
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ROPO: ROBUST PREFERENCE OPTIMIZATION FOR
LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Preference alignment is pivotal for empowering large language models (LLMs) to
generate helpful and harmless responses. However, the performance of preference
alignment is highly sensitive to the prevalent noise in the preference data. Recent
efforts for this problem either marginally alleviate the impact of noise without the
ability to actually reduce its presence, or rely on costly teacher LLMs prone to
reward misgeneralization. To address these challenges, we propose the RObust
Preference Optimization (ROPO) framework, a novel iterative alignment approach
that integrates noise-tolerance and filtering of noisy samples without the aid of
external models. Specifically, ROPO first formulates the training process with
adaptive noise reduction as an optimization problem, which can be efficiently
solved in an iterative paradigm. Then, to enhance this iterative solving process
with noise-tolerance and noise-identification capabilities, we derive a robust loss
that suppresses the gradients from samples with high uncertainty. We demonstrate
both empirically and theoretically that the derived loss is key to the noise-tolerance
and effective filtering of noisy samples. Furthermore, inspired by our derived loss,
we propose a robustness-guided rejection sampling technique to compensate for
the potential important information in discarded queries. Experiments on three
widely-used datasets of dialogue and post-summarization demonstrate that ROPO
significantly outperforms existing preference alignment methods in the practical
noise setting and under artificial random symmetric noise, with its advantage
increasing as the noise rate increases.

1 INTRODUCTION

Recent research indicates that the significant achievements of Large Language Models (LLMs) in
understanding various queries and providing helpful responses [1] rely on the preference alignment,
which aligns LLMs’ responses with human values and expectations [63; 6; 28]. A typical preference
alignment approach is Reinforcement Learning from Human Feedback (RLHF) [7; 76], which first
trains a reward model to fit human preferences and subsequently employs an RL algorithm [44] to
guide LLMs to generate high-reward responses. However, due to the potential risks of misgeneralized
reward modeling [7] and the unstable training [29; 45] of RLHF, various ranking-based methods
represented by Direct Preference Optimization (DPO) [42] bypass the explicit reward modeling stage
and eschew RL techniques via directly optimizing the implicit reward margins between preferred and
dis-preferred responses [69; 59; 47]. Owing to the stable and computationally lightweight supervised
learning paradigm, ranking-based methods have emerged as competitive alternatives to RLHF, thus
drawing increasing attention recently [45; 63].

Despite their impressive performance on preference alignment, ranking-based methods heavily rely
on high-quality preference data, which is costly and limited in practice [21; 8]. First, the noise
(e.g., incorrect or ambiguous preferences) in the preference data is unavoidable [58]. Many recent
studies have observed the presence of preference noise at levels of 20%-40% across various scenarios
[16; 23; 74; 55; 11; 72; 36], whether the annotators are humans or LLMs. Second, the performance of
LLMs will significantly deteriorate when trained with noisy preferences [10; 16; 23]. For instance, a
10% increase in the noise rate may lead to a 30% decrease in the performance of DPO in terms of win
rate [16]. Therefore, it is highly desirable to develop noise-robust preference alignment techniques.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To address these problems, some recent studies have explored the label smoothing [10; 35] and
regularization [16] techniques to alleviate the impact of preference noise. However, these methods
can only marginally mitigate the side effects of noise, as the noisy samples are still involved in the
training phase. Besides, [16] also attempts to filter out noisy samples but requires another teacher
LLM (i.e., a reward model serving as the proxy of the Bradley-Terry model [5]) to assign confidence
values to samples, which introduces additional computational costs. Moreover, the teacher LLM may
not necessarily provide the correct preference direction on some specific domain [7], and this method
is shown to be ineffective at reducing random symmetric noise [16].

In this paper, we propose the RObust Preference Optimization (ROPO) framework, an iterative
alignment approach that unifies noise-tolerance and filtering of noisy samples without the aid of
external models. We first provide a general formulation of learning from noisy preference data
as a constrained optimization problem, where we dynamically assign a quality-aware weight for
each sample (see Section 3.1). Then, we solve the problem through a provably convergent iterative
paradigm, consisting of two alternating steps: noise-tolerant model training and noisy sample filtering.
The main contributions of our method are as follows.

• We propose a robust preference alignment framework that unifies noise-tolerance and filtering of
noisy samples. Without the need for any external LLM, the model’s robustness and discrimination
ability against noisy samples gradually improve as the alternating iterative training proceeds.

• We derive a robust loss function by suppressing the gradients of samples with high uncertainty.
The loss contains a noise-aware term, which not only prevents the model from over-fitting to noisy
samples but also facilitates identifying noisy samples versus clean samples1 (see Section 3.2).

• We propose a robustness-guided rejection sampling technique to compensate for the potential
important information in discarded queries (see Section 3.3), which improves the data quality and
thus leads to further improvement in alignment performance.

• We conduct extensive experiments on three widely-used datasets (i.e., UltraFeedback Binarized,
Alpaca Comparison, and TL;DR) with Mistral-7B, Llama-2-7B, Llama-3-8B, Llama-2-13B, and
Llama-3-70B. The evaluation results on AlpacaEval, Arena-Hard, and MT-Bench show that the
performance of ROPO remains stable in both practical and artificial noisy scenarios.

2 PRELIMINARIES AND PROBLEM SETTINGS

Given a query x = [x1, . . . , xn], an LLM πθ (with parameters θ) generates a response y =
[y1, . . . , ym], where the tokens (xi)

n
i=1 and (yj)

m
j=1 come from a predefined vocabulary, in an

autoregressive paradigm. Specifically, the model samples yj from the conditional probability distribu-
tion πθ(· | x,y1:j−1), where y1:0 is null and y1:j−1 = [y1, . . . , yj−1] for j = 2, . . . ,m. Finally, we
can decompose the conditional probability πθ(y | x) into πθ(y | x) =

∏m
j=1 πθ(yj | x,y1:j−1).

2.1 ALIGNMENT OF LARGE LANGUAGE MODELS

Most of the existing LLM alignment frameworks first fine-tune a pre-trained model on high-quality
datasets of downstream tasks (e.g., dialogue and post-summarization) via maximum likelihood, in
order to teach the model to respond to queries. We denote the supervised fine-tuned model πsft. Then,
we train the model πθ (initialized by πsft) based on human preference data. Specifically, a preference
sample contains a query x, responses y1 and y2, and a ranking label c provided by annotators. We
use c = 0 to indicate that y1 is preferred to y2 (denoted y1 ≻ y2 | x) and use c = 1 to indicate the
opposite. We assume that the preference data (x,y1,y2, c) is sampled from a distribution D.

A popular formulation of the generation of preferences is the Bradley-Terry (BT) model [5], i.e.,
P ∗(y1 ≻ y2 | x) = σ(r∗(y1,x) − r∗(y2,x)), where σ is the sigmoid function, and r∗ is a latent
and inaccessible reward function. The key to existing preference learning methods is to explicitly or
implicitly approximate r∗ or P ∗. RLHF [37] approximates r∗ by training a parameterized reward
model rϕ via maximum likelihood on preference data, then uses the well-trained rϕ to provide signals
for the reinforcement learning of πθ.

1In Section 3.2, we demonstrate that the cross-entropy loss (i.e., DPO loss) cannot distinguish between noisy
samples and clean samples in the context of preference learning, even though it is widely used for learning from
noisy data in other scenarios such as image classification [20; 30].

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Model Training Sample Filtering

Other samples

Noisy samplesModelNew
samples

Training samples

Robust
Loss

Identification

Online Rejection

Preference ranking label

Implicit reward comparison

As a beginner, how do I make pasta?

Weighting function

😄🤬

😄🤬

Suppress

Tolerance

Sampling

ROPO Framework Gradient Weight Strategy

Figure 1: Framework of ROPO and a comparison between the gradient weighting strategies of ROPO
and DPO [42]. Left: ROPO alternates between noise-tolerant model training and noisy sample
filtering and integrates the online rejection sampling paradigm to further improve the data quality.
Please see Appendix A for the detailed description and pseudocode of the framework. Right: Unlike
wdpo, which increases with respect to ∆ = r̂(y2,x)− r̂(y1,x), wropo decreases when ∆ is large.
Given a noisy sample (x,y1,y2,y1 ≻ y2 | x), whose preference label contradicts the comparison of
implicit rewards, ROPO suppresses its gradient. A larger α implies a stronger suppressive effect.

Due to the complexity and instability of RLHF, some recent works [42; 2; 59] directly learn human
preferences from offline collected response pairs by optimizing the implicit reward margins between
preferred and dis-preferred responses. For example, the objectives of DPO [42] is given by

ℓdpo = − log σ

(
β log

πθ(y1 | x)
πref(y1 | x)

− β log
πθ(y2 | x)
πref(y2 | x)

)
, (1)

where y1 ≻ y2 | x, β is a hyperparameter, and πref is a fixed reference model (usually the SFT
model). Ranking-based methods are more computationally lightweight and stable than RLHF, thus
drawing increasing attention recently. Thus, we mainly focus on ranking-based methods in this paper.

2.2 PREFERENCE LEARNING WITH NOISY DATA

Preferences are unavoidably noisy due to the cognitive bias among annotators (see Appendix B for
detailed discussion). Thus, we have no access to the clean dataset D = {(x(i),y

(i)
1 ,y

(i)
2 , c(i))}Ni=1 ∼

D and can only obtain a noisy dataset Dη = {(x(i),y
(i)
1 ,y

(i)
2 , ĉ(i))}Ni=1 ∼ Dη, where ĉ(i) = c(i)

with probability 1− η and ĉ(i) = 1− c(i) with probability η.

Remark. (1) We assume the random symmetric noise in our theoretical analysis because it is the
standard assumption for learning from noisy data [32; 70] and existing research on LLM alignment
has indicated the challenges posed by this kind of noise [16]. Besides, in the context of preference
alignment, the symmetric and asymmetric (or class-conditional) noise is equivalent, as the ground
truth label is changed if we swap the positions of y1 and y2. (2) In addition to this artificially
introduced random noise, our experiments also include four types of practical noise settings, covering
a variety of unavoidable noises from human and LLM annotations. For more details, please refer to
Section 4.1 and Appendix D.3.

3 ROBUST PREFERENCE OPTIMIZATION

We propose RObust Preference Optimization (ROPO), an iterative preference alignment framework.
ROPO alternates between noise-tolerant model training and noisy sample filtering, as shown in Figure
1, which is mathematically equivalent to iteratively solving a constrained optimization problem
(Section 3.1). In the model training step, we introduce a robust loss function by suppressing the
gradients of samples with high uncertainty, which prevents the model from over-fitting to the noisy
preference. In the sample filtering step, we filter out noisy samples based on the magnitude of their
training losses. The key to ROPO is that our proposed loss contains a noise-aware term, which not
only features noise-tolerance, but also facilitates identifying noisy samples versus clean samples

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(Section 3.2). Further, we propose a robustness-guided rejection sampling technique to compensate
for the potential important information in discarded queries and thus improve the data quality (Section
3.3). For detailed proofs of the theorems in this section, please refer to Appendix E.

3.1 A GENERAL FORMULATION

Given N preference samples {(x(i),y
(i)
1 ,y

(i)
2 , ĉ(i))}Ni=1, we hope that the weights of noisy samples in

the preference optimization are smaller than those of others, thereby reducing the impact of noise on
the alignment performance. Without prior knowledge of which samples are noisy, a natural approach
would be to assign a dynamic quality-aware weight to each sample and constrain the sum of these
weights to a constant, which can also prevent the weights from tending toward zero. Therefore, we
formulate learning from noisy preference samples as the following constrained optimization problem:

min
θ,w

1

N

N∑
i=1

wiℓ
(
θ;x(i),y

(i)
1 ,y

(i)
2 , ĉ(i), πθ

)
, (2)

s.t. θ ∈ Θ, wi ∈ [0, 1], i = 1, . . . , N,

N∑
i=1

wi = Nρ ≜ ⌊(1− ρ)N⌋,

where w1, . . . , wN are dynamic weights, Θ is compact, and ρ ∈ [0, 1] is the proportion of the samples
we aim to filter out. Please note that we minimize Problem (2) with respect to both θ and w, resulting
in a training process that learns the weights adaptively. Hence, we expect that Problem (2) will
gradually lead to much smaller weights for noisy samples than those for others. To achieve this, we
first analyze the properties of the optimal solution to Problem (2). As shown in Theorem 3.1, Problem
(2) admits an optimal solution and the elements in its minimizer w∗ are either 0 or 1.
Theorem 3.1. Assume that ℓ(θ) is continuous on a compact parameter space Θ, then Problem

(2) admits an optimal solution (θ∗,w∗). Suppose that ℓ
(
θ∗;x(i1),y

(i1)
1 ,y

(i1)
2 , πθ∗

)
< · · · <

ℓ
(
θ∗;x(iN),y

(iN)
1 ,y

(iN)
2 , πθ∗

)
, then w∗

ik
= 1 for 1 ≤ k ≤ Nρ and w∗

ik
= 0 for Nρ < k ≤ N .

We solve Problem (2) in an iterative paradigm, which consists of two alternating steps: model training
and sample filtering. In the step of model training, we fix w and learn model parameters θ. In the
step of sample filtering, we fix θ and assign weights w1, . . . , wN for samples based on their loss
values. Because the objective in Problem (2) is non-negative and its value does not increase during
the iteration, the iterative solving process is guaranteed to converge.

3.2 A NOISE-TOLERANT LOSS

To guarantee the effectiveness of the iterative solving process within the preference alignment
framework, we delve into identifying additional conditions that should be imposed on ℓ. Here, we
discuss the properties of ℓ in the context of minimizing its expected risks under distributions of noisy
and clean preference data, i.e., finding the optimal solutions θ∗ and θ∗η by solving

θ∗ = argmin
θ∈Θ

E(x,y1,y2,c)∼D[ℓ(θ;x,y1,y2, c, πθ)], (3)

θ∗η = argmin
θ∈Θ

E(x,y1,y2,ĉ)∼Dη
[ℓ(θ;x,y1,y2, ĉ, πθ)]. (4)

Requirement 1: Noise-tolerance. It cannot be guaranteed that the sample filtering stage will
eliminate all noise samples (e.g., when ρ is less than the actual noise proportion in the preference
data). Consequently, it is crucial that the presence of noisy preferences does not significantly impact
the model training stage, i.e., ℓ is noise-tolerant.

Requirement 2: Distinguishable losses for clean and noisy samples. As noisy samples generally
exhibit larger loss values [30], in the sample filtering step, we filter out the N −Nρ samples with the
largest losses. It is noteworthy that this step takes place midway through training, hence ℓ needs to
exhibit distinguishable loss values for clean and noisy samples prior to the convergence of the model.

As DPO is one of the most popular preference alignment methods, it is natural for us to explore
the effectiveness of the DPO loss ℓdpo (as shown in Eq. (1)) within our iterative solving process.
However, our findings show that ℓdpo does not satisfy the aforementioned requirements.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Finding 1: DPO is not noise-tolerant.
Theorem 3.2. Assume η < 1

2 . Consider ℓdpo and the corresponding minimizer θ∗η to Problem (4).
Given a query x and responses (y1,y2), the relationship between the preference probability given by
the optimal model, i.e., Pθ∗

η
(y1 ≻ y2 | x), and that given by the BT model, i.e., P ∗(y1 ≻ y2 | x) is

Pθ∗
η
(y1 ≻ y2 | x) = P ∗(y1 ≻ y2 | x) + (1− 2P ∗(y1 ≻ y2 | x)) · η, (5)

hence we have
∣∣Pθ∗

η
(y1 ≻ y2 | x)− Pθ∗(y1 ≻ y2 | x)

∣∣ = 2η
∣∣P ∗(y1 ≻ y2 | x)− 1/2

∣∣.
As shown in Theorem 3.2, the impact of noise on the optimal solution corresponding to ℓdpo increases
as the noise rate increases. Specifically, the difference between the optimal probabilities under noisy
and clean distributions, i.e.,

∣∣Pθ∗
η
(y1 ≻ y2 | x) − Pθ∗(y1 ≻ y2 | x)

∣∣, is proportional to the label
flipping probability η.

Finding 2: DPO faces challenges in distinguishing between noisy and clean samples.
Theorem 3.3. Assume η < 1

2 . Consider ℓdpo and the corresponding minimizer θ∗η to Problem (4).

For samples (x(1),y
(1)
1 ,y

(1)
2 , ĉ(1) = c(1)) and (x(2),y

(2)
1 ,y

(2)
2 , ĉ(2) = 1 − c(2)), suppose that θ is

not θ∗η but satisfies max
i=1,2

∣∣∣∣Pθ

(
y
(i)
1 ≻ y

(i)
2 | x(i)

)
− Pθ∗

η

(
y
(i)
1 ≻ y

(i)
2 | x(i)

) ∣∣∣∣ < δ, then if we want

to ensure that ℓdpo
(
x(1),y

(1)
1 ,y

(1)
2 , ĉ(1)

)
< ℓdpo

(
x(2),y

(2)
1 ,y

(2)
2 , ĉ(2)

)
, δ must satisfy

δ <
1− 2η

2

(
P ∗(c(1)) + P ∗(c(2))− 1

)
. (6)

As shown in Theorem 3.3, the distance between πθ and πθ∗
η

we need for ℓdpo to differentiate
between clean and noisy samples decreases as the BT probability approaches 50% and the noise rate
increases. Specifically, Eq. (6) shows that the upper bound of δ is proportional to (1− 2η)/2 and(
P ∗(c(1))− 1/2 + P ∗(c(2))− 1/2

)
2. Due to the intrinsic diversity and stochastic nature of human

preferences, the BT distribution is usually not a “hard” distribution with probabilities close to 0 or
1, but rather a “soft” one [52; 51]. This brings difficulties to unconverged DPO-trained model in
identifying noisy samples. For example, when η = 30% and P ∗ (c(1)) = P ∗ (c(2)) = 60%, we need
δ < 4%, which is a challenging requirement for a model that has not yet converged.

The gradient weighting strategy of DPO may amplify the impact of noise. Given a sample
(x,y1,y2, ĉ = 0), according to [42], the gradient of ℓdpo in Eq. (1) is given by

∇θℓdpo = −β σ (r̂(y2,x)− r̂(y1,x))︸ ︷︷ ︸
wdpo(x,y1,y2)

·∇ log
πθ(y1 | x)
πθ(y2 | x)

, (7)

where r̂(y,x) = β log πθ(y|x)
πref (y|x) is the implicit reward function of DPO. Intuitively, the greater the

discrepancy between the reward function’s comparison of y1 and y2 and the label y1 ≻ y2 | x, the
greater the weight wdpo(x,y1,y2) of the DPO gradient becomes. This aggressive weighting strategy
can be risky if the label is incorrect, as the model may imply a high uncertainty about the sample by
giving a higher reward to y2 than to y1, increasing wdpo and thus amplifying the impact of the noise.

Conservative gradient weighting strategy. A simple and straightforward idea is that when the
implicit reward margin ∆(y2,y1,x) ≜ r̂(y2,x)− r̂(y1,x) is excessively positive, we should assign
a conservative weight to the gradient. Based on this idea, we propose the conservative gradient weight

wropo =
4α

(1 + α)2
· σ(∆(y2,y1,x)) · (1 + ασ(−∆(y2,y1,x))), (8)

where α > 2 controls the conservatism of weighting and 4α/(1 + α)2 is used to normalize the
maximum value of wropo (see Appendix E.9). As illustrated in Figure 1, unlike the monotonous
increase of wdpo, wropo decreases when ∆(y2,y1,x) is large. Then, the corresponding loss function
can be decomposed as

ℓropo =

∫
∇θℓropo dθ =

4α2

(1 + α)2
· ℓna +

4α

(1 + α)2
· ℓdpo, (9)

2As c(1) and c(2) are clean labels, we have P ∗(c(1)) > 1/2 and P ∗(c(2)) > 1/2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.00
0.01
0.02
0.03
0.04
0.05
0.06 clean

noisy

(a) DPO (ep1). γ = 0.48.
0.0 0.5 1.0 1.5 2.0 2.5

0.00

0.01

0.02

0.03

0.04

0.05
clean
noisy

(b) DPO (ep2). γ = 0.34.
0 1 2 3 4 5 6

0.00

0.02

0.04

0.06

0.08

0.10
clean
noisy

(c) ROPO (ep1). γ = 0.58.
0 1 2 3 4 5 6 7 8

0.00

0.02

0.04

0.06

0.08

0.10
clean
noisy

(d) ROPO (ep2). γ = 0.60.

Figure 2: Loss distributions of Llama-2-7B trained with DPO and ROPO at different training epochs
(ep1 and ep2) on TL;DR. We denote γ as the proportion of noisy samples in the 20% of samples that
are filtered out. Larger γ indicates better discrimination between clean and noisy samples.

where ℓna = σ
(
β log πθ(y2|x)

πref (y2|x) − β log πθ(y1|x)
πref (y1|x)

)
and we omit the constant term of the primitive

function (see Appendix E.4 for details). The introduced loss consists of ℓdpo and a noise-aware term
ℓna whose weight is α times that of ℓdpo. We claim that ℓna has the following advantages.

Advantage 1: ℓna is noise-tolerant.

Theorem 3.4. Assume that η < 1
2 . Consider ℓna and the corresponding minimizer θ∗η to Problem (4).

Given a query x and responses (y1,y2), the relationship between the preference probability given by
the optimal model, i.e., Pθ∗

η
(y1 ≻ y2 | x), and that given by the BT model, i.e., P ∗(y1 ≻ y2 | x) is

Pθ∗
η
(y1 ≻ y2 | x) = I

(
P ∗(y1 ≻ y2 | x) >

1

2

)
, (10)

hence we have Pθ∗
η
(y1 ≻ y2 | x) = Pθ∗(y1 ≻ y2 | x).

As shown in Theorem 3.4, contrary to the conclusion in Theorem 3.2 that the optimal solution
corresponding to ℓdpo is affected by the noise, the optimal preference probability corresponding to ℓna,
i.e., Pθ∗

η
(y1 ≻ y2 | x), remains unchanged when the label flipping probability η < 1/2. Specifically,

Eq. (10) shows that Pθ∗
η
(y1 ≻ y2 | x) is an indicator function of P ∗(y1 ≻ y2 | x) > 1/2.

Advantage 2: ℓna can distinguish noisy samples from clean ones.

Theorem 3.5. Assume that η < 1
2 . Consider ℓna and the corresponding minimizer θ∗η to Problem (4).

For samples (x(1),y
(1)
1 ,y

(1)
2 , ĉ(1) = c(1)) and (x(2),y

(2)
1 ,y

(2)
2 , ĉ(2) = 1 − c(2)), suppose that θ is

not θ∗η but satisfies max
i=1,2

∣∣∣∣Pθ

(
y
(i)
1 ≻ y

(i)
2 | x(i)

)
− Pθ∗

η

(
y
(i)
1 ≻ y

(i)
2 | x(i)

) ∣∣∣∣ < δ, then if we want

to ensure that ℓna
(
x(1),y

(1)
1 ,y

(1)
2 , ĉ(1)

)
< ℓna

(
x(2),y

(2)
1 ,y

(2)
2 , ĉ(2)

)
, we must have δ < 1

2 .

As shown in Theorem 3.5, contrary to the challenging requirement ℓdpo places on an unconverged
model in Theorem 3.3, we can expect that ℓna yields a larger value for noisy samples than for others
as long as the difference between the preference probability given by an unconverged model and that
of the optimal model is less than 50%. We verify our theoretical analysis in experiments, as shown in
Figure 2. For details about the experiments, please refer to Section 4.2.

Discussion. ℓna is capable of improving noise-tolerance and separating noisy samples from clean
samples. However, compared with ℓna, ℓdpo leads to a “softer” optimal preference probability, which
could potentially avoid discrimination against minorities by LLMs. Besides, the aggressive weighting
strategy may be useful for clean preference datasets (although they are rare). Thus, it is considered
necessary to incorporate a minor component of ℓdpo into the final loss. From this perspective, the
hyperparameter α plays an important role in trading-off between aggressive (ℓdpo) and conservative
(ℓna) gradient weighting strategy. Given that the weight of ℓna is α > 2 times greater than that of
ℓdpo (in our experiments and ablations, α ≥ 6), ℓna dominates the optimization process. Thus, the
incorporation of ℓdpo does not hurt the noise-tolerance and noise filtering too much.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.3 ROBUSTNESS-GUIDED REJECTION SAMPLING

The sample filtering step effectively reduces the proportion of noise but may also discard some
important queries. For example, a query designed to eliminate the occupational discrimination in
LLMs may be filtered out because the ranking label of its associated responses is incorrect. Thus,
inspired by the sample distinguishing ability of our proposed ℓropo, we propose a rejection sampling
technique to compensate for the essential but discarded information and thus improve the robustness
of our ROPO framework. Specifically, we sample K responses ỹ1, . . . , ỹK to x for each sample
(x,y1,y2) that is filtered out and generate 2K candidate samples

{(x,y1, ỹk,y1 ≻ ỹk | x)}Kk=1 ∪ {(x,y2, ỹk,y2 ≻ ỹk | x)}Kk=1.

Then, we compute their loss values and add the sample with the minimum loss to the dataset. Note
that we treat the model’s responses as dis-preferred ones compared to the original responses, which
suppresses the potential unsatisfactory or even harmful information in the model’s outputs.

Discussion. The rejection sampling is a popular approach of data augmentation to improve the data
quality and performance in existing preference alignment methods [12; 31; 65; 67; 60]. Specifically,
[12] ranks newly-collected responses based on their rewards and selects the highest ranked one to
add to the dataset. To address the issue of the excessively high rejection rate and thus improve
the effectiveness of rejection sampling, [65] proposes a multi-step sampling technique, which also
requires an external reward model. Besides, [60] and [67] consider rejection sampling for the
multi-objective preference alignment, where [60] projects multi-objective reward vectors onto one
dimension and then selects samples based on the scalar rewards, while [67] augments samples near the
Pareto front of multi-dimensional rewards, leading to a strong multi-objective alignment performance.
Compared to the aforementioned methods, which all rely on rewards provided by external models, our
robustness-guided rejection sampling technique selects new samples based on loss values that reflect
the quality of the samples. Moreover, our technique benefits from being independent of external
LLMs, thus leading to computational and memory efficiency.

3.4 ROPO FRAMEWORK AND COMPLEXITY ANALYSIS

For the detailed description, pseudocode, and complexity analysis of the overall ROPO framework,
please refer to Appendix A due to space limitations in the main text.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Tasks and Datasets. We focus on two dialogue datasets (i.e., UltraFeedback Binarized3 (UFB) and
Alpaca Comparison [39]) and one post-summarization dataset (i.e., Reddit TL;DR [57; 50]). For
details about the datasets, please refer to C.1.

Noise Settings. As stated in Section 1, the original datasets unavoidably contain noise introduced by
annotators (see Appendix D.3 for details about the two related practical noise settings). To further
explore the performance of ROPO and baselines under noise, we randomly alter preference labels at
different proportions (20% and 40%) within the three datasets to produce more challenging symmetric
noise [16]. Besides, in Appendices D.3.1 and D.3.2, we supplement experiments in another two
practical settings, where the noise comes from annotators’ trust in larger models over smaller models
and LLM preference comparisons. Please refer to the supplementary material for more details.

Baselines, Models, and Hyperparameters. Our baselines are DPO [42], IPO [2], and two approaches
that use the label smoothing technique to alleviate the impact of noise, i.e., rDPO [10] and cDPO
[35]. Besides, we supplement experiments on reward modeling in Appendix D.2.

We use Mistral-7B [19] and Llama-2-7B [55] as base models for all baselines and datasets in the
main text. For experiments on Llama-2-13B and Llama-3-70B, please refer to Appendix D.1. On
UFB, we use Zephyr-7B-SFT-β [56] as the SFT model for experiments with Mistral-7B, and adopt
the result of Zephyr-7B-β [56] on AlpacaEval (90.60) as the performance of DPO under no artificial

3https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized

7

https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Win rates (%) of different methods vs SFT targets under different proportions (i.e., 0,
20%, and 40%) of artificial noise, evaluated by GPT-4. The bold font indicates the best result and
an underline indicates the second-best result. Please note that 0% represents no artificial noise,
which does not mean that the dataset is clean.

Dataset UFB Alpaca Comparison TL;DR

Model Method 0% 20% 40% 0% 20% 40% 0% 20% 40%

Mistral-7B

DPO 90.60 86.21 82.67 73.66 70.19 65.84 63.00 56.80 49.60
IPO 88.45 87.32 82.86 72.92 70.81 67.33 62.00 57.00 48.80
rDPO 88.07 87.45 84.72 72.55 72.05 70.31 62.40 58.20 52.60
cDPO 88.82 86.96 83.35 73.04 71.30 69.94 59.40 57.40 53.00
ROPO 91.06 88.63 87.70 75.40 76.27 74.04 79.00 77.80 75.80

Llama-2-7B

DPO 68.57 66.71 62.36 53.42 50.68 48.20 56.80 42.40 35.20
IPO 67.70 66.09 64.35 53.54 50.56 49.19 54.20 50.80 51.60
rDPO 68.07 67.83 65.59 52.80 51.18 50.31 54.80 54.00 50.40
cDPO 68.20 67.33 65.09 53.79 50.81 49.81 52.20 52.00 49.80
ROPO 68.94 69.44 66.71 55.90 54.41 54.53 78.80 78.00 79.20

noise. In other cases, we fine-tune base models on the preferred responses (SFT targets) to form the
SFT models. For details about our baselines, models, and hyperparamters, please refer to Appendix
C.2. We run all experiments on 16 NVIDIA A100 GPUs (80 GB).

Evaluation. For models trained on UFB and Alpaca Comparison, we evaluate them on the AlpacaEval
benchmark [26] by comparing their outputs with those of text-davinci-003 (recommended by the
benchmark for comparison). For models trained on TL;DR, we evaluate them by comparing their
outputs with the SFT targets (chosen responses) on the test split of TL;DR. Following [42; 56], we
employ GPT-4 as the referee for head-to-head comparisons, using the win rate as the metric. The win
rate can be computed by Ω = #(Win)+#(Tie)/2

#(Comparisons) , where #(Win), #(Tie), and #(Comparisons) are
the numbers of wins, ties, and comparisons, respectively. For evaluation details, experiments on more
benchmarks, and human evaluation, please refer to Appendices C.3, D.4, and D.6, respectively.

4.2 MAIN RESULTS

ROPO is robust to noisy preferences. We present the win rates of different methods vs SFT targets
under different proportions of artificial noise in Table 1. From the table, we have several interesting
observations: (1) For all preference alignment methods, their win rates show a decreasing trend as
the noise rate increases. (2) Compared to the competitors, our proposed ROPO demonstrates a more
stable performance under noisy preference data. (3) ROPO consistently outperforms the baselines
under different proportions of artificial noise in all the three datasets. Even without artificial noise,
ROPO still outperforms DPO by 16.0% on TL;DR and 2.5% on Alpaca Comparison, which indicates
that the datasets inherently contain noise. (4) Baselines that use the label smoothing technique
(i.e., rDPO and cDPO) mostly outperform other baselines under 20% and 40% artificial noise, but
underperform ROPO. We speculate that the reasons for their limited effectiveness are as follows. First,
rDPO and cDPO are noise-tolerant only when the hyperparameter ε exactly equals the proportion of
noise and when ε = 0.5, respectively (see Appendix E.7), which is difficult to achieve in practice, as
we have no prior knowledge of the exact noise proportion. Second, they do not reduce the presence
of noise and thus can only marginally mitigate the side effects of noise. In contrast, ROPO exhibits
noise-tolerance without the priors on the noise proportion and iteratively reduces the noise proportion
as the training proceeds, thus leading to superior performance to rDPO and cDPO.

ROPO distinguishes noisy samples from clean samples. In Section 3.2, we have theoretically
shown that ℓna can distinguish noisy samples from clean ones, while ℓdpo cannot. Besides, we
also claim that the minor incorporation of ℓdpo in ℓropo does not hurt the noise filtering ability. To
support our analysis, we report the loss distributions for Llama-2-7B trained with ROPO and DPO on
TL;DR in Figure 2. Specifically, for models trained for one (two) epoch, we use the SFT model (the
model trained for one epoch) as the reference model and compute the losses for all noisy and clean
samples. The results in Figure 2 demonstrate three important observations: (1) ℓropo can distinguish
between noisy and clean samples by yielding larger values for noisy samples than for others. (2) The

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Win rates (%) of ROPO and DPO vs SFT targets under different proportions (i.e., 0, 20%,
and 40%) of artificial noise at different training epochs on TL;DR, evaluated by GPT-4.

Model Method 0% 20% 40%
ep1 ep2 ep3 ep1 ep2 ep3 ep1 ep2 ep3

Mistral-7B DPO 62.60 60.20 63.00 56.80 51.00 48.60 49.60 44.40 44.60
ROPO 75.40 75.60 79.00 68.80 76.40 77.80 61.60 70.80 75.80

Llama-2-7B DPO 49.00 53.60 56.80 42.40 38.40 39.20 32.00 35.20 33.60
ROPO 74.00 82.00 78.80 58.40 76.40 78.00 46.00 70.80 79.20

0% 20% 40%70

75

80

85

90

95
= 0.1
= 0.2
= 0.3

(a) Mistral-7B

0% 20% 40%55

60

65

70

75
= 0.1
= 0.2
= 0.3

(b) Llama-2-7B

0% 20% 40%70

75

80

85

90

95
= 6
= 14
= 30

(c) UFB

0% 20% 40%70

72

74

76

78

80
= 6
= 14
= 30

(d) TL;DR

Figure 3: Ablations on ρ and α. (a) and (b) respectively show the performance of ROPO-trained
Mistral-7B and Llama-2-7B on UFB with different proportions of artificial noise and sample filtering
ratio ρ. (c) and (d) respectively show the performance of ROPO-trained Mistral-7B on UFB and
TL;DR with different proportions of artificial noise and α.

distributions of ℓdpo on noisy and clean samples are similar and the gap between them narrows as
training progresses. (3) ROPO has a stronger capability for filtering out noisy samples compared to
DPO. Specifically, in the top 20% of samples with the largest ℓropo, noisy samples make up 60%;
whereas in the top 20% of samples with the largest ℓdpo, noisy samples account for about 34%.

ROPO gradually improves the performance. In Table 2, we report the win rates of ROPO and DPO
vs SFT targets under different proportions of artificial noise at different training epochs on TL;DR.
From the results, we find that the performance of ROPO gradually improves as training progresses
in most cases, while DPO does not exhibit the same trend. Specifically, the performance of DPO
at the second and third epochs is generally lower than that at the first epoch under 20% and 40%
artificial noise. As a comparison, the second epoch training of ROPO brings an 8%-24% increase
in the win rate, and the third epoch also leads to a 5%-9% improvement under 40% artificial noise.
These results demonstrate that the iterative training of ROPO effectively reduces the impact of noise
and thus consistently improves the alignment performance.

4.3 ABLATIONS

Table 3: Ablations on different components of
ROPO for Mistral-7B on UFB. NSF and RS stand
for the noisy sample filtering and rejection sam-
pling stages, respectively.

Method 0% 20% 40%

DPO 90.60 86.21 82.67
ROPO (ℓna) 89.19 87.58 86.34
ROPO (ℓna + NSF) 89.44 88.20 88.07
ROPO (ℓna + NSF + RS) 91.06 88.63 87.70

Effectiveness of components in ROPO. To
evaluate the effectiveness of different compo-
nents of our ROPO framework, we compare the
performance of our proposal with and without:
(a) noise-aware term ℓna, (b) noisy sample fil-
tering stage, and (c) rejection sampling stage.
As shown in Table 3, all components improve
ROPO’s performance, validating the rationale
of our robust framework. Compared to the ag-
gressive DPO loss, our proposed noise-aware
term ℓna consistently improves the performance,
which indicates that a proper trade-off between
aggressive and conservative gradient weighting
strategy effectively prevents the model from over-fitting to noise. Besides, the results also show
that the noisy sample filtering is the most effective part of our method, which also makes ROPO
significantly superior to other label smoothing-based methods [10; 35].

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

How many noisy samples should we filter out? The sample filtering ratio ρ is a key factor to the
data filtering stage. In the main experiments, we only report the results with ρ = 0.2. Here, we
also present the results of filtering 10% and 30% samples with larger loss values. The results in
Figures 3(a) and 3(b) show that better performance could be achieved when filtering 20% or 30%
samples. We attribute the reason for this result to the noise ratio in the preference data, which is
generally between 20%-30% [16]. There’s a substantial risk of eliminating a considerable amount of
high-quality data if we set a larger ratio ρ. Thus, we recommend using ρ = 0.2 in practice.

Sensitivity to hyperparameters α. The trade-off hyperparameter α controls the importance of the
conservative noise-aware term. A larger α indicates a more conservative gradient weighting strategy.
As C ≜ lim∆→∞ wropo(∆) = 4α/(α+ 1)2, we search the best α in the range of {6, 14, 30}, which
corresponds to C ∈ {1/2, 1/4, 1/8}. Then, we use α = 14 in our main experiments (see Appendix
C.2 for the settings of hyperparameters). To explore the effect of α, we provide ablations on α in
Figures 3(d) and 3(c). As observed, the model’s performance remains largely unaffected for α within
an appropriate range, as the loss scale does not change significantly (note that αC ∈ [2.94, 3.75] for
α ∈ [6, 30]). Besides, for the dialogue task, a smaller α results in better performance, as a smaller
α will lead to more diverse answers. In contrast, a larger α results in better performance in the
summarization task. As the summarization task is more objective than the dialogue task, the results
are more sensitive to noise, and hence we need a model that is more robust to the noise.

5 RELATED WORK

Preference Alignment of LLMs. The most representative paradigm of preference alignment is
RLHF [76; 37], which involves training a reward model to capture human preferences and then
steering LLMs towards producing high-reward responses through RL algorithms [44]. However, in
real applications, RL-based methods are complex and prone to instability during training [42; 64; 69].
Therefore, many recent studies have explored more straightforward and stable alternatives for RLHF
[69; 42; 47; 61; 28; 27; 63; 71]. Among these studies, the most promising direction is to use a
contrastive or ranking loss to calibrate the likelihood of the output sequence. Specifically, RRHF [69]
introduces a ranking loss to encourage larger likelihoods for better responses and smaller likelihoods
for worse responses. Besides, another important work is DPO [42], which implicitly optimizes the
same objective as existing RLHF-based methods and enables human preference alignment directly
with a simple cross-entropy loss. In addition to the aforementioned methods using data in the form of
(x,y1,y2, c), where c is the preference label, some recent studies [13; 15; 8] have also used data in
the form of (x,y, c), where c is an annotation of the response y, for preference alignment.

Learning from Noisy Data. In the era of deep learning, there is an urgent demand for large-scale
training samples, and the cost of manually annotating or filtering data is prohibitively expensive in
most circumstances [48]. Therefore, learning from noisy data has become increasingly important,
which primarily falls into three categories. The first category is sample-selection based methods
[53; 41; 38; 49], which identify high-quality samples before training and filter out noisy samples.
For example, [53] uses the training dynamics to identify valuable samples. The second category is
weighting-based methods, which assign greater weights for important samples and lesser weights for
noisy samples [43; 18; 46]. Besides, another important area of research is dedicated to the design of
loss functions that are robust to noise [17; 62; 70]. The findings in [17] indicate that the traditional
cross-entropy loss is sensitive to the label noise, while symmetric loss functions are robust to such
noise. Furthermore, recent advances in LLMs have also underscored the essential role of data quality
in both pre-training and supervised fine-tuning (SFT) phases of LLMs [34; 75; 22].

6 CONCLUSION

Robust preference optimization is critical for the LLM alignment, as noisy preferences are inevitable
in practical scenarios. Unlike existing methods, which rely on label smoothing or external LLMs for
the sample selection, we propose a robust preference alignment framework that unifies noise-tolerant
model training and effective filtering of noisy samples. Specifically, we incorporate a noise-aware loss
term to prevent the model from over-fitting to noise. Besides, we demonstrate that the proposed noise-
aware term plays a crucial role in distinguishing noisy samples from clean ones. Furthermore, we
propose a robustness-guided rejection sampling technique to compensate for the potential information
reduction caused by the filtering stage. We provide extensive theoretical and empirical evidence to
demonstrate the effectiveness of our proposed ROPO framework.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 ETHICS STATEMENT

This paper studies LLM alignment with noisy preferences. In our experiments, we introduce artificial
noise by randomly flipping the annotated preferences in the datasets and use the obtained noisy
datasets to train language models. The models trained on such noisy datasets may tend to output
responses that are inconsistent with human values or even harmful. We discourage readers from using
models trained on noisy datasets for purposes other than scientific research.

8 REPRODUCIBILITY STATEMENT

In this paper, to ensure the reproducibility of our work, we provide key information in the main text
and the supplementary material, as summarized as follows.

• Details about experiments. We provide details about tasks and datasets, baselines, models,
hyperparameters, and the evaluation in Appendix C. We also provide corresponding details for
the experiments in Appendix D.

• Details about the method and theoretical analysis. In Section 2, we clearly present preliminaries
and problem settings. In Section 3, we introduce our method in detail and provide theoretical
assumptions and theorems. We also provide rigorous proofs of the claims in Appendix E.

REFERENCES

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello,
Michal Valko, and Rémi Munos. A general theoretical paradigm to understand learning from
human preferences. arXiv preprint arXiv:2310.12036, 2023.

[3] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

[4] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

[5] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[6] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

[7] Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open problems
and fundamental limitations of reinforcement learning from human feedback. arXiv preprint
arXiv:2307.15217, 2023.

[8] Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024.

[9] Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena:
An open platform for evaluating llms by human preference. arXiv preprint arXiv:2403.04132,
2024.

[10] Sayak Ray Chowdhury, Anush Kini, and Nagarajan Natarajan. Provably robust dpo: Aligning
language models with noisy feedback. arXiv preprint arXiv:2403.00409, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

[11] Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan
Liu, and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback.
arXiv preprint arXiv:2310.01377, 2023.

[12] Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

[13] Shitong Duan, Xiaoyuan Yi, Peng Zhang, Tun Lu, Xing Xie, and Ning Gu. Negating negatives:
Alignment without human positive samples via distributional dispreference optimization. arXiv
preprint arXiv:2403.03419, 2024.

[14] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[15] Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto:
Model alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

[16] Yang Gao, Dana Alon, and Donald Metzler. Impact of preference noise on the alignment
performance of generative language models. arXiv preprint arXiv:2404.09824, 2024.

[17] Aritra Ghosh, Himanshu Kumar, and P Shanti Sastry. Robust loss functions under label noise
for deep neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 31, 2017.

[18] Yizeng Han, Yifan Pu, Zihang Lai, Chaofei Wang, Shiji Song, Junfeng Cao, Wenhui Huang,
Chao Deng, and Gao Huang. Learning to weight samples for dynamic early-exiting networks.
In European Conference on Computer Vision, pp. 362–378. Springer, 2022.

[19] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

[20] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. MentorNet: Learning
data-driven curriculum for very deep neural networks on corrupted labels. In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 2304–2313. PMLR, 10–15 Jul
2018. URL https://proceedings.mlr.press/v80/jiang18c.html.

[21] Sungdong Kim, Sanghwan Bae, Jamin Shin, Soyoung Kang, Donghyun Kwak, Kang Min Yoo,
and Minjoon Seo. Aligning large language models through synthetic feedback. arXiv preprint
arXiv:2305.13735, 2023.

[22] Tomasz Korbak, Kejian Shi, Angelica Chen, Rasika Vinayak Bhalerao, Christopher Buckley,
Jason Phang, Samuel R Bowman, and Ethan Perez. Pretraining language models with human
preferences. In International Conference on Machine Learning, pp. 17506–17533. PMLR,
2023.

[23] Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard, Colton Bishop,
Victor Carbune, and Abhinav Rastogi. Rlaif: Scaling reinforcement learning from human
feedback with ai feedback. arXiv preprint arXiv:2309.00267, 2023.

[24] Seongyun Lee, Sue Hyun Park, Seungone Kim, and Minjoon Seo. Aligning to thousands of
preferences via system message generalization. arXiv preprint arXiv:2405.17977, 2024.

[25] Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E
Gonzalez, and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard
and benchbuilder pipeline. arXiv preprint arXiv:2406.11939, 2024.

[26] Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 2023.

12

https://proceedings.mlr.press/v80/jiang18c.html
https://github.com/tatsu-lab/alpaca_eval

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

[27] Yuhui Li, Fangyun Wei, Jinjing Zhao, Chao Zhang, and Hongyang Zhang. Rain: Your language
models can align themselves without finetuning. arXiv preprint arXiv:2309.07124, 2023.

[28] Bill Yuchen Lin, Abhilasha Ravichander, Ximing Lu, Nouha Dziri, Melanie Sclar, Khyathi
Chandu, Chandra Bhagavatula, and Yejin Choi. The unlocking spell on base llms: Rethinking
alignment via in-context learning. arXiv preprint arXiv:2312.01552, 2023.

[29] Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. Chain of hindsight aligns language models
with feedback. arXiv preprint arXiv:2302.02676, 2023.

[30] Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda. Early-
learning regularization prevents memorization of noisy labels. Advances in neural information
processing systems, 33:20331–20342, 2020.

[31] Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and
Jialu Liu. Statistical rejection sampling improves preference optimization. arXiv preprint
arXiv:2309.06657, 2023.

[32] Yang Liu and Hongyi Guo. Peer loss functions: Learning from noisy labels without knowing
noise rates. In International conference on machine learning, pp. 6226–6236. PMLR, 2020.

[33] Xingzhou Lou, Junge Zhang, Jian Xie, Lifeng Liu, Dong Yan, and Kaiqi Huang. Spo: Multi-
dimensional preference sequential alignment with implicit reward modeling. arXiv preprint
arXiv:2405.12739, 2024.

[34] Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker.
When less is more: Investigating data pruning for pretraining llms at scale. arXiv preprint
arXiv:2309.04564, 2023.

[35] Eric Mitchell. A note on dpo with noisy preferences & relationship to ipo, 2023. URL
https://ericmitchell.ai/cdpo.pdf.

[36] Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al.
Nash learning from human feedback. arXiv preprint arXiv:2312.00886, 2023.

[37] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in Neural Information Processing Systems,
35:27730–27744, 2022.

[38] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet:
Finding important examples early in training. Advances in Neural Information Processing
Systems, 34:20596–20607, 2021.

[39] Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. arXiv preprint arXiv:2304.03277, 2023.

[40] Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton.
Regularizing neural networks by penalizing confident output distributions. arXiv preprint
arXiv:1701.06548, 2017.

[41] Geoff Pleiss, Tianyi Zhang, Ethan Elenberg, and Kilian Q Weinberger. Identifying mislabeled
data using the area under the margin ranking. Advances in Neural Information Processing
Systems, 33:17044–17056, 2020.

[42] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
arXiv preprint arXiv:2305.18290, 2023.

[43] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for
robust deep learning. In International conference on machine learning, pp. 4334–4343. PMLR,
2018.

13

https://ericmitchell.ai/cdpo.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

[44] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[45] Tianhao Shen, Renren Jin, Yufei Huang, Chuang Liu, Weilong Dong, Zishan Guo, Xinwei
Wu, Yan Liu, and Deyi Xiong. Large language model alignment: A survey. arXiv preprint
arXiv:2309.15025, 2023.

[46] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-
weight-net: Learning an explicit mapping for sample weighting. Advances in neural information
processing systems, 32, 2019.

[47] Feifan Song, Bowen Yu, Minghao Li, Haiyang Yu, Fei Huang, Yongbin Li, and Houfeng Wang.
Preference ranking optimization for human alignment. arXiv preprint arXiv:2306.17492, 2023.

[48] Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from
noisy labels with deep neural networks: A survey. IEEE Transactions on Neural Networks and
Learning Systems, 2022.

[49] Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neu-
ral scaling laws: beating power law scaling via data pruning. Advances in Neural Information
Processing Systems, 35:19523–19536, 2022.

[50] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
Advances in Neural Information Processing Systems, 33:3008–3021, 2020.

[51] Carolin Strobl, Florian Wickelmaier, and Achim Zeileis. Accounting for individual differences in
bradley-terry models by means of recursive partitioning. Journal of Educational and Behavioral
Statistics, 36(2):135–153, 2011.

[52] Gokul Swamy, Christoph Dann, Rahul Kidambi, Zhiwei Steven Wu, and Alekh Agarwal. A
minimaximalist approach to reinforcement learning from human feedback. arXiv preprint
arXiv:2401.04056, 2024.

[53] Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi,
Noah A Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with
training dynamics. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 9275–9293, 2020.

[54] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

[55] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[56] Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes
Belkada, Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr:
Direct distillation of lm alignment. arXiv preprint arXiv:2310.16944, 2023.

[57] Michael Völske, Martin Potthast, Shahbaz Syed, and Benno Stein. Tl; dr: Mining reddit to learn
automatic summarization. In Proceedings of the Workshop on New Frontiers in Summarization,
pp. 59–63, 2017.

[58] Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan Dou, Caishuang Huang, Wei Shen, Senjie
Jin, Enyu Zhou, Chenyu Shi, et al. Secrets of rlhf in large language models part ii: Reward
modeling. arXiv preprint arXiv:2401.06080, 2024.

[59] Chaoqi Wang, Yibo Jiang, Chenghao Yang, Han Liu, and Yuxin Chen. Beyond reverse kl:
Generalizing direct preference optimization with diverse divergence constraints. arXiv preprint
arXiv:2309.16240, 2023.

14

https://github.com/tatsu-lab/stanford_alpaca

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

[60] Haoxiang Wang, Yong Lin, Wei Xiong, Rui Yang, Shizhe Diao, Shuang Qiu, Han Zhao, and
Tong Zhang. Arithmetic control of llms for diverse user preferences: Directional preference
alignment with multi-objective rewards. arXiv preprint arXiv:2402.18571, 2024.

[61] Jiashuo Wang, Haozhao Wang, Shichao Sun, and Wenjie Li. Aligning language models with
human preferences via a bayesian approach. arXiv preprint arXiv:2310.05782, 2023.

[62] Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey. Symmetric cross
entropy for robust learning with noisy labels. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 322–330, 2019.

[63] Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xingshan Zeng, Wenyong Huang, Lifeng
Shang, Xin Jiang, and Qun Liu. Aligning large language models with human: A survey. arXiv
preprint arXiv:2307.12966, 2023.

[64] Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A
Smith, Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better
rewards for language model training. arXiv preprint arXiv:2306.01693, 2023.

[65] Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong
Zhang. Iterative preference learning from human feedback: Bridging theory and practice for rlhf
under kl-constraint. In ICLR 2024 Workshop on Mathematical and Empirical Understanding
of Foundation Models, 2023.

[66] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

[67] Rui Yang, Xiaoman Pan, Feng Luo, Shuang Qiu, Han Zhong, Dong Yu, and Jianshu Chen.
Rewards-in-context: Multi-objective alignment of foundation models with dynamic preference
adjustment. arXiv preprint arXiv:2402.10207, 2024.

[68] Xichen Ye, Xiaoqiang Li, Tong Liu, Yan Sun, Weiqin Tong, et al. Active negative loss functions
for learning with noisy labels. Advances in Neural Information Processing Systems, 36:6917–
6940, 2023.

[69] Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf:
Rank responses to align language models with human feedback without tears. arXiv preprint
arXiv:2304.05302, 2023.

[70] Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks
with noisy labels. Advances in neural information processing systems, 31, 2018.

[71] Yao Zhao, Misha Khalman, Rishabh Joshi, Shashi Narayan, Mohammad Saleh, and Peter J
Liu. Calibrating sequence likelihood improves conditional language generation. arXiv preprint
arXiv:2210.00045, 2022.

[72] Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-
hf: Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425,
2023.

[73] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

[74] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

[75] Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma,
Avia Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. arXiv preprint
arXiv:2305.11206, 2023.

[76] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
arXiv preprint arXiv:1909.08593, 2019.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A ROPO FRAMEWORK

In this section, we describe the overall iterative framework, provide the pseudocode, and analyze the
computational cost for ROPO.

Algorithm 1 ROPO

Input: dataset D, β, α, ρ, K, number of epochs M , SFT model πsft,
Initialization:
D(0) ← D
π
(0)
θ ← πsft

for m = 1, . . . ,M − 1 do
π
(m)
ref ← π

(m−1)
θ with frozen parameters θ

▶Noise-tolerant Training:
Obtain π

(m)
θ by training π

(m−1)
θ on D(m−1) with π

(m)
ref and ℓropo in Eq. (9) for one epoch

▶Noisy Sample Filtering:
Compute ℓropo with π

(m)
θ and π

(m)
ref for D

D
(m)
top−ρ ← samples with top-ρ ROPO loss value in D

D
(m)
bot−(1−ρ) ← samples with bottom-(1− ρ) ROPO loss value in D

▶Robustness-guided Rejection Sampling:
Dnew ← ∅
for (x,y1,y2) in D

(m)
top−ρ do

Sample responses ỹ1, . . . , ỹK to x using π
(m)
θ

Dcand ← {(x,y1, ỹk,y1 ≻ ỹk | x)}Kk=1 ∪ {(x,y2, ỹk,y2 ≻ ỹk | x)}Kk=1

Dnew ← Dnew ∪ {argminz∈Dcand
ℓropo(z, π

(m)
θ)}

end for
D(m) ← D

(m)
bot−(1−ρ) ∪Dnew

end for
π
(M)
ref ← π

(M−1)
θ with frozen parameters θ

Obtain π
(M)
θ by training π

(M−1)
θ on D(M−1) with π

(M)
ref and ℓropo in Eq. (9) for one epoch

Output: π(M)
θ

Noise-tolerant
Training

Noisy Sample
Filtering

Robustness-guided
Rejection Sampling

Noise-tolerant
Training

Noisy Sample
Filtering

Robustness-guided
Rejection Sampling

Noise-tolerant
Training

Noisy Sample
Filtering

Robustness-guided
Rejection Sampling

Epoch
M－1

······

Noise-tolerant
Training

Epoch
2

Epoch
1

Epoch
M

Figure 4: The iterative process of ROPO.

As shown in Figure 4 and Algorithm 1, ROPO iteratively carries out three stages: noise-tolerant
training, noisy sample filtering, and robustness-guided rejection sampling. Specifically, in the 1st to

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 4: Notations in the computational cost analysis.

Notation Description

N,M, ρ,K Please see Algorithm 1

CROPO Cost of ROPO
Cnon−it Cost of non-iterative methods

Ctr Cost of (noise-tolerant) training per epoch
Cfil Cost of noisy sample filtering per epoch
Crs Cost of robustness-guided rejection sampling per epoch

Closs Cost of computing the loss for a sample (x,y1,y2) without gradient propagation
Cgen Cost of generating a response y for a query x

Cforward Cost of computing the log-likelihood for a query-response pair (x,y)
Cbackward Cost of computing the gradient and updating parameters for a sample (x,y1,y2)

(M − 1)th epochs, we first train the model using the ROPO loss ℓropo. After training for one epoch,
we compute the value of ROPO loss for all samples in the original dataset and divide them into two
subsets (i.e., Dtop−ρ and Dbot−(1−ρ)) according to their loss values. Then, the robustness-guided
rejection sampling stage generates new samples Dnew based on Dtop−ρ. The new samples are used
together with Dbot−(1−ρ) as training samples for the next epoch. In the last epoch, we only perform
the noise-tolerant training stage and then get the final model.

Computational Cost Analysis. ROPO introduces additional costs for the noisy sample filtering and
robustness-guided rejection sampling stages compared with non-iterative methods. However, these
additional costs are acceptable compared to the training cost and almost negligible in the entire chain
of real-world large-scale LLM training. The notations in the computational cost analysis is shown in
Table 4. We have

CROPO

Cnon−it
=

MCtr + (M − 1)(Cfil + Crs)

MCtr
. (11)

Since the main cost of the noisy sample filtering stage per epoch is to compute the loss of N
samples, we have Cfil ≈ NCloss ≈ 4NCforward. As for the rejection sampling stage, the
main costs per epoch come from ρNK response generation and 2ρNK loss computations, hence
Crs ≈ ρNKCgen + 2ρNKCloss ≈ ρNKCforward + 8ρNKCforward = 9ρNKCforward. Because
the training process mainly involves loss computation for two models (i.e., the reference model
and the model being trained) and gradient propagation, we have Ctr ≈ N(Closs + Cbackward) ≈
N(4Cforward + Cbackward). Therefore, Eq. (11) leads to

CROPO

Cnon−it
≈ M(4Cforward + Cbackward) + (M − 1)(4 + 9ρK)Cforward

M(4Cforward + Cbackward)

= 1 +
(4 + 9ρK)(M − 1)

M
· Cforward

4Cforward + Cbackward

= 1 +
(4 + 9ρK)(M − 1)

M
· 1

4 + Cbackward/Cforward
, (12)

where the ratio Cbackward/Cforward is approximately 2− 3 for LLMs. Take ρ = 0.2,K = 2,M = 3
as an example, without considering inference acceleration, we can estimate that CROPO ≈
1.6Cnon−it. In practice, we can use inference acceleration methods to increase Cbackward/Cforward,
thereby further reducing the additional cost of ROPO. Compared with the computational cost of the
entire chain of real-world LLM training (including continual pre-training and SFT), the additional
cost is almost negligible.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Lab
el

GPT-
4

Lla
ma

Qwen

Hum
an

-1

Hum
an

-2

Hum
an

-3

Human-3

Human-2

Human-1

Qwen

Llama

GPT-4

Label

66.0 57.0 62.5 62.5 75.0 73.0 100.0

68.0 58.0 58.5 66.5 76.0 100.0 73.0

67.0 59.0 62.5 64.5 100.0 76.0 75.0

66.8 61.7 75.9 100.0 64.5 66.5 62.5

60.3 60.4 100.0 75.9 62.5 58.5 62.5

59.1 100.0 60.4 61.7 59.0 58.0 57.0

100.0 59.1 60.3 66.8 67.0 68.0 66.0 60

65

70

75

80

85

90

95

100

Figure 5: The inter-annotator agreement heap map on the TL;DR dataset. The “Label”, “Llama”, and
“Qwen” refer to the original labels in the dataset, Llama-2-70B, and Qwen-Max, respectively. We
assess the preferences of human annotators across 200 randomly selected samples and extend the
evaluation to 1,000 samples for LLMs, which include the initial 200 samples.

Table 5: The estimated noise rate in commonly-seen datasets. This table is from [16].

Dataset Noise rate (%) Reference

MT-Bench 15.0-37.0 [73]
TL;DR 21.3-27.0 [23]
CBArena 22.0-36.0 [73]
AntHH 27.9-30.9 [23]
SHP 35.5-41.9 [11]
WebGPT 34.8 [11]

B DISCUSSION ON PREFERENCE NOISE

Due to the inherent differences in annotators’ preferences, the preference noise is usually unavoidable.
In this section, we discuss the definition and identification of preference noise.

Before giving the definition of preference noise, we invite our readers to pay attention to the following
two points.

1. This paper focuses on noisy preferences rather than the more general noisy preference data. The
former refers specifically to the noise in preference labels, while the noise corresponding to the
latter may come from multiple factors such as preference labels, text quality, and the matching
degree between queries and responses. It is interesting and meaningful to study a wider range of
noisy data, but it is beyond the scope of our paper and related work [35; 10; 16].

2. Like related work [35; 10; 16], this paper is based on the Bradley-Terry (BT) model. The BT
model assumes the existence of a “gold”, latent, and inaccessible reward model r∗. Then, we
can express the BT preference probability P ∗(y1 ≻ y2 | x) for a sample (x,y1,y2) using the
reward model r∗. Intuitively, the BT model assumes that there are mainstream preferences in
human society that reflect values such as peace, friendliness, honesty, etc. Differently, there are
also studies on multifaceted or multidimensional preferences [33; 24], but defining noise for them
is challenging because it is difficult to have a “ground truth” label. Therefore, our following
discussion is based on the assumption of the BT model.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Definition of preference noise. For a sample (x,y1,y2, ĉ), if P ∗(ĉ) > 0.5, then the sample is
clean; otherwise, the sample is noisy. Because the BT model usually represents preferences that are
consistent with mainstream values of human society, so the formation of such noise is usually caused
by the personal preferences or cognitive biases of annotators. Please note that the annotators can be
humans or LLMs.

Identification and detection of preference noise. As mentioned above, the definition of preference
noise is based on the inaccessible reward model, so we can never identify preference noise accurately.
However, we can estimate the noise rate by using advanced LLMs as the proxy for the BT model or
computing the inter-annotator agreement.

• Using advanced LLMs as the proxy for the BT model [16]. Given a dataset, we can prompt
advanced LLMs (e.g., GPT-4, Llama-3-70B-Instruct [14], and Qwen-2-72B-Instruct [66]) to
identify the noise. For example, we can provide them with rules and ask them to rate or rank the
responses in the dataset. If a sample’s new label is different from its original label, it is identified
as noisy. The stronger the proxy LLM, the more reliable the noise identification.

• Computing the inter-annotator agreement [37; 58; 4]. We can employ different annotators (humans
or LLMs) to relabel the dataset and calculate the agreement between them. For this approach, we
should try to ensure that all annotators have the same criteria, and similar cognition and ability.
Suppose that we have n annotators and the agreement between annotators i and j is 0 ≤ aij ≤ 1,
then the estimated noise rate is 1

n(n−1)

∑n
i,j=1,i̸=j(1−aij). Take the TL;DR dataset as an example.

We employ GPT-4, Llama-2-70B [55], Qwen-Max [3], and three human annotators to relabel the
TL;DR dataset. The human annotators are three of the four volunteers mentioned in Appendix D.6.
The inter-annotator agreement heat map is shown in Figure 5, which indicates an estimated noise
rate of 17.6%.

Besides, Table 5 from [16] summarizes the estimated noise rate in some commonly-seen datasets. As
can be seen, the existence of preference noise is ubiquitous and cannot be ignored, which highlights
the importance of studying robust preference optimization approaches.

C MORE DETAILS ABOUT EXPERIMENTS

C.1 TASKS AND DATASETS

We run experiments on two dialogue datasets (i.e., UltraFeedback Binarized and Alpaca Comparison)
and one post summarization dataset (i.e., TL;DR).

• The UltraFeedback Binarized dataset4 is a pre-processed version of the UltraFeedback dataset
[11], which contains 64,000 prompts and each prompt has four model responses from various
LLMs. Based on the score assigned by GPT-4, [56] selects two responses for each prompt and
construct UltraFeedback Binarized for the preference alignment.

• The Alpaca Comparison dataset contains 52,000 queries from the widely-used Stanford Alpaca
dataset [54]. [39] generates several responses using GPT-4 and other LLMs including text-davinci-
003 to each query and employs GPT-4 to assign a score for each response.

• In the TL;DR dataset, each prompt is a forum from Reddit, and the model is required to summarize
the given forum. Following [42], we use the Reddit TL;DR summarization dataset [57] along
with human preferences collected by [50].

C.2 BASELINES, MODELS, AND HYPERPARAMETERS

Baselines. Our baselines are DPO [42], IPO [2], and two approaches that use the label smoothing
technique to alleviate the impact of noise, i.e., rDPO [10] and cDPO [35].

4https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized

19

https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Specifically, given a preference data (x,y1,y2) with the ranking label y1 ≻ y2 | x, the objectives of
our baselines are

ℓdpo = − log σ

(
β log

πθ(y1 | x)
πref(y1 | x)

− β log
πθ(y2 | x)
πref(y2 | x)

)
, (13)

ℓipo =

(
log

πθ(y1 | x)
πref(y1 | x)

− log
πθ(y2 | x)
πref(y2 | x)

− 1

2β

)2

, (14)

ℓrdpo = − 1− ε

1− 2ε
log σ

(
β log

πθ(y1 | x)
πref(y1 | x)

− β log
πθ(y2 | x)
πref(y2 | x)

)
+

ε

1− 2ε
log σ

(
β log

πθ(y2 | x)
πref(y2 | x)

− β log
πθ(y1 | x)
πref(y1 | x)

)
, (15)

ℓcdpo = −(1− ε) log σ

(
β log

πθ(y1 | x)
πref(y1 | x)

− β log
πθ(y2 | x)
πref(y2 | x)

)
− ε log σ

(
β log

πθ(y2 | x)
πref(y2 | x)

− β log
πθ(y1 | x)
πref(y1 | x)

)
, (16)

where ε ∈ (0, 1
2) and β ∈ (0, 1) are hyperparameters.

Models. We use Mistral-7B [19] and Llama-2-7B [55] as base models for all baselines and datasets.
On UFB, we use Zephyr-7B-SFT-β [56] as the SFT model for experiments with Mistral-7B, and
adopt the result of Zephyr-7B-β [56] on AlpacaEval (90.60) as the performance of DPO under no
artificial noise. In other cases, we fine-tune base models on the preferred responses (SFT targets) to
form the SFT models.

Hyperparameters. We run all experiments on 16 NVIDIA A100 GPUs (80 GB). Unless otherwise
noted, we use a global batch size of 512 to train all models. For all hyperparameters except for ε of
label smoothing, we search for the best one on each dataset without artificial noise and use the
same setting for 20% and 40% artificial noise.

For all methods, we search the best learning rate in {1e-5, 5e-6, 1e-6, 5e-7, 1e-7} and the best β in
{0.1, 0.5}. We find that the best performing learning rate is 1e-6, and the best β for dialogue and post
summarization are 0.1 and 0.5, respectively. This conclusion is consistent with that in [42].

For ROPO, we use α = 14 and ρ = 0.2 in the main experiments. In ablations (Section 4.3), we
tune α in {6, 14, 30}, which makes 4α

(1+α)2 be around 1
2 ,

1
4 ,

1
8 , respectively, and tune ρ in {0.1, 0.2,

0.3}. We set K = 3 for the rejection sampling. For rDPO and cDPO, we search the best ε in {0,05,
0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45} for each dataset and each proportion of artificial noise.

C.3 EVALUATION

For models trained on UFB and Alpaca Comparison, we evaluate them on the AlpacaEval benchmark
[26]—a widely used dialogue benchmark—by comparing their outputs with those of text-davinci-003
(recommended by the benchmark for comparison). AlpacaEval contains 805 queries in various
domains and exhibit a strong concordance with ground truth human annotators. For TL;DR, we
randomly select 500 queries from the test split of it and evaluate ROPO and baselines by comparing
their outputs with the chosen responses (SFT targets) for the queries.

Following existing studies [42; 56], we employ GPT-4 as the referee to conduct head-to-head
comparisons, using the win rate as the metric. On AlpacaEval, we conduct evaluations using the API
provided by AlpacaEval. On TL;DR, we use the following prompt, which is similar to that used by
AlpacaEval, to conduct GPT-4 evaluation.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 6: Win rates (%) of different methods vs SFT targets under different proportions (i.e., 0 and
20%) of artificial noise, evaluated by GPT-4 on AlpacaEval.

Dataset UFB

Model Method 0% 20%

Llama-2-13B

DPO 82.98 80.50
IPO 81.99 79.75
rDPO 81.37 80.87
cDPO 82.36 80.50
ROPO 83.23 82.98

Table 7: Win rates (%) of ROPO/DPO vs SFT targets under different proportions (i.e., 0 and 20%)
of artificial noise, evaluated by GPT-4 on AlpacaEval.

Dataset UFB

Model Method 0% 20%

Llama-2-70B DPO 94.29 88.70
ROPO 95.53 94.04

You are a helpful assistant that ranks models by the
quality of their summaries of given forum posts.

I want you to create a leaderboard of different of
large-language models. To do so, I will give you the
instructions (forum posts) given to the models, and the
responses of two models. Please rank the models based on
which responses would be preferred by humans.

Here is the post:
<Forum Post>

Here are the outputs of the models:
Model 1: <Summary 1>
Model 2: <Summary 2>

Now please rank the models by the quality of their answers,
so that the model with rank 1 has the best output. Please
provide the ranking that the majority of humans would give.
Your response should use the format:
Better: <Model 1 or Model 2>

D MORE EXPERIMENTS

D.1 EXPERIMENTS ON LLAMA-2-13B-BASE AND LLAMA-3-70B-BASE

To evaluate ROPO and baselines on models larger than 7B, we supplement experiments on Llama-2-
13B-Base and Llama-3-70B-Base.

Experiments on Llama-2-13B-Base. We run SFT on UltraChat-200k for one epoch with the learning
rate of 1e-5, the global batch size of 128, the weight decay of 0.1, and a cosine-type learning rate
scheduler. Then, we fine-tune the SFT model with ROPO and baselines for two epochs on UFB
(under artificial noise ratio of 0 and 20%) with the learning rate of 1e-6 and the global batch size of
512. In the experiments, we fix α = 14 and ρ = 0.2 for ROPO without tuning them, and tune β in
[0.1, 0.5, 1.0] for IPO and tune ε in [0.1, 0.2, 0.3, 0.4] for cDPO and rDPO. The results are shown in
Table 6.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 8: Win rates (%) of different methods vs SFT targets under different proportions (i.e., 0 and
20%) of artificial noise, evaluated by GPT-4 on AlpacaEval.

Dataset UFB

Model Method 0% 20%

Mistral-7B

DPO-RM 69.69 68.32
cPPO-RM 68.45 67.95
rPPO-RM 68.70 67.33
ROPO-RM 69.94 70.43

Table 9: Win rates (%) of different methods vs SFT targets under noise coming from the annotators’
trust in larger models over smaller ones, evaluated by GPT-4 on AlpacaEval.

Dataset UFB

Model Method

Mistral-7B

DPO 75.16
IPO 72.55
cDPO 76.27
rDPO 78.26
ROPO 80.50

Experiments on Llama-3-70B-Base. We run SFT on UltraChat-200k for one epoch with the learning
rate of 1e-5, the global batch size of 128, the weight decay of 0.1, and a cosine-type learning rate
scheduler. Then, we fine-tune the SFT model with ROPO and DPO for two epochs on UFB (under
artificial noise ratio of 0 and 20%) with the learning rate of 5e-7 and the global batch size of 512.
We fix α = 14 and ρ = 0.2 for ROPO without tuning them. The results are shown in Table 7. From
the results we can conclude that: (1) 70B models outperform 7B/13B models in terms of win rate.
However, the performance of the models trained with DPO still has a non-negligible drop under 20%
artificial noise. (2) Our ROPO still significantly exceeds DPO on the scale of 70B.

D.2 EXPERIMENTS ON REWARD MODELING

In the main text of our paper, the baselines are reward-free. Considering the reward modeling
(RM) still plays an important role in many real-world LLM applications, although RM is not our
focus, we supplement experiments on RM with Mistral-7B-Base to test the potential of ROPO
in scenarios including reward modeling. Given a sample (x,y1,y2, c = 0), if we denote P =
σ(r(x,y1)− r(x,y2)), then the RM-training losses of ROPO and our baselines are as follows.

• DPO-RM: − logP

• cPPO-RM: −(1− ε) logP − ε log(1− P)

• rPPO-RM: − 1−ε
1−2ε logP + ε

1−2ε log(1− P)

• ROPO-RM (Ours): −(4α/(1 + α)2) · P + (4α2/(1 + α)2) · (1− P)

We train Mistral-7B-v0.1 on UFB for two epochs with the aforementioned losses to obtain reward
models. Then, we use Best of N Sampling (N = 16) to generate responses based on RMs and
Mistral-7B-SFT-Beta (SFT model). We use the learning rate of 5e-6, the batch size of 512, and a
cosine-type learning rate scheduler. The results are shown in Table 8

D.3 MORE PRACTICAL NOISE SETTINGS

The experiments in the main text cover two types of practical noise as follows.

1. Practical noise coming from human comparisons. In the original TL;DR dataset, the preferences
are labeled by human annotators who compare the post-summaries generated by different models
in pairs. This leads to unavoidable noise due to the diversity of human preferences.

2. Practical noise coming from LLM (GPT-4) rating. Each query (instruction) in the original
UltraFeedback dataset has four responses coming from different models. GPT-4 scores them

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 10: Win rates (%) of different methods vs SFT targets under noise coming from LLM
preference comparisons, evaluated by GPT-4 on AlpacaEval.

Dataset UFB

Model Method

Mistral-7B

DPO 84.22
IPO 84.84
cDPO 85.22
rDPO 86.21
ROPO 88.07

based on criteria such as instruction-following, honesty, helpfulness, etc. Then, for each query, the
highest ranked response is selected as “preferred”, and one of the remaining responses is randomly
selected as “dis-preferred”. This leads to unavoidable noise due to the bias of GPT-4.

In this section, we explore another two practical noise settings in Appendices D.3.1 and D.3.2.

D.3.1 EXPERIMENTS UNDER NOISE COMING FROM ANNOTATORS’ TRUST IN LARGER MODELS
OVER SMALLER ONES

It is common practice to treat the response from a larger model as the chosen (preferred) one and
the response from a smaller model as the rejected (dis-preferred) one. Therefore, we obtain new
noisy preferences from UFB (each of query has four LLM responses) based on the sizes of models
that generate the responses. As shown in Table 9, under this practical noise setting, ROPO still
significantly outperforms DPO and other baselines.

D.3.2 EXPERIMENTS UNDER NOISE COMING FROM LLM PREFERENCE COMPARISONS

We use Llama-3-70B-Instruct [14], which is one of the most advanced open source LLM, to relabel
the preferences in UFB. To make the labels as reliable as possible, we instruct the model to list the
advantages of each response. The prompt we use is as follows.

For the given instruction and two responses (A and B),
please answer: (1) which response is better overall,
(2) the aspects in which A is superior to B, and (3) the
aspects in which B is superior to A.

Strictly adhere to the following rules:
1. Answer in bullet points, with each point starting with
a gerund or adjective, excluding the words ‘‘response A’’
and ‘‘response B’’.
2. If a response has no superior aspects over another,
output NONE.

Instruction:
{instruction}

Response A
{responseA}

Response B
{responseB}

Your answer MUST STRICTLY follow the format as follows:
Better
<Choose A or B>

Why A is better than B

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

- <First aspect for which A is superior to B>
- <Continue with other points if any>

Why B is better than A
- <First aspect for which B is superior to A>
- <Continue with other points if any>

However, we observe that about 30% of the labels are different from those in the original UFB
dataset. This shows that noise are unavoidable due to the diversity in LLM preferences. Then, we
train Mistral-7B with different methods on the new noisy dataset. As shown in Table 10, under this
practical noise setting, ROPO still significantly outperforms DPO and other baselines.

Table 11: Performance of difference methods on Arena-Hard and MT-Bench. The bold font indicates
the best result and an underline indicates the second-best result.

Benchmark Arena-Hard MT-Bench

Model Method 0% 20% 40% 0% 20% 40%

Mistral-7B

DPO 10.7 8.5 6.3 7.3 5.7 4.3
IPO 9.2 7.9 7.3 7.2 5.9 4.9
rDPO 9.8 9.2 8.9 7.1 6.4 5.8
cDPO 10.3 9.0 8.4 7.2 6.2 5.2
ROPO 13.1 12.6 11.8 7.3 6.9 6.5

Llama-3-8B

DPO 17.9 15.3 14.1 7.8 6.1 4.6
IPO 18.6 16.8 16.0 7.4 6.3 5.0
rDPO 18.3 17.5 17.1 7.5 6.9 6.1
cDPO 17.5 16.4 15.3 7.7 6.7 5.8
ROPO 20.5 19.6 18.5 7.7 7.0 6.7

D.4 EXPERIMENTS ON MORE BENCHMARKS

To comprehensively explore the performance of ROPO and baseline methods, we evaluate them on
another two widely-used benchmarks, i.e., Arena-Hard [25] and MT-Bench [73]. The details of the
benchmarks are as follows.

• MT-Bench [73] contains 80 two-turn conversations, each of which has an open-ended instruction
and a corresponding follow-up question. Due to the well-designed questions and the wide
coverage of topics, MT-Bench has become a widely-used benchmark to evaluate the multi-turn
conversational and instruction-following abilities of AI models.

• Arena-Hard [25] is a challenging benchmark containing 500 single-turn conversations. Compared
to AlpacaEval and MT-Bench, Arena-Hard features better model separability, tighter confidence
intervals, and achieves a correlation of 98.6% with Chatbot Arena rankings [9].

We evaluate ROPO and baseline methods using Mistral-7B and Llama-3-8B [14]. For Mistral-7B, we
use the same models as evaluated on AlpacaEval in the main experiments. For Llama-3-8B, we first
train a Llama-3-8B-Base5 on UltraChat-200k6 to obtain an SFT model (one epoch with the learning
rate of 1e-5, global batch size of 128, weight decay of 0.1, and a consine-type learning rate scheduler),
and then continue training with ROPO and baseline methods. The results are shown in Table 11. As
observed, under various artificial noise levels, ROPO consistently outperforms baseline methods in
most cases and demonstrates superior robustness in noisy scenarios.

D.5 EXPERIMENTS OF COMBINING DPO WITH NOISY SAMPLES FILTERING AND REJECTION
SAMPLING

As shown in Figure 2, the distributions of the DPO loss on clean and noisy samples are very similar,
and the difference gradually decreases as the training proceeds. This shows that the DPO loss is

5https://huggingface.co/meta-llama/Meta-Llama-3-8B
6https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k

24

https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 12: Win rates (%) of different variants of DPO vs SFT targets under 0% and 20% artificial
noise, evaluated by GPT-4 on AlpacaEval. The base model is Mistral-7B and the training dataset is
UFB.

0% 20%

DPO 90.60 86.21
DPO + NSF 90.06 85.09
DPO + NSF + RS 90.31 84.97

Table 13: Human evaluation of ROPO vs DPO and ROPO vs rDPO on AlpacaEval. The base model
is Mistral-7B and the training dataset is UFB. The #(Win), #(Tie), and #(Lose) are the numbers of
ROPO’s wins, ties, and ROPO’s losses.

Artificial Noise Ratio 0% 20%

#(Win) #(Tie) #(Lose) WR (%) #(Win) #(Tie) #(Lose) WR (%)

ROPO vs DPO 77 69 54 55.8 103 59 38 66.5
ROPO vs rDPO 84 63 53 57.8 89 64 47 60.5

prone to overfitting to noise, hence cannot serve as a reliable measure of model uncertainty in noisy
scenarios. In this section, to further support our claim, we conduct experiments of combining DPO
with noisy samples filtering (NSF) and rejection sampling (RS) using Mistral-7B as the base model
and UFB as the training dataset. Please note that our proposed robustness-guided RS only works on
the filtered samples, so we do not conduct experiments combining DPO and RS alone. The results
are shown in Table 12. As can be seen, the incorporation of noisy samples filtering and rejection
sampling degrades the performance of DPO, especially at 20% artificial noise.

D.6 HUMAN EVALUATION

We invite four lab members with no conflicts of interest to this paper to serve as volunteers to conduct
human evaluations. Two of them are PhDs and the other two are doctoral students, so we believe that
they have the ability to understand the evaluation rules and make reliable judgments.

We randomly select 200 queries from the AlpacaEval benchmark. Then, we pair the corresponding
responses of ROPO, DPO, and rDPO under 0% and 20% artificial noise to form four groups: (1)
ROPO vs DPO under 0% artificial noise, (2) ROPO vs rDPO under 0% artificial noise, (3) ROPO vs
DPO under 20% artificial noise, and (4) ROPO vs rDPO under 20% artificial noise.

For each group, we randomly shuffle the order of the queries and the order of responses in each pair.
Each volunteer is in charge of one group. None of the volunteers know which method corresponds to
each response. They are asked to compare the responses in 200 pairs and choose the better one. If
they are unsure about which response is better, they can choose “Tie”. During the evaluation process,
we allow the volunteers to use translation tools and search engines.

We count the number of ROPO’s wins, ties, and losses, and compute the win rate of ROPO by
Ω = #(Win)+#(Tie)/2

200 . The results are shown in Table 13. We have the following interesting
observations from the table: (1) The win rate of ROPO against DPO and rDPO is consistently over
55%, demonstrating ROPO’s advantages over the baselines. (2) As the artificial noise rate increases,
the win rate of ROPO increases to more than 60%, which shows the superiority of ROPO in noisy
scenarios. (3) All four volunteers give at least 29% tie judgments, indicating the limitations of human
evaluation: it is challenging for most human evaluators to make reliable evaluations on difficult
tasks such as long-context reasoning, coding, mathematics, etc. This highlights the importance of
developing automated LLM evaluation tools.

D.7 EXPERIMENTS OF APPLYING REGULARIZATION STRATEGIES TO DPO

In experiments in the main text, we have evaluate the performance of label smoothing (i.e., cDPO
and rDPO) under noisy scenarios. The label smoothing techniques can be seen as regularization

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 14: Win rates (%) of DPO with confidence penalty vs SFT targets under 20% and 40%
artificial noise, evaluated by GPT-4 on AlpacaEval. The base model is Mistral-7B and the training
dataset is UFB.

20% 40%

DPO 86.21 82.67
DPO + CP 86.96 81.86

strategies applied to DPO. As shown in the experiments, they bring performance improvements over
DPO under 20% and 40% artificial noise, but underperform ROPO. Their limited effectiveness might
be attributed to the fact that rDPO and cDPO are noise-tolerant only under specific conditions: when
the hyperparameter ε exactly matches the noise proportion for rDPO, and when ε = 0.5 for cDPO.
Achieving these conditions in practice is challenging due to the lack of prior knowledge about the
exact noise proportion.

In this section, we explore another two widely-used types of regularization strategies in noisy
scenarios, i.e., the normalized negative loss and confidence penalty.

• Normalized negative loss (NNL) [68], such as normalized negative cross entropy (NNCE) and
normalized negative focal loss (NNFL), are shown to be effective when combined with the cross-
entropy loss (i.e., the DPO loss in preference optimization). However, when the problem is
binary classification like preference comparison, NNCE and NNFL degenerate into constant terms.
Specifically, for a sample (x,y1,y2,y1 ≻ y2 | x), if we denote P = σ(r(x,y1)− r(x,y2)), then
we have

ℓnnce = 1− − logmin(P, 1− P) + logP

−2 logmin(P, 1− P) + logP + log(1− P)

=

{
1, if P ≤ 0.5,

0, if P > 0.5,

and

ℓnnfl = 1− −(1−min(P, 1− P))γ logmin(P, 1− P) + (1− P)γ logP

−2(1−min(P, 1− P))γ logmin(P, 1− P) + (1− P)γ logP + P γ log(1− P)

=

{
1, if P ≤ 0.5,

0, if P > 0.5.

Therefore, NNL does not work for DPO.
• Confidence penalty (CP) [40] is an entropy-aware regularizer for the cross-entropy loss, which pre-

vents the model from making overconfident inferences. Specifically, for a sample (x,y1,y2,y1 ≻
y2 | x), if we denote Pθ = σ(rθ(x,y1)− rθ(x,y2)), CP computes the entropy by

Hθ = −Pθ logPθ − (1− Pθ) log(1− Pθ).

Then, the CP regularizer is

ℓcp = −λmax(0, γ −Hθ).

We combine DPO with CP and tune the hyperparameters λ and γ in the range of λ ∈ {0.01, 0.1}
and γ ∈ {0.1, 0.25, 0.5}. As shown in Table 14, we do not observe a significant improvement over
DPO in noisy scenarios. We speculate that the limited effectiveness of CP is because CP has no
guaranteed noise-tolerance.

E MATHEMATICAL DERIVATIONS AND THEORETICAL ANALYSIS

E.1 PROOF OF THEOREM 3.1

Proof. As
∑N

i=1 wi = Nρ is a hyperplane and wi ∈ [0, 1] for i = 1, . . . , N , S ≜ {w : wi ∈
[0, 1],

∑N
i=1 wi = Nρ} is compact. Because Θ is compact, Θ × S is compact. Therefore, the

continuous 1
N

∑N
i=1 wiℓ

(
θ;x(i),y

(i)
1 ,y

(i)
2 , ĉ(i), πθ

)
admits an optimal solution (θ∗,w∗) on Θ× S.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Assume that ℓ
(
θ∗;x(i1),y

(i1)
1 ,y

(i1)
2 , πθ∗

)
< · · · < ℓ

(
θ∗;x(iN),y

(iN)
1 ,y

(iN)
2 , πθ∗

)
but with w∗

ij
<

1 for some 1 ≤ j ≤ Nρ. Then, we have

Nρ∑
k=1

w∗
ik

< 1 + (Nρ − 1) = Nρ, (17)

hence there exists w∗
il
> 0 for some Nρ < l ≤ N . By letting w′

ij
= 1, w′

il
= w∗

ij
+ w∗

il
− 1, and

w′
ik

= w∗
ik

for k ̸= j, l, we have
∑N

k=1 w
′
ik

= 1 and

1

N

N∑
i=1

w′
iℓ
(
θ∗;x(i),y

(i)
1 ,y

(i)
2 , ĉ(i), πθ∗

)
=

1

N

∑
k ̸=j,l

w′
ik
ℓ
(
θ∗;x(ik),y

(ik)
1 ,y

(ik)
2 , ĉ(ik), πθ∗

)
+ w′

ij ℓ
(
θ∗;x(ij),y

(ij)
1 ,y

(ij)
2 , ĉ(ij), πθ∗

)
+ w′

il
ℓ
(
θ∗;x(il),y

(il)
1 ,y

(il)
2 , ĉ(il), πθ∗

)
<

1

N

∑
k ̸=j,l

w∗
ik
ℓ
(
θ∗;x(ik),y

(ik)
1 ,y

(ik)
2 , ĉ(ik), πθ∗

)
+ w∗

ij ℓ
(
θ∗;x(ij),y

(ij)
1 ,y

(ij)
2 , ĉ(ij), πθ∗

)
+ w∗

il
ℓ
(
θ∗;x(il),y

(il)
1 ,y

(il)
2 , ĉ(il), πθ∗

)
=

1

N

N∑
i=1

w∗
i ℓ
(
θ∗;x(i),y

(i)
1 ,y

(i)
2 , ĉ(i), πθ∗

)
, (18)

which leads to a contradiction. Therefore, we must have w∗
ik

= 1 for 1 ≤ k ≤ Nρ and w∗
ik

= 0 for
Nρ < k ≤ N .

E.2 PROOF OF THEOREM 3.2

Proof. For ℓ = ℓdpo, we have

E(x,y1,y2,ĉ)∼Dη
[ℓ(θ;x,y1,y2, ĉ, πθ)]

= E(x,y1,y2)Ec|x,y1,y2
Eĉ|x,y1,y2,c[ℓ(θ;x,y1,y2, ĉ, πθ)]

= E(x,y1,y2)

[
(P ∗(y1 ≻ y2 | x)(1− η) + (1− P ∗(y1 ≻ y2 | x))η) · ℓ(θ;x,y1,y2, 0, πθ)

+ (P ∗(y1 ≻ y2 | x)η + (1− P ∗(y1 ≻ y2 | x))(1− η)) · ℓ(θ;x,y1,y2, 1, πθ)

]
= E(x,y1,y2)

[
− (P ∗(y1 ≻ y2 | x) + η − 2P ∗(y1 ≻ y2 | x)η) logPθ(y1 ≻ y2 | x)

− (2P ∗(y1 ≻ y2 | x)η + 1− P ∗(y1 ≻ y2 | x)− η) log(1− Pθ(y1 ≻ y2 | x))
]
.

(19)

Consider

f(p) = −(p∗ + η − 2p∗η) log p− (2p∗η + 1− p∗ − η) log(1− p), (20)

we have

f ′(p) = −p∗ + η − 2p∗η

p
+

2p∗η + 1− p∗ − η

1− p
. (21)

From f ′(p) we know that f decrease when p ≤ p∗+η−2p∗η and increases when p ≥ p∗+η−2p∗η,
which means that f reaches its minimum at p0 = p∗ + (1− 2p∗)η.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Therefore, Eq. (19) reaches its minimum when

Pθ∗
η
(y1 ≻ y2 | x) = P ∗(y1 ≻ y2 | x) + (1− 2P ∗(y1 ≻ y2 | x))η (22)

for any (x,y1,y2). Specifically, for η = 0, we have Pθ∗(y1 ≻ y2 | x) = P ∗(y1 ≻ y2 | x), which
leas to ∣∣Pθ∗

η
(y1 ≻ y2 | x)− Pθ∗(y1 ≻ y2 | x)

∣∣ = 2η
∣∣P ∗(y1 ≻ y2 | x)− 1/2

∣∣. (23)

E.3 PROOF OF THEOREM 3.3

Proof. For samples (x(1),y
(1)
1 ,y

(1)
2 , ĉ(1) = c(1)) and (x(2),y

(2)
1 ,y

(2)
2 , ĉ(2) = 1 − c(2)), according

to Eq. (22), we have

Pθ∗
η

(
x(1),y

(1)
1 ,y

(1)
2 , ĉ(1)

)
= Pθ∗

η

(
x(1),y

(1)
1 ,y

(1)
2 , c(1)

)
= P ∗(c(1)) + (1− 2P ∗(c(1)))η (24)

and

Pθ∗
η

(
x(2),y

(2)
1 ,y

(2)
2 , ĉ(2)

)
= Pθ∗

η

(
x(2),y

(2)
1 ,y

(2)
2 , 1− c(2)

)
(25)

= P ∗(1− c(2)) + (1− 2P ∗(1− c(2)))η

= 1− P ∗(c(2)) + (2P ∗(c(2))− 1)η. (26)

Therefore, to ensure that

ℓdpo

(
x(1),y

(1)
1 ,y

(1)
2 , ĉ(1)

)
− ℓdpo

(
x(2),y

(2)
1 ,y

(2)
2 , ĉ(2)

)
< 0, (27)

we must have

− log
(
P ∗(c(1)) + (1− 2P ∗(c(1)))η − ε

)
< − log

(
1− P ∗(c(2)) + (2P ∗(c(2))− 1)η + ε

)
,

(28)

which is equivalent to

ε <
1− 2η

2

(
P ∗(c(1)) + P ∗(c(2))− 1

)
. (29)

E.4 DETAILED DERIVATION OF EQ. (9)

From the definition of wropo we have

wropo =
4α

(1 + α)2
σ(∆(y2,y1,x)) +

4α2

(1 + α)2
σ(∆(y2,y1,x))σ(∆(y1,y2,x)). (30)

According to Eq. (7) we know that

−
∫

β
4α

(1 + α)2
σ(∆(y2,y1,x))∇ log

πθ(y1 | x)
πθ(y2 | x)

dθ =
4α

(1 + α)2
ℓdpo. (31)

Beside, note that for σ(x) = ex

1+ex , we have

σ′(x) =

(
ex

1 + ex

)′

=
ex(1 + ex)− ex · ex

(1 + ex)2
=

ex

(1 + ex)2
=

ex

1 + ex
· 1

1 + ex
= σ(x)σ(−x)

(32)

and

σ′(−x) = −σ(x)σ(−x). (33)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Letting

t(θ) = β log
πθ(y1 | x)
πref(y1 | x)

− β log
πθ(y2 | x)
πref(y2 | x)

, (34)

we have

∇θt(θ) = β∇ log
πθ(y1 | x)
πθ(y2 | x)

(35)

Hence,

− 4α2

(1 + α)2

∫
βσ(∆(y2,y1,x))σ(∆(y1,y2,x))∇ log

πθ(y1 | x)
πθ(y2 | x)

dθ

=
4α2

(1 + α)2

∫ (
− σ(t(θ))σ(−t(θ))

)
·
(
β∇ log

πθ(y1 | x)
πθ(y2 | x)

)
dθ

=
4α2

(1 + α)2

∫
∇t(θ)σ(−t(θ)) · ∇θt(θ) dθ

=
4α2

(1 + α)2

∫
∇θσ(−t(θ)) dθ

=
4α2

(1 + α)2
σ(−t(θ))

=
4α2

(1 + α)2
· σ
(
β log

πθ(y2 | x)
πref(y2 | x)

− β log
πθ(y1 | x)
πref(y1 | x)

)
, (36)

where we omit the constant term of the primitive function.

E.5 PROOF OF THEOREM 3.4

Proof. For ℓ = ℓna, we have

E(x,y1,y2,ĉ)∼Dη
[ℓ(θ;x,y1,y2, ĉ, πθ)]

= E(x,y1,y2)Ec|x,y1,y2
Eĉ|x,y1,y2,c[ℓ(θ;x,y1,y2, ĉ, πθ)]

= E(x,y1,y2)

[
(P ∗(y1 ≻ y2 | x)(1− η) + (1− P ∗(y1 ≻ y2 | x))η) · ℓ(θ;x,y1,y2, 0, πθ)

+ (P ∗(y1 ≻ y2 | x)η + (1− P ∗(y1 ≻ y2 | x))(1− η)) · ℓ(θ;x,y1,y2, 1, πθ)

]
= E(x,y1,y2)

[
(P ∗(y1 ≻ y2 | x) + η − 2P ∗(y1 ≻ y2 | x)η) (1− Pθ(y1 ≻ y2 | x))

+ (2P ∗(y1 ≻ y2 | x)η + 1− P ∗(y1 ≻ y2 | x)− η)Pθ(y1 ≻ y2 | x)
]
. (37)

Consider

f(p) = (p∗ + η − 2p∗η)(1− p) + (2p∗η + 1− p∗ − η)p

= (1− 2η)(1− 2p∗)p+ (p∗ + η − 2p∗η). (38)

Therefore, when p∗ > 1/2, f(p) reaches its minimum at p = 1; when p∗ < 1/2, f(p) reaches its
minimum at p = 0. This means that the optimal point of f(p) is p0 = I(p∗ > 1/2).

Therefore, Eq. (37) reaches its minimum when

Pθ∗
η
(y1 ≻ y2 | x) = I

(
P ∗(y1 ≻ y2 | x) >

1

2

)
(39)

for any (x,y1,y2). Obviously, we have

Pθ∗
η
(y1 ≻ y2 | x) = Pθ∗(y1 ≻ y2 | x). (40)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

E.6 PROOF OF THEOREM 3.5

Proof. For samples (x(1),y
(1)
1 ,y

(1)
2 , ĉ(1) = c(1)) and (x(2),y

(2)
1 ,y

(2)
2 , ĉ(2) = 1 − c(2)). Without

loss of generality, we only need to consider two cases: (1) c(1) = c(2) = 0 and (2) c(1) = 0, c(2) = 1.
For the first case, we have

ℓna

(
x(1),y

(1)
1 ,y

(1)
2 , ĉ(1)

)
= Pθ(y

(1)
2 ≻ y

(1)
1 | x) ∈ [0, ε) (41)

and

ℓna

(
x(2),y

(2)
1 ,y

(2)
2 , ĉ(2)

)
= Pθ(y

(2)
1 ≻ y

(2)
2 | x) ∈ (1− ε, 1]. (42)

For the second case, we have

ℓna

(
x(1),y

(1)
1 ,y

(1)
2 , ĉ(1)

)
= Pθ(y

(1)
2 ≻ y

(1)
1 | x) ∈ [0, ε) (43)

and

ℓna

(
x(2),y

(2)
1 ,y

(2)
2 , ĉ(2)

)
= Pθ(y

(2)
2 ≻ y

(2)
1 | x) ∈ (1− ε, 1]. (44)

Therefore, to ensure that

ℓna

(
x(1),y

(1)
1 ,y

(1)
2 , ĉ(1)

)
< ℓna

(
x(2),y

(2)
1 ,y

(2)
2 , ĉ(2)

)
, (45)

we must have ε < 1
2 .

E.7 RDPO AND CDPO ARE NOT NOISE-TOLERANT IN MOST CASES

Proof. According to Lemma 3.2 in [10], the noise-tolerance of rDPO is only guaranteed when the
proportion of noise, i.e., η0, exactly equals the hyperparameter ε.

Next we show that ℓcdpo is not noise-tolerant for ε ∈ (0, 1
2). Let

Lcdpo(θ) = E(x,y1,y2,c)∼D[ℓcdpo(θ;x,y1,y2, c, πθ)],

Lη0

cdpo(θ) = E(x,y1,y2,ĉ)∼Dη0
[ℓcdpo(θ;x,y1,y2, ĉ, πθ)],

and assume that θ∗ and θ∗η0
are the minimizers of Lcdpo and Lη0

cdpo, respectively. For any θ in the
space of parameters, we have

Lη0

cdpo(θ)

= E(x,y1,y2,c)∼DEĉ|(x,y1,y2,c)[ℓcdpo(θ;x,y1,y2, ĉ, πθ)]

= E(x,y1,y2,c)∼D[(1− η0)ℓcdpo(θ;x,y1,y2, c, πθ) + η0ℓcdpo(θ;x,y1,y2, 1− c, πθ)]

= (1− η0)Lcdpo(θ) + η0E(x,y1,y2,c)∼D[ℓcdpo(θ;x,y1,y2, 1− c, πθ)]. (46)

Next, we give a counter-example to show that ℓcdpo is not noise-tolerant. Suppose that

P
(
(x,y1,y2) = (x(0),y

(0)
1 ,y

(0)
2)
)
= 1 and y

(0)
1 ≻ y

(0)
2 | x(0), (47)

where x(0) is a fixed input and (y
(0)
1 ,y

(0)
2) is a fixed pair of responses. Hence Eq. (46) becomes

Lη0

cdpo(θ)

= (2εη0 − η0 − ε) log σ

(
β log

πθ(y
(0)
1 | x(0))

πref(y
(0)
1 | x(0))

− β log
πθ(y

(0)
2 | x(0))

πref(y
(0)
2 | x(0))

)

+ (η0 + ε− 2εη0 − 1) log σ

(
β log

πθ(y
(0)
2 | x(0))

πref(y
(0)
2 | x(0))

− β log
πθ(y

(0)
1 | x(0))

πref(y
(0)
1 | x(0))

)
. (48)

Let

∆(θ) = β log
πθ(y

(0)
1 | x(0))

πref(y
(0)
1 | x(0))

− β log
πθ(y

(0)
2 | x(0))

πref(y
(0)
2 | x(0))

, (49)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

then Eq. (48) becomes

Lη0

cdpo(θ) = (2εη0 − η0 − ε) log σ(∆(θ)) + (η0 + ε− 2εη0 − 1) log σ(−∆(θ)). (50)

We have

θ∗ = argmin
θ∈Θ

Lcdpo

= argmin
θ∈Θ

−ε log σ(∆(θ))− (1− ε) log σ(∆(−θ))

∈
{
θ ∈ Θ : ∆(θ) = log

ε

1− ε

}
, (51)

and

θ∗η0
= argmin

θ∈Θ
Lη0

cdpo

= argmin
θ∈Θ

(2εη0 − η0 − ε) log σ(∆(θ)) + (η0 + ε− 2εη0 − 1) log σ(−∆(θ))

∈
{
θ ∈ Θ : ∆(θ) = log

η0 + ε− 2εη0
1− η0 − ε+ 2εη0

}
. (52)

Hence θ∗ = θ∗η0
if and only if

ε

1− ε
=

η0 + ε− 2εη0
1− η0 − ε+ 2εη0

, (53)

which means that ε = 1
2 . However, ε ∈ (0, 1

2). Therefore, θ∗ ̸= θ∗η0
and thus ℓcdpo is not noise-

tolerant.

E.8 IPO IS NOT NOISE-TOLERANT

Proof. Let

Lipo(θ) = E(x,y1,y2,c)∼D[ℓipo(θ;x,y1,y2, c, πθ)],

Lη0

ipo(θ) = E(x,y1,y2,ĉ)∼Dη0
[ℓipo(θ;x,y1,y2, ĉ, πθ)],

and assume that θ∗ and θ∗η0
are the minimizers of Lipo and Lη0

ipo, respectively. For any θ in the space
of parameters, we have

Lη0

ipo(θ)

= E(x,y1,y2,c)∼DEĉ|(x,y1,y2,c)[ℓipo(θ;x,y1,y2, ĉ, πθ)]

= E(x,y1,y2,c)∼D[(1− η0)ℓipo(θ;x,y1,y2, c, πθ) + η0ℓipo(θ;x,y1,y2, 1− c, πθ)]

= (1− η0)Lipo(θ) + η0E(x,y1,y2,c)∼D[ℓipo(θ;x,y1,y2, 1− c, πθ)]. (54)

Next, we give a counter-example to show that ℓipo is not noise-tolerant. Suppose that

P
(
(x,y1,y2) = (x(0),y

(0)
1 ,y

(0)
2)
)
= 1 and y

(0)
1 ≻ y

(0)
2 | x(0), (55)

where x(0) is a fixed input and (y
(0)
1 ,y

(0)
2) is a fixed pair of responses. Hence Eq. (54) becomes

Lη0

ipo(θ)

= (1− η0)

(
log

πθ(y
(0)
1 | x(0))

πref(y
(0)
1 | x(0))

− log
πθ(y

(0)
2 | x(0))

πref(y
(0)
2 | x(0))

− 1

2β

)2

+ η0

(
log

πθ(y
(0)
2 | x(0))

πref(y
(0)
2 | x(0))

− log
πθ(y

(0)
1 | x(0))

πref(y
(0)
1 | x(0))

− 1

2β

)2

. (56)

Let

∆(θ) = log
πθ(y

(0)
1 | x(0))

πref(y
(0)
1 | x(0))

− log
πθ(y

(0)
2 | x(0))

πref(y
(0)
2 | x(0))

, (57)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

then Eq. (56) becomes

Lη0

ipo(θ) = (1− η0)

(
∆(θ)− 1

2β

)2

+ η0

(
−∆(θ)− 1

2β

)2

= (∆(θ))2 +
2η0 − 1

β
∆(θ) +

1

4β2
, (58)

which is a quadratic function. Hence

θ∗η0
∈
{
θ ∈ Θ : ∆(θ) =

1

2β
− η0

β

}
. (59)

However,

θ∗ = argmin
θ∈Θ

Lipo

= argmin
θ∈Θ

(
∆(θ)− 1

2β

)2

∈
{
θ ∈ Θ : ∆(θ) =

1

2β

}
, (60)

which means that θ∗ ̸= θ∗η0
. Therefore, ℓipo is not noise-tolerant.

E.9 THE NORMALIZATION OF wropo

In Eq. (8), we use 4α
(1+α)2 to scale the maximum value of wropo to 1. Here, we provide the details

about it. Let

g(t) = σ(t)(1 + ασ(−t)) = e2t + (1 + α)et

(1 + et)2
,

where α > 2, then we have

g′(t) =
(2e2t + (α+ 2)et)(e2t + 2et + 1)− (2e2t + 2et)(e2t + (α+ 1)et)

(1 + et)4

=
1

et(1 + et)4
·
(
(2− α)e2t + 4et + (α+ 2)

)
=

1

et(1 + et)4
· (1 + et)((2− α)et + α+ 2)

=
1

et(1 + et)3
· ((2− α)et + α+ 2).

Hence, g(t) increases if and only if (2− α)et + α+ 2 ≥ 0.

Since α > 2, g(t) increases when t < log α+2
α−2 and decreases when t > log α+2

α−2 . Therefore, we have

max
t

g(t) = g

(
log

α+ 2

α− 2

)
=

(1 + α)2

4α
.

32

	Introduction
	Preliminaries and Problem Settings
	Alignment of Large Language Models
	Preference Learning with Noisy Data

	Robust Preference Optimization
	A General Formulation
	A Noise-Tolerant Loss
	Robustness-guided Rejection Sampling
	ROPO Framework and Complexity Analysis

	Experiments
	Experimental Settings
	Main Results
	Ablations

	Related Work
	Conclusion
	Ethics Statement
	Reproducibility Statement
	ROPO Framework
	Discussion on Preference Noise
	More Details about Experiments
	Tasks and Datasets
	Baselines, Models, and Hyperparameters
	Evaluation

	More Experiments
	Experiments on Llama-2-13B-Base and Llama-3-70B-Base
	Experiments on reward modeling
	More practical noise settings
	Experiments under noise coming from annotators' trust in larger models over smaller ones
	Experiments under noise coming from LLM preference comparisons

	Experiments on more benchmarks
	Experiments of combining DPO with noisy samples filtering and rejection sampling
	Human evaluation
	Experiments of applying regularization strategies to DPO

	Mathematical Derivations and Theoretical Analysis
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Detailed Derivation of Eq. (9)
	Proof of Theorem 3.4
	Proof of Theorem 3.5
	rDPO and cDPO Are Not Noise-Tolerant In Most Cases
	IPO Is Not Noise-Tolerant
	The normalization of wropo

