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Abstract

Motivated by the problem of next word prediction on user devices we introduce and
study the problem of personalized frequency histogram estimation in a federated
setting. In this problem, over some domain, each user observes a number of
samples from a distribution which is specific to that user. The goal is to compute
for all users a personalized estimate of the user’s distribution with error measured
in KL divergence. We focus on addressing two central challenges: statistical
heterogeneity and protection of user privacy. Our approach to the problem relies on
discovering and exploiting similar subpopulations of users which are often present
and latent in real-world data, while minimizing user privacy leakage at the same
time. We first present a non-private clustering-based algorithm for the problem,
and give a provably joint differentially private version of it with a private data-
dependent initialization scheme. Next, we propose a simple data model which is
based on a mixture of Dirichlet distributions, to formally motivate our non-private
algorithm and demonstrate some properties of its components. Finally, we provide
an extensive empirical evaluation of our private and non-private algorithms under
varying levels of statistical and size heterogeneity on the Reddit, StackOverflow,
and Amazon Reviews datasets. Our results demonstrate significant improvements
over standard and clustering-based baselines, and in particular, they show that it is
possible to improve over direct personalization of a single global model.

1 Introduction

Federated learning algorithms jointly learn from decentralized user data, addressing statistical chal-
lenges in local learning [49, 58]. At the same time it presents two key challenges, among few
others [44, 52]. Firstly, data distributions can vary across users (often called statistical heterogene-
ity [27, 76]), which reduces the effectiveness of a single, shared model for all users. Secondly, the data
may be sensitive and mutually beneficial collaboration may compromise user privacy [31, 71]. An
important practical problem where user data distributions are diverse, and user-privacy is paramount
is next-word prediction for the keyboard input on user devices. Users often have diverse vocabulary,
writing styles, and topics that leads to varied data distributions [32, 36, 65]. Naturally, frequency
estimation is also one of the most basic statistical tasks with numerous other applications [14, 47].

Motivated by personalized next-word prediction, we introduce and study the problem of per-
sonalized frequency estimation in a federated setting. In this problem, each user has very few
(O(d)) samples from an unknown, user-specific distribution over a large, finite domain of size d.
The users interact with a server that needs to provide the user with a personalized estimate of their
distribution. We focus on error measured in KL divergence that is common in language model-
ing [3, 38], and is equivalent to minimizing the negative log-likelihood of samples from the user
distribution. For more general loss minimization problems, numerous personalized federated learning
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(PFL) algorithms [67, 76], tackle statistical heterogeneity by first learning a single global model
across all users (for e.g., FedAvg [57]), and then finetuning (FT) the global model locally for each
user (FedAvg+FT [18, 20]), thus balancing collaboration and personalization. The downside of this
approach is that it is agnostic to the structure of the user population which is highly heterogeneous,
but often consists of a number of concentrated subpopulations of similar users.

Statistical heterogeneity: We study the personalized frequency estimation problem under an intuitive
model of the user-population which consists of well-concentrated clusters of users where users in
the same cluster have “similar” token distributions. For this, we propose an iterative algorithm
that adapts Lloyd’s clustering [53] to distribution estimation in KL divergence. Relying on the
optimal competitive estimation rates for local Good-Turing estimators, we propose to estimate global
cluster centers by averaging user-level Good-Turing estimates for the current users in the cluster.
Furthermore, since the performance of clustering is significantly affected by the initialization [5] of
cluster centers, we also propose a data-dependent initialization approach, also specific to estimation
in KL. We improve the practicality of our algorithm by separately handling data-poor users in cases
where users vary significantly in their local data sizes (size-heteogeneity).

Privacy: To address the challenge of user-level privacy we give a joint differentially private (DP)
version of our iterative algorithm which requires that the estimator for user i is differentially private
with respect to the data of all the other users (but may depend arbitrarility on user i’s data) [48]. This
definition is necessary due to the final personalization step which happens locally on user device and
thus does not present a privacy risk. Specifically, we make each iteration of our clustering algorithm
provably private by relying on adaptive clipping, secure aggregation, and common noise addition
mechanisms [23]. Initialization of clustering algorithms typically uses data points themselves as
initial centers and hence presents a significant challenge for privacy preserving analysis. Our provably
private data-dependent initialization algorithm for cluster centers runs the exponential mechanism
over candidates randomly sampled around the estimated population mean.

Empirical evaluation: We validate both non-private and private versions of our algorithm on the
real world data datasets: Reddit [16], StackOverflow [6], and Amazon Reviews [62], where Reddit
has a token vocabulary of size 10k and the others have 32k tokens. We find that our method furnishes
significant gains over standard and clustering baselines, reducing the error by over 26% and 42%
(averaged over datasets) in the non-private and private settings respectively. In the private, size-
heterogeneous setting, we improve over the clustering baseline IFCA [33] by over 30%. Finally, we
show that our data model inspired adjustments are pivotal in yielding the performance improvements
in practice. Particularly, we justify the use of our Good-turing based estimator, and our private
initialization scheme with a favorable privacy/utility tradeoff.

Formal guarantees. While our focus is on the empirical performance, to guide intuition and
design of algorithms, we introduce a relatively simple generative model where user distributions
are sampled from a mixture of Dirichlets, where Dirichlets are sufficiently separated globally and
concentrated locally. We derive and analyze different estimators (e.g., Bayes optimal, FedAvg [57],
Good-Turing [34]). Even when the cluster identities are known, we show that FedAvg (average of
user empirical distributions) has poor guarantees compared to our proposed estimator (average of
user Good-Turing estimates), where the minimax error rates for the latter do not scale with dimension,
and is optimal for some regimes of problem parameters. Thus, using this model we demonstrate how
additional structure in the user data can be exploited in the context of our more concrete frequency
estimation problem while preserving the privacy of user data.

2 Problem definition

We use P to denote a distribution, P [v] for the probability of event v, P̃ for an estimate of P (but P̂
if the estimate is computed without user collaboration), P for sets. P for matrices (P:,i/Pi,: index
into the ith column/row respectively), and {Pi} for a collection of elements Pi indexed by i.

Setup. Let V be a finite vocabulary (set) of tokens, with vocabulary size d =: |V|, and ∆(V) is the
set of all probability distributions over V . In a federated setup we have a collection of users U , and
each user u ∈ U has an unknown distribution Qu ∈ ∆(V) over the tokens. The data available to
each user u is a dataset Su comprising of mu i.i.d. samples from Qu. We will use Q̂u to refer to
the empirical distribution estimated from Su. The combined collection of datasets is referred to as
meta-dataset S =: {Su}, and similarly Q̂ =: {Q̂u}u is the collection of all empirical distributions.
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Unless specified otherwise, we assume that we are in the size-homogeneous setting where all users
have a dataset of the same size m = mu. We refer to the more general case as size-heterogeneous.

Goal. Given the meta-dataset S, the goal is to compute estimates {Q̃u}u such that:
1. utility:

∑
u E[KL(Qu∥Q̃u)] is minimized, where the expectation is taken over sampling of

meta-dataset S and any randomness in computing {Q̃u}u.
2. privacy: Q̃u is computed privately with respect to all users except u, i.e. the estimate is joint

differentially private (see Definition 2.2).

Definition 2.1 (u-neighboring meta-datasets). Meta-datasets S and S ′ are u-neighbors, i.e., S ∼u S ′

if they differ only in inclusion or deletion of user u’s private data. For any algorithm M, we denote
M−u as the output of the algorithm to all other users except u.
Definition 2.2 (Joint Differential Privacy [48]). Given ε ≥ 0, δ ∈ (0, 1], and neighbouring relation
∼u, a randomized mechanism M : D → Y from the set of meta-datasets D to an output space Y is
(ϵ, δ)-joint differentially private if for all u-neighboring S ∼u S ′, and all events E ⊆ Y ,

Pr[M−u(S) ∈ E] ≤ eϵ · Pr[M−u(S ′) ∈ E] + δ, (1)

where probabilities are taken over the randomness of M. We say that M is ρ−zero-concentrated
joint DP (ρ-zCJDP) if for all u-neighboring meta-datasets S ∼u S ′:

Dα(M−u(S)∥M−u(S ′)) ≤ ρα, (2)

where Dα(M−u(S)∥M−u(S ′)) is the α-Rényi Divergence between the outputs of all users except u.

3 Private algorithm for learning personalized histograms
In this section, we present our algorithm for learning private and personalized histograms in both
size-homogeneous and size-heterogeneous settings. Without assumptions on the distribution of users,
in the worst case, the best estimator would simply estimate each user’s histogram locally, i.e., estimate
each user’s Qu using their local dataset Su. Avoiding such worst-cases, we assume that the real-world
problem is more structured. Specifically, we assume that each user distribution Qu is well clustered
around K unknown cluster centers in the population of users. Note, we assume no knowledge of the
cluster centers or number of clusters K. In Section 5, we empirically validate the presence of clusters
in real-world datasets by evaluating the performance of our clustering based algorithm on the same
datasets, and in Section 4 we theoretically analyze some of the algorithmic design choices we make,
in a stylized Bayesian setting that simulates a user-distribution with clusters.

As a warmup, we first discuss our local finetuning algorithm, where the setup is simpler. Say
an algorithm runs a private collaborative protocol, and hands a distribution P to user u, with the
guarantee that KL(Qu∥P ) is “reasonably” small, then how should the user u finetune P using the
local dataset Su available to them? For this question, we now present our local finetuning algorithm.

3.1 User-level local finetuning
Let P be the distribution over tokens returned by a collaborative algorithm that uses datasets across
all users to estimate a single distribution for either all users in the population, or all users in a specific
cluster. In the next section, we discuss how to estimate P . Here, we discuss how to personalize P

for each user. For a user u, with empirical distribution Q̂u from mu samples, we use FT(P, Q̂u) to
denote the personalized, locally finetuned estimate of user distribution Qu (see Eq. 3). Note that P is
moved closer to Q̂u in KL divergence (depending on choice of α > 0). When the population of users
is well concentrated, FT lowers variance by relying more on the global estimate P , while adding
some bias (Q̂u is an unbiased estimate of Qu, but P is biased). In Section 4, we show that FT is the
Bayes optimal estimator in KL divergence, under certain assumptions on the user distribution.

FT(P, Q̂u) =:
α

α+mu
· P +

mu

α+mu
· Q̂u (local finetuning) (3)

Next, we discuss how to collaboratively estimate P . For a user-distribution with multiple clusters, a
natural approach is to first identify the groups of clustered users. Then, we can use the distribution
that is close in KL distance, and in expectation over the distribution of users in the cluser. We refer to
these as the cluster centers. In the next Section, we present our algorithm to learn cluster centers,
which we personalize for each user in the cluster using our local finetuning update (Equation 3).
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3.2 Learning clusters in the population of size-homogeneous users
As mentioned in the start of Section 3, we base our approach on the belief that the user-population
comprises of unknown clusters. Thus, given the collection of size-homogeneous users U , the goal
is to learn a user partition {z̃u}u, and the matrix of K cluster centers P̃ ∈ Rd×K . To learn cluster
centers P̃, akin to the popular clustering algorithms like Lloyds [53], the objective we optimize is:

min
{P̃c}c∈[K]

∑
u∈U

min
c∈[K]

KL(Qu∥P̃c), (4)

with the main difference being that we are concerned with the KL distance, instead of ℓ22. Given
P̃, user u’s assigned cluster z̃u is simply given by argmink KL(Qu∥P:,k). Conversely, applying
Lemma 3.1, given cluster memberships the cluster center is determined by the cluster average.
Lemma 3.1. For users with assigned cluster i, i.e., Z̃i =: {u : z̃u = i}, the following is true:

1

|Zi|
∑
u∈Zi

Qu ∈ argmin
P∈∆(V)

∑
u∈Z̃i

KL(Qu∥P ).

Since, we do not have access to Qu, we replace Qu in Lemma 3.1 and the cluster assignment step
with the local Good-Turing [34] estimate Q̂gt

u . Typically, one would use the empirical distribution Q̂u,
which is an unbiased estimate of Qu. But, as we will see in Section 5, most real-world distributions
are long-tailed and the Good-Turing estimate’s approximation of the user distribution does not suffer
as heavily from the high-dimensional nature of the problem. We discuss the Good-Turing estimate
and analyze its error more formally in Section 4. This simplification means that the cluster center
estimator averages the local Good-Turing estimates from each user in the cluster. In theory, we can
also estimate the cluster center P in a better way, e.g., by directly running the Good-Turing correction
on the cluster level token counts. This is a possible direction of improvement in future works.

To iteratively optimize the objective in Equation 4, we present our algorithm HistogramCluster
(see Alg. 3). We start with initial center estimates P̃(0), and run T iterations to refine them. In each
iteration we peform two steps: (i) collect user outputs for each user via UserOutput (see Alg. 1); and
(ii) re-center clusters using an algorithm, which for now is the NonPrivateCenter (see Alg. 2). Later,
we see how we need only update the re-centering algorithm to satisfy user-level privacy contraints.
From Lemma 3.1 and Alg. 1, it is not hard to see that NonPrivateCenter which computes the mean
of the local estimates of users in a cluster, greedily reduces the objective value in Eq. 4 after each
iteration. When the misclustering rate is sufficiently low to begin with, averaging local Good-Turing
estimates brings the estimated center closer (in KL divergence) to the true centers that minimize
Eq. 4, thereby reducing the number of iterations for convergence.

An extension of the convergence analysis in Balakrishnan et al. [7], gives us an upper bound on
the misclustering error of Alg. 3 which goes down exponentially with each iteration of clustering
(Theorem 3.2). Similar to most clustering analyses [8, 17, 33], we make suitable conditions on the
initialization of cluster centers P̃(0) and the separation of true clusters in the user population.

Algorithm 1 UserOutput

Require: Centers P̃, cluster k, user u.
Ensure: User output (bu, Qu).
1: bu ← 1(argminj KL(Q̂gt

u ∥P̃:,j) = k)

2: Q̂u ← bu · Q̂gt
u + (1− bu) · 0d

3: Return (bu, Q̂u).

Algorithm 2 NonPrivateCenter

Require: User data A =: {(bu, Q̂u)}.
Ensure: Center P̃ .
1: Return P̃ ←

∑
u Q̂u/∑u bu.

Algorithm 3 HistogramCluster

Require: Set of users U , initial centers P̃(0), iterations T .
Ensure: Estimates of cluster memberships {z̃u}u and centers

P̃.
1: Initialize t← 1.
2: while t ≤ T do
3: for j = 1 to K do
4: Collect: A(t)

k ← {UserOutput(P̃(t−1), k, u)}u
5: Re-center: P̃(t)

:,j ← (Non)PrivateCenter(A(t)
k )

6: end for
7: t← t+ 1
8: end while
9: Return: {z̃(T )

u }u∈U , P̃
(T ).

Theorem 3.2 (Alg. 3 convergence). For the model in Section 4, if ∀c, v, nc = Θ(K2), Pc[v] =
Ω(1), centers are sufficiently separated, i.e., ∆ =: mini̸=j KL(Pi∥Pj) = Ω(k2 + k3d/n), and
λ =: maxi ̸=j

KL(Pi∥Pj)/∆. Given an initialization with assignment error O(
√

1/λ) for any cluster,
after t = log(|U|) iterations, w.h.p. the assignment error is O(exp(−∆(α+ 1))).

4



3.3 Learning clusters with user-level privacy
First, we note that it suffices to compute all the cluster center estimates in the usual model of DP
to ensure that the personalized estimates are differentially private in the billboard model. This is
true since the assigment of the user to a cluster center and finetuning can be done locally by each
user. Thus, if we ensure that Alg. 2 applied to all the current clusters is differentially private in each
iteration we can then bound the total privacy leak across iterations via advanced composition for DP
algorithms. In our algorithm PrivateCenter (Alg. 4) we first use the Laplace mechanism in step 1 to
privately compute the number of users in the cluster. Then, we use the Gaussian mechanism in step 2
to get an initial estimate of the center since all local Good-Turing estimates are distributions in ∆(V)
and thus bounded in ℓ2. This initial estimate B is used to identify the quantile B ± c

√
B/b, where

the mean lies with high probability [69], so that we can then get a refined estimate in step 3 when we
add noise (with std. deviation scaling with quantile interval c). This adaptive clipping procedure is
fairly common for practical and private estimation [4, 12]. Finally, to ensure the noised output is still
a distribution contained in ∆(V), we use ℓ2 projection, Π∆(V)(P ) =: argminQ∈∆(V) ∥Q− P∥22. In
practice, we find that projection with ℓ2 is comparable with a KL projection.

Privacy preserving noisy sum. As can be seen from the description of PrivateCenter, it only re-
quires being able to compute a noisy sum over a subset of users. In the federated setting implementing
this summation as part of algorithm HistogramCluster may seem to require the server to know the
(private) cluster membership of each user. However, this can be avoided by computing each such
sum as a sum over all the users, where a user submits value 0 if they do not belong to the cluster, i.e.,
bu = 0, and bu = 1 otherwise (Alg. 1). Similarly, Alg. 1 also emits the true local estimate if it is part
of the cluster and 0d (vector of d 0s) otherwise. Privacy-preserving computation of a noisy sum over
all the users is one of key primitives in FL with a number of known implementations, e.g., Bonawitz
et al. [13]. Crucially for the privacy analysis, while each user now participates in the sum computations
for every cluster, the inclusion/deletion of a single user can only affect the sums for a single cluster.

Algorithm 4 PrivateCenter

Require: Data collection {(bu, Q̂u)},
privacy parameter ρ, clipping param-
eter c, projection operator Π∆(V).

Ensure: Private center P̃ .
1: b←

∑
u bu + Lap

(√
3/2ρ

)
2: B ← 1

b

(∑
u Q̂u +N (0, 3/2ρId)

)
3: Σ← 6c2/bρ · diag(B)

4: P̃ ← 1
b

(∑
u Q̄u +N (0, Σ)

)
,

Q̄u =: Clip [Qu]
B+c

√
B
b

B−c
√

B
b

5: P̃ ← Π∆(V)P̃

6: Return P̃

Algorithm 5 PrivateInit
Require: Center Q0, meta-dataset S, # clusters K, privacy

parameter ρ, sampling parameter α, clipping threshold c.
Ensure: Matrix of initial centers P̃ (0) ∈ Rd×k.
1: Sample K2 candidates: C iid∼ Dir(αQ0)

K2

.
2: Initialize set : I ← {} and n← |Q|.
3: while |I| < K do
4: I ← I ∪Q where we sample Q from C with,

Pr(Q) ∝ exp

 √
8ρ

2b
√
K

∑
Q̂u∈S

ℓ(Q̂u, Q)

,where ℓ(Q̂u, Q)

=: Clip

[
min
P∈I

KL(Q̂u∥P ) − min
P∈I∪{Q}

KL(Q̂u∥P )

]c

0

5: end while
6: Return P̃ (0) with columns as entries in I.

3.3.1 Private initialization for our clustering algorithm

The performance of Alg. 3 is crucially determined by the proximity of initialized centers to each
of the true centers (Theorem 3.2), and more critical for higher private noisy tolerance. In Pri-
vateInit (Alg. 5), we provide a private data-dependent initialization technique, that takes as input a
private center Q0 (private FedAvg), and samples K2 points around it as an initial candidate set. Then,
it chooses K points iteratively from this set by sampling via the exponential mechanism. The utility
function for each candidate Q is determined by the average reduction in the clustering objective
when adding Q into the current set of initializations I, vs. not. The privacy budget ρ controls the
temperature, with lower budget enforcing higher smoothing. In the non-private case, we replace the
candidate set with the set of empirical user estimates, and select a high value of ρ. This iterative
procedure of selecting candidates with highest regret of omission at each step is meant to ensure that
each Q̂u is reasonably close to some initial center (akin to [5]). We remark that the execution of the
sampling step does not lend itself easily for implementation in the distributed setting. In practice, one
would need to use a small dataset collected centrally for this.
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3.4 Putting it all together: Algorithm for private and personalized frequency estimation

In Alg. 6 we present our complete algorithm. We first compute a private center of all user histograms
using Alg. 4 and privacy parameter ρ/3. We pass this to Alg. 5 with privacy parameter ρ/3 to get
initial centers for Alg. 3, where the re-centering step applies Alg. 4 with privacy parameter ρ/3T . The
privately learned cluster centers from Alg. 6 are then finetuned for each user locally, using Eq. 3.
Theorem 3.3 (End-to-end privacy guarantee). Algorithms 4, 5 are both user-level ρ-zCJDP. Our
end-to-end private and personalized estimation algorithm is (ρ+ 2

√
ρ log(1/δ), δ)-JDP, ∀δ > 0.

Algorithm 6 EndToEnd Algorithm
Require: Set of users U , dataset S, number of clusters K, number of clustering iterations T , finetuning

parameter α, sampling parameter ω, privacy parameter ρ, clipping parameter c, projection operator Π∆(V).
Ensure: Private and personalized estimates Q̂u for each u ∈ U .
1: Q0 ← PrivateCenter(U , ρ, c,Π∆(V)) # Estimate global center
2: P̃(0) ← Algorithm PrivateInit(Q0,S,K, ρ, ω, c) # Estimate initial cluster centers
3: {z̃u}u and centers P̃← Algorithm HistogramCluster(U , P̃(0), T ) # Estimate cluster memberships
4: ∀u : Q̃u ← FT(P̃z̃u , α) # Local finetuning using Eq. 3
5: Return {Q̃u : u ∈ U}.

3.5 Extending our private clustering algorithm to the size-heterogeneous setting
When users vary in size, we need to weigh their local estimates while estimating the global center or
the cluster center in the re-centering step of Alg. 3. For user u, the weight wu =: (1/σ2

u)/
∑

u∈Zc
(1/σ2

u).
Here σ2

u is the variance of the user’s local estimate, i.e., Var[Q̂u] (from Lemma 3.4). When Pzu [v] is
known this weighted estimate is optimal under ℓ2 [37]. Since Pzu [v] is unknown we replace Pzu [v]

in Lemma 3.4 with a uniform average of Q̂u from heavier users, following Cummings et al. [21].

Lemma 3.4 (Variance of Q̂u). For user u, Var[Q̂u[v]] = Pzu [v]/α+1(1− 1/mu)+Pzu [v](1−Pzu [v])/mu.

In the private setting though this approach cannot be used directly since the sensitivity of the weighted
mean estimate is too high for users with a lot of data, and more so for small sized clusters. Cummings
et al. [21] propose an algorithm to estimate the private heterogeneous mean of user data from different
Bernoulli distributions, but their approach does not directly transfer to our setting due to the high-
dimensional nature of our user means and the relatively poor sensitivity of Alg. 3 to errors in the
estimation of cluster centers at each iteration. Thus we consider a two-stage approach, split across
data-rich and data-poor users. In the first stage we privately cluster users with sufficiently large
datasets applying Alg. 3, and treating them as size-homogeneous data-rich users. Once cluster
centers are learned privately, using Alg. 1, each data-poor user assigns itself to the closest center
in KL divergence. Finally for each cluster, we apply Algorithm 2 from Cummings et al. [21] that
re-centers each cluster privately, based on the newly added users.

4 Formal analysis in a stylized data model
In Section 3, we presented a clustering based iterative algorithm (Alg. 3) for our frequency estimation
problem introduced in Section 2, wherein we made several key design choices. In particular, we used
average of Good-Turing estimators to estimate the cluster center, and used the update in Equation 3
to locally finetune the learnt cluster centers. Now, we analyze these algorithms in a stylized model.

Bayesian Model. Each user u belongs to a cluster zu ∈ [K] with cluster center Pzu . The user
histogram Qu ∼ Dir(αPzu), and the user dataset Su ∼ Qmu

u is sampled i.i.d. from Qu. We use
Zc =: {u : zu = c} to denote the set of users from cluster c, and nc =: |Zc| is the number of users
in c. Higher value of α implies more concentrated clusters since Var(Qu[v]) = O(Pzu [v]/1+α), and
as α → ∞, Qu → Pzu in weak topology [28]. Please note that the Dirichlet assumption is mainly
for simplicity and our results (e.g., Theorem 4.3) only require each cluster’s user distribution to be
exponentially concentrated along each token, i.e., Pr(|Qu[v]− Pzu [v]| ≥ t) = O(e−t).

Purely local learning. We present two local estimators that estimate Qu: empirical Q̂u. and Good-
Turing [30] Q̂gt

u . The naïve estimate Q̂u is the average of user data in Su. Next, we define the
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Good-Turing estimator. Let the frequency of token v in user’s dataset Su (of size mu) be cntu,v . We
denote the local frequency of the count j as ϕu,j =:

∑
v∈V 1(cntu,v = j), i.e., the number of token

in Su with count j. Following Orlitsky and Suresh [63], for a token v that appears j = cntu,v times,
the Good-Turing estimator for Qu[v] is given by:

Q̂gt
u [v] =:

{
j

muNu
if j > ϕu,j+1,

j+1
muNu

· ϕu,j+1+1
ϕu,j

otherwise,
(5)

where Nu is the normalization factor so that
∑

v Q̂
gt
u [v]=1. Let Eu be the class of natural estimators

that assign the same probability to tokens with equal counts in Su. Then, following Lemma 6 in
Orlitsky and Suresh [63] and Theorem 2 in Acharya et al. [2] we conclude that with respect to Eu, the
Good-Turing estimate Q̂gt

u has a worst case suboptimality gap of Õ(min(
√

1/m, d/m) (see Lemma 4.1
for the full statement). The key point to note here is that when the user dataset is small, we do
not suffer from the vocabulary size d, unlike the empirical estimate Q̂u. This is mainly because
Good-Turing more accurately estimates the probability of unseen words [56].

Lemma 4.1. (Q̂gt
u suboptimality gap) For any Qu, the suboptimality gap of Q̂gt

u with respect to Eu is
E[KL(Qu∥Q̂gt

u )]−minÃ∈Eu
E[KL(Qu∥Ã)] = Õ(min(

√
1/m, d/m)), that matches minimax rates.

Bayes optimal finetuning when the cluster center is given. When Pzu is known, FT in Eq. 3 is
Bayes optimal in KL and when only an estimate of the center is known, the error of the “plug-in”
estimate scales linearly with the error in the center’s estimate (Theorem 4.2).

Theorem 4.2 (Bayes optimal local learning). Given Pzu , α, the estimator FT(Pzu , Q̂u) is Bayes opti-
mal in KL divergence, for the Dirichlet prior Dir(αPzu). When P̃zu is the estimated cluster center, and
Q̃opt

u is the Bayes optimal estimate of Qu, then KL(Q̃opt
u ∥FT(P̃zu , Q̂u)) ≤ α/α+mu KL(Pzu∥P̃zu)).

Estimating the cluster center given cluster members. Given all users in a cluster c, one estimate
of the cluster center Pc is the solution to the maximum log-likelihood objective in Eq. 6, which is
typically solved with the FedAvg [49] algorithm. We denote this estimate as P̃ fa

c and is a simple
weighted average of empirical estimates (see proof in Appendix E). Similary, for user u in cluster c,
the personalized output from the PFL algorithm FedAvg+FT is given by FT(P̃ fa

c , Q̂u).

P̃ fa
c =:

∑
u∈Zc

(
mu/

∑
u′∈Zc

mu′
)
· Q̂u ∈ argmax

Q∈∆(V)

1

nc

∑
u∈Zc

log Pr(Su | Q) (FedAvg) (6)

Our algorithms (Alg. 6, Alg. 2) use a different estimator. In the size-homogenous case, to estimate
the cluster center we average the local Good-Turing estimates Q̂gt

u for all users in the cluster:

P̃ gt
c =:

1

nc

∑
u∈Zc

Q̂gt
u (Good-Turing based; ours). (7)

To analyze the accuracy guarantees of our estimate P̃ gt
c , we first define the class of competing

estimators for it. Let ¯cntv =: ⌊
∑

u∈Z cntu,v/
∑

u mu⌋ be the average count of token v across all users
in a cluster. We define Ē to be the class of estimators that assign the same mass to tokens v1, v2 if
¯cntv1 = ¯cntv2 . Such a class is natural for estimators that rely on aggregated statisitics, and includes

the Good-Turing correction applied to cluster level counts. In Theorem 4.3, for any cluster center Pc,
we compare the suboptimality gap in KL divergence for our estimate P̃ gt

c in Eq. 7 with FedAvg.

Theorem 4.3 (P̃ gt
c in Eq. 7 has lower suboptimality gap than FedAvg). For the competetive class

of estimators with the same average count, i.e., Ē (defined above), and suboptimality gap from
Lemma 4.1, the suboptimality gap for P̃ gt in Eq. 7, w.r.t. Ē is Õ(α+m/α+1 ·min(

√
1/m, d/m)). The

suboptimality gap over Ē for FedAvg P̃ fa is Ω̃ (d(α+m)/m(α+1)). Õ, Ω̃ hides polylog factors in m,n.

When m is small and comparable to the intra-cluster std. deviation, i.e., m/α+1 = O(1), then the
suboptimality gap for our estimator does not suffer from large dimension d . On the other hand,
FedAvg guarantees are much weaker and degrade with dimension for small user datasets (common in
practice). From, Theorem 4.2, we also conclude that our final estimate for Qu, given by the finetuned
center: FT(P̃ , Q̂u) would also have stronger error guarantees than FedAvg+FT.
Partitioning users into clusters. In practice, neither the cluster membership zu nor the center
Pc is known. The Bayes optimal estimate for Pc, zu is the mean of the posterior Pr(Qu | S, α)
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Figure 1: Performance before finetuning: We compare the test NLL loss before local personalization (finetuning)
for baselines FedAvg, MAML, IFCA with our approach. NLL is uniformly averaged over users and each value
is averaged over 50 random runs (error bars indicate 95% confidence intervals).

(see Theorem 4.2 proof), but since the posterior is intractable, we instead compute the maximum
likelihood estimate (MLE). Asymptotically, MLE’s accuracy is vindicated by Doob’s theorem [59],
and its variance matches the Cramér-Rao bound [69]. Still, the joint MLE for Pc, zu is a non-concave
maximization problem. Akin to solving the MLE for mixture distributions [61], we maximize an
evidence lower bound with Expectation-Maximization (EM) [7]. Since each Qu belongs to only one
cluster, it must be that zu ∈ argminc∈[k] KL(Qu∥Pc). Thus, the MLE for the cluster centers is given
by objective in Eq. 4 from Section 3, which is optimized iteratively by our Algorithm 6.

Takeaways. We note: (i) when cluster memberships are known, average of local Good-Turings has a
lower suboptimality gap than FedAvg; and (ii) solutions to the clustering objective in Eq. 4 estimates
cluster centers for each user; and (iii) if the center estimates are accurate then finetuning them with
FT yields estimates that are equally close to the Bayes optimal solution. These findings validate our
algorithmic design choices for the clustering and finetuning algorithms in Section 3.

5 Empirical evaluation
We empirically evaluate our approach on real-world datasets and present: (i) contrary to popular
belief [76], we show there are real-world distributions where clustering based algorithms (e.g.,
ours) significantly outperform the popular PFL baseline FedAvg+FT; (ii) our method achieves better
privacy-utility tradeoff than private versions of clustering-based baselines, and the gap amplifies in the
size-heterogeneous case; and (iii) we show our method’s performance improvements can be largely
attributed to algorithmic design choices influenced by our data model and analysis in Section 4.

Datasets. We evaluate methods on three real-world datasets: Reddit [16], StackOverflow [6], and
Amazon Reviews [62]. For Reddit, we use the NLTK tokenizer [11] with a vocabulary of size 10k
tokens, and for the other two datasets, we use the Huggingface (bert-case-uncased) tokenizer [74] with
a vocabulary size of 32k tokens. For more details on datasets and hyperparameters see Appendix C.

Baselines. We evaluate two baselines that learn a single global model: FedAvg [57] and
MAML [29]; and a clustering-based approach which learns multiple models, one for each clus-
ter: IFCA [33]/HypCluster [54]. Given a single global model (or a cluster level model), each user can
finetune this locally in different ways: full batch gradient descent (GD) initialized at global model,
RTFA [19], or with our problem specific method in Eq. 3. We compare these on FedAvg model
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Figure 2: Performance after finetuning: In the size-homogeneous (a-c), and size-heterogenenous (d-f) settings,
we compare the test NLL loss for baselines FedAvg+FT, MAML+FT, IFCA+FT with our Alg. 3+FT, where FT
is implemented by Eq. 3. Uniformly averaged over users, each value is averaged over 50 random runs (error bars
indicate 95% confidence intervals).
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Figure 3: Algorithmic design choices: We evaluate test NLL for Alg. 3 as we: (a) vary the number of clusters
K; (b) use PrivateInit or randomly initialize cluster centers; and (c) use average of Good-Turing or empirical
average to estimate cluster centers. In (d) we evaluate different finetuning methods applied to the FedAvg model.

(Figure 3(d)), and fix the best one (ours) as the local finetuning approach for all algorithms. In the
private setting, we adapt the baselines by using standard techniques [1, 25] that privatize l2 bounded
gradients for MAML/IFCA, and l1 bounded probability distributions for FedAvg.

Evaluation metric. For distribution Qu, estimate Q̃u, KL(Qu, Q̃u) = NLL(Qu, Q̃u)−H(Qu),
where NLL(Qu, Q̃u) =: −

∑
w∈V Qu,w logQu,w is the negative log-likelihood loss, and H(Qu) is

the entropy of Qu. Following language modeling [3, 38], we use the test set of the user to get an
unbiased estimate of the NLL loss, by replacing Qu with the empirical distribution on the test set.
Since the test set is insufficient to get an unbiased estimate of H(Qu), as a reference point, we instead
report the entropy of the global center or FedAvg estimate H(P̃ fa), which is a rough estimate of the
“hardness” of estimating the user distribution. We refer to this difference in test NLL and H(P̃ fa) as
NLL sub-optimality gap. In the private case, we ensure the algorithms satisfy (15, 10−10)-JDP.

Our approach significantly reduces test NLL in private and non-private settings. In Figure 1 we
report a significant reduction in test NLL sub-optimality gap even before local finetuning, by atleast
25-45% in the non-private setting and upto 50% in the private case. Non-privately MAML/IFCA
perform better than FedAvg on StackOverflow and Amazon, but their private versions perform similar
or worse than the private FedAvg. This is because the gradient-based optimization in MAML and
IFCA can incur very high per-iteration privacy overheads which only accumulates more for the
latter that additionally suffers from poor convergence due to imperfect cluster initialization. On the
other hand, our method achieves a privacy-utility tradeoff that is comparable to the gradient-free
FedAvg, and converges in fewer iterations when clustering is initialized with centers from Alg. 5. In
Figure 2 we compare the performance after we finetune the global/cluster-level estimates locally for
each user (using Eq. 3), and verify that the relative gains remain consistent with pre-finetuning. In
particular we note that finetuning global FedAvg/MAML models does not do better than finetuning
cluster-level models, vindicating the presence of concentrated subpopulations in an otherwise highly
heterogeneous real-world user distribution.

Algorithmic design decisions influenced by our model in Section 4. In Section 4 we identified
the Good-Turing based estimator (Eq. 7) to suffer less from vocabulary size, compared to FedAvg
(Theorem 4.3), and in practice too we observe a big improvement in the test NLL loss of Alg. 3 when
it uses Good-Turing as the local estimate, vs. empirical (Figure 3(c)). The relative gap is particularly
wider on the large vocabulary datasets Amazon and StackOverflow. In Figure 3(b), we show that our
data-dependent private initialization (Alg. 5), that is also based on our mixture of Dirichlet model,
plays a crucial role in lowering the final test loss, and we attribute this gain to a significant reduction
in clustering iterations (from 200 to 20), thereby reducing privacy overhead. In Figure 3(d) we
note that the Bayes optimal finetuning algorithm in our data model (Eq. 3) does better than typical
gradient-based (GD) or proximal term based (RTFA) approaches. Finally, in Figure 3(a), we plot test
NLL as we vary the number of clusters assumed by Alg. 3. We note that for runs on all datasets we
choose K=10 which was found to be optimal on the Reddit validation set (see Appendix C), even
though it is clearly (slightly) suboptimal on the other two, suggesting that Alg. 3’s performance is not
too sensitive to the choice of K practice.

Size-heterogeneous case. In Figure 4 plot test NLL in the size-heterogeneous case where our
algorithm’s gains (> 40% error reduction) over single global model baselines FedAvg and MAML
are even more pronounced than the size-homogeneous results in Figures 1, 2. For the better suited
clustering baseline IFCA, the privacy utility tradeoff worsens (compared to size-homogenous) due
to poorer higher sensitivity of gradient estimates when dataset sizes vary. On the other hand, our
two-stage approach reduces privacy noise in the clustering stage by partitioning users into different
stages and still improves performance for data scarce users in the second stage by incorporating them
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Figure 4: Size-heterogenous setting: Comparison of test loss for baselines FedAvg+FT, MAML+FT, IFCA+FT
with our Alg. 3+FT, in the size-heterogeneous setting where each user’s dataset vastly differs in size. Uniformly
averaged over users, each value is averaged over 50 random runs (error bars indicate 95% confidence intervals).

in the re-centering of clusters from previous stage. Compared to IFCA we observe > 50% reduction
in test NLL suboptimality gap for private estimation on Amazon Reviews.

6 Related work
Private and personalized federated learning. Multiple works propose and analyze clustering
based algorithms that learn a diverse set of models for heterogeneous user distributions [26, 33, 35,
54, 55, 66, 73, 77]. With the exception of [66] that first learns a global model and then uses it to
partition users based on their losses, most works learn diverse models from scratch using gradient
based algorithms, as done by FedAvg [57]. The key difference being that they first partition clients
based on their loss [33] or gradients [72] and then use the same gradients to update different models,
one for each cluster. Additionally, their analysis also holds mainly for smooth/strongly convex loss
functions, for e.g., least squares [33, 54]. This is a natural and promising approach but we are not
aware of practical results showing that it can improve on the more direct combination of FedAvg
and FT [19, 76]. In fact, Wu et al. [76] raise concerns about mode collapse with clustering iterations.
Contrary to the works above, we focus on a non-gradient based approach specifically for frequency
estimation in KL divergence, which can be ill-conditioned in practice, and also provide an algorithm
for the more challenging size-heterogeneous setting. As we show in our work, this problem requires
solutions that are different from the ones proposed for general loss families in machine learning.
Moreover, unlike the above, we provide privacy guarantees for our clustering based personalization.
For more discussion on related works please see Appendix B

Distribution estimation in KL divergence. A multitude of works on mixture of Gaussians, and
mixed linear regression propose and analyze distribution estimation algorithms [9, 22, 45, 61], but
their guarantees are mainly for parametric estimation errors in ℓ1/ℓ2 metric. In contrast, we are
concerned with histogram estimation in KL divergence which presents interesting challenges since
this is not a proper distance metric (e.g., does not satisfy triangle inequality). On the other hand, [30,
34, 64] study Good-Turing estimators and give estimation error guarantees in KL divergence for
categorical distributions over a fixed alphabet. Our work extends estimators of Acharya et al.
[2], Orlitsky and Suresh [63] to the federated setting where the goal is to estimate a full population of
distributions that share a latent structure. Relevant to our objective and metric is [17] that analyzes
guarantees for information theoretic clustering. Their analysis shows that one can adapt analysis
for other metrics (e.g., Hellinger) to obtain worst-case approximation guarantees. In contrast, we
investigate practical and private algorithms for the federated setting.

7 Conclusion
We introduce the problem of private and personalized frequency estimation in KL divergence. For
this, we propose an iterative algorithm that privately learns clusters in the population of all user
frequencies. Each user in a cluster locally finetunes their corresponding cluster center to produce
personalized and private frequency estimates with formal joint DP guarantees. We improve the
privacy-utility tradeoff of our algorithm by proposing a novel data-dependent private initialization
for clustering that empirically reduces number of clustering iterations. We also present a two-stage
version of our approach to separately handle the harder size-heterogenous setting. In a Bayesian
model where the user distributions are distributed as Dirichlets around well-separated centers, we
reason about different collaborative and local estimators, and provide formal guarantees for some of
our algorithmic design choices, like Good-Turing estimators, and the choice of the local finetuning
algorithm. Empirically, we test our algorithm on three real-world datasets and show a significant
reduction in test NLL, by 25-45% in the non-private setting and upto 50% in the private case.

10



Acknowledgements
Part of this work was done when AS was an intern at Apple, hosted by VF and KT. AS would like
to thank Virginia Smith, Moshe Shenfeld, Hilal Asi, Abhishek Shetty, Aadirupa Saha, Steven Wu,
Shengyuan Hu, Pratiksha Thaker, Tian Li, and Don Dennis for helfpful feedback and discussions.
AS also thanks JP Morgan AI PhD Fellowship for their generous support.

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar,

and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS’16. ACM, October 2016. doi:
10.1145/2976749.2978318. URL http://dx.doi.org/10.1145/2976749.2978318.

[2] Jayadev Acharya, Ashkan Jafarpour, Alon Orlitsky, and Ananda Theertha Suresh. Optimal
probability estimation with applications to prediction and classification. In Conference on
Learning Theory, pages 764–796. PMLR, 2013.

[3] Ibrahim M Alabdulmohsin, Behnam Neyshabur, and Xiaohua Zhai. Revisiting neural scaling
laws in language and vision. Advances in Neural Information Processing Systems, 35:22300–
22312, 2022.

[4] Galen Andrew, Om Thakkar, Brendan McMahan, and Swaroop Ramaswamy. Differentially
private learning with adaptive clipping. Advances in Neural Information Processing Systems,
34:17455–17466, 2021.

[5] David Arthur and Sergei Vassilvitskii. K-means++ the advantages of careful seeding. In
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages
1027–1035, 2007.

[6] The TensorFlow Federated Authors. TensorFlow Federated Stack Overflow dataset, 2019. URL
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/
datasets/stackoverflow/load_data.

[7] Sivaraman Balakrishnan, Martin J. Wainwright, and Bin Yu. Statistical guarantees for the EM
algorithm: From population to sample-based analysis. The Annals of Statistics, 45(1):77 – 120,
2017. doi: 10.1214/16-AOS1435. URL https://doi.org/10.1214/16-AOS1435.

[8] Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, Joydeep Ghosh, and John Lafferty.
Clustering with bregman divergences. Journal of machine learning research, 6(10), 2005.

[9] Mikhail Belkin and Kaushik Sinha. Polynomial learning of distribution families. In 2010 IEEE
51st Annual Symposium on Foundations of Computer Science, pages 103–112. IEEE, 2010.

[10] Alberto Bietti, Chen-Yu Wei, Miroslav Dudik, John Langford, and Steven Wu. Personalization
improves privacy-accuracy tradeoffs in federated learning. In International Conference on
Machine Learning, pages 1945–1962. PMLR, 2022.

[11] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python:
Analyzing Text with the Natural Language Toolkit. O’Reilly Media, Inc., June 2009. ISBN
9780596516499. URL https://www.nltk.org/book/.

[12] Sourav Biswas, Yihe Dong, Gautam Kamath, and Jonathan Ullman. Coinpress: Practical private
mean and covariance estimation. Advances in Neural Information Processing Systems, 33:
14475–14485, 2020.

[13] K. A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for
federated learning on user-held data. In NIPS Workshop on Private Multi-Party Machine
Learning, 2016. URL https://arxiv.org/abs/1611.04482.

[14] Joseph Bonneau. The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In 2012 IEEE symposium on security and privacy, pages 538–552. IEEE, 2012.

11

http://dx.doi.org/10.1145/2976749.2978318
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://doi.org/10.1214/16-AOS1435
https://www.nltk.org/book/
https://arxiv.org/abs/1611.04482


[15] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions,
and lower bounds. In Theory of Cryptography Conference, pages 635–658. Springer, 2016.

[16] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan
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Appendices
A Limitations of our work

As a first step towards language modeling we only focus on privately estimating the marginal token
distribution for each user, and an interesting future direction would be to extend this to conditional
next-token distributions. Nevertheless, we find that existing algorithms in the federated learning
literature when applied to our problem setting perform suboptimally, and require problem specific
interventions we introduce, like Algorithms 3, 5, and Good-Turing based estimators. Our current
work also does not handle a federated version of the private initialization algorithm we propose. We
suggest handling the initialization at the central node that maintains a small dataset of clients. This
is a known limitation for sampling from the exponential mechanism in a federated setting. At the
same time we would like to point out, that all our other algorithms, including private ones can be
implemented in the federated setting.

B Additional related work

In our work we consider joint, user-level privacy guarantees in the billboard model [39], whereas
some prior works at the intersection of privacy and personalization only provide weaker record-level
privacy guarantees [40, 51]. While other works [50, 58] study the notion of user-level privacy in
federated setups, they are mainly concerned with learning a single model. Cummings et al. [21]
also study the problem of private heterogeneous mean estimation but do not consider the clustered
setting, or the subtleties of estimatation in KL divergence. More recent works (e.g., [42, 43]) propose
personalization algorithms that are user-level private, but are mainly tailored for settings where
the different models for each user share representations or lie in a hidden low rank subspace. In
contrast, we explore another latent structure more suited for histogram estimation, i.e., one where
histograms need only be concentrated around the vertices of a low-dimensional polytope. Other
works [10, 41, 75] propose gradient-based algorithms for private multi-task learning where they
learn different models for each user (task), regularized using inter-task prior relationship matrices. In
contrast, our work does not assume any such prior knowledge.

C Additional details for empirical evaluation

Datasets. We evaluate methods on three real-world datasets: Reddit [16], StackOverflow [6], and
Amazon Reviews [62]. For the Reddit dataset, we use the NLTK tokenizer [11] with a vocabulary of
size 10k tokens, and use the Huggingface (bert-case-uncased) tokenizer [74] with a size of 32k tokens
for the other two. We have ≈ 10k users in Reddit, each with at least 1k tokens. For StackOverflow
and Amazon Reviews we have ≈ 19k and 50k clients respectively, each with 500 tokens For all
datasets, we partition the data for each client into 60 : 40 train/test splits. Additionally, we set aside
5% of users in each, as a validation, to tune cluster count K, privacy clip bound c, etc. In the private
setting, we adapt the baselines to the private setting by using standard techniques [1, 25] to privatize
l2 bounded gradients for MAML/IFCA, and l1 bounded probability distributions for FedAvg, so as to
ensure all algorithms achieve JDP-(15, 10−10). For more details see Appendix C.

Hyperparameters. We validate hyperparameters for our algorithms and baselines using a hold out
validation set of users. For clustering we use K = 10, as validated by Figure 5, and fix this for
all datasets and clustering baselines. We run clustering for T = 50 iterations non-privately and
T = 20 iterations privately on all datasets. We tune the finetuning parameter λ by sweeping across
{0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5} and find λ = 0.25, λ = 0.15 and λ = 0.1 to be
optimal on Reddit, StackOverflow and Amazon respectively. We train MAML and IFCA using SGD
with momentum, with learning rate 0.01 and momentum parameter 0.9. For RTFA, we find the
proximal regularization parameter of 0.2 to be optimal on Reddit and StackOverflow, 0.1 to perform
better on Amazon Reviews. For private training, we use a clipping threshold of c = 0.1 in Alg. 4,
and use c = 4.0 for Alg. 4.

Computational resources. None of our experiments require very high computational requirements
and can be run with one 3090Ti card. All runs can be reproduced in approximately 500 GPU hours.
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Figure 5: Validating hyperparameter choice of K = 10 on Reddit dataset. We use the same value of
K for the other two datasets as well.

D Useful Lemmas

Lemma D.1 (Chernoff bound). If X ∼ Poi(λ), then for x ≥ λ,

Pr(X ≥ x) ≤ exp

(
− (x− λ)2

2x

)
, (8)

and for x < λ,

Pr(X ≤ x) ≤ exp

(
− (x− λ)2

2λ

)
. (9)

Lemma D.2 (Bernstein’s Inequality). Let X1, X2, . . . , Xn be n independent zero mean random
variables such that with probability ≥ 1− ϵi, |Xi| < M . Then,

Pr

(∣∣∣∣∣∑
i

Xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2∑

i E[X2
i ] +Mt/3

)
+

n∑
i=1

ϵi. (10)

If t =
√

2 (
∑

i E[X2
i ]) log

1
δ + 2

3M log 1
δ , then

Pr

∣∣∣∣∣∑
i

Xi

∣∣∣∣∣ ≥
√√√√2

(∑
i

E[X2
i ]

)
log

1

δ
+

2

3
M log

1

δ

 ≤ 2δ +

n∑
i=1

ϵi. (11)

Lemma D.3 (Banerjee et al. [8]). The solution for the optimization problem:

argmin
Q

(1− λ)KL(P0 ||Q) + λKL(P1 ||Q)

is given by (1− λ)P0 + λP1.

E Missing proofs from Section 4

Lemma E.1. (Q̂gt
u achieves minimax suboptimality gap; restated) For any Qu, the suboptimality

gap of Q̂gt
u with respect to Eu is E[KL(Qu∥Q̂gt

u )]−minÃ∈E E[KL(Qu∥Ã)] = Õ(min(
√

1/m, d/m)),
that matches minimax rates.

Proof. From Lemma 8 in [63] we know that for the class of natural estimators Eu, the suboptimality
gap defined above is given by E[KL(Mk∥M̃k)], where

Mk =:
∑
v∈V

1(cntv = k)Qu[v], M̃k =:
∑
v∈V

1(cntv = k)Q̃u[v].

We use the definition of ϕu,t from [63], where:

ϕu,t =
∑
v∈V

1(cntu,v = t) (12)
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Now, from Theorem 2 in [63] we also know that KL(Mk∥M̃k) = Õ(
√
1/m) with probability at least

1− 1/m over the randomness in draw of the user dataset Su. Since their estimate is lower bounded
by 1/2m, we can convert their high probability guarantees to guarantees in expectation. Further, we
note that in their proof of Theorem 2, we can easily upper bound the following∑

t

(Mk − M̃k)
2

M̃k

≤
∑
k

√
ϕu,t

m
≤
∑
t

ϕu,t

m
=

d

m

in the worst case. Thus, in the worst case, E[KL(Mk∥M̃k)] is upper bounded by the minimum of
O(d/m) and Õ(

√
1/m). This completes the proof of Lemma 4.1.

Theorem E.2 (Finetuning is Bayes optimal given center; restated). If cluster center Pzu , and Dirichlet
parameter α is known then FT(Pzu , Q̂u) is Bayes optimal in KL divergence.

Proof. We note that the distribution of Q̂u given the center Pcu is a Dirichlet-Multinomial distribution.
Further, the Dirichlet distribution is a conjugate prior for the Multinomial.

Hence, the posterior distribution for Qu | Q̂u, Pcu is a Dirichlet Multinomial with mean: ( α
α+m )Pu+

( m
α+m )Q̂u. To see why, mean is the Bayes optimal estimator, we invoke Lemma D.3, which implies:

(1− λ)P + λQ̂u ∈ argmin
Q

(1− λ)KL(P ||Q) + λKL(Q̂u ||Q)

Now the Bayes risk of algorithm M, given the center estimate P is :

BayesRisk(M) =: EQu∼Pr(Qu|Q̂u,P )

[
KL(Qu∥M(Q̂u))

]
Recursively applying Lemma D.3 on every measurable subspace (under measure defined by the
posterior Pr(Qu | Q̂u, P )) of the set of token distributions ∆(V), we conclude that the optimal
solution is E[Qu|Q̂u, P ] when Qu ∼ Pr(Qu | Q̂u, P ). This concludes our proof. Note that the same
proof also applies for Lemma 3.1, but applied iteratively on each element in the summation.

Lemma E.3 (Accuracy of plugging center estimate into finetuning; restated). Let P̃zu be the estimated
cluster center for user u, and Q̃opt

u be the Bayes optimal estimate of Qu. Then,

KL(Q̃opt
u ∥FT(P̃zu , Q̂u)) ≤

α

α+mu
KL(Pzu∥P̃zu).

Proof. This result is a simple application of Jensen’s inequality for KL divergence.

KL(Q̃opt
u ∥FT(P̃zu , Q̂u))

= KL

((
α

α+mu
Pzu +

α

α+mu
Q̂u

)
∥
(

α

α+mu
P̃zu +

α

α+mu
Q̂u

))
≤ α

α+mu
KL(Pzu∥P̃zu)

Lemma E.4 (FedAvg estimate). The FedAvg model is given by Qfa = 1
n

∑
Q̂u∈S Q̂u.

Proof. The log likelihood objective log Pr(Su∥Q) is equivalent upto additive constant with the
objective KL(Q̂u∥Qu). We can once again use the result from Lemma D.3 to conclude that the
optimal is simply the average of local means.

Theorem E.5 (P̃ gt
c in Eq. 7 has lower suboptimality gap than FedAvg; restated). For the competetive

class of estimators with the same average count, i.e., Ē (defined above), and suboptimality gap from
Lemma 4.1, the suboptimality gap for P̃ gt in Eq. 7, w.r.t. Ē is Õ(α+m/α+1 ·min(

√
1/m, d/m)). The

suboptimality gap over Ē for FedAvg P̃ fa is Ω̃ (d(α+m)/m(α+1)). Õ, Ω̃ hides polylog factors in m,n.
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Proof. For notational convenience, we denote the cluster center with P (instead of Pc), and the
number of users in the cluster as n (instead of nc). To derive bounds on competetive estimation,
where the competetive class can only use the average count for each token, we need to first ensure
that our Good-Turing based estimator can actively estimate the following quantity:

Mt =:
∑
v∈V

1(⌊cntv⌋ = t) Pv and Ft =:
∑
v∈V

1(⌊cntv⌋ = t) P̃ gt
v (13)

Similarly, the local equivalent of Mt for each user is defined as:

Mu,t =
∑
v∈V

1(cntu,v = t) Qu,v and Fu,t =:
∑
v∈V

1(cntu,v = t) Q̂gt
u,v (14)

As a starting point, we will first derive our results with the genie-aided estimator, where we have
oracle access to the ration of expected frequencies for every user, and then switch the analysis to the
more general version when we do not. The genie-aided local estimator Q̂gen

u,v is:

Q̂gen
u,v ∝ cntu,v + 1

m
·
E[ϕu,cntu,v+1]

E[ϕu,cntu,v ]
, (15)

and the corresponding average of genie-aided Good-Turing estimates:

P̃ gen
v =

1

n

∑
u

Q̂gen
u,v .

Next, we derive results for the setting where mu ∼ Poi(m) so that the local frequency counts of
words become independent. Then, using the results on Poisson sampling in Mitzenmacher and Upfal
[60], we can convert the bounds to the setting where each user samples exactly m tokens.

We will use 1t
v as a shorthand for 1(⌊cntv⌋ = t) and similarly use 1t

u,v as a shorthand for 1(cntu,v =
t). The following quantities define the global and local frequencies of average and local counts
respectively:

ϕt =:
∑
v∈V

1
t
v and ϕu,t =

∑
v∈V

1
t
u,v. (16)

For Ft defined using the genie-aided estimator, to bound the competetive KL estimation error we first
need to bound the KL distance between ground truth Mt and estimate Ft under high probability over
the draw of the meta-dataset S.

KL(Mt||Ft) =
∑
t

Mt log
Mt

Ft
≤ log

(∑
t

M2
t

Ft

)

= log

(
1 +

∑
t

Mt − Ft
2

Ft

)
≤
∑
t

(Mt − Ft)
2

Ft
(17)

Using Lemma E.6 we lower bound the denominator in the KL upper bound in Eq. 17.

Lemma E.6 (Lower bound on Ft). With probability atleast 1− nm−2, Ft = Ω̃
(

tϕt

m

)
.

Proof. The proof relies on three results for local Good-Turing (per-user) estimates. We will combine
the three results, and then apply a union bound over all the users. Let v be some token in the
vocabulary that has an average count of t, i.e., 1t

v = 1. From Lemma 15, 16 and Claim 20 in Acharya
et al. [2], with probability at least 1 − m−3, Q̂un

u = Ω̃(cntu,v/m), where Q̂un
u is the unnormalized

local Good-Turing estimate. Additionally, from Lemma 17 in Acharya et al. [2], the normalization
factor Nu for user u satisfies with probability at least 1 − 10m−2, Nu = 1 + Õ(1/m1/4). Since
mu is a Poisson distribution from Lemma D.1, the number of data points mu for the user satisfies
|mu −m| ≤

√
m, with constant probability. Putting these together, and applying a union bound over

all n users we conclude:

Ft = Ω̃

(
1

n

∑
v∈V

∑
u

1
t
vcntu,v
m

)
= Ω̃

(
cntvϕt

m

)
= Ω̃

(
tϕt

m

)
,

with probability at least 1− nm−2.
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Next we try to upper bound (Mt − Ft)
2 for some t ≥ 1. But before that we introduce some more

helpful results.

Lemma E.7 (User’s Qu concentrates around center P ). With probability at least 1− δ, ∀v ∈ V:∣∣∣∣∣ 1n∑
u

Qu,v − Pv

∣∣∣∣∣ = O

(√
Pv log d/δ

n(1 + α)

)

Proof. Since Qu,v ∈ [0, 1] is a bounded random variable with variance Pv(1−Pv)/(1+α), we can apply
the Bernstein inequality in Lemma D.2. This would give us a confidence interval for a single token v,
which we can then union bound over all tokens v ∈ V to get the result.

Lemma E.8 (variance of linear estimators; Claim 21 in Acharya et al. [2]). For every distribution p,

Var

(∑
v

∑
t

1
t
vf(x, t)

)
≤
∑
x

∑
t

E[1t
v]f

2(x, t).

Proof. By Poisson sampling, the multiplicities are independent. Furthermore, the variance of the
sum of independent random variables is the sum of their variances. Hence,

Var

(∑
v

∑
t

1
t
vf(x, t)

)
=
∑
v

Var

(∑
t

1
t
vf(x, t)

)

≤
∑
v

E

(∑
t

1
t
vf(x, t)

)2


=
∑
v

E

[∑
t

(1t
vf(x, t))

2

]
(a)

=
∑
v

∑
t

E[1t
v]f

2(x, t). (b)

For t ̸= t′, E[1t
v1

t′

v ] = 0 and hence (a). (b) uses the fact that 1t
v is an indicator random variable.

Lemma E.9 (expected sensitivity of the local frequencies; Claim 20 in [2]). For every user distribu-
tion p over V , from which we draw n i.i.d. samples, let t be the local count and ϕt =

∑
v∈V 1

t
v is the

frequency of the local count,

E[ϕt]− E[ϕt+1] = O

(
E[ϕt] max

(
logm

t+ 1
,

√
log n

t+ 1

))
+

1

n
.

Proof. We consider the two cases t + 1 ≥ log n and t + 1 < log n separately. Consider the case
when t+ 1 ≥ log n. We first show that∣∣E[1tx]− E[1t+1

x ]
∣∣ = e−npx

(npx)
t

t!

∣∣∣∣1− npx
t+ 1

∣∣∣∣ ≤ 5e−npx
(npx)

t

t!

√
log n

t+ 1
+

2

n3
. (4)

The first equality follows by substituting E[1tx] = e−npx(npx)
t/t!. For the inequality, note that if

|npx − t − 1| ≤ 25(t + 1) log n, then the inequality follows. If not, then by the Chernoff bound
E[1tx] = Pr(tx = t) ≤ n−3 and hence

∣∣E[1tx]− E[1t+1
x ]

∣∣ ≤ E[1tx] + E[1t+1
x ] ≤ 2/n3.

By definition, E[Φt]− E[Φt+1] =
∑

x E[1tx]− E[1t+1
x ]. Substituting,

|E[Φt]− E[Φt+1]| ≤
∑
x

∣∣E[1tx]− E[1t+1
x ]

∣∣
(a)
=
∑
x

e−npx
(npx)

t

t!

∣∣∣∣1− npx
t+ 1

∣∣∣∣
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=
∑

x:npx≤1

e−npx
(npx)

t

t!

∣∣∣∣1− npx
t+ 1

∣∣∣∣+ ∑
x:npx>1

e−npx
(npx)

t

t!

∣∣∣∣1− npx
t+ 1

∣∣∣∣
(b)

≤
∑

x:npx≤1

npx
t!

+
∑

x:npx>1

5e−npx
(npx)

t

t!

√
log n

t+ 1
+

2

n3

≤ 1

n2
+O

(
E[Φt]

√
log n

t+ 1

)
+

2n

n3
≤ O

(
E[Φt]

√
log n

t+ 1

)
+

1

n
.

where (a) follows from the fact that E[1tx] = e−npx(npx)
t/t!. (b) follows from the fact that npx ≤ 1

in the first summation and Equation (4). The proof for the case t+ 1 < log n is similar and hence
omitted.

Lemma E.10 (Upper bound on |Mt−Ft|). For any t ≥ 1, with high probability at least 1−npoly(m).

|Mt − Ft| = Õ
(√

tE[ϕt] ·
(

1

1 + α
+

1

m

))
Proof.

|Mt − Ft| ≤

∣∣∣∣∣ 1n ∑
v∈V

∑
u

1
t
v(Pv −Qu,v)

∣∣∣∣∣︸ ︷︷ ︸
A=:Dirichlet concentration

+

∣∣∣∣∣ 1n ∑
v∈V

∑
u

1
t
v(Qu,v − Q̂gt

u,v)

∣∣∣∣∣︸ ︷︷ ︸
B=:Local Good-Turing

(18)

Our proof mainly relies on the concentration properties of Dirichlet distribution and some properties
of the local Good-Turing estimate. While the first term is fairly streaightforward to bound, the second
term requires us to handle the fact that 1t

v is a random variable that depends on the global statistics
for the token v, while Q̂gt

u,v −Qu,v depends only on the local statistics. This requires us to analyze
this differently from Acharya et al. [2].

Using Lemma E.8, followed by Lemma E.7 we can bound term A in Eq. 18 in the following way:

Var

(∑
v∈V

1
t
v(Pv − ¯cntv/m)

)
≤
∑
v

E[1t
v] (Pv − ¯cntv/m)

2 (19)

= O

(
E

[∑
v∈V

1
t
vPv

(1 + α)

])
= O

(
E

[∑
v∈V

1
t
vt

m(1 + α)

])
(20)

= O
(

E[ϕt]t

m(1 + α)

)
(21)

This completes our derivation for the upper bound on the first term (A) in Eq. 18. For the second term
(B), we use the definition of the genie-aided local Good-Turing estimator and bound its variance in
the folliowing way:

Var

(
1

n

∑
v∈V

∑
u

1
t
v(Qu,v − Q̂gt

u,v)

)
≤
∑
v∈V

E[1t
v]

(
1

n

∑
u

Qu,v − Q̂gt
u,v

)2

=
∑
v∈V

E[1t
v]

(
1

n

∑
u

Qu,v −
cntu,v + 1

mu

E[ϕu,cntu,v+1]

E[ϕu,cntu,v
]

)2

≤ 2
∑
v∈V

E[1t
v]

(
1

n

∑
u

Qu,v −
cntu,v + 1

mu

)2

(22)

+ 2
∑
v∈V

E[1t
v]

(
1

n

∑
u

(cntu,v + 1)(E[ϕu,cntu,v+1 − ϕu,cntu,v ])

muE[ϕu,cntu,v
]

)2
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The first inequality above uses Lemma E.8, and the second equality uses the definition of the genie-
aided estimator. In Eq. 22 we have two terms, and we bound the first term using Jensen inequality
followed by the DKW inequality [70] for empirical estimators of the cumulative distribution. With
high probability 1− δ,

∑
u

∑
v∈V

E[1t
v]

(
1

n

∑
u

Qu,v −
cntu,v + 1

mu

)2

≤ 1

n

∑
u

∑
v∈V

(
Qu,v −

cntu,v + 1

mu

)2

=
1

n

∑
u

∑
v∈V

E[1t
v]O

(
cntu,v log

2(d/δ)

m2
u

)

≤
∑
v∈V

E[1t
v]O

(
cntv log

2(d/δ)

m2
u

)
≤ Õ

(
tE[ϕt]

m2

)
The final inequality above uses the definition of t, and the concentration of mu, i.e., with high
probabibility: |mu − E[mu]| = |mu −m| = Õ(

√
m).

Next we will bound the second term in Eq. 22, for which we use some properties of the expected
sensitivity of the local frequency counts (Lemma E.9).

∑
v∈V

E[1t
v]

(
1

n

∑
u

(cntu,v + 1)(E[ϕu,cntu,v+1 − ϕu,cntu,v
])

muE[ϕu,cntu,v
]

)2

≤
∑
v∈V

E[1t
v]

(
1

n

∑
u

(cntu,v + 1)

mu
√
cntu,v

)2

Applying Jensen’s inequality it is easu to see that we can bound the above term with:

∑
v∈V

E[1t
v]

(
1

n

∑
u

(cntu,v + 1)(E[ϕu,cntu,v+1 − ϕu,cntu,v ])

muE[ϕu,cntu,v
]

)2

= Õ

(
tE[ϕt]

m2

)
(23)

Combining the result in Equation 19 with Equation 23, and then applying Lemma 8 from Orlitsky
and Suresh [63] completes the proof of the Lemma.

Let us first consider the following simplified setting which deviates from our setup in Section 4 in two
ways: (1) Qu = P , i.e., each user’s true distribution matches exactly the cluster center (this matches
the α → ∞ case in our setup); and (2) each user independently samples mu ∼ Poi(m), which is
the number of samples in their local dataset, that is used to estimate the empirical distribution Q̂u

(note that mu = m for our results in Section 5). We shall now derive results in this setting, and then
consider the more general case.

Without loss of generality, let us fix the center to be c, with some collection of users Zc. Then, we
know that cntv is distributed as a Poisson random variable with mean m

∑
u∈Zc

Qu[v]. Thus, with
probability at least 1− δ:

|cntu/n −
∑

u∈Zc
mQu[v]/n| ≤ log(2/δ).

We mainly rely on Lemma 13 for the Genie aided estimator from [2]. The key difference being
that E[ϕk], which is words with total count k would differ from E[ϕcntu,v ]. For, this we first bound
⌊k/n⌋ − cntu,v with high probability. We do this, by:

cntuv − E(cntu,v) =δ Õ(
√

E[cntu,v])

=δ Õ(
√

mQu[v]) +mÕ(

√
P [v]

α+ 1
)
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since the counts follow Poisson distribution under indpendent sampling. Thus, when α = Ω(m), the
first term dominates, and we see that each this gives us:

k

n
∈
[
cntu,v −

√
cntu,v, cntu,v +

√
cntu,v

]
with high probability. Then from Claim 20 in [2], qwe know that |E[ϕk]− E[ϕcntu,v

]| = O(k)

The rest of our analysis relies with the genie-aided estimator mainly relies on Theorem 2 in Acharya
et al. [2]. Using the result in Lemma E.10, we conclude that with probability 1− npoly(m) over the
draw of the meta-dataset S, the KL distance:

KL(Mt∥Ft) ≤ Õ

(√
1

m
· α+m

α+ 1

)
. (24)

Next, we use Lemma 15 from Acharya et al. [2] to prove the same claim for the estimator that is not
genie-aided. And finally, we reuse the conversion of the high probability result to one in expectation
using arguments similar to our proof of Lemma 4.1. This completes our analysis of the upper bound
on competetive regret for the average of local Good-Turings (our estimator).

Finally, for the lower bound in Theorem 4.3, we invoke known lower bounds on the concentration of
the Dirichlet distribution Ω̃(1/α+1), and minimax statistical lower bounds on the risk of the empirical
estimator Ω̃( d

m ), to conclude that the competetive risk of FedAvg is at least Ω̃ (d/m + 1/α+1). This
completes our proof of Theorem 4.3.

Lemma E.11 (Stirling approximation [46]). The Γ function is sandwiched as follows. There is a
positive constant C, such that for all x > 0:

Cxx−1/2e−x ≤ Γ(x) ≤ Cxx−1/2e−xe
1/12x.

This implies log Γ(x) = logC + (x − 1/2) log x − x + O(1/x). For large enough x, we substitute
Γ(x) ≈ logC + (x− 1/2) log x− x.
Theorem E.12 (Clustering approximates MLE objective; restated). The joint likelihood for Pc and
zu can be upperbounded with the clustering objective in Eq. 4, and this approximation is tight upto
an additive term of O(1/α).

Let V be a fixed set of words, d =: |V| is the size of the set, and ∆(V) is the set of all possible discrete
probability distributions over V . Each user u in the federated setup has an unknown distribution
Qu ∈ ∆(V). Further, each Qu belongs to one of k clusters, and the cluster membership is denoted by
zu, where zu ∈ Rk is a 1-hot k-dimensional vector. Each cluster c ∈ [k] is associated with a center
Pc ∈ ∆(V), and the matrix with column vectors as cluster centers is denoted as P ∈ Rd×K , i.e.,
P =: [P1, P2, . . . , Pk].

Independently for each user u, given the cluster membership zu, and some α > 0, the user’s
distribution Qu is sampled from a Dirichlet around the cluster center Pzu, i.e., Qu ∼ Dir(αPzu).
Further, each user samples an i.i.d. dataset Su of size nu. When all users sample dataset of fixed
size nu = n, we refer to this setting as size-homogeneous, and the more general case as size-
heterogeneous. Given the set of datasets {Su}u and the distribution assumptions above, we can write
down the maximum-likelihood estimate (MLE) for the cluster centers P and cluster memberships
{zu}u:

arg max
P,{zu}u

∑
u

log Pr(Su | P, {zu}u) (25)

= arg max
P,{zu}u

∑
u

logDirMul(nuQ̂u | P, {zu}u)

= arg max
P,{zu}u

∑
u

log Γ(α) + log Γ(nu + 1)− log Γ(nu + α)

+

(∑
x

log Γ(Q̂u[x] + αPzu[x])− log Γ(αPzu[x])− log Γ(Q̂u[x] + 1)

)
,
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where Q̂u is the empirical distribution obtained from the dataset Su and γ(x) =:
∫
tx−1e−x dx is

the Gamma function. In the above derivation, the second inequality follows from nuQ̂u being a
sufficient statistic for the class of distributions parameterized by {Qu}u.

For the size-homogenous case, we can simplify the MLE objective further to be:

arg max
P,{zu}u

∑
u

∑
x

log Γ(Q̂u[x] + αPzu[x])− log Γ(αPzu[x]) (26)

For large enough α, we can use the Stirling’s approximation of the Gamma function to approximate
the above MLE objective (see Lemma E.11):

arg max
P,{zu}u

∑
u

∑
x

(Q̂u[x] + αPzu[x]− 1/2) log(Q̂u[x] + αPzu[x])− (Q̂u[x] + αPzu[x])

− (αPzu[x]− 1/2) log(αPzu[x]) + αPzu[x] (27)

= arg max
P,{zu}u

∑
u

∑
x

Q̂u[x] log(Q̂u[x] + αPzu[x]) + (αPzu[x]− 1/2) log

(
Q̂u[x] + αPzu[x]

αPzux

)

= arg max
P,{zu}u

∑
u

∑
x

Q̂u[x] logPzu[x] + (Q̂u[x] + αPzu[x]− 1/2) log

(
1 +

Q̂u[x]

αPzu[x]

)

= arg max
P,{zu}u

∑
u

−KL(Q̂u ∥ Pzu) +
∑
x

(Q̂u[x] + αPzu[x]− 1/2) log

(
1 +

Q̂u[x]

αPzu[x]

)

= arg min
P,{zu}u

∑
u

KL(Q̂u ∥ Pzu) +
∑
x

1/2 log

(
1 +

Q̂u[x]

αPzu[x]

)

−
∑
x

(Q̂u[x] + αPzu[x]) log

(
1 +

Q̂u[x]

αPzu[x]

)

≤ arg min
P,{zu}u

∑
u

KL(Q̂u ∥ Pzu) +
∑
x

1/2
Q̂u[x]

αPzu[x]

= arg min
P,{zu}u

∑
u

KL(Q̂u ∥ Pzu) +O
(
1

α

)
,

when cluster center P [v] = Ω(1).

F Missing proofs from Section 3

Lemma F.1 (Q̂u variance). For user u from cluster c, the variance of the estimate Q̂u[v] is:

Pc[v]

α+ 1

(
1− 1

mu

)
+

Pc[v](1− Pc[v])

mu
.

Proof. By the Law of Total Variation, the variance of Q̂u[v] is:

Var(Q̂u[v]) = EQu[v][VarQu[v](Q̂u[v] | Qu[v])] + VarQu[v](E[Q̂u[v]|Qu[v]])

= E[
1

mu
Qu[v](1−Qu[v])] + Var(Qu[v])

=
1

mu
(Pc[v]−

1

α+ 1
− Pc[v]

2) +
Pc[v]

α+ 1

=
1

mu
(Pc[v](1− Pc[v])) + (1− 1

mu
)
Pc[v]

α+ 1
.
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F.1 Proof of Theorem 3.2

Theorem F.2 (Alg. 3 convergence; restated). For the model in Section 4, if ∀c, v, nc =
Θ(K2), Pc[v] = Ω(1), centers are sufficiently separated, i.e., ∆ =: mini̸=j KL(Pi∥Pj) =

Ω(k2+k3d/n), and λ =: maxi̸=j
KL(Pi∥Pj)/∆. Given an initialization with assignment error O(

√
1/λ)

for any cluster, after t = log(|U|) iterations, w.h.p. the assignment error is O(exp(−∆(α+ 1))).

Lemma F.3 (Pinsker [68]). For P,Q ∈ ∆|V|−1, the KL(P || Q) ≥ 1
2∥P −Q∥21 = 2TV2(P,Q).

Lemma F.4 (KL upper bound). For P,Q ∈ ∆|V|−1, the KL divergence KL(P || Q) ≤ χ2(P Q)

Proof Overview. The main technique we follow is to use Pinsker’s inequality to lower bound KL
divergence with TV2(P,Q) and upper bound KL with χ2. This allows us to then treat the clustering
in the l22 metric, and pay the d-dimensional penalty term 1

d . Based on this general principle, the
following section presents the EM convergence analysis of Algorithm 3, extending results from [7]
to our setting. While the steps below closely mirrors their analysis upto the final terms where we
need to upper and lower bound KL, we present the full proof for completeness.

Let us begin by introducing some notaion. For any S ⊆ [n], define WS =
∑

i∈S wi. Recall that

T ∗
g = {i ∈ [n], zi = g} and T

(s)
g =

{
i ∈ [n], ẑ

(s)
i = g

}
, let us define

S
(s)
gh =

{
i ∈ [n], zi = g, ẑ

(s)
i = h

}
= T ∗

g ∩ T
(s)
h .

Then we have n
(s)
h =

∑
g∈[k] n

(s)
gh and n∗

h =
∑

g∈[k] n
(s)
hg .

The mis-clustering rate at iteration s can be written as

As =
1

n

n∑
i=1

I{ẑ(s)i ̸= zi} =
1

n

∑
g ̸=h∈[k]2

n
(s)
gh .

We define a cluster-wise mis-clustering rate at iteration s as

Gs = max
h∈[k]

{∑
g ̸=h∈[k] n

(s)
gh

n
(s)
h

,

∑
g ̸=h∈[k] n

(s)
hg

n∗
h

}
.

The first term in the maximum operator of definition of Gs can be understood as the false positive rate
of cluster h and the second term is the true negative rate of cluster h. It is easy to see the relationship
that As ≤ Gs.

Let ∆ = ming ̸=h∈[k] ∥θg − θh∥ be the signal strength. For h ∈ [k], let θ̂(s)h be the estimated center
of cluster h at iteration s. Define our error rate of estimating centers at iteration s as

Λs = max
h∈[k]

1

∆
∥θ̂(s)h − θh∥.

Lemma F.5. Based on our definition of M above, G0 = O
((

1
2 − 6√

rk

)
1
λ

)
.

Proof. First we show λ = O
√
d. Since Pc[v] =

1
d , we can invoke the KL upper bound above to show

that ∆
λ = O( 1d ), and furthermore, the KL for each pair is Θ(M). Thus, this tells us:

∆(α+ 1) = Ω(

√
k2 +

k3d

n
). (28)

In other words the signal to noise ratio is ∆/σ ≥
√
k2 + k3d

n .

Based on the above result, we also get:

∆

σ

√
1/K

1 + kd/n
≥ C

√
k.
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Recall σ for us is given by
√
1/α. Thus, we satisfy all conditions needed for Theorem 3.2 in their

paper, the proof of which we replicate below for reader’s convenience.

They assume the following initialization condition:

G0 <

(
1

2
− 6

√
rk

)
1

λ
or Λ0 ≤ 1

2
− 4

√
rk

, (29)

Lemma F.6.
∥WS∥ ≤ σ

√
3(n+ d)|S| for all S ⊆ [n]. (30)

with probability greater than 1− exp(−0.3n).
Lemma F.7.

λmax

(
n∑

i=1

wiw
′
i

)
≤ 6σ2(n+ d). (31)

with probability greater than 1− exp(−0.5n).
Lemma F.8. For any fixed i ∈ [n], S ⊆ [n], t > 0 and δ > 0,

Pr


〈
wi,

1

|S|
∑
j∈S

wj

〉
≥

3σ2(t
√

|S|+ d+ log(1/δ))

|S|

 ≤ exp

(
−min

{
t2

4d
,
t

4

})
+ δ.

Lemma F.9.
∥WT∗

h
∥ ≤ 3σ

√
(d+ log n)|T ∗

h | for all h ∈ [k] (32)

with probability greater than 1− n−3.
Lemma F.10. For any fixed θ1, · · · , θk ∈ Rd and a > 0, we have∑

i∈T∗
g

I
{
a∥θh − θg∥2 ≤ ⟨wi, ∥θh − θg∥⟩

}
≤ n∗

g exp

(
−a2∆2

2σ2

)
+
√

5n∗
g log n (33)

for all g ̸= h ∈ [k]2 with probability greater than 1− n−3.

The following two lemmas give the iterative relationship between the error of estimating centers
and the error of estimating labels. Let E be the intersection of high probability events in Lemma
F.6, Lemma F.7 Lemma F.9, Lemma F.10 and the initialization condition (29). Then we have
P{Ec} ≤ 3n−3 + ν. In the rest part of the proof, if not otherwise stated, we all condition on the event
E and the following analysis are deterministic.
Lemma F.11. On event E , if Gs ≤ 1

2 , then we have

Λs ≤
3

r
+min

{
3

r

√
kGs + 2GsΛs−1, λGs

}
. (34)

Lemma F.12. On event E , if Λs ≤ 1−ϵ
2 and r ≥ 36ϵ−2, then

Gs+1 ≤ 2

ϵ4r2
+

(
28

ϵ2r
Λs

)2

+

√
5k log n

α2n
. (35)

Proof of Lemma F.11. For any B ⊆ [n], define ȲB = 1
|B|
∑

i∈B yi. The error of estimated centers at
step s can be written as

θ̂
(s)
h − θh =

1

nh

∑
i∈Shh

(yi − θh) +
1

nh

∑
a ̸=h

∑
i∈Sah

(yi − θh)

=
1

nh

∑
i∈Shh

wi +
∑
a̸=h

nah

nh

(
ȲSah

− θh
)

According to our label update step, we have ∥yi − θ̂
(s−1)
h ∥ ≤ ∥yi − θ̂

(s−1)
a ∥ for any i ∈ Sah. This

means for any i ∈ Sah, yi is closer to θ̂
(s−1)
h than θ̂

(s−1)
a , so is the average of {yi, i ∈ Sah}. Thus,

we have
∥ȲSah

− θ̂
(s−1)
h ∥ ≤ ∥ȲSah

− θ̂(s−1)
a ∥.
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Consequently, triangle inequality gives us∥∥ȲSah
− θh

∥∥ ≤
∥∥ȲSah

− θa
∥∥+ ∥θ̂(s−1)

a − θa∥+ ∥θ̂(s−1)
h − θh∥,

which, combined with Lemma F.6 and the definition of Λs−1, yields∥∥ȲSah
− θh

∥∥ ≤ σ
√
3(n+ d)/nah + 2Λs−1∆.

Taking a weighted sum over a ̸= h ∈ [k], we get∑
a ̸=h

nah

nh

∥∥ȲSah
− θh

∥∥ ≤
σ
√

3(n+ d)

nh

∑
a̸=h

√
nah + 2Λs−1∆

∑
a̸=h

nah

nh

≤
σ
√
3(n+ d)
√
nh

√
(k − 1)Gs + 2GsΛs−1∆,

where the Last inequality is due to Cauchy-Schwartz and the fact that
∑

a̸=h nah ≤ Gsnh. Note that
WShh

= WT∗
h
−
∑

a ̸=h WSha
. Triangle inequality and Lemma F.10 imply

∥WShh
∥ ≤ 3σ

√
d+ log n

√
n∗
h + σ

√
3(n+ d)

√
n∗
h − nhh.

Since Gs ≤ 1
2 , we have

nh ≥ nhh ≥ n∗
h(1−Gs) ≥

1

2
n∗
h ≥ 1

2
αn. (36)

Combining the pieces, we obtain∥∥∥θ̂(s)h − θh

∥∥∥ ≤ 3σ

√
d+ log n

αn
+ 3σ

√
k(n+ d)

αn
Gs + 2GsΛs−1∆

≤
(
3

r
(1 +

√
kGs) + 2GsΛs−1

)
∆. (37)

Therefore, we get the first term in (34). To prove the second term, we decompose θ̂
(s)
h differently.

θ̂
(s)
h =

1

nh

n∑
i=1

(θzi + wi) I
{
ẑ
(s)
i = h

}
=

1

nh

k∑
a=1

n∑
i=1

θaI
{
zi = a, ẑ

(s)
i = h

}
+

1

nh

∑
i∈Th

wi

=

k∑
a=1

nah

nh
θa +

1

nh
WTh

. (38)

Then, the error of θ̂(s)h can be upper bounded as

∥∥∥θ̂(s)h − θh

∥∥∥ =

∥∥∥∥∥
k∑

a=1

nah

nh
(θa − θh) +

1

nh
WTh

∥∥∥∥∥ ≤

∥∥∥∥∥∥
∑
a ̸=h

nah

nh
(θa − θh)

∥∥∥∥∥∥+
∥∥∥∥ 1

nh
WTh

∥∥∥∥ .
By triangle inequality,∥∥∥∥∥∥

∑
a̸=h

nah

nh
(θa − θh)

∥∥∥∥∥∥ ≤
∑
a ̸=h

nah

nh
∥θa − θh∥ ≤ λ∆

∑
a̸=h

nah

nh
≤ λ∆Gs. (39)

This, together with Lemma F.6 and (36), implies∥∥∥θ̂(s)h − θh

∥∥∥ ≤ λ∆Gs + σ

√
3(n+ d)

nh
≤
(
λGs +

3

r

)
∆ (40)

for all h ∈ [k]. The proof is complete.
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Proof of Lemma F.12. For any g ̸= h ∈ [k]× [k],

I
{
zi = g, ẑ

(s+1)
i = h

}
≤ I

{
∥θg + wi − θ̂

(s)
h ∥2 ≤ ∥θg + wi − θ̂(s)g ∥2

}
= I

{
∥θg − θ̂

(s)
h ∥2 − ∥θg − θ̂(s)g ∥2 ≤ 2

〈
wi, θ̂

(s)
h − θ̂(s)g

〉}
. (41)

Triangle inequality implies

∥θg − θ̂
(s)
h ∥2 ≥

(
∥θg − θh∥ − ∥θh − θ̂

(s)
h ∥
)2

≥ (1− Λs)
2 ∥θg − θh∥2.

Using the fact that (1− x)2 − y2 ≥ (1− x− y)2 when y(1− x− y) ≥ 0, we obtain

∥θg − θ̂
(s)
h ∥2 − ∥θg − θ̂(s)g ∥2 = (1− 2Λs)

2 ∥θg − θh∥2 ≥ ϵ2∥θg − θh∥2. (42)

Denote by ∆h = θ̂
(s)
h − θh for h ∈ [k]. Then,

I
{
zi = g, ẑ

(s+1)
i = h

}
≤ I

{
ϵ2∥θg − θh∥2 ≤ 2 ⟨wi, θh − θg +∆h −∆g⟩

}
≤ I

{
ϵ2

2
∥θg − θh∥2 ≤ 2 ⟨wi, θh − θg⟩

}
+ I
{
ϵ2

2
∆2 ≤ 2 ⟨wi,∆h −∆g⟩

}
.

Taking a sum over i ∈ T ∗
g and using Markov’s inequality on the second term, we obtain

n
(s+1)
gh ≤

∑
i∈T∗

g

I
{
ϵ2

4
∥θg − θh∥2 ≤ ⟨wi, θh − θg⟩

}
+
∑
i∈T∗

g

16

ϵ4∆4
(w′

i(∆h −∆g))
2 (43)

Note that I
{

ϵ2

4 ∥θg − θh∥2 ≤ ⟨wi, θh − θg⟩
}

are independent Bernoulli random variables. By
Lemma F.10, the first term in RHS of (43) can be upper bounded by

n∗
g exp

(
−ϵ4∆2

32σ2

)
+
√
5n∗

g log n. (44)

By Lemma F.7, the second term in RHS of (43) can be upper bounded by∑
i∈T∗

g

16

ϵ4∆4
(w′

i(∆h −∆g))
2 ≤

96(n∗
g + d)σ2

ϵ4∆4
∥∆g −∆h∥2. (45)

Combining (43), (44) and (45) and using the fact that ∥∆g −∆h∥2 ≤ 4Λ2
s∆

2, we get

n
(s+1)
gh ≤ n∗

g exp

(
−ϵ4∆2

32σ2

)
+
√
5n∗

g log n+
384(n∗

g + d)σ2

ϵ4∆2
Λ2
s.

Consequently,

max
g∈[k]

∑
h ̸=g

n
(s+1)
gh

n∗
g

≤ k exp

(
−ϵ4∆2

32σ2

)
+ k

√
5 log n

αn
+

384

ϵ4r2
Λ2
s. (46)

Since Λs ≤ 1/2 and r ≥ 20ϵ−2, the RHS of (46) is smaller that 1/2 when αn ≥ 32k2 log n. Thus,

n
(s+1)
h ≥ n

(s+1)
hh ≥ 1

2
n∗
h ≥ 1

2
αn

for all h ∈ [k] and we have

max
h∈[k]

∑
g ̸=h

n
(s+1)
gh

n
(s+1)
h

≤ 2

α
exp

(
−ϵ4∆2

32σ2

)
+

√
5k log n

α2n
+

768

ϵ4r2
Λ2
s, (47)

which, together with (46), implies

Gs+1 ≤ exp

(
−ϵ4∆2

32σ2
+ log(2/α)

)
+

√
5k log n

α2n
+

768

ϵ4r2
Λ2
s

Under the assumptions that ϵ4α∆2/σ2 ≥ r2ϵ4 ≥ 36, we have the desired result (35).
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Proof. From Lemma F.11, a necessary condition for Λ0 ≤ 1
2 − 4√

r
is G0 ≤ ( 12 − 6√

r
) 1λ . Setting

ϵ = 7√
r

in Lemma F.12, we have G1 ≤ 0.35. Plugging it into Lemma F.11 gives us Λ1 ≤ 0.4,

under the assumption that r ≥ 16
√
k. Then it can be easily proved by induction that Gs ≤ 0.35 and

Λs ≤ 0.4 for all s ≥ 1. Consequently, Lemma F.11 yields

Λs ≤
3

r
+

3

r

√
kGs +Gs ≤

1

2
+Gs

which, combined with (35), implies

Gs+1 ≤ C

r2
+

C

r2

(
1

4
+ 2Gs +G2

s

)
+

√
5k log n

α2n
≤ 2C

r2
+

3C

r2
Gs +

√
5k log n

α2n

for some constant C. Here we have chosen ϵ = 1/5 in Lemma 35 to get the first inequality.

F.1.1 Combining Analysis in ℓ2 Norm and Mapping it Back KL divergence.

Proof. From the proof of Lemma F.11, the error of estimating θh at iteration s can be written as
θ̂
(s)
h − θh = 1

nh
WT∗

h
+ uh, with

∥uh∥ ≤
(
3

r

√
kGs +Gs

)
∆ ≤

√
Gs∆ (48)

In addition, by Lemma F.11 and Lemma F.12, there is a constant C1 such that

Λs ≤
3

r
+
√
Gs + 2GsΛs−1 ≤ C1

r
+

C1

r
Λs−1 + 0.7Λs−1 +

(
C1k log n

α2n

)1/4

for all s ≥ 1. Therefore, when r is large enough, we have

Λ ≤ C2r
−1 + C2

(
k log n

α2n

)1/4

for all s ≥ log n. Then by (42), we have

I
{
zi = g, ẑ

(s+1)
i = h

}
≤ I

{
β1∥θg − θh∥2 ≤ 2 ⟨wi, θh − θg +∆h −∆g⟩

}
where (1− 2Λs)

2 ≥ β1 := 1− 4C2r
−1 − 4C2

(
k logn
α2n

)1/4
.

In order to prove that As attains convergence rates, we first upper bound the expectation of As and
then derive the high probability bound using Markov’s inequality. Similar to the two-mixture case, we
need to upper bound the inner product ⟨wi,∆h −∆g⟩ more carefully. Note that {T ∗

h , h ∈ [k]} are
deterministic sets, we could use concentration equalities to upper bound WT∗

h
and uh parts separately.

Let vh = 1
nh

WT∗
h

for h ∈ [k] and we decompose I
{
zi = g, ẑ

(s+1)
i = h

}
into three terms.

I
{
zi = g, ẑ

(s+1)
i = h

}
≤ I

{
β∥θg − θh∥2 ≤ 2 ⟨wi, θh − θg⟩

}
+I
{
β2∆

2 ≤ 2 ⟨wi, uh − ug⟩
}

+I
{
β4∆

2 ≤ 2 ⟨wi, vh − vg⟩
}
,

where β2 and β4 will be specified later and β = β1−β2−β4. Taking a sum over h ∈ [k] and i ∈ [n],
we obtain

EAs+1 ≤ EJ1 + EJ2 + EJ3
with

J1 =
∑
h∈[k]

1

n

n∑
i=1

I
{
β∥θzi − θh∥2 ≤ 2 ⟨wi, θh − θzi⟩

}
(49)

J2 =
∑
h∈[k]

1

n

n∑
i=1

I
{
β2∆

2 ≤ 2 ⟨wi, uh − uzi⟩
}
. (50)

J3 =
∑
h∈[k]

1

n

n∑
i=1

I
{
β4∆

2 ≤ 2 ⟨wi, vzi − vh⟩
}
. (51)
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Let us first consider the expectation of J1. Using Chernoff’s bound, we have

Pr
{
β∥θg − θh∥2 ≤ 2 ⟨wi, θh − θg⟩

}
≤ exp

(
−β2∥θh − θg∥2

8σ2

)
≤ exp

(
−β2∆2

8σ2

)
.

Thus,

EJ1 ≤ k exp

(
−β2∆2

8σ2

)
= exp

(
−γ∆2

8σ2

)
,

with γ = β2 − 8σ2 log k
∆2 ≥ β2 − 8/r2.

We use Markov Inequality to upper bound J2. Markov’s inequality and Lemma F.7 give us

1

n

n∑
i=1

I
{
β2∆

2 ≤ 2 ⟨wi, uh − uzi⟩
}

≤ 4

nβ2
2∆

4

∑
g∈[k]

∑
i∈T∗

g

(w′
i(uh − ug))

2

≤ 24σ2

nβ2
2∆

4

∑
g∈[k]

(n∗
g + d)∥uh − ug∥2.

(48) implies

J2 ≤ 96σ2Gs

nβ2
2∆

2

∑
h∈[k]

∑
g∈[k]

(n∗
g + d) ≤ 96σ2k(n+ kd)

αnβ2
2∆

2
As =

12
√
k

r
As.

Here the second inequality is due to the fact that Gs ≤ As/α. And we choose β2 =
√

8k/r in the
last equality.

Finally, we upper bound the expectation of J3. Given zi = g, we have

Pr
{
β4∆

2 ≤ 2 ⟨wi, vg − vh⟩
}

≤ Pr

{
β4

4
∆2 ≤ ⟨wi, vg⟩

}
+ Pr

{
−β4

4
∆2 ≥ ⟨wi, vh⟩

}
≤ Pr

{
β4

8
∆2 ≤

〈
wi,

1

n∗
g

WT∗
g

〉}
+ Pr

{
−β4

8
∆2 ≥

〈
wi,

1

n∗
h

WT∗
h

〉}
Choosing t = max{

√
d∆
σ , ∆2

σ2 }, δ = exp
(
− ∆2

4σ2

)
in Lemma F.8, and

β4 =
64

r
≥ 8

∆2

(
3max{

√
dσ∆,∆2}√
αn

+
3σ2d+∆2

αn

)
,

we obtain Pr
{
β4∆

2 ≤ 2 ⟨wi, vg − vh⟩
}
≤ 2 exp(−∆2/(4σ2)), where we have used the assumption

that n∗
g ≥ αn and αn ≥ 36r2. Thus,

EJ3 ≤ 2k exp

(
−∆2

σ2

)
,

Combining the pieces, we have

EAs+1 ≤ E [J1] + E [J2I{E}] + E [J3] + P{Ec}

≤ exp

(
−γ∆2

8σ2

)
+

12
√
k

r
EAs + 2k exp

(
−∆2

σ2

)
,

with γ = (β1 −
√
8k/r − 64/r)2 − 8/r2 = 1 − o(1). Here only prove the case that r → ∞. For

the finite case, all the o(1) in the following proof can be substituted by a small constant.

EAs ≤
1

2s−⌈log r⌉ + 2 exp

(
−(1− η)

∆2

8σ2

)
+

2

n3
≤ 2 exp

(
−(1− η)

∆2

8σ2

)
+

3

n3
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when s ≥ 4 log n. By Markov’s inequality, for any t > 0,

Pr {As ≥ t} ≤ 1

t
EAs ≤

2

t
exp

(
−(1− η)

∆2

8σ2

)
+

3

n3t
. (52)

If (1− η) ∆2

8σ2 ≤ 2 log n, choose t = exp
(
−(1− η − 8σ

∆ ) ∆2

8σ2

)
and we have

Pr

{
As ≥ exp

(
−(1− η − 8σ

∆
)
∆2

8σ2

)}
≤ 4

n
+ 2 exp

(
−∆

σ

)
.

Otherwise, since As only takes discrete values of {0, 1
n , · · · , 1}, choosing t = 1

n in (52) leads to

Pr {As > 0} = Pr

{
As ≥

1

n

}
≤ 2n exp(−2 log n) +

3

n2
≤ 4

n
.

Now, from Lemma F.3 and Lemma F.4, for Pi[v] = Ω(1),∀i, we conclude that KL(Pi∥Pj) =
Θ(∥Pi − Pj∥2). Applying the result from above we then get:

rk ≥ C
√
k

=⇒ ∆

σ
≥ c
√
k2(1 + kd/n)

Since nc = Ω(k2) we have n = Ω(k3), which implies:

nα2 ≥ Ck log n,

which is the first condition in the EM analysis. The second condition requires the KL to be sandwiched
by ℓ2 norm. But this means that we we can replace λ with

√
λ and ∆ with

√
∆ in the result in Eq. 52,

and complete the proof of Theorem 3.2.

F.2 Privacy Analysis from Section 5

F.2.1 Technical Lemmas

We begin by recalling the definition of differential privacy, and the variant of concentrated differential
privacy that we use in this work.
Definition F.13 (Differential Privacy (DP) [24]). A randomized algorithm M : Xn → Y satisfies
(ϵ, δ)-differential privacy ((ϵ, δ)-DP) if for every pair of neighboring datasets X,X ′ ∈ Xn (i.e.,
datasets that differ in exactly one entry),

∀Y ⊆ Y PrM(X) ∈ Y ≤ eϵ · PrM(X ′) ∈ Y + δ.

When δ = 0, we say that M satisfies ϵ-differential privacy or pure differential privacy.
Definition F.14 (Concentrated Differential Privacy (zCDP) [15]). A randomized algorithm M :
Xn → Y satisfies ρ-zCDP if for every pair of neighboring datasets X,X ′ ∈ Xn,

∀α ∈ (1,∞) Dα (M(X)||M(X ′)) ≤ ρα,

where Dα (M(X)||M(X ′)) is the α-Rényi divergence between M(X) and M(X ′).2

Note that zCDP and DP are on different scales, but otherwise can be ordered from most-to-least
restrictive. Specifically, (ϵ, 0)-DP implies ϵ2

2 -zCDP, which implies roughly (ϵ
√

2 log(1/δ), δ)-DP
for every δ > 0 [15].

Both these definitions are closed under post-processing and can be composed with graceful degrada-
tion of the privacy parameters.
Lemma F.15 (Post Processing [15]). If M : Xn → Y is (ϵ, δ)-DP, and P : Y → Z is any
randomized function, then the algorithm P ◦ M is (ϵ, δ)-DP. Similarly if M is ρ-zCDP then the
algorithm P ◦M is ρ-zCDP.

2Given two probability distributions P,Q over Ω, Dα(P∥Q) = 1
α−1

log
(∑

x P (x)αQ(x)1−α
)
.
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Lemma F.16 (Composition of CDP [15]). If M is an adaptive composition of differentially private
algorithms M1, . . . ,MT , then

1. if M1, . . . ,MT are (ϵ1, δ1), . . . , (ϵT , δT )-DP then M is (
∑

t ϵt,
∑

t δt)-DP, and

2. if M1, . . . ,MT are ρ1, . . . , ρT -zCDP then M is (
∑

t ρt)-zCDP.

We can achieve differential privacy via noise addition proportional to sensitivity [24].
Definition F.17 (Sensitivity). Let f : Xn → Rd be a function, its ℓ2-sensitivity is defined to be
∆f,2 = maxX∼X′∈Xn ∥f(X) − f(X ′)∥2, Here, X ∼ X ′ denotes that X and X ′ are neighboring
datasets (i.e., those that differ in exactly one entry).

For functions with bounded ℓ1-sensitivity, we can achieve ϵ-DP by adding noise from a Laplace
distribution proportional to ℓ1-sensitivity. For functions taking values in Rd for large d it is more
useful to add noise from a Gaussian distribution proportional to the ℓ2-sensitivity, to get (ϵ, δ)-DP
and ρ-zCDP.
Lemma F.18 (Gaussian Mechanism). Let f : Xn → Rd be a function with ℓ2-sensitivity ∆f,2. Then
the Gaussian mechanism

Mf (X) = f(X) +N

(
0,

(
∆f,2√
2ρ

)2

· Id×d

)
satisfies ρ-zCDP.

F.2.2 Proof of Theorem 3.3

From the Lemmas above for Gaussian and Laplace mechanism, it is easy to see that the adaptive
clipping step in Algorithm 4 satisfies 2ρ/3-zCDP, where as the Laplace mechanism is ρ/3-zCDP.
Then, we can use composition lemma to complete show ρ-zCDP of Algorithm 4.

For Algorithm 5, each step uses satisfies ρ/K-zCDP from the guarantees for exponential mechanism,
since we clip the KL difference with c. Here too, composition gives us the result.

For the final end-to-end algorithm, we use the private aggregation scheme, we describe, and changing
the user data would only affect two cluster estimates, but since we use add-one, leave-one definition
of privacy, the entire step is ρ/3T -zCDP. Finally, composing over the T rounds of clustering and
with initial private center and private init we get the final result. We then use Lemma 3.6 from [15] to
convert zCDP guarantees to (ε, δ)-DP.
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made in the paper.
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• The paper should point out any strong assumptions and how robust the results are to
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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to have some path to reproducing or verifying the results.
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experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work is studies private and personalized frequency estimation and does
not violate any Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Appendix A we discuss some limitations of our work. This paper presents
work whose goal is to advance the field of Private Federated Machine Learning. There are
many potential societal consequences of our work, none which we feel must be specifically
highlighted.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work is not focused on releasing any pretrained models or datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We make sure to cite relevant work including references to the three publicly
available federated learning datasets we use in our work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release any new assets as part of this work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not do any crowdsourcing experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not conduct any experiments with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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