.5,
and
01— —(1 = min(P,1 — P))"logmin(P,1 — P)+ (1 — P)?log P
ol —2(1 —min(P,1 — P))Ylogmin(P,1 — P) 4+ (1 — P)vlog P + P7log(1 — P)
_[1,if P <05,
B {0, if P> 0.5.

Therefore, NNL does not work for DPO.

« Confidence penalty (CP) [40] is an entropy-aware regularizer for the cross-entropy loss, which pre-
vents the model from making overconfident inferences. Specifically, for a sample (x,y1,y2,¥1 >
v2 | x), if we denote Py = o(r9(x,y1) — 70(X,¥y2)), CP computes the entropy by

Hg = —P@ log Pe — (1 — Pg) log(l — P(;).
Then, the CP regularizer is
lep, = —Amax(0,y — Hp).

We combine DPO with CP and tune the hyperparameters A and + in the range of A € {0.01,0.1}
and y € {0.1,0.25,0.5}. As shown in Table we do not observe a significant improvement over
DPO in noisy scenarios. We speculate that the limited effectiveness of CP is because CP has no
guaranteed noise-tolerance.

E MATHEMATICAL DERIVATIONS AND THEORETICAL ANALYSIS

E.1 PROOF OF THEOREM[3. 1

Proof. As Zf\; w; = N, is a hyperplane and w; € [0,1] fori = 1,...,N, S = {w : w; €
[0,1], Zf;l w; = N,} is compact. Because © is compact, © x S is compact. Therefore, the
(@) @

» Y2

continuous % Zfil wil (9; x(® yi L), 7r9) admits an optimal solution (6*, w*) on © x S.
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Assume that ¢ (9* x(“),y(“) y(“),m*> << (9 - x (i) y(LN), éiN),m;*> but with v}, <
1for some 1 < j < N,,. Then, we have

,
> wi <1+ (N,—1)=N,, (17)

hence there exists w} > 0 for some N, < [ < N. By letting v} =1, w; = w} +w} — 1, and
l 2 11 7 2]
/

w; = w;_fork # j,1, we have Z,Icvzl w; = 1and

1 . i i) (i
72106(0* 7Y1 aYQ)a () , TTo* ) = N Z w;kg (0*;X(lk)ay§ k)7yék)7c(lk)a7r9*)

k£jl
+w;€(9* Dy y§) et We*)
+ w;lg (0* (@) gil)a YgZ)a é(il)> 71—6*)

1 * * 7 23 ik) A%

k#j,l
+’LU é( )aygh 7Yélj)7 ( )77T9*)
g (8 x0, 3",y 600, . )
- < Zw*e (0 x93 58,60, m ), (18)
which leads to a contradiction. Therefore, we must have w;‘; =1forl1 <k < N,and w;"k = 0 for
N, <k <N. O

E.2 PROOF OF THEOREM[3.2]
Proof. For { = {q;,, we have

E(X7Y17y27@)~9n M(G; X, ¥1,¥2,C, ﬁg)]

= E(Xaylv)’Z)EC\X,yl,yzEé\X,yl ,yz,cw(e; X,¥1,¥2, 6 779)]

= E(xy1.y2) [(P*(yl =y | X)(1—n)+ (1 — P (y1 = y2 | X)) - £(6;%,¥1,¥2,0,70)
(P = ya |00+ (L= (v = ya [ 30)(1—0)) - £(0: % Y1,y mg)}
=Ex,y1,y2) [ —(P*(y1 = y2 | x) +1—=2P"(y1 = y2 | x)n)log Ps(y1 = y2 | x)

— (2P (y1 = y2 [ X)n+ 1= P*(y1 = y2 | x) — n)log(1 — Pa(y1 FY2|X))}

(19)

Consider
f(p) = =" +n—2p"n)logp — (2p™n + 1 —p* —n)log(1 — p), (20

we have
flp) = =2 2 P 1)

D 1-p

From f’(p) we know that f decrease when p < p* +n— 2p*n and increases when p > p* +n— 2p*n,
which means that f reaches its minimum at py = p* + (1 — 2p*)n.

27



Under review as a conference paper at ICLR 2025

Therefore, Eq. (T9) reaches its minimum when
Po:(y1 = y2 [ x) =P (y1 = y2 [ x) + (1 = 2P"(y1 = y2 [ X)) (22)

for any (x,y1,y2). Specifically, for n = 0, we have Py~ (y1 > y2 | x) = P*(y1 > y2 | x), which
leas to

‘Pe;(}ﬁ > y2 | X) = Po(y1 = y2 | X)| = 29| P*(y1 > y2 [ x) —1/2|. (23)
O

E.3 PROOF OF THEOREM[3.3|

Proof. For samples (x(! ),ygl),yél), ¢ = M) and (x(2),y§2),yé2), ¢ =1 — ), according
to Eq. (22), we have

Py (0,317,587, 60) = Py, (x 0,310, 98, e)

=P (M) + (1 - 2P (V) (24)
and
Py, (X(2)7y§2),>’§2),é(2)> = P, (X(Z) v 1 - Cm) (25)
=P (1—cP) 4+ (1-2P*(1—cP))y
=1-P*(?) + 2P (c?) - 1)n. (26)
Therefore, to ensure that
Edpo (X(1)7 YEl)a YS)7 é(l)) - gdpo ( )7 y( (2) A(Q)) 0, (27)

we must have
—log (P*(c(l)) + (1 =2P*(cWY))y — 5) < —log (1 — P*(c?) + 2P (c®) = 1) + 5) )
(28)

which is equivalent to

1-2
e < Tn (P*(C(l)) + P*(C(Q)) - 1) : (29)

O

E.4 DETAILED DERIVATION OF EQ. (]EI)

From the definition of w;qp, we have

4o 402

o(Ay2,y1,x)) + o(Ay2,y1,%x)o(A(y1,y2,%)).  (30)

Wropo =

(1+a)? (1+a)?
According to Eq. (7)) we know that
mo(y1 | x) 4o
,¥1,%))Vio dé = Lapo- 31
Beside, note that for a(:z:) = 1_7;7, we have
I
ron e* _ef(14e") —e”-e” e’ e I B
U(x)_<1+ez) B (1+e%)? S (14er)2  14er 1+e$_0(x)0( ?)
(32)
and
o'(—z) = —o(z)o(—x) (33)
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Letting

71-9(}’1 | X) — Blo 7T9(y2 | X) (34)
Tref (Y1 | X) '/Tref(y2 | X)7

t(0) = Blog
we have

Vot(0) = AV log m (35)

Hence,

402 o |
- m/ﬁU(A(YQ’Y1,X))U(A(Y1,Y2,X))Vlogm
_ A [ oot - (57 10g LX)
= wrap [ (o) (sv10 T2 o
4

B ﬁ/vtw)a(—t(@))-vm(mde

a2
_ 7(1‘1 7 /Vga(—t(ﬁ)) d6
402

= mo’(*t(@))

B 40 mo(y2 | x) mo(y1 | X)
= Grar 'U(ﬁbgw‘“’gw)’ G0

where we omit the constant term of the primitive function.
E.5 PROOF OF THEOREM [3.4]

Proof. For £ = {,,, we have
E(x7y1 ,¥2,6)~Dy, [6(97 X,¥1,Y2, éa 7T9)]

= E(xy1.y2) Eelxyr vz By ya.c 00 X, ¥1,¥2, ¢, m0)]

= Ex,y1,y2) [(P*(}H =y | xX)(1—=n)+(1—=P(y1>y2|x)n) £(0:;x,y1,y2,0,70)
+ (P (yi1>=y2 | x)n+ (1 =P (y1 = y2 | x)(1—n)) O:;x,y1,y2, Lm)}
= E(x,y1,52) {(P*(yl =y2 [ X)+n—2P"(y1 = y2 | X)n) (1 = Py(y1 = y2 | X))

L @P (v = ya | 0n 41— P*(y1 > ya | X)— 1) Palys = va | xﬂ. 37

Consider
flp) =@ +n—=2p"n)1—p)+2p"n+1-p"—n)p
= (1=2n)(1=2p")p+ (p* +n—2p™n). (38)

Therefore, when p* > 1/2, f(p) reaches its minimum at p = 1; when p* < 1/2, f(p) reaches its
minimum at p = 0. This means that the optimal point of f(p) is po = I(p* > 1/2).

Therefore, Eq. (37) reaches its minimum when

N 1
Py:(y1 = y2 [ x) =1 (P (y1>=y2|x) > 2) (39)
for any (x,y1,y2). Obviously, we have
Po: (y1 = y2 | x) = Po-(y1 = y2 | %). (40)
O
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E.6 PROOF OF THEOREM[3.3|

Proof. For samples (x(l),yg ),yg ) V) = ¢M) and (x(? ),y?),y( ) 6@ =1 - ¢?)). Without
loss of generality, we only need to consider two cases: (1) ¢V = ¢ = 0and (2) ¢ = 0,¢? = 1.
For the first case, we have

oo (x0 30357, 60) = Pt = 9 %) € [0,9) 1)
and
g&( @) 4@ ) A(z)) Poy® = y@ |x) € (1—¢,1). (42)
For the second case, we have
fua (x5 387, 60) = Pyl - yiY 1) € [0,) 43)
and
oo (x 2,y 5, 6®) = Ry -y [ 0) € (1 - 2.1, (44)
Therefore, to ensure that
0. (X(1) v,y M A(1)) <l (X(2)7y§2),y(2) e ))7 (45)
we must have & < 3. O

E.7 RDPO AND CDPO ARE NOT NOISE-TOLERANT IN MOST CASES

Proof. According to Lemma 3.2 in [10], the noise-tolerance of rDPO is only guaranteed when the
proportion of noise, i.e., 1o, exactly equals the hyperparameter €.

Next we show that £.4p, is not noise-tolerant for ¢ € (0, %) Let

Lcdpo(a) = E(x,yl,yz,c)ND[fcdpo(a; X,¥1,¥Y2,6, 7T9)]a
’ngpo( ) = E(X7Y1,yQ &)~Dyy [ECde<9; X,¥1,¥2, ¢ 7o),

and assume that 6* and 0, are the minimizers of Ledpo and L]
space of parameters, we have

LGp0(0)
= Ex.y1,y2.00~DEe|(x,y1,y2.0) [ledpo (05 X, Y1, Y2, & 70|
= Ex,y1,y2,0)~2[(1 = 1M0)€capo(0; X, ¥1,¥2, ¢, To) + Noledpo (05 X, y1,¥2, 1 — ¢, 7p)]
= (1 = n0)Ledpo(0) + M0E(x,y1,ys,0)~D[lcdpo(0; X, ¥1,¥2, 1 — ¢, m0)]. (46)

Next, we give a counter-example to show that £.qp, is not noise-tolerant. Suppose that

cdpo> Tespectively. For any 6 in the

P(ynye) = O3 y") =1 and 3?38 [ x©), )
where x(©) is a fixed input and (ygo), yéo)) is a fixed pair of responses. Hence Eq. becomes
Lidpo(0)
0) | (0 (0) | ,.(0)
= (2en9 —no —¢)logo | Blog —m(yl [x7) _ lo —Wa(y? | x)
7Tref(yl | x(0) 7Tref(Yz | x(©)
0) | «(0) 0) | (0
+ (no+e—2eny—1)logo <5 log 7@(}’2—)\X0) — Blo 7T0(y10)X0)> . (48)
7rref(Yz | x(0)) 71'ref(3’1 | x(©)
Let
(0) | +(0) (0) | +(0)
A(@):ﬁl og 7T9(y1 |X ) _ﬁlog 7T9(y2 |X ) (49)
7Trtaf(yl | X(O)) 7T1ef(Y2 | X(O))
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then Eq. (48) becomes

Lipo(0) = (2em0 — no — ) log o(A(0)) + (no + € — 2emo — 1) log o (—=A(6)).  (50)
We have
0" = argmin Ledpo
0cO
= argmin —elogo(A(f)) — (1 —¢€)logo(A(-0))
[ASIC)
G{HEG:A(G)_logliE}, (51)
and
0% = argmin LS
10 0g€® cdpo
= argmin (2eny — o — €) log o (A(0)) + (no + € — 2emy — 1) log o (—A(9))
oco
no + € — 2emng
feO:A0) =1 . 52
E{ < () Og1n05+25n0} (52)
Hence 6" = 67 if and only if
-2
e Mmote Mo (53)

l—e 1—nyg—e+42mn’

wlllich means that ¢ = . However, € € (0, ). Therefore, 0* # 6 and thus £eqp is not noisg
tolerant.

E.8 IPO Is NOT NOISE-TOLERANT

Proof. Let
Eipo(a) = E(x,yl,yg,C)NDwipo(e; X,¥1,¥2,6, 7(_9)}’
‘C:’I;?O(e) = E(x,yl,yz,é)me [gipo(e; X, ¥1,Y2, éy 7T9)]7

and assume that 0* and 6} are the minimizers of Lip, and L:?Ifo,
of parameters, we have

7
Ligo(0)
= E(xs)’l,yz7C)NDE5|(x,y1,yz,C) [zipo(e; X,¥1,Y2, éa 7.(-9)}

= ]E(x,yl,yg,c)w'D[(l - nO)gipo (97 X,¥Y1,¥Y2,6 7T0) + nOéipo (9, X,¥Y1,Y2, 1- c, 7T9)]

respectively. For any 6 in the space

= (1 - nO)ﬁipo(G) + UOE(X7y17y27C)ND[€ip0(9; X,¥1,Y2, 1- c, 7T9)]' (54)

Next, we give a counter-example to show that /¢, is not noise-tolerant. Suppose that

p ((X7 Y1,y2) = (x(o),y§0),y§0))> =1 and yi” =y [xO, (55)
where x(©) is a fixed input and (ygo), yéo)) is a fixed pair of responses. Hence Eq. becomes

n
Lipo(0)
0 0 2
B mo(yt” | x(©) mo(ys) | x©@) 1
- (1 - 7)0) 1Og (0) (0 - IOg (0) 0) - ﬁ
Tret(y1 | x19) Tret(ys " | x(0)

(0) | L(0) (0) | x(0) ?
mo(ys [ x) mo(y: [xP) 1
+ 1o <log O log w0 23] (56)
Teef (Yo~ | X(9) Teet (Y1 | X))
Let
m(y\” [ x©) L m(yd | x©)

A(0) = log log
et (1 | x(©))

, (57)
Tret(ys) | x©)
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then Eq. (56) becomes

c@xm=41—n@(aw)_é;>?+m<_Aw) 1)2

28
20 — 1 1
= (A0)? + ———A0) + — 58
(DO + T=A0) + 4. (58)
which is a quadratic function. Hence
. . _ 1 _m
QWOG{HEG.A(H)ZB B}. (59)
However,
6" = argmin Lip,
0cO
1\2
= argmin | A(f) — —
Seo ( ©) 2p )
1
e :Al)=— 60
e {peosam -5}, (60
which means that 0* # 0;;0. Therefore, /i, is not noise-tolerant. O

E.9 THE NORMALIZATION OF W;qpo

4o

Tra)? to scale the maximum value of wr,p, to 1. Here, we provide the details

In Eq. , we use

about it. Let
B et (1+ et
g(t) =o(t)(1 +ao(-t)) = Tt

where v > 2, then we have

(22t + (o + 2)el) (€2 + 2e! + 1) — (2e2 + 2e!) (e + (a + 1)e?)

/
t =
g'(t) (14 et)
1 2t ¢
=it ((2 - a)e +4e' + (a +2))
L t t
1 ¢
Hence, g(t) increases if and only if (2 — a)e’ + a + 2 > 0.
Since av > 2, g(t) increases when ¢ < log g—fg and decreases when ¢ > log g—ﬁ Therefore, we have
a+2 (1+a)?
t = 1 == .
max g(t) 9<0ga_2) o

32



	Introduction
	Preliminaries and Problem Settings
	Alignment of Large Language Models
	Preference Learning with Noisy Data

	Robust Preference Optimization
	A General Formulation
	A Noise-Tolerant Loss
	Robustness-guided Rejection Sampling
	ROPO Framework and Complexity Analysis

	Experiments
	Experimental Settings
	Main Results
	Ablations

	Related Work
	Conclusion
	Ethics Statement
	Reproducibility Statement
	ROPO Framework
	Discussion on Preference Noise
	More Details about Experiments
	Tasks and Datasets
	Baselines, Models, and Hyperparameters
	Evaluation

	More Experiments
	Experiments on Llama-2-13B-Base and Llama-3-70B-Base
	Experiments on reward modeling
	More practical noise settings
	Experiments under noise coming from annotators' trust in larger models over smaller ones
	Experiments under noise coming from LLM preference comparisons

	Experiments on more benchmarks
	Experiments of combining DPO with noisy samples filtering and rejection sampling
	Human evaluation
	Experiments of applying regularization strategies to DPO

	Mathematical Derivations and Theoretical Analysis
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Detailed Derivation of Eq. (9)
	Proof of Theorem 3.4
	Proof of Theorem 3.5
	rDPO and cDPO Are Not Noise-Tolerant In Most Cases
	IPO Is Not Noise-Tolerant
	The normalization of wropo


