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Abstract

We conduct a systematic study of the approximation properties of Transformer for
sequence modeling with long, sparse and complicated memory. We investigate
the mechanisms through which different components of Transformer, such as
the dot-product self-attention, positional encoding and feed-forward layer, affect
its expressive power, and we study their combined effects through establishing
explicit approximation rates. Our study reveals the roles of critical parameters
in the Transformer, such as the number of layers and the number of attention
heads. These theoretical insights are validated experimentally and offer natural
suggestions for alternative architectures.

1 Introduction

In recent years, Transformer networks (Vaswani et al., 2017) have emerged as foundational models,
setting new benchmarks across various domains, including natural language processing (NLP),
computer vision (CV), and protein folding. Despite their impressive practical achievements, the
underlying mechanisms and theoretical foundations of Transformer networks remain largely elusive.

Transformer networks encompass various components, posing challenges to their comprehensive
understanding. A typical Transformer comprises multiple layers, each consisting of a multi-head
self-attention (Attn) sub-layer and a feed-forward network (FFN) sub-layer, integrated with residual
blocks. FFN is a two-layer nonlinear network, while Attn includes dot-product (DP) and positional
encoding (PE). To get a better understanding of how Transformer works in practice, we need to study
several key issues. These include:

(i) How do the key hyper-parameters, for example, the number of layers, the number of Attn
heads and the with of FFN layers, affect the performance of the Transformer network?

(ii) How do the Attn and FFN layers contribute differently to the overall performance?
(iii) How does DP attention work, and is the DP structure necessary?
(iv) How efficient is PE in modeling long-range correlations?

Extensive empirical research on Transformer components has led to the proposal of numerous
alternatives to the current structure of Transformer. For example, several relative positional encodings
(RPE) (Shaw et al., 2018; Raffel et al., 2020; Su et al., 2024; Press et al., 2022) have been proposed
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to substitute the original absolute positional encoding (APE), yielding superior performance in
challenging tasks like length generalization (Ontanón et al., 2022; Csordás et al., 2021; Anil et al.,
2022). Additionally, the necessity of the computationally expensive DP in Attn layers has been widely
questioned, and researchers proposed numerous alternatives of DP that show considerable efficacy
in specific tasks (Kitaev et al., 2020; Wang et al., 2020; Choromanski et al., 2020; Tay et al., 2021;
Allen-Zhu and Li, 2023). Nonetheless, these explorations have not yielded a satisfactory theoretical
understanding of the mechanisms of these components.

In this work, we investigate the expressive power of Transformer and the underlying mechanisms of
its components for sequence modeling. Our contributions are summarized as follows:

We categorize three types of sequence modeling tasks with varying complexity, which are relevant
to a broad spectrum of application areas. Task I: Modeling fixed, long but sparse memories. This is
relevant to sparse Boolean functions and the traditional n-gram model in NLP. Task II: Modeling
adaptive, long but sparse memories. This is relevant to multi-step reasoning tasks as well as various
NLP tasks such as dependency parsing, sentiment analysis, and continuation writing. Task III:
Modeling essentially sparse memories. Examples include feature representation in CV and wavelet
analysis in classical signal processing.

For these sequence modeling tasks, we theoretically investigate the expressive power of Trans-
former and its variants, establishing explicit approximation rates. Our meticulous analysis provides
theoretical insights into the underlying mechanisms of Transformer components. Specifically,

• The distinct roles of the number of layers, the number of Attn heads, and the width
of FFN layers. Deeper Transformer are capable of handling memories with more intricate
interrelationships, such as nested relationships (Thm 4.4). In contrast, for memories lacking
such interrelationships, single-layer Transformer with sufficient number of Attn heads and FFN
width should suffice (Thm 4.1). This is quite intuitive: If the content of the next token relies on
a few previous tokens in an independent way, we can treat each such dependence by a separate
attention head. There is no need for many layers. Additionally, increasing the depth can also
alleviate the reliance on the number of heads and width (Prop 4.5).

• The different roles of Attn layers and FFN layers. Our results consistently suggest that: FFN
layers are tasked with approximating nonlinear memory functions and the readout function,
while Attn layers are responsible for extracting the tokens from these memory locations.

• The functionality and necessity of DP. For the relatively simple Task I, DP is not necessary and
can be omitted (Thm 3.1). However, for the more complex Task II, the cooperation between DP
and RPE provides the needed interaction between the temporal space and the token space, crucial
for the extraction of adaptive memories (Thm 4.1 and 4.4). Additionally, for Task II, while the
nonlinearity provided by DP is necessary (Prop 4.2), a computationally efficient alternative to
DP exists, as we show in Prop 4.3.

• The efficiency of RPE in modeling long-range correlations. Our results consistently suggest
that the primary role of RPE is to approximate the memory kernels. Specifically, for Task III,
we demonstrate that Transformer with suitable RPE can handle heavy-tailed memories, thus
overcoming the Curse of Memory faced by recurrent neural networks (Thm 5.1). Moreover, our
findings give theoretical support to the choice of RPE in practice.

Finally, we conduct experiments to validate our theoretical insights.

2 Preliminaries

Basic notations. We use bold-faced letters for vectors or matrices and lowercase letters for scalars,
e.g. x = (x1, · · · , xd)⊤ ∈ Rd and W = (Wij)m×n ∈ Rm×n. The standard Euclidean inner
product between two vectors is denoted by ⟨·, ·⟩, and the lp norm of a vector is represented by ∥·∥p.
We employ standard big-O notations O,Ω,Θ to hide absolute positive constants and use Õ, Ω̃, Θ̃ to
further hide logarithmic constants. For any positive integer n, let [n] = {1, · · · , n}. Denote by I{E}
the indicator function for an event E. Denote by a ∨ b = max{a, b} for real number a, b.
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2.1 Sequence modeling with long but sparse memories

Sequence modeling. For convenience, we consider input sequences of infinite length (t ∈ Z). It
is important to note, however, that our theoretical framework can be adapted to finite-length input
sequences by masking distant tokens. Formally, the output sequence Y = (yt)t∈Z ∈ Rc×Z is
generated from the input sequence X = (xt)t∈Z ∈ X ⊂ Rd×Z via an unknown mapping H·(·)
dependent on the input sequence up to the prediction time, and this can be expressed as:

yt = Ht(X) = f(xt,xt−1,xt−2, · · · ), t ∈ Z. (1)

Our objective is to learn the mapping H·(·). Additionally, we define the norm |||H||| :=
supt∈Z supX∈X ∥Ht(X)∥. Without loss of generality, we assume ∥xt∥2 ≤ 1 for any X ∈ X
and set the output dimension c = 1 for simplicity.

Long but sparse memories. To model such sequences, we define three types of memories: fixed,
long but sparse memories; adaptive, long but sparse memories; and essentially sparse memories.
These memory types are prevalent in sequence modeling tasks across diverse domains such as NLP,
CV, signal processing, and sparse function representation. In Section 3, 4, and 5, we will formally
define these different types and investigate Transformer’s capacity to model them.

2.2 Transformer architecture

Transformer network. Transformer (Vaswani et al., 2017) is a network architecture designed for
processing sequences and generating predictions. Given an input sequence X , Transformer executes
the following steps. Initially, each d-dimensional (dim) input token is transformed into a D-dim
vector through an embedding mapping such as x(0)

t = WExt + bE , where WE ∈ RD×d, bE ∈ RD.
Subsequently, a typical L-layer Transformer with residual block operates according to the formulation:

X(l− 1
2 ) = X(l−1) +Attn(l)(X(l−1)), l ∈ [L];

X(l) = X(l− 1
2 ) + FFN(l)(X(l− 1

2 )), l ∈ [L].
(2)

At the l-th layer, FFN(l)(·) denotes a standard (point-wise) two-layer ReLU networks with m
neurons: for a given input x ∈ RD, FFN(l)(x) =

∑m
k=1 a

(l)
k σ
(
b
(l)⊤
k x + c

(l)
k

)
, where σ(·) is the

activation function such as ReLU. Additionally, in the final (L-th) FFN layer, the residual block is
omitted, commonly referred to as the readout function. Moreover, Attn(l)(·) refers to a multi-head
self-attention, as elaborated below.

Multi-head self-attention. Our focus lies on standard dot-product Attn, denoted as Attn(l)(·) and
consisting of H heads. When applied to an input sequence X , Attn operates as follows:

Attn(l)(X) = W
(l)
O

H∑
h=1

W
(l,h)
V Xsoftmaxc

(〈
W

(l,h)
Q X,W

(l,h)
K X

〉
+R(l,h)

)
. (3)

Here, the parameters W
(l,h)
Q ,W

(l,h)
K ,W

(l,h)
V ,W

(l,h)
O correspond to the query, key, value, output

matrices of the (l, h)-th head, respectively. softmaxc represents taking softmax normalization across
column. Furthermore, R(l,h) ∈ RZ×Z denotes the relative positional encoding matrix, which satisfies
R

(l,h)
t,s = −∞ for t < s in the next-token prediction paradigm. Consequently, the t-th output of Attn

is expressed as:

Attn
(l)
t (X) = W

(l)
O

H∑
h=1

+∞∑
s=0

W
(l,h)
V xt−s exp

(〈
W

(l,h)
Q xt,W

(l,h)
K xt−s

〉
+R

(l,h)
t,t−s

)
∑+∞

j=0 exp
(〈

W
(l,h)
Q xt,W

(l,h)
K xt−j

〉
+R

(l,h)
t,t−j

) .

Logarithmic and Power relative positional encoding. As highlighted in Section A, among various
types of RPEs, the RPEs used in T5 and KERPLE(log) demonstrate superior performance over Alibi,
significantly outperforming other RPEs and APEs in the length generalization task (Kazemnejad
et al., 2023; Chi et al., 2022). This finding motivates our focus on the T5-type, KERPLE(log), and
Alibi-type RPEs throughout this paper. All of these RPE matrices are Toeplitz, with the form of
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Rt,s = r(t− s). Notably, for T5 and KERPLE(log), r(t− s) undergoes an initial linear decrease
followed by a logarithmic decrease as the relative distance t− s increases (Please refer to Section G.1
for more details). In contrast, for Alibi, r(t− s) decreases linearly. Inspired by these discussions, we
examine the following RPEs with different decay rates:

ϕlog(z) =

{
− log z, z ≥ 1

−∞, otherwise
; ϕlin(z) =

{
−z, z ≥ 0

−∞, otherwise
.

We will study Transformer with ϕtype RPE (type ∈ {log, lin}). Specifically, the RPE in the (l, h)-th
head (3) is as follows:

R
(l,h)
t,s := p(l,h)ϕtype(t− s), (4)

where p(l,h) ∈ R+ is a trainable parameter.

Remark 2.1. For standard Transformer (2) incorporating Attn (3) with RPE (4), the parameters are:
the embedding matrix WE ; a(l)

k , b
(l)
k , c

(l)
k in the FFN layers; W (l,h)

Q ,W
(l,h)
K ,W

(l,h)
V , p(l,h),W

(l)
O

in the Attn layers. Notably, the number of parameters is independent of the sequence length, thus
enabling the model to handle input sequences of arbitrary length.

Remark 2.2. In the subsequent sections, we will analyze Transformer and its variants. For the sake of
brevity, some shorthand notations are introduced here. For examples, Transformer (2) using ϕlog/ϕlin
RPE (4) is referred to as “Transformer with log/lin-RPE”; Transformer with W

(l,h)
Q ,W

(l,h)
K = 0 is

called “dot-product-free Transformer”.

2.3 Expressive power via approximation theory

This paper delves into the expressive power of Transformer through the lens of approximation theory,
with a specific focus on establishing explicit approximation rates for Transformers in modeling long
but sparse memories.

Approximation rates v.s. universal approximation. In approximation theory, results are generally
categorized into two types: universal approximation (density-type) and approximation rates (Jackson-
type) (Jackson, 1930). Universal approximation investigates whether the hypothesis class is dense
in the target class. Although this property is fundamental, it does not offer detailed insights into
approximation efficiency. In contrast, approximation rates go deeper, emphasizing the efficiency of
the approximation. A typical example within this framework is the approximation theory of two-layer
neural networks (2NNs).

Barron space of 2NNs. The well-known universal approximation result for 2NNs asserts that 2NNs
can approximate any continuous function (Barron, 1992; 1993; 1994). Nonetheless, this result lacks
a characterization of the approximation efficiency, i.e., how many neurons are needed to achieve
a certain approximation accuracy? This gap was addressed by the Barron space theory (E et al.,
2019; 2021; Ma et al., 2020). It is established that for any function within Barron space f ∈ B
(Appendix G.2), 2NNs with m neurons (denoted by Hm) can approximate them efficiently, at a rate
of inffm∈Hm

∥f − fm∥ ≤ O(∥f∥B /
√
m), remarkably independent of the input dimension d, thus

avoiding the Curse of Dimensionality (Bellman, 1966; Bach, 2017).

3 Fixed, long but M -sparse memories

3.1 Problem formulation

Fixed, long but M -sparse memories. In this section, we investigate a fundamental category of long
but sparse memories. Our focus is on scenarios where the positions of the sparse memories remain
fixed and are independent of the tokens. The target function is represented by:

yt = f(xt,xt−T1
, · · · ,xt−TM

), (5)

where 1 ≤ T1 < · · · < TM < +∞ signify the fixed positions of the memories. Despite the memories
being fixed (token-independent) and sparse (finite M ), the task can still be complex due to the
potentially long-range memories (T1, · · · , TM can be large enough).
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Examples. (I) For Boolean inputs, (5) aligns with sparse Boolean functions, also studied in (Edelman
et al., 2022; Bhattamishra et al., 2022). Notably, Bhattamishra et al. (2022) observed that Transformers
outperform LSTMs in learning sparse parities. (II) Selecting the simplest case of Ti = i in (5)
corresponds to the traditional n-gram model, which consists of short and sparse memories.

Target class. We focus on target functions described in (5). The readout function f is considered
within the standard Barron space B, i.e., which can be effectively approximated by 2NNs. Moreover,
we assume that f is Lipschitz, denoted by f ∈ L. Thus, we can focus more on investigating the
memory extraction power of Transformer. Formally, we define the target class for modeling fixed,
long but M -sparse memories as:

HFix :=
{
H : Ht(X) = (5), where 1 ≤ T1 < · · · < TM < +∞, f ∈ B ∩ L

}
. (6)

Transformer hypothesis class. As mentioned in Section 1, one of our main aims is to study the
necessity and roles of different components in Transformer, such as DP and RPE. This section focuses
on the “simplest” one-layer Transformer and investigates whether it can effectively model this task.
Formally, our hypothesis class includes all one-layer DP-free Transformers, configured with H Attn
heads and FFN width m:

T FDPF,type
(1,H,m) :=

{
TF : TF is a 1-layer, H-head, m-width

dot-product-free Transformer with type-RPE
}
.

(7)

3.2 Theoretical results and insights

Theorem 3.1 (Approximation rate). For any target H ∈ HFix (6), rate n ∈ N+, and H,m ∈ N+,
there exists a 1-layer Transformer TF ∈ T FDPF,type

(1,H,m) (7) and a constant C(n) such that

|||H−TF||| ≤ EFFN + ∥f∥Lip EAttn(type),

where EFFN = Õ
(

∥f∥B√
m

)
and EAttn(type) =

O
(

C(n)
Hn

(∑M
i=1 e

0.01Ti

)n+1 )
, type = lin

O
(

C(n)
Hn

(∑M
i=1 T

1.01
i

)n+1 )
, type = log

.

Theorem 3.1 establishes the approximation rate of one-layer DP-free Transformer for modeling fixed,
long but sparse memories. Here, the model complexity is governed by the number of Attn heads H
and the width of FFN layers m, while the target complexity arises from the lengths of the memories
T1, · · · , TM and the complexity of the readout function f . The approximation error comprises two
components: the error in the FFN component EFFN and the error in the Attn component EAttn(type).
The error EFFN aligns with classical results, showcasing its effectiveness in approximating Barron
functions. On the other hand, EAttn(type) hinges on the capacity of the Attn block for modeling
long-range memories. Specifically, with increasing memory length, the necessary number of Attn
heads grows at a small exponential rate for lin-RPE and at a polynomial rate for log-RPE.

The proof of Theorem 3.1 is deferred to Appendix B. We can draw some insights from Theorem 3.1
and its proof.

Different roles of the Attn layer and the FFN layer. The Attn and FFN layers fulfill distinct roles in
this task. Specifically, the FFN layer efficiently approximates the nonlinear readout function f , while
the Attn layer is responsible for extracting the token xt−Ti

by approximating the memory kernel
I{· = Ti}. These components together enable effective modeling of fixed, long, but sparse memories.

Non-necessity of DP. Theorem 3.1 suggests that the DP component in Attn is not necessary and can
be omitted for modeling fixed, long but sparse memories. This is due to the relative simplicity of
modeling fixed memory kernels. In a more complex scenario in Section 4, the role of the dot-product
becomes important. In contrast to Edelman et al. (2022), which utilizes the property of DP to prove
that Transformer can model sparse Boolean functions, our result reveals that one-layer Transformer
can successfully tackle the same task even without the dot product in the attention layer.

Effect of RPE types on expressivity. Our result indicates that the type of the RPE used in the Attn
layer subtly influences the Transformer’s ability to model long-range memories. As the range of
the memory increases, the required head number grows at a slightly exponential rate for lin-RPE
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and at a polynomial rate for log-RPE. The subtle difference is attributed to the relative simplicity of
approximating the memory kernel I{· = Ti}. We will explore a more complex task in Section 5,
where the impact of different types of RPE becomes even more pronounced.

4 K-Adaptive, long but M -sparse memories

4.1 Problem formulation

In this section, we delve into a more complex modeling scenario closely aligned with typical language
processing tasks.

K-Adaptive, long but M -sparse memories. This section investigates the scenario where the
positions of the sparse memories are “adaptive”, meaning they depend on the input tokens. The target
function is formulated as:

yt = f(xt,xt−t1 , · · · ,xt−tM ), (8)

where the positions of the memory tokens t1, · · · , tM follow a nested relationship:

t1 = g1(xt); t2 = g2(xt,xt−t1); · · · ; tK+1 = gK+1(xt,xt−t1 , · · · ,xt−tK );

· · · ; tM = gM (xt,xt−t1 , · · · ,xt−tK ).

Here, M denotes the number of memory tokens, and K measures the nesting complexity in the
memory structure. We assume that memory functions gi generate positive integers for the input
tokens, and there exist maximum values Ti such that gi ≤ Ti. In this adaptive framework, each
position of the memory token depends on multiple input tokens and is nested within other memory
structures, leading to potential influence of later memory tokens by the earlier ones.

To facilitate understanding, we first consider a warm-up case, i.e., K = 0 in (8). In this case, the
positions of memories only depend on the current token, without interaction with each other. It can
be represented as:

yt = f(xt,xt−t1 , · · · ,xt−tM ), (9)
where ti = g(xi), i ∈ [M ].

Target class. The target classes for modeling adaptive, long but sparse memories in both warm-up
and general cases are as follows:

HAdap
(1,M) :=

{
H : Ht(X) = (9), where gi ∈ B, 1 ≤ gi ≤ Ti, i ∈ [M ]; f ∈ B ∩ L

}
. (10)

HAdap
(K,M) :=

{
H : Ht(X) = (8), where gi ∈ B, 1 ≤ gi ≤ Ti, i ∈ [M ]; f ∈ B ∩ L

}
. (11)

Examples. Adaptive memories are commonly encountered in practical scenarios. (I) Adaptive sparse
Boolean functions, e.g., yt = xt · xt−g(xt) · xt−g(xt−g(xt)

), where X ∈ {±1}Z, g(x) = 1 for x = 1

and g(x) = 2 for x = −1. This fits within our framework (8) with K = M = 2. (II) Multi-step
reasoning, e.g., modeling the K-adaptive, long, but K-sparse memories contains a complicated
K-step reasoning task, which require the sequential search following the rule ((· · · ((xt 7→ xt−t1) 7→
xt−t2 · · · ) 7→ xt−tK−1

) 7→ xt−tK . (III) In NLP tasks like dependency parsing, part-of-speech
tagging, sentiment analysis, or continuation writing, the positions of relevant prefix tokens usually
depend on the context itself, and can vary depending the content. Additionally, the nested structure is
a fundamental characteristic of natural language (Hawkins, 2021).

Transformer hypothesis class. Some previous works Yun et al. (2019); Kim et al. (2022) treated the
softmax with normalization as an approximation of hardmax, suggesting the potential importance of
the normalization. In contrast, in this section, we remove the normalization in the denominator of
softmax and investigate its ability for sequence modeling. Additionally, to address the discreteness of
time and memory values, we consider Transformer with specific precision, as detailed in Appendix C.
The precision technique is widely used in LLM training (Kalamkar et al., 2019), such as BFloat16.
Formally, the hypothesis class is defined as follows, encompassing all normalization-free L-layer
Transformer, configured with H Attn heads and FFN width m and using type-RPE and specific
precision.

T Ftype
(L,H,m) :=

{
TF :TF is an L-layer, H-head, m-width

Transformer with type-RPE and specific precision
}
.

(12)
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4.2 Theoretical results and insights: The warm-up case

Theorem 4.1 (Approximation rate, warm-up case). For any target H ∈ HAdap
(1,M) (8), rate n ∈ N+,

and H,m ∈ N+, there exists a two-layer Transformer TF ∈ T Ftype
(2,H,m) (12) and a constant C(n)

such that: if the width satisfies m ≥
{
Ω̃
(∑M

i=1 ∥gi∥
2
B
)

, type = lin

Ω̃
(∑M

i=1 ∥log gi∥
2
B T

2
i

)
, type = log

, then the following

approximation rate holds:

|||H−TF||| ≤ EFFN + ∥f∥Lip EAttn(type),

where EFFN = Õ
(

∥f∥B√
m

)
and EAttn(type) =

O
(

C(n)
Hn

(∑M
i=1 e

0.01Ti

)n+1 )
, type = lin

O
(

C(n)
Hn

(∑M
i=1 T

1.01
i

)n+1 )
, type = log

.

In Theorem 4.1, we present the approximation rate of two-layer Transformer for the warm-up case:
modeling 1-adaptive, long but M -sparse memories. This theorem reveals that the approximation
error comprises two distinct components: the error in the FFN component EFFN and the error in the
Attn component EAttn(type). A critical difference from 3.1 is the presence of the condition related
to the width m of FFN layers. This term arises from using the FFN layer to approximate the memory
function gi. Owing to the discreteness of memory gi and the implementation of rounding operations,
the approximation within rounding accuracy all achieves zero error after rounding, while it can not
get correct rounding beyond this accuracy. In contrast, the error EFFN is caused by using FFN to
approximate the readout function f , the same as EFFN in Theorem 3.1.

The proof of Theorem 4.1 can be found in Appendix C.1. Theorem 4.1 and its proof offer several
critical insights into the underlying mechanism of Transformer.

Distinct roles of Attn layers and FFN layers. Our proof elucidates that the FFN layers are tasked
with approximating the readout function f and memory functions gi, while the Attn layers are
responsible for the extraction of the adaptive memories. It is essential to clarify the difference
between “approximating memory functions” and “memory extraction”. The former refers to utilizing
some function to estimate the memory function gi, whereas the latter pertains to extracting the token
xt−gi(xt) from the memory location.

Cooperation between DP and RPE. In the 2-nd Attn layer, the extraction of the memory functions
is achieved through an interplay between DP and RPE. Specifically, this is done through a nice
interaction between the temporal space (provided by RPE) and the token space (provided by DP).
Please refer to Appendix C.1 for more details.

Rethinking DP in Attn. Our proof highlights that the core mechanism of Attn is to provide a nice
interaction between the temporal space and the token space through the cooperation of DP and RPE.
This leads us to the following question: Is DP in Attn necessary and replaceable? The following two
propositions provide some hints.

Proposition 4.2 (DP vs. DP-free (informal)). There exists a target H ∈ HAdap
(1,1) (10) such that:

(A) For any ϵ > 0, there exists a 1-layer Attn AttnDP such that
∣∣∣∣∣∣∣∣∣H−AttnDP

∣∣∣∣∣∣∣∣∣ ≤ ϵ.

(B) For any 1-layer DP-free Attn AttnDPF, a uniform lower bound holds:
∣∣∣∣∣∣∣∣∣H−AttnDPF

∣∣∣∣∣∣∣∣∣ ≥ 2
3 .

Proposition 4.2 reveal a significant distinction in the expressiveness of two network types for modeling
adaptive, long, but sparse memories. Specifically, 1-layer Attn with DP can effectively model this
task, while 1-layer DP-free Attn provably fails. This finding underscores the essential role of DP in
providing the necessary nonlinearity for Attn to model adaptive memories. The formal version of
Proposition 4.2 and its proof can be found in Appendix C.2.

Proposition 4.3 (Substitute for DP (informal)). There exists a substitute structure for DP, requiring
only O(D) parameters (compared to O(D2) in standard DP) that can effectively model H ∈
Hadap

(1,M) (10). Specifically, if we substitute DP with this structure, 1-layer Transformer can achieve
the same approximation rate as stated in Section 4.1.
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Proposition 4.3 demonstrates the existence of a structurally simpler yet effective alternative to
traditional DP for modeling (10). This alternative is proposed based on our insights into the role of
Attn in facilitating the interaction between the temporal space and the token space. Specifically, we
propose a more direct structure to achieve this interaction. More details are deferred to Appendix C.3.

4.3 Theoretical results and insights: The general case

Theorem 4.4 (Approximation rate, general case). For any target H ∈ HAdap
(K,M), rate n ∈ N+,

and H,m ∈ N+, there exists an L-layer (L = K + 1 + I{M ≥ K + 1}) Transformer
TF ∈ T Ftype

(L,H,m) (12) and a constant C(n) such that: if the width satisfies if the width satis-

fies m ≥
{
Ω̃
(
maxi∈[K] ∨

∑M
i=K+1 ∥gi∥

2
B
)

, type = lin,

Ω̃
(
maxi∈[K] ∨

∑M
i=K+1 ∥log gi∥

2
B T

2
i

)
, type = log

, then the following approximation

rate holds:
|||H−TF||| ≤ EFFN + ∥f∥Lip EAttn(type), where

EFFN=Õ
(
∥f∥B√

m

)
,EAttn(type)=

O
(

C(n)
Hn

√∑K
l=1e

0.02(n+1)Tl+
(∑M

l=K+1e
0.01Tl

)2n+2
)
,type=lin

O
(

C(n)
Hn

√∑K
l=1T

2.02(n+1)
l +

(∑M
l=K+1T

1.01
l

)2n+2
)

,type=log
.

In Theorem 4.4, we establish the approximation rate of deep Transformer for modeling K-adaptive,
long but M -sparse memories. Similar to that in Theorem 4.1, the approximation error divides into
two distinct terms. A key difference from Theorem 4.1 is the impact of the nested relationships
among the memory functions on the required number of layers, Attn heads, and the width of FFN
layers. The nested structure within the initial K memories mandates sequential processing in the first
K layers one by one. If M ≥ K + 1, then in the K + 1-th layer, the remaining M −K non-nested
memory functions tK+1, · · · , tM are concurrently processed. The proof of Theorem 4.4 is deferred
to Appendix D.1.

Distinct roles of the number of layers L, the number of Attn heads H , and the width of FFN
layers m. Theorem 4.4 and its proof highlight the distinct roles of three key hyper-parameters
of Transformer: L, H , and m. Deeper Transformer are capable of handling the memories with
more intricate nested relationships, requiring a K + 1 layer network for a nesting complexity of
K. In contrast, the number of heads and width needed is dictated by the individual complexity of
memory functions themselves (∥gi∥B,∥log gi∥B, Ti for memory gi), necessitating that each layer’s
Attn heads and FFN width are sufficient to capture the memory functions extracted in that layer. This
understanding is quite intuitive: If the content of the next token relies on a few previous tokens in an
independent way, we can treat each such dependence with a separate attention head. There is no need
for many layers.

Mitigating required head and width with depth. Recalling Theorem 4.1, the memories lacking
nested relationships can be efficiently approximated by 2-layer Transformer with a sufficient number
of heads and width. The subsequent proposition further explores how increasing the depth of
Transformer can influence its efficiency for modeling memories without nested relationships.

Proposition 4.5 (Deep network, warm-up case). For any target H ∈ HAdap
(1,M) (8), rate n ∈ N+, and

H,m ∈ N+, there exists an M + 1-layer Transformer TF ∈ T Ftype
(M+1,H,m) (12) and a constant

C(n) such that: if the width satisfies m ≥
{
Ω̃
(
maxi∈[K] ∥gi∥

2
B
)

, type = lin,
Ω̃
(
maxi∈[K] ∥log gi∥

2
B T

2
i

)
, type = log

, then the

following approximation rate holds:

|||H−TF||| ≤ EFFN + ∥f∥Lip EAttn(type),

where EFFN = Õ
(

∥f∥B√
m

)
and EAttn(type) =

O
(

C(n)
Hn

√∑K
l=1 e

0.02(n+1)Tl

)
, type = lin

O
(

C(n)
Hn

√∑K
l=1 T

2.02(n+1)
l

)
, type = log

.

Upon comparing Proposition 4.5 with Theorem 4.1, a notable distinction becomes evident between
2-layer and M +1-layer Transformer in terms of the requirement of the number of Attn heads and the
width of FFN layers. Specifically, for 2-layer Transformer, the required width is proportionally linked
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to the sum of all the memory functions’ complexity (∥gi∥B , ∥log gi∥B , Ti for memory function gi).
In contrast, for M +1-layer Transformer, the required width correlates with the maximum complexity
of the memory functions, much lower than that for 2-layer Transformer. Similarly, the required
number of heads forM+1-layer Transformer is much fewer than that for 2-layer Transformer. Please
refer to Appendix D.2 for a detailed comparison. The observation suggests that increased depth can
significantly reduce the demands on the number of heads and the width. The underlying reason is
that deep networks can distribute the memories across different layers for processing, with each layer
focusing on approximating only a single memory function.

5 Essentially M -sparse memories

5.1 Problem formulation

In language tasks, each token possesses clear semantic meaning. As a result, the structure of the
memory is sparse in the original space. This aligns well with our modeling assumptions discussed
in Section 3 and 4. However, in other machine learning tasks, we may encounter situations where
the input tokens lack distinct semantic meaning. This might happen in image processing or classical
signal processing. In these situations, the memory structure could potentially be dense in the original
space. Nonetheless, the memory structure might exhibit sparsity in some transformed domain. We
call such memory structure “essentially sparse”. In this section, we study the situation in which the
memory structure in long-ranged but essentially sparse. For simplicity, we consider the situation
in which the positions of the memory kernels are fixed. The analysis can be easily extended to the
situation with an adaptive memory structure.

Fixed, essentially M -sparse memory. Consider the following situation:

yt = f ((X ∗ ρ1) (t), · · · , (X ∗ ρM ) (t)) , (13)

where ρ1(·), · · · , ρM (·) ∈ ℓ1(N) serve as memory kernels, and (X ∗ ρk)(t) =
∑+∞

s=0 xt−sρk(s)
denotes the convolution of the inputs with kernel ρk.

Target class and Transformer hypothesis class. The target class for modeling essentially sparse
memories is defined as:

HEss :=
{
H : Ht(X) = (13), where ρ1, · · · , ρM ∈ ℓ1(N), f ∈ B ∩ L

}
. (14)

For the hypothesis class, we consider one-layer dot-product-free Transformer with Attn head number
H and FFN width m, as defined in (7).

Examples. Essentially sparse memories are prevalent in real-world scenarios:

(I) Image Tasks. In CV, a fundamental objective is identifying and representing meaningful “features”,
such as ears, nose, etc. These features can often be modeled using convolution kernels, leading to a
task in the form y = f (X ∗ ρeye,X ∗ ρnose,X ∗ ρear). This is an extension of the task we discussed
above, in which the kernel functions {ρj} are data-dependent (“adaptive” in the terminology used in
the previous section).

(II) Signal processing. In signal processing, it is commonly the case that the signals are highly
sparse under Wavelet or Fourier transforms. For instance, let ψ(·) be a wavelet function and
define ψa,b(t) := ψ( t−b

a )/
√
|a|. Then we have y = f (X ∗ ψa1,b1 , · · · ,X ∗ ψaM ,bM ) where

(a1, b1), · · · , (aM , bM ) might be data-dependent.

(III) Mathematical calculation. Consider algebraic operations where memory exhibits sparsity
under specific linear transformations. For example, yt = 10xt + xt−4/(

∑100
s=0 wsxt−10−s) −∑+∞

s=0 vsxt−100−s can be represented in our framework as y = f (X ∗ ρ1, · · · ,X ∗ ρ4), where each
ρi represents a specific linear transformation.

5.2 Theoretical results and insights

Theorem 5.1 (Approximation rates).
(A) Consider HEss (14) with exponentially decayed memory kernels, i.e., there exists β > 0 such that
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ρ1(t), · · · , ρM (t) = O(e−βt). Then for any target H ∈ HEss, rate n ∈ [⌊99β⌋], and H,m ∈ N+,
there exists a 1-layer DP-free Transformer TF ∈ T FDPF,lin

(1,H,m) (7) and a constant C(n) such that

|||H−TF||| ≤ EFFN + ∥f∥Lip · EAttn;

(B) Consider HEss (14) with polynomially decayed memory kernels, i.e., there exists β > 1 such
that ρ1(t), · · · , ρM (t) = O(t−β). Then for any target H ∈ HEss, rate n ∈ [⌊0.99β⌋ − 1], and
H,m ∈ N+, there exists a 1-layer DP-free Transformer TF ∈ T FDPF,log

(1,H,m) (7) and a constant C(n)
such that

|||H−TF||| ≤ EFFN + ∥f∥Lip · EAttn;

where EFFN = Õ
(

∥f∥B√
m

)
, EAttn = O

(
C(n)Mn+1

Hn

)
.

Theorem 5.1 illustrates that one-layer DP-free Transformer with lin-RPE is effective in modeling
essentially sparse memories with exponentially decayed kernels, and one-layer DP-free Transformer
with log-RPE can efficiently model the memories with polynomially decayed kernels. A key differ-
ence between Theorem 5.1 and Theorem 3.1 lies in the memory kernels they address. In Theorem 5.1,
the Attn layer should approximate general memory kernels ρi(·), instead of approximating indicator
kernels I{· = Ti} in Theorem 3.1. The proof of Theorem 5.1 can be found in Appendix E.

Overcoming the Curse of Memory (CoM). For recurrent neural networks (RNN), it was discov-
ered (Li et al., 2021; 2022) that both approximation and optimization become exceedingly difficult
when the target has long-term memory. This phenomenon is referred as the “curse of memory”, or
“CoM”. It was shown in (Li et al., 2021; 2022) that RNN requires an exponentially large number
of neurons to approximate targets with heavy-tailed memory kernels, such as the ones that exhibit
polynomial decay. In contrast, Theorem 5.1 reveals that Transformer with log-RPE efficiently handles
polynomial decaying memory kernels, requiring only a polynomial number of neurons for effective
approximation. This finding theoretically elucidates the superior performance of T5’s RPE and
KERPLE(log) in length generalization task in practice (Section G.1).

6 Experimental Validation

As summarized in Section 1, our theoretical analysis reveals novel insights into the expressive power
and mechanisms of Transformer. To validate these insights, we conduct experiments ranging from
simple toy models to more complex language model pre-training. Due to space constraints, detailed
experimental validation and practical implications of our insights are presented in Appendix H.

7 Conclusion and Future Work

In this work, we investigate theoretically the expressive power and the mechanisms of Transformer for
modeling long but sparse memories. Our analysis establishes explicit approximation rates and offers
much-needed insights into the functionalities of the various components of Transformer. However,
we still have a long way to go for a full theoretical understanding of Transformer. For instance,
although we have investigated the mechanisms of Transformer in terms of expressive power, the
evolution of the mechanisms during the training process remains elusive. Recent studies revealed that
Transformer exhibits multi-phase learning dynamics (Boix-Adsera et al., 2023) and undergoes phase
transitions (Olsson et al., 2022) during training, akin to the phenomenon of learning with increasing
complexity in classical neural networks (Kalimeris et al., 2019; Xu et al., 2019; Rahaman et al., 2019;
Abbe et al., 2023a; Wang and Ma, 2023). These and other issues will be studied in future work.
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A Detailed Related Works

Theoretical results of Transformer. We first review the expressive power results of Transformer.
Yun et al. (2019) first proved the universal approximation property (UAP) of Transformer, highlighting
the crucial role of PE in breaking permutation invariance. Edelman et al. (2022) demonstrated that
Transformer can approximate fixed sparse functions. Dehghani et al. (2019); Pérez et al. (2021); Wei
et al. (2022a) explored the Turing-completeness of infinite-precision and finite-precision Transformer.
Giannou et al. (2023) showed that looped Transformer can implement practical computer programs.
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Jiang and Li (2023) provided explicit approximation rates for Transformer in sequences modeling
with inherent graph structures. Liu et al. (2022) found that Transformer can execute finite-state
automata. Ma and Ying (2022) asserted the natural suitability of Attn for achieving permutation
equivariance. Besides these affirmative results, several studies characterized the expressivity lim-
itation of Transformers, particularly in modeling formal languages or simulating circuits (Hahn,
2020; Weiss et al., 2021; Bhattamishra et al., 2020; Merrill and Sabharwal, 2023b; Merrill et al.,
2022). Additionally Feng et al. (2023); Merrill and Sabharwal (2023a) examined the expressivity of
Transformer using Chain of Thought prompting (Wei et al., 2022b). Moreover, some studies showed
that the in-context learning ability of Transformer is attainable by simulating gradient-based iterations
across various layers (Garg et al., 2022; Akyürek et al., 2022; von Oswald et al., 2023; Von Oswald
et al., 2023; Mahankali et al., 2023; Bai et al., 2023; Shen et al., 2023). Besides, experimental studies
also provide insights into the mechanisms of Transformer through induction head (Elhage et al., 2021;
Olsson et al., 2022), information flow (Wang et al., 2023), anchor functions (Zhang et al., 2024), etc.

Positional encoding. One core component of Transformer is the PE, which facilitates the representa-
tion of input sequence order. Theoretically, Transformer without PE lacks UAP and is restricted to
representing permutation-invariant functions. PE was first introduced in Vaswani et al. (2017). It has
limitations in encoding unseen positions. To overcome this difficulty, Shaw et al. (2018) introduced
RPE. Subsequent studies proposed various different RPE types. Notable examples include T5’s
RPE (Raffel et al., 2020), Rotary RPE (Su et al., 2024) (utilized in PaLM (Chowdhery et al., 2023) and
LlaMA (Touvron et al., 2023)), Alibi RPE (Press et al., 2022) (employed in BLOOM (Workshop et al.,
2022)), and KERPLE (Chi et al., 2022). A prevailing belief is that RPEs can outperform APEs in the
“length generalization task” (Ontanón et al., 2022; Csordás et al., 2021)– the ability to generalize from
smaller training contexts to larger ones, a critical challenge for Large Language Models (Anil et al.,
2022; Abbe et al., 2023b). However, Press et al. (2022) revealed that the commonly used Rotary RPE
may exhibit suboptimal performance in this task. The recent work (Kazemnejad et al., 2023; Chi
et al., 2022) conducted systematic experiments comparing the length generalization capabilities of
Transformers with various RPEs and APEs, suggesting that the RPEs used in T5 and KERPLE(log)
demonstrate superior performance over other types.

Rethinking dot-product. Another critical component of Transformer is the DP structure. Due to its
quadratic cost as a function of the sequence length, the necessity of DP has always been questioned.
Numerous variants of DP have been proposed, demonstrating competitive performance across diverse
tasks. Representative examples include Longformer (Beltagy et al., 2020), Big Bird (Zaheer et al.,
2020), Reformer (Kitaev et al., 2020), Linformer (Wang et al., 2020), Performer (Choromanski et al.,
2020), Synthesizer (Tay et al., 2021), etc. In particular, a recent study (Allen-Zhu and Li, 2023)
compared standard and DP-free Transformers in modeling "context-free grammar". Their findings
suggested that the presence of DP has a marginal impact on performance. These evidences motivate
us to rethink the necessity of DP in Transformer.

Sparsity (Donoho, 2006; Candès and Wakin, 2008) has gained considerable attention in sequence
modeling. In classical signal processing, there is a prevailing notion that valuable signals are extremely
sparse. For example, when representing an image, one often finds that only a few wavelet coefficients
hold significant values in wavelet space (Meyer, 1992). In NLP, the starting point off the traditional
n-gram model (Shannon, 1948) is that the next token only relies on a few previous tokens. Such
models, however, overlook long-range information, often resulting in suboptimal performance. For
NLP tasks such as dependency parsing (Nivre and Scholz, 2004), sentiment analysis (Nasukawa and
Yi, 2003), part-of-speech tagging (Francis and Kucera, 1979), and continuation writing (Brown et al.,
2020; OpenAI, 2023), it is indeed often the case that only a limited subset of preceding information
is crucial for accurate prediction. However, these relevant information can be quite distant. For
instance, the resolution of a mystery novel may hinge on elements introduced at the outset. Moreover,
for Transformer networks, extensive research into the visualization and interpretability has revealed
that (i) the learned activation maps of FFN layers are extremely sparse (Li et al., 2023); (ii) the
learned self-attention matrices exhibit notable sparsity, yet it does not closely resemble a diagonal
configuration (Elhage et al., 2021). These observations suggest that the prediction of the next token is
influenced by a small number of previous tokens which might be far away. Therefore, being able to
represent sparse but long-range dependence is important for sequence modeling.
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B Proof of Section 3

B.1 Proof of Theorem 3.1

In this subsection, we give the detailed proofs of fixed, long but sparse memory:

yt = f(xt,xt−T1 , · · · ,xt−TM
),

where 1 ≤ T1 < · · · < TM < +∞ signify the fixed positions of the memories.
Theorem B.1 (Restatement of Theorem 3.1). For any target H ∈ HFix (6), rate n ∈ N+, and
H,m ∈ N+, there exists a 1-layer Transformer TF ∈ T FDPF,type

(1,H,m) (7) and a constant C(n) such
that

|||H−TF||| ≤ EFFN + ∥f∥Lip EAttn(type),

where EFFN = Õ
(

∥f∥B√
m

)
and

EAttn(type) =


O
(

C(n)
Hn

(∑M
i=1 e

0.01Ti

)n+1
)
, type = lin

O
(

C(n)
Hn

(∑M
i=1 T

1.01
i

)n+1
)
, type = log

.

Proof of Theorem B.1.
First, we choose the embedding dimension D = (M + 1)d, and select the simple embedding
WE = (Id×d,0)

⊤ ∈ RD×d, bE = 0 ∈ RD.

Then for any input sequence X = (xt)t∈Z, the token after embedding satisfies:

xE
t = WExt + bE = (x⊤

t ,0
⊤)⊤ ∈ RD.

For one-layer Dot-product-free Transformer TF ∈ T FDPF,type
(1,H,m) with ϕtype, the output token

TFt(X) of t-th input token xt satisfies:

x
(1/2)
t = x

(0)
t +W

(1)
O

H∑
h=1

Attn
(1,h)
t (X(0)),

x
(1)
t = FFN(1)(x

(1/2)
t )

where

Attn
(1,h)
t (X) = W

(1,h)
V

+∞∑
s=0

xt−s exp
(
p(1,h)ϕtype(s)

)∑+∞
j=0 exp

(
p(1,h)ϕtype(j)

) .
This proof can be summarized as the following process:

· · · xE
t · · ·

Step I. Attn layer ↓

· · · x
(1/2)
t ≈ (x⊤

t ,x
⊤
t−T1

, · · · ,x⊤
t−TM

)⊤ · · ·
Step II. FFN layer ↓

· · · x
(1)
t ≈ f(xt,xt−T1

, · · · ,xt−TM
) · · ·

Now we give the formal proof.

Step I. Extract the memory locations by (Dot-product-free) Attn layer.

We consider to use Hk attention heads (from
∑k−1

i=1 Hi + 1-th head to
∑k

i=1Hi-th head) to extract
it, and it satisfies to

∑M
k=1Hk = H .

For simplicity, we denote the following projection matrices:
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P (k) := (0d×kd Id×d 0) ∈ Rd×D, 1 ≤ k ≤M.

P
(k)
⊥ :=

(
Ikd×kd 0d×d 0

0 0d×d I(M−k)d×(M−k)d

)
∈ RMd×D, 1 ≤ k ≤M.

Now we consider the extraction of k-th memory xt−Tk
(1 ≤ k ≤M ).

• Case type = lin.

By Lemma F.1, for any rate n ∈ N+, there exists an constant C(n) and a function

ϕexpk (t) =
∑

∑k−1
i=1 Hi+1≤h≤

∑k
i=1 Hi

αhe
−βht

such that βh > 0 and

∥I{· = Tk} − ϕexpk (·)∥
ℓ1(N) =

+∞∑
s=0

|I{s = Tk} − ϕexpk (s)| ≤ C(n)
e0.01(n+1)Tk

Hn
k

.

Therefore, for these attention heads (
∑k−1

i=1 Hi + 1 ≤ h ≤
∑k

i=1Hi), we can choose

p(1,h) = βh, W
(1,h)
V = αh

+∞∑
j=0

exp(−βhj)

 δd×d
(k+1,1),

where δ(k+1,1) ∈ RD×D means that: it equals to Id×d for the (k + 1, 1)-th d × d blocks,
and 0d×d for the other d× d blocks.

Then it holds that:

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

Attn
(1,h)
t (X(0)) =

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

αh

+∞∑
s=0

e−βhs

(
0kd

xt−s

0

)
∈ RD.

This implies:

P (k)

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

Attn
(1,h)
t (X(0)) =

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

αh

+∞∑
s=0

e−βhsxt−s,

P
(k)
⊥

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

Attn
(1,h)
t (X(0)) = 0,

moreover, the following estimate holds:

∥∥∥∥∥∥P (k)

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

Attn
(1,h)
t (X(0))− xt−Tk

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

αh

+∞∑
s=0

e−βhsxt−s − xt−Tk

∥∥∥∥∥∥
2
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=

∥∥∥∥∥∥
+∞∑
s=0

 ∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

αhe
−βhs − I{s = Tk}

xt−s

∥∥∥∥∥∥
2

≤
+∞∑
s=0

∣∣∣∣∣∣
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

αhe
−βhs − I{s = Tk}

∣∣∣∣∣∣
= ∥ϕexpk (·)− I{· = Tk}∥ℓ1(N) ≤ C(n)

e0.01(n+1)Tk

Hn
k

.

• Case type = log.

By Lemma F.4, for any rate n ∈ N+, there exists an constant C(n) and a function

ϕpolyk (t) =
∑

∑k−1
i=1 Hi+1≤h≤

∑k
i=1 Hi

αht
−βh ,

such that βh > 1 and

∥∥∥I{· = Tk} − ϕpolyk (·)
∥∥∥
ℓ1(N+)

=

+∞∑
s=1

∣∣∣I{s = Tk} − ϕpolyk (s)
∣∣∣ ≤ C(n)

T
1.01(n+1)
k Hn

k

.

Therefore, for these attention heads (
∑k−1

i=1 Hi + 1 ≤ h ≤
∑k

i=1Hi), we can choose

p(1,h) = βh, W
(1,h)
V = αh

+∞∑
j=1

j−βh

 δ(k+1,1),

where δ(k+1,1) ∈ RD×D means that: it equals to Id×d for the (k + 1, 1)-th d × d blocks,
and 0d×d for the other d× d blocks.

Then it holds that:

P (k)

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

Attn
(1,h)
t (X(0)) =

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

αh

+∞∑
s=1

s−βhxt−s,

P
(k)
⊥

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

Attn
(1,h)
t (X(0)) = 0,

moreover, the following estimate holds:

∥∥∥∥∥∥
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

P (k)Attn
(1,h)
t (X(0))− xt−Tk

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

αh

+∞∑
s=1

s−βhxt−s − xt−Tk

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
+∞∑
s=1

 ∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

αhs
−βh − I{s = Tk}

xt−s

∥∥∥∥∥∥
2

20



≤
+∞∑
s=1

∣∣∣∣∣∣
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

αhs
−βh − I{s = Tk}

∣∣∣∣∣∣
=
∥∥∥ϕpolyk (·)− I{· = Tk}

∥∥∥
ℓ1(N+)

≤ O

(
C(n)

T
1.01(n+1)
k

Hn
k

)
.

Then we combine the results for all k ∈ [M ] for these two cases. By choose WO = ID, we have:

∥∥∥∥∥∥∥∥x
(1/2)
t −


xt

xt−t1
...

xt−tM


∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥

xt

0d

...
0d

+

M∑
h=1

Attn
(1,h)
t (X)−


xt

xt−t1
...

xt−tM


∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥
M∑
h=1

Attn
(1,h)
t (X)−


0d

xt−t1
...

xt−tM


∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
M∑
k=1

 ∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

Attn
(1,h)
t (X)−

(
0kd

xt−Tk

0d

)∥∥∥∥∥∥
2

≤
M∑
k=1

∥∥∥∥∥∥
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

Attn
(1,h)
t (X)−

(
0kd

xt−Tk

0d

)∥∥∥∥∥∥
2

=

M∑
k=1

∥∥∥∥∥∥
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

P (k)Attn
(1,h)
t (X)− xt−Tk

∥∥∥∥∥∥
2

≤EAttn(type) :=

C(n)
∑M

k=1
e0.01(n+1)Tk

Hn
k

, type = lin

C(n)
∑M

k=1
T

1.01(n+1)
k

Hn
k

, type = log
.

Consequently, one detail is to assign the head number {Hk}Mk=1 such that the error’s sum EAttn(type)
is as small as possible. Our way is solving the minimization problem:

min
H1,··· ,HM

: EAttn(type)

s.t.
M∑
k=1

Hk = H,

which suggests that we should choose the head number:

Hk =
e0.01Tk∑M
j=1 e

0.01Tj

H, k ∈ [M ], type = lin;

Hk =
T 1.01
k∑M

j=1 T
1.01
j

H, k ∈ [M ], type = log .

Thus, we obtain the bound in Step I:

EAttn(type) ≤


C(n)
Hn

(
M∑
k=1

e0.01Tk

)n+1

, type = lin

C(n)
Hn

(
M∑
k=1

T 1.01
k

)n+1

, type = log

.
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Furthermore, by choosing EAttn(type) ≤ 1, it holds that

∥∥∥x(1/2)
t

∥∥∥
∞

≤

∥∥∥∥∥∥∥∥x
(1/2)
t −


xt

xt−t1
...

xt−tM


∥∥∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥∥∥


xt

xt−t1
...

xt−tM


∥∥∥∥∥∥∥∥
∞

≤ EAttn(type) + 1 ≤ 2.

Step II. Approximate the readout function by FFN layer.

In this step, we aim to approximate the function f using two-layer network. By Lemma G.6, there
exists a two layer neural network with m neurons defined on RD

FFN(1)(y) =

m∑
k=1

akσ(b
⊤
k y + ck)

such that

EFFN :=
∥∥∥FFN(1) − f

∥∥∥
L∞([−2,2]D)

≤ Õ
(
∥f∥B√
m

)
.

The final bound.

For any t and X ∈ X , it holds that∥∥∥Ht(X)− x
(1)
t

∥∥∥ =
∣∣∣f (xt,xt−t1 , · · ·xt−tM )− FFN(1)

(
x
(1/2)
t

)∣∣∣
=
∣∣∣f (xt,xt−t1 , · · ·xt−tM )− f

(
x
(1/2)
t

)
+ f

(
x
(1/2)
t

)
− FFN(1)

(
x
(1/2)
t

)∣∣∣
≤
∣∣∣f (xt,xt−t1 , · · ·xt−tM )− f

(
x
(1/2)
t

)∣∣∣+ ∣∣∣f (x(1/2)
t

)
− FFN(1)

(
x
(1/2)
t

)∣∣∣
≤∥f∥Lip

∥∥∥(x⊤
t ,x

⊤
t−t1 , · · ·x

⊤
t−tM

)
− x

(1/2)
t

∥∥∥
2
+
∥∥∥f − FFN(1)

∥∥∥
L∞([−2,2]D)

≤∥f∥Lip · EAttn(type) + EFFN,

where

EFFN = Õ
(
∥f∥B√
m

)
;

EAttn(type) =


O

(
C(n)
Hn

(∑M
k=1 e

0.01Tk

)n+1
)
, type = lin

O

(
C(n)
Hn

(∑M
k=1 T

1.01
k

)n+1
)
, type = log

.

Due to the arbitrariness of t and X , the proof is completed.
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C Proof of Section 4.2

In this section, we give the detailed proofs of the approximation theory of Transformer for modeling
the warm-up case of adaptive, long but sparse memory:

yt = f(xt,xt−t1 , · · · ,xt−tM ),

where the adaptive memory satisfies to:

tk = gk(xt), k ∈ [M ].

Moreover, gk(·) generate positive integers for the input tokens, and there exist maximum values Tk
such that 1 ≤ gk(xt) ≤ Tk holds for any xt and k ∈ [M ].

To tackle the discrete values of the time and the memory values gk(xt), a modified version of standard
FFN, termed “FFN with precision”, us cibsudered. This approach ensures that the output of FFN
undergoes a simple rounding operation. Notably, the precision technique is widely used in LLM
training (Kalamkar et al., 2019), such as BFloat16. Specifically, for Transformer using RPE with
type, we use the following FFN with precision:

F̃FN(x) := [FFN(x)], type = lin;

F̃FN(x) := log [exp (FFN(x))] , type = log,
(15)

where [·] signifies rounding to the nearest integer, i.e., [x] = argmin
n∈Z

|n− x| (x ∈ R).

It is important to note that the rounding obtained by using the operator log[exp(z)], used in (15), is
quite fine, which is much finer than the vanilla rounding obtained by [z]. To elaborate, the following
proposition is presented:
Proposition C.1. For any z ≥ 1, the following holds:

(i) | log[exp(z)]− z| ≤ 1

2min{ez, [ez]}
; (ii) |[z]− z| ≤ 1

2
.

C.1 Proof of Theorem 4.1

Theorem C.2 (Restatement of Theorem 4.1). For any target H ∈ HAdap
(1,M) (8), rate n ∈ N+, and

H,m ∈ N+, there exists a two-layer Transformer TF ∈ T FNF,type
(2,H,m) (12) and a constant C(n) such

that: if the width satisfies

m ≥

Ω̃
(∑M

i=1 ∥gi∥
2
B

)
, type = lin

Ω̃
(∑M

i=1 ∥log gi∥
2
B T

2
i

)
, type = log

,

then the following approximation rate holds:

|||H−TF||| ≤ EFFN + ∥f∥Lip EAttn(type),

where EFFN = Õ
(

∥f∥B√
m

)
and

EAttn(type) =


O
(

C(n)
Hn

(∑M
i=1 e

0.01Ti

)n+1
)
, type = lin

O
(

C(n)
Hn

(∑M
i=1 T

1.01
i

)n+1
)
, type = log

.

Proof of Theorem C.2.
First, we choose the embedding dimension D = (M + 1)(d + 1), and select a simple embedding
WE = (Id×d,0)

⊤ ∈ RD×d, bE = 0 ∈ RD.

Then for any input sequence X = (xt)t∈Z, the token after embedding satisfies:

x
(0)
t = WExt + bE = (x⊤

t ,0
⊤)⊤ ∈ RD.
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To tackle the discrete values of gm(xt), we utilize F̃FN, FFN with precision (15). It ensures that the
output of FFN undergoes a simple rounding operation.

Thus, for two-layer normalization-free Transformer TF ∈ T FNF,type
(2,H,m) with ϕtype, the output token

x
(2)
t of t-th input token satisfies:

x
(1/2)
t = x

(0)
t +W

(1)
O

H∑
h=1

Attn
(1,h)
t (X(0)),

x
(1)
t = x

(1/2)
t + F̃FN

(1)

(x
(1/2)
t ),

x
(3/2)
t = x

(1)
t +W

(2)
O

H∑
h=1

Attn
(2,h)
t (X(1)),

x
(2)
t = FFN(2)(x

(3/2)
t ),

where

Attn
(l,h)
t (X) = W

(l,h)
V

+∞∑
s=0

xt−s exp
(〈

W
(l,h)
Q xt,W

(l,h)
K xt−s

〉
+ p(l,h)ϕtype(s)

)
.

This proof can be summarized as the following process:

• Case type = lin.

x
(0)
t

Step I. 1-st Attn ↓

x
(1/2)
t = x

(0)
t

Step II. 1-st FFN ↓

x
(1)
t = (x⊤

t ,0
⊤, g1(xt), · · · , gM (xt), 1)

⊤

Step III. 2-st Attn ↓

x
(3/2)
t ≈ (x⊤

t ,x
⊤
t−g1(xt)

, · · · ,x⊤
t−gM (xt)

, g1(xt), · · · , gM (xt), 1)
⊤

Step IV. 2-st FFN ↓

x
(2)
t ≈ f(xt,xt−g1(xt), · · · ,xt−gM (xt))

• Case type = log.

x
(0)
t

Step I. 1-st Attn ↓

x
(1/2)
t = x

(0)
t

Step II. 1-st FFN ↓

x
(1)
t = (x⊤

t ,0
⊤, log g1(xt), · · · , log gM (xt), log 2)

⊤

Step III. 2-st Attn ↓

x
(3/2)
t ≈ (x⊤

t ,x
⊤
t−g1(xt)

, · · · ,x⊤
t−gM (xt)

, log g1(xt), · · · , log gM (xt), log 2)
⊤

Step IV. 2-st FFN ↓

x
(2)
t ≈ f(xt,xt−g1(xt), · · · ,xt−gM (xt))

Now we give the formal proof.

Step I. Identity map.

For the first Attn layer, we only need to do the identity map by taking W
(1)
0 = 0. Then x

(1/2)
t = x

(0)
t .

Step II. Approximate the adaptive memory function by the first FFN layer.
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• Case type = lin. Our main idea is that using the first FFN layer to express
(x⊤

t ,0
⊤, g1(xt), · · · , gM (xt), 1)

⊤ exactly.

First, we consider to approximate the r-th memory function gr(x) by standard FFN.

For any r ∈ [M ], by Lemma G.6, there exists a two-layer neural network with mr neurons

f2NN
(1,r)(x) =

mr∑
k=1

a
(1,r)
k σ

(
b
(1,r)
k

⊤x+ c
(1,r)
k

)
defined on Rd such that

∥∥∥gr − f2NN
(1,r)

∥∥∥
L∞([−1,1]D)

≤ Õ
(
∥gr∥B√
mr

)
.

Therefore, if we choose

Õ
(
∥gr∥B√
mr

)
<

1

2
,

the following holds:∣∣∣gr(xt)− f2NN
(1,r)(xt)

∣∣∣ ≤ ∥∥∥gr − f2NN
(1,r)

∥∥∥
L∞([−1,1]d)

<
1

2
,

Noticing gr(xt) ∈ N+, we have
[
f2NN
(1,r)(xt)

]
= gr(xt), which implies:

f̃2NN
(1,r)(xt) =

[
f2NN
(1,r)(xt)

]
= gr(xt).

Consequently, in order to construct the form (0⊤, g1(xt), · · · , gM (xt), 1)
⊤ ∈ RD, we need

to arrange the parameters a(1,r)k , b(1,r)k , and c(1,r)k (k ∈ [mr], r ∈ [M ]) appropriately.

Denote b̄
(1,r)
k = (b

(1,r)
k

⊤,0⊤)⊤ ∈ RD for k ∈ [mr], r ∈ [M ]. Consider the following
two-layer neural network with 1 +

∑M
r=1mr neurons defined on RD:

FFN(1)(x) =

M∑
r=1

∑
1+

∑r−1
j=0 mj≤k≤

∑r
j=0 mj

eD−M+r−1a
(1,r)
k σ

(
b̄
(1,r)
k

⊤x+ c
(1,r)
k

)
+ eD · 1 · σ(0 + 1).

It is easy to verify that for any x
(1/2)
t , it holds that

FFN(1)(x
(1/2)
t ) = FFN(1)(x

(0)
t )

=

M∑
r=1

∑
1+

∑r−1
j=0 mj≤k≤

∑r
j=0 mj

eD−M+r−1a
(1,r)
k σ

(
b̄
(1,r)
k

⊤x
(0)
t + c

(1,r)
k

)
+ eD · 1 · σ(0 + 1)

=

M∑
r=1

∑
1+

∑r−1
j=0 mj≤k≤

∑r
j=0 mj

eD−M+r−1a
(1,r)
k σ

(
b
(1,r)
k

⊤xt + c
(1,r)
k

)
+ eD · 1 · σ(0 + 1)

=

M∑
r=1

eD−M+r−1f
2NN
r (xt) + eD

=(0⊤
d , f

2NN
(1,1)(xt), · · · , f2NN

(1,M)(xt), 1)
⊤ ∈ RD.

Moreover, it satisfies that

F̃FN
(1)

(x
(1/2)
t ) =

[
FFN(1)(x

(1/2)
t )

]
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=(0⊤
d ,
[
f2NN
(1,1)(xt)

]
, · · · ,

[
f2NN
(1,M)(xt)

]
, 1)⊤

=(0⊤
d , g1(xt), · · · , gM (xt), 1)

⊤ ∈ RD.

Thus, we have achieved our goal in this step:

x
(1)
t = x

(1/2)
t + F̃FN

(1)

(x
(1/2)
t ) = (x⊤

t ,0
⊤, g1(xt), · · · , gM (xt), 1)

⊤.

• Case type = log. Our main idea is that using the first FFN layer to express
(x⊤

t ,0
⊤, log g1(xt), · · · , log gM (xt), log 2)

⊤ exactly.

First, we consider to approximate the r-th memory function log gr(x) by standard FFN.

For any r ∈ [M ], by Lemma G.6, there exists a two-layer neural network with mr neurons

f2NN
(1,r)(x) =

mr∑
k=1

a
(1,r)
k σ

(
b
(1,r)
k

⊤x+ c
(1,r)
k

)
defined on Rd such that

∥∥∥log gr − f2NN
(1,r)

∥∥∥
L∞([−1,1]D)

≤ Õ
(
∥log gr∥B√

mr

)
.

Therefore, if we choose

Õ
(
∥log gr∥B√

mr

)
<

1

4Tr
,

the following holds:∣∣∣log gr(xt)− f2NN
(1,r)(xt)

∣∣∣ ≤ ∥∥∥gr − f2NN
(1,r)

∥∥∥
L∞([−1,1]d)

<
1

4Tr
,

which ensures∣∣∣exp(f2NN
(1,r)(xt)

)
− gr(xt)

∣∣∣ = ∣∣∣exp(f2NN
(1,r)(xt)

)
− exp (log (gr(xt)))

∣∣∣
≤ exp

(
max

{
f2NN
(1,r)(xt), log (gr(xt))

}) ∣∣∣f2NN
(1,r)(xt)− log (gr(xt))

∣∣∣
≤ exp

(
log gr(xt) +

1

4

)
1

4Tr

≤e1/4 · Tr ·
1

4Tr
<

1

2
.

Noticing gr(xt) ∈ N+, we have
[
exp

(
f2NN
(1,r)(xt)

)]
= gr(xt), which implies:

f̃2NN
(1,r)(xt) = log

[
exp

(
f2NN
(1,r)

)]
= log gr(xt).

Consequently, in order to construct the form (0⊤, log g1(xt), · · · , log gM (xt), log 2)
⊤, we

need to arrange the parameters a(1,r)k , b(1,r)k , and c(1,r)k (k ∈ [mr], r ∈ [M ]) appropriately.

Denote b̄
(1,r)
k = (b

(1,r)
k

⊤
,0⊤)⊤ ∈ RD for k ∈ [mr], r ∈ [M ]. Consider the following

two-layer neural network with 1 +
∑M

r=1mr neurons defined on RD:

FFN(1)(x) =

M∑
r=1

∑
1+

∑r−1
j=0 mj≤k≤

∑r
j=0 mj

eD−M+r−1a
(1,r)
k σ

(
b̄
(1,r)
k

⊤x+ c
(1,r)
k

)
+ eD · 1 · σ(0 + log 2).
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It is easy to verify that for any x
(1/2)
t , it holds that

FFN(1)(x
(1/2)
t ) = FFN(1)(x

(0)
t )

=

M∑
r=1

∑
1+

∑r−1
j=0 mj≤k≤

∑r
j=0 mj

eD−M+r−1a
(1,r)
k σ

(
b̄
(1,r)
k

⊤x
(0)
t + c

(1,r)
k

)
+ eD · 1 · σ(0 + log 2)

=

M∑
r=1

∑
1+

∑r−1
j=0 mj≤k≤

∑r
j=0 mj

eD−M+r−1a
(1,r)
k σ

(
b
(1,r)
k

⊤xt + c
(1,r)
k

)
+ eD · 1 · σ(0 + log 2)

=

M∑
r=1

eD−M+r−1f
2NN
r (xt) + eD log 2

=(0⊤
d , f

2NN
(1,1)(xt), · · · , f2NN

(1,M)(xt), log 2)
⊤ ∈ RD.

Moreover, it satisfies that

F̃FN
(1)

(x
(1/2)
t ) = log

[
exp

(
FFN(1)(x

(1/2)
t )

)]
=(0⊤

d , log
[
exp

(
f2NN
(1,1)(xt)

)]
, · · · , log

[
exp

(
f2NN
(1,M)(xt)

)]
, log 2,0⊤)⊤

=(0⊤
d , log g1(xt), · · · , log gM (xt), log 2)

⊤.

Thus, we have achieved our goal in this step:

x
(1)
t = x

(1/2)
t + F̃FN

(1)

(x
(1/2)
t ) = (x⊤

t ,0
⊤, log g1(xt), · · · , log gM (xt), log 2)

⊤.

As established in the proof above, the width m must satisfy:

m ≥ 1 +

M∑
r=1

mr =

Ω̃
(∑M

r=1 ∥gr∥
2
B

)
, type = lin

Ω̃
(∑M

r=1 ∥log gr∥
2
B T

2
r

)
, type = log

.

Step III. Extract the adaptive memories by the second Attn layer.

We consider to use Hk attention heads (from
∑k−1

i=1 Hi + 1-th head to
∑k

i=1Hi-th head) to extract
it, and it satisfies to

∑M
k=1Hk = H .

For simplicity, we denote the following projection matrices in RD×D:

P (k) := (0d×kd Id×d 0) ∈ Rd×D, 1 ≤ k ≤M ;

P
(k)
⊥ :=

(
Ikd×kd 0d×d 0

0 0d×d I(D−(k+1)d)×(D−(k+1)d)

)
∈ R(D−d)×D, 1 ≤ k ≤M ;

Q(M) :=
(
I(M+1)d×(M+1)d 0

)
∈ R(M+1)d×D.

Now we consider the extraction of k-th adaptive memory xt−gk(xt) (1 ≤ k ≤M ).

• Case type = lin.

By Lemma F.2, for any rate n ∈ N+, there exists a constant C(n) and a function

ϕexpk (t;B) =
∑

∑k−1
i=1 Hi+1≤h≤

∑k
i=1 Hi

αh exp(−βh(t−B))

=
∑

∑k−1
i=1 Hi+1≤h≤

∑k
i=1 Hi

αh exp
(
βhB − βht

)
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such that βh > 0 and

sup
1≤B≤Tk

∥I{· = B} − ϕexpk (·;B)∥
ℓ1(N) ≤

C(n)e0.01(n+1)Tk

Hn
k

.

Moreover, Noticing that 1 ≤ gk(xt) ≤ Tk holds for any X = (xt)t∈Z ∈ X , the following
holds:

sup
X

∥I{· = gk(xt)} − ϕexpk (·; gk(xt))∥ℓ1(N)

≤ sup
1≤B≤Tk

∥I{· = B} − ϕexpk (·;B)∥
ℓ1(N) ≤

C(n)e0.01(n+1)Tk

Hn
k

.

Therefore, for these attention heads (
∑k−1

i=1 Hi + 1 ≤ h ≤
∑k

i=1Hi), we can choose:

p(2,h) = βh, W
(1)
O = ID×D, W

(2,h)
V = αhδ

(d×d)
(k+1,1) ∈ RD×D,

W
(2,h)
Q =

√
βhδ

(1×1)
(D−M+k−1,1) ∈ RD×D, W

(2,h)
K =

√
βhδ

(1×1)
(D,1) ∈ RD×D,

where δ
(r×r)
(p1,p2)

means that: it equals to Ir×r for the (p1, p2)-th r × r blocks, and 0r×r for
the other r × r blocks.

Then it is easy to verify:〈
W

(2,h)
Q x

(1)
t ,W

(2,h)
K x

(1)
t−s

〉
+ p(2,h)ϕlin(s) = −βh

(
s− gk(xt)

)
,

which implies:
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

Attn
(2,h)
t (X(1)) =

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

αh

+∞∑
s=0

e−βh(s−gk(xt))

(
0kd

xt−s

0

)
∈ RD,

Then it holds that:

P (k)

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

Attn
(2,h)
t (X(0)) =

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

αh

+∞∑
s=0

e−βh(s−gk(xt))xt−s,

P
(k)
⊥

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

Attn
(2,h)
t (X(0)) = 0,

moreover, the following estimate holds:

∥∥∥∥∥∥
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

P (k)Attn
(2,h)
t (X)− xt−gk(xt)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

αh

+∞∑
s=0

e−βh(s−gk(xt))xt−s − xt−gk(xt)

∥∥∥∥∥∥
2
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=

∥∥∥∥∥∥
+∞∑
s=0

 ∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

αhe
−βh(s−gk(xt)) − I{s = gk(xt)}

xt−s

∥∥∥∥∥∥
2

≤
+∞∑
s=0

∣∣∣∣∣∣
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

αhe
−βh(s−gk(xt)) − I{s = gk(xt)}

∣∣∣∣∣∣
= ∥ϕexpk (·; gk(xt))− I{· = gk(xt)}∥ℓ1(N) ≤

C(n)e0.01(n+1)Tk

Hn
k

.

• Case type = log.

By Lemma F.5, for any rate n ∈ N+, there exists a constant C(n) and a function

ϕpolyk (t;B) =
∑

∑k−1
i=1 Hi+1≤h≤

∑k
i=1 Hi

αh(t/B)−βh

=
∑

∑k−1
i=1 Hi+1≤h≤

∑k
i=1 Hi

αh exp
(
βh logB − βh log t

)
such that βh > 1 and

sup
1≤B≤Tk

∥∥∥I{· = B} − ϕpolyk (·;B)
∥∥∥
ℓ1(N+)

≤
C(n)T

1.01(n+1)
k

Hn
k

.

Moreover, Noticing that 1 ≤ gk(xt) ≤ Tk holds for any X = (xt)t∈Z ∈ X , the following
holds:

sup
X

∥∥∥I{· = gk(xt)} − ϕpolyk (·; gk(xt))
∥∥∥
ℓ1(N+)

≤ sup
1≤B≤Tk

∥∥∥I{· = B} − ϕpolyk (·;B)
∥∥∥
ℓ1(N+)

≤
C(n)T

1.01(n+1)
k

Hn
k

.

Therefore, for these attention heads (
∑k−1

i=1 Hi + 1 ≤ h ≤
∑k

i=1Hi), we can choose:

p(2,h) = βh, W
(1)
O = ID×D, W

(2,h)
V = αhδ

(d×d)
(k+1,1) ∈ RD×D,

W
(2,h)
Q =

√
βhδ

(1×1)
(D−M+k−1,1) ∈ RD×D, W

(2,h)
K =

√
βh

log 2
δ
(1×1)
(D,1) ∈ RD×D,

where δ
(r×r)
(p1,p2)

means that: it equals to Ir×r for the (p1, p2)-th r × r blocks, and 0r×r for
the other r × r blocks.

Then it is easy to verify:

〈
W

(2,h)
Q x

(1)
t ,W

(2,h)
K x

(1)
t−s

〉
+ p(2,h)ϕlog(s) = −βh log

(
s/gk(xt)

)
,

which implies:

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

Attn
(2,h)
t (X(1)) =

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

αh

+∞∑
s=0

(s/gk(xt))
−βh

(
0kd

xt−s

0

)
∈ RD,
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Then it holds that:

P (k)

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

Attn
(2,h)
t (X(0)) =

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

αh

+∞∑
s=0

(s/gk(xt))
−βhxt−s,

P
(k)
⊥

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

Attn
(2,h)
t (X(0)) = 0,

moreover, the following estimate holds:

∥∥∥∥∥∥
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

P (k)Attn
(2,h)
t (X)− xt−gk(xt)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

αh

+∞∑
s=0

(s/gk(xt))
−βhxt−s − xt−gk(xt)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
+∞∑
s=0

 ∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

αh(s/gk(xt))
−βh − I{s = gk(xt)}

xt−s

∥∥∥∥∥∥
2

≤
+∞∑
s=0

∣∣∣∣∣∣
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

αh(s/gk(xt))
−βh − I{s = gk(xt)}

∣∣∣∣∣∣
=
∥∥∥ϕpolyk (·; gk(xt))− I{· = gk(xt)}

∥∥∥
ℓ1(N+)

≤
C(n)T

1.01(n+1)
k

Hn
k

.

Then we combine the estimate for all k ∈ [M ] for these two cases. It holds that

∥∥∥∥∥∥∥∥Q
(M)x

(3/2)
t −


xt

xt−g1(xt)

...
xt−gM (xt)


∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥
(

xt

0Md

)
+

M∑
h=1

Q(M)Attn
(2,h)
t (X(1))−


xt

xt−g1(xt)

...
xt−gM (xt)


∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥
M∑
h=1

Q(M)Attn
(2,h)
t (X)−


0d

xt−g1(xt)

...
xt−gM (xt)


∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
M∑
k=1

 ∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

Q(M)Attn
(2,h)
t (X)−

(
0kd

xt−gk(xt)

0

)∥∥∥∥∥∥
2

≤
M∑
k=1

∥∥∥∥∥∥
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

Q(M)Attn
(2,h)
t (X)−

(
0kd

xt−gk(xt)

0

)∥∥∥∥∥∥
2
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=

M∑
k=1

∥∥∥∥∥∥
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

P (k)Attn
(2,h)
t (X)− xt−gk(xt)

∥∥∥∥∥∥
2

≤EAttn(type) :=


C(n)e0.01(n+1)Tk

Hn
k

, type = lin

C(n)T
1.01(n+1)
k

Hn
k

, type = log
.

Similar to the proof of Theorem B.1, we choose the head number:

Hk =
e0.01Tk∑M
j=1 e

0.01Tj

H, k ∈ [M ], type = lin;

Hk =
T 1.01
k∑M

j=1 T
1.01
j

H, k ∈ [M ], type = log .

Thus, we obtain the final bound in Step III:

ESoft
Attn(type) ≤


C(n)
Hn

(
M∑
k=1

e0.01Tk

)n+1

, type = lin

C(n)
Hn

(
M∑
k=1

T 1.01
k

)n+1

, type = log

.

Furthermore, by choosing EAttn(type) ≤ 1, it holds that

∥∥∥Q(M)x
(3/2)
t

∥∥∥
∞

≤

∥∥∥∥∥∥∥∥Q
(M)x

(3/2)
t −


xt

xt−g1(xt)

...
xt−gM (xt)


∥∥∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥∥∥


xt

xt−g1(xt)

...
xt−gM (xt)


∥∥∥∥∥∥∥∥
∞

≤EAttn(type) + 1 ≤ 2.

Step IV. Approximate the nonlinear function by 2-nd FFN layer.

In this step, we aim to approximate the function f using two-layer network. By Lemma G.6, there
exists a two-layer neural network with m neurons

f2NN
(2) (x) =

m∑
k=1

a
(2)
k σ

(
b
(2)
k

⊤x+ c
(2)
k

)
defined on R(M+1)d such that

∥∥∥f − f2NN
(2)

∥∥∥
L∞([−2,2](M+1)d)

≤ Õ
(
∥f∥B√
m

)
.

Denote b̄
(2)
k = (b

(2)
k

⊤
,0⊤)⊤ ∈ RD for k ∈ [m]. And we consider the following two-layer neural

network with m neurons defined on RD:

FFN(2)(x) :=

m∑
k=1

a
(2)
k σ

(
b̄
(2)
k

⊤x+ c
(2)
k

)
.

It is easy to verify:
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FFN(2)
(
x
(3/2)
t

)
= f2NN

(2)

(
Q(M)x

(3/2)
t

)
.

Moreover,

E(2)
FFN :=

∥∥∥f − FFN(2)
∥∥∥
L∞([−2,2](M+1)d)

≤ Õ
(
∥f∥B√
m

)
.

The final bound.

For any t and ∥X∥ ∈ X , it holds that

∥∥∥Ht(X)− x
(2)
t

∥∥∥ =
∣∣∣f (xt,xt−g1(xt), · · ·xt−gM (xt)

)
− FFN(2)

(
x
(3/2)
t

)∣∣∣
=
∣∣∣f (xt,xt−t1 , · · ·xt−tM )− f2NN

(2)

(
Q(M)x

(3/2)
t

)∣∣∣
=
∣∣∣f (xt,xt−g1(xt), · · ·xt−gM (xt)

)
− f

(
Q(M)x

(3/2)
t

)
+ f

(
Q(M)x

(3/2)
t

)
− f2NN

(2)

(
Q(M)x

(3/2)
t

) ∣∣∣
≤
∣∣∣f (xt,xt−t1 , · · ·xt−tM )− f

(
Q(M)x

(3/2)
t

)∣∣∣+ ∣∣∣f (Q(M)x
(3/2)
t

)
− f2NN

(2)

(
Q(M)x

(3/2)
t

)∣∣∣
≤∥f∥Lip

∥∥∥(x⊤
t ,x

⊤
t−t1 , · · ·x

⊤
t−tM

)⊤ −Q(M)x
(3/2)
t

∥∥∥
2
+
∥∥∥f − f2NN

(2)

∥∥∥
L∞([−2,2](M+1)D)

≤∥f∥Lip · EAttn + EFFN,

where

EFFN = Õ
(
∥f∥B√
m

)
;

EAttn(type) =


O

(
C(n)
Hn

(∑M
k=1 e

0.01Tk

)n+1
)
, type = lin

O

(
C(n)
Hn

(∑M
k=1 T

1.01
k

)n+1
)
, type = log

.

Moreover, recalling our proof in Step II, we further need the hard condition:

m ≥

Ω̃
(∑M

r=1 ∥gr∥
2
B

)
, type = lin

Ω̃
(∑M

r=1 ∥log gr∥
2
B T

2
r

)
, type = log

.

Due to the arbitrariness of t and X , the proof is completed.

Remark C.3. The core step in this proof is Step III, where the extraction of the memory functions
is achieved through a a nice interaction between the temporal space (provided by RPE) and the token
space (provided by DP). Specifically, the memory functions gi(xt) (in token space) are mapped into
the temporal space s, resulting in the form of xs−gi(xt) for DP Attn with lin-RPE or log(s/gi(xt))
for DP Attn with log-RPE.
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C.2 Proof of Proposition 4.2

For Proposition 16, we denote the following one-layer Attn hypothesis class:

AT T N type
(1,H) :=

{
Attn : TF is a 1-layer, H-head (normalization-free) Attn with type-RPE

}
;

AT T NDPF,type
(1,H) :=

{
TF : Attn is a 1-layer, H-head DP-free Attn with type-RPE

}
.

(16)
Proposition C.4 (The formal version of Proposition 4.2). Consider 1-layer Attn. Then, there exists a
target H ∈ Hadap

(1,1) (10) such that:

(A) (Attn with DP) For any ϵ > 0, there exists a 1-layer Attn AttnDP ∈ AT T N type
(1,H) such that∣∣∣∣∣∣∣∣∣H−AttnDP

∣∣∣∣∣∣∣∣∣ ≤ ϵ.

(B) (Attn without DP) For any 1-layer DP-free Attn AttnDPF ∈ AT T NDPF,type
(1,H) , a uniform lower

bound holds: ∣∣∣∣∣∣∣∣∣H−AttnDPF
∣∣∣∣∣∣∣∣∣ ≥ 2

3
.

Proof of Proposition C.4.
Consider the following target function H ∈ HAdap

1,1 . Let the input sequence X ∈ X = {−1, 0, 1}Z,
and we consider the target

yt = Ht(X) := xt−g(xt),

where the adaptive memory is

g(x) =


0, x = −1

1, x = 0

2, x = 1

.

Part (A). The Efficiency of Attn with DP.

First, we choose the embedding dimension D = 2, and select simple embedding WE = bE =
(1, 0)⊤ ∈ R2×1. Then for any input sequence X = (xt)t∈Z, the token after embedding satisfies:

x
(0)
t = WExt + bE = (xt, 1)

⊤.

We consider one-layer normalization-free Self-attention with ϕexp, which has the form:

AttnDP
t (X) = WO

H∑
h=1

W
(1,h)
V

+∞∑
s=0

x
(0)
t−s exp

(〈
W

(l,h)
Q x

(0)
t ,W

(1,h)
K x

(0)
t−s

〉
+ p(1,h)s

)
.

By Lemma F.2 (for n = 1), there exists a constant C > 0 and a function

ϕexp(t;B) =

H∑
h=1

αh exp(−βh(t−B)) =

H∑
h=1

αh exp
(
βhB − βht

)
such that βh > 0 and

sup
0≤B≤2

∥I{· = B} − ϕexp(·;B)∥ℓ1(N) ≤
Ce0.01·2·2

H
= O

(
1

H

)
.
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Moreover, Noticing that 0 ≤ g(xt) ≤ 2 holds for any X = (xt)t∈Z ∈ X , the following holds:

sup
X

∥I{· = g(xt)} − ϕexp(·; g(xt))∥ℓ1(N)

≤ sup
0≤B≤2

∥I{· = B} − ϕexp(·;B)∥ℓ1(N) ≤ O
(

1

H

)
.

Therefore, for attention heads (1 ≤ h ≤ H), we can choose:

p(1,h) = βh, W
(1)
O = (1, 0)⊤ ∈ R2×1, W

(1,h)
V = αhδ

(1×1)
(1,1) ∈ R2×2,

W
(1,h)
Q =

√
βh(1, 1)

⊤ ∈ R2×1, W
(1,h)
K =

√
βh(0, 1)

⊤ ∈ R2×1,

where δ
(r×r)
(p1,p2)

means that: it equals to Ir×r for the (p1, p2)-th r × r blocks, and 0r×r for the other
r × r blocks.

Then it is easy to verify:

〈
W

(1,h)
Q x

(0)
t ,W

(1,h)
K x

(0)
t−s

〉
+ p(2,h)s = −p(1,h)

(
s− (xt + 1)

)
= −p(1,h)

(
s− g(xt)

)
.

Thus, the following estimate holds:

∥∥AttnDP
t (X)− xt−g(xt)

∥∥
2

=

∥∥∥∥∥
H∑

h=1

αh

+∞∑
s=0

e−βh(s−g(xt))xt−s − xt−g(xt)

∥∥∥∥∥
2

=

∥∥∥∥∥
+∞∑
s=0

(
H∑

h=1

αhe
−βh(s−g(xt)) − I{s = g(xt)}

)
xt−s

∥∥∥∥∥
2

≤
+∞∑
s=0

∣∣∣∣∣
H∑

h=1

αhe
−βh(s−gk(xt)) − I{s = g(xt)}

∣∣∣∣∣
= ∥ϕexp(·; g(xt))− I{· = g(xt)}∥ℓ1(N) ≤ O

(
1

H

)
.

Due to the arbitrariness of t and X , the proof is completed: for any ϵ > 0, we only need to use
H = Ω(1/ϵ) heads to approximate it.

Part (B). The Hardness Result of Attn without DP.

We consider one-layer Dot-product-free Self-attention with ϕexp or ϕlog. For any input X , the
corresponding output can be written as:

AttnDPF
t (X) =

+∞∑
s=0

ρs(WExt−s + bE).

For simplicity, we denote:

x
(0)
t =WExt + bE ,

then we have the following estimate:

|||H−AttnDPF||| =sup
t

sup
X

|HDPF
t (X)−Attnt(X)| ≥ sup

X
|H0(X)−AttnDPF

0 (X)|
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= sup
(··· ,x−2,x−1,x0)

∣∣∣∣∣x−g(x0) −
+∞∑
s=0

ρsx
(0)
−s

∣∣∣∣∣
fixing x−s = 0 for s ≥ 3

≥ sup
(x−2,x−1,x0)

∣∣∣∣∣x−g(x0) −
2∑

s=0

ρsx
(0)
−s

∣∣∣∣∣
x0∈{−1,0,1}

= max

{
max

(x−2,x−1)

∣∣∣−1−
(
ρ0(−WE + bE) + ρ1x

(0)
−1 + ρ2x

(0)
−2

)∣∣∣ ,
max

(x−2,x−1)

∣∣∣x−g(0) −
(
ρ0bE + ρ1x

(0)
−1 + ρ2x

(0)
−2

)∣∣∣ ,
max

(x−2,x−1)

∣∣∣x−g(1) −
(
ρ0(WE + bE) + ρ1x

(0)
−1 + ρ2x

(0)
−2

)∣∣∣}
= max

(x−2,x−1)
max

{ ∣∣∣x−1 −
(
ρ0bE + ρ1x

(0)
−1 + ρ2x

(0)
−2

)∣∣∣ ,∣∣∣−1−
(
ρ0(−WE + bE) + ρ1x

(0)
−1 + ρ2x

(0)
−2

)∣∣∣ ,∣∣∣x−2 −
(
ρ0(WE + bE) + ρ1x

(0)
−1 + ρ2x

(0)
−2

)∣∣∣ }
max{a,b,c}≥ 1

3 (a+b+c)

≥ 1

3
max

(x−2,x−1)

( ∣∣∣x−1 −
(
ρ0bE + ρ1x

(0)
−1 + ρ2x

(0)
−2

)∣∣∣
+
∣∣∣−1−

(
ρ0(−WE + bE) + ρ1x

(0)
−1 + ρ2x

(0)
−2

)∣∣∣
+
∣∣∣x−2 −

(
ρ0(WE + bE) + ρ1x

(0)
−1 + ρ2x

(0)
−2

)∣∣∣ )
|a|+|b|≥|a+b|

≥ 1

3
max

(x−2,x−1)

( ∣∣∣x−1 −
(
ρ0bE + ρ1x

(0)
−1 + ρ2x

(0)
−2

)∣∣∣
+
∣∣∣−1 + x−2 − 2

(
ρ0bE + ρ1x

(0)
−1 + ρ2x

(0)
−2

)∣∣∣ )
≥1

3
max

(x−2,x−1)

( ∣∣∣x−1 −
(
ρ0bE + ρ1x

(0)
−1 + ρ2x

(0)
−2

)∣∣∣
+

∣∣∣∣−1 + x−2

2
−
(
ρ0bE + ρ1x

(0)
−1 + ρ2x

(0)
−2

)∣∣∣∣ )
|a|+|b|≥|a−b|

≥ 1

3
max

(x−2,x−1)

∣∣∣∣x−1 +
1

2
− x−2

2

∣∣∣∣ = 2

3
.

C.3 Proof of Proposition 4.3

In this subsection, we propose a structurally simpler yet effective alternative to traditional Dot-product
in Self-attention. This alternative is proposed based on our insights into the role of Attn in facilitating
interaction between the temporal-space and the token-space. Specifically, we propose a more direct
structure to achieve the interaction ϕtype(s)− ϕtype

(
w⊤xt

)
.

Definition C.5 (TMX Transformer). We define the TMX (“t minus x”) Transformer as follows. In
standard Transformer (2), we modify the term

〈
W

(l,h)
Q xt,W

(l,h)
K xt−s

〉
+ p(l,h)ϕtype(s)

in Multi-head Dot-product Self-attention to the new formulation:

p(l,h)
(
ϕtype (s)− ϕtype

(
w(l,h) ⊤xt

))
,
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where the parameters w(l,h) ∈ RD×1.

Notice that in TMX Transformer, the revised term requires only O(D) parameters, much less than
O(D2) in standard Dot-product Transformer.

Consequently, we define the following TMX Transformer hypothesis class.

T FTMX,type
(1,H,m) :=

{
TF :TF is a 1-layer, H-head, m-width

(normalization-free) TMX Transformer with type-RPE
}
.

(17)

Proposition C.6 (The formal version of Proposition 4.3). Under the same conditions in Theorem 4.1,
there exists a two-layer TMX Transformer TF ∈ T FTMX,type

(2,H,m) (17) such that it can achieve the same
approximation rate as standard Transformer presented in Theorem 4.1.

Proof of Proposition C.6.
It is worth noting that TMX Transformer only replaces

〈
W

(l,h)
Q xt,W

(l,h)
K xt−s

〉
+ p(l,h)ϕtype(s)

in standard Transformer with p(l,h)
(
ϕtype (s)− ϕtype

(
w(l,h) ⊤xt

) )
. Therefore, the proof is highly

similar to that of Theorem C.2. We only need to prove that TMX Attn can also achieve Step I and
Step III in the proof of Theorem C.2.

Step I. Step I is trivial due to the same use of the residual block.

Step III. Extract the adaptive memories by the second Attn layer.

We still consider to use Hk attention heads (from
∑k−1

i=1 Hi + 1-th head to
∑k

i=1Hi-th head) to
extract it, and it satisfies to

∑M
k=1Hk = H .

Now we consider the extraction of k-th adaptive memory xt−gk(xt) (1 ≤ k ≤M ).

• Case type = lin.

For the proof of standard Transformer (the proof of Theorem C.2), for the attention heads
(
∑k−1

i=1 Hi+1 ≤ h ≤
∑k

i=1Hi), we can construct specific p(2,h),W (2,h)
Q ,W

(2,h)
K ,W

(2,h)
V

such that

〈
W

(2,h)
Q x

(1)
t ,W

(2,h)
K x

(1)
t−s

〉
+ p(2,h)ϕlin(s) = −βh

(
s− gk(xt)

)
.

In this proof, we only need to prove that we can also construct specific w(l,h),W
(2,h)
V such

that

p(2,h)
(
ϕlin(s)− ϕlin

(
w(2,h) ⊤x

(1)
t

))
= −βh

(
s− gk(xt)

)
.

Recalling the proof of Theorem C.2,

x
(1)
t = (x⊤

t ,0
⊤, g1(xt), · · · , gM (xt), 1)

⊤ ∈ RD.

Therefore, we can choose

p(2,h) = βh, w(2,h) = δ
(1×1)
(D−M+k−1,1) ∈ RD, W

(2,h)
V = αhδ

(d×d)
(k+1,1) ∈ RD×D.

where δ
(r×r)
(p1,p2)

means that: it equals to Ir×r for the (p1, p2)-th r × r blocks, and 0r×r for
the other r × r blocks.

The the following holds:

p(2,h)
(
ϕlin(s)− ϕlin

(
w(2,h) ⊤x

(1)
t

))
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=− p(2,h)
(
s−w(2,h) ⊤x

(1)
t

)
= −βh

(
s− gk(xt)

)
.

• Case type = log.

For the proof of standard Transformer (the proof of Theorem C.2), for the attention heads
(
∑k−1

i=1 Hi+1 ≤ h ≤
∑k

i=1Hi), we can construct specific p(2,h),W (2,h)
Q ,W

(2,h)
K ,W

(2,h)
V

such that

〈
W

(2,h)
Q x

(1)
t ,W

(2,h)
K x

(1)
t−s

〉
+ p(2,h)ϕlog(s) = −βh log

(
s/gk(xt)

)
.

In this proof, we only need to prove that we can also construct specific w(l,h),W
(2,h)
V such

that

p(2,h)
(
ϕlog(s)− ϕlog

(
w(2,h) ⊤x

(1)
t

))
= −βh log

(
s/gk(xt)

)
.

Recalling the proof of Theorem C.2,

x
(1)
t = (x⊤

t ,0
⊤, log g1(xt), · · · , log gM (xt), log 2)

⊤.

Therefore, we can choose

p(2,h) = βh, w(2,h) = δ
(1×1)
(D−M+k−1,1) ∈ RD, W

(2,h)
V = αhδ

(d×d)
(k+1,1) ∈ RD×D.

where δ
(r×r)
(p1,p2)

means that: it equals to Ir×r for the (p1, p2)-th r × r blocks, and 0r×r for
the other r × r blocks.

The the following holds:

p(2,h)
(
ϕlog(s)− ϕlog

(
w(2,h) ⊤x

(1)
t

))
=− p(2,h) log

(
s/
(
w(2,h) ⊤x

(1)
t

))
= −βh log

(
s/gk(xt)

)
.

The rest of the proof is exactly the same as the proof of Theorem C.2, and we do not repeat it.
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D Proof of Section 4.3

D.1 Proof of Theorem 4.4

In this subsection, we give the detailed proofs for the general case of K-adaptive, long but M -sparse
memory:

yt = f(xt,xt−t1 , · · · ,xt−tM ),

where the adaptive memories satisfy:

t1 = g1(xt);

t2 = g2(xt,xt−t1);

· · ·
tK+1 = gK+1(xt,xt−t1 , · · · ,xt−tK );

· · ·
tK+2 = gK+2(xt,xt−t1 , · · · ,xt−tK );

· · ·
tM = gK+1(xt,xt−t1 , · · · ,xt−tK ),

where 1 ≤ tk ≤ Tk holds for any k ∈ [M ].

Theorem D.1 (Restatement of Theorem 4.4). For any target H ∈ HAdap
(K,M), rate n ∈ N+, andH,m ∈

N+, there exists an L-layer (L = K + 1 + I{M ≥ K + 1}) Transformer TF ∈ T FNF,type
(L,H,m) (12)

and a constant C(n) such that: if the width satisfies

m ≥


Ω̃
(
max
i∈[K]

∨
M∑

i=K+1

∥gi∥2B
)
, type = lin,

Ω̃
(
max
i∈[K]

∨
M∑

i=K+1

∥log gi∥2B T 2
i

)
, type = log

,

then the following approximation rate holds:

|||H−TF||| ≤ EFFN + EAttn(type),

where EFFN = Õ
(

∥f∥B√
m

)
and

EAttn(type) =


O

(
C(n)
Hn

√∑K
l=1 e

0.02(n+1)Tl +
(∑M

l=K+1 e
0.01Tl

)2n+2
)
, type = lin

O

(
C(n)
Hn

√∑K
l=1 T

2.02(n+1)
l +

(∑M
l=K+1 T

1.01
l

)2n+2
)
, type = log

.

Proof of Theorem D.1.
First, we choose the embedding dimension D = (M + 1)(d+ 1), and select the same embedding
matrix WE = (Id,0)

⊤ ∈ RD×d, bE = 0 =∈ RD as the proof of Theorem C.2. Moreover, we
still use the network with precision F̃FN defined in Appendix C.1 to tackle the discrete values of
memories.

Then for any input sequence X = (xt)t∈Z, the token after embedding satisfies:

x
(0)
t = WExt + bE = (x⊤

t ,0
⊤)⊤ ∈ RD.

Thus, for L-layer (L = K+1+ I{M ≥ K+1}) normalization-free Transformer TF ∈ T FNF,type
(L,H,m)

with ϕtype, the output token x
(K+1)
t of t-th input token satisfies:

x
(l−1/2)
t = x

(l)
t +W

(l)
O

H∑
h=1

Attn
(l,h)
t (X(l−1)), 1 ≤ l ≤ L+ 1
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x
(l)
t = x

(l−1/2)
t + F̃FN

(l)

(x
(l−1/2)
t ), 1 ≤ l ≤ L

x
(L+1)
t = FFN(L+1)(x

(L+1/2)
t ),

where

Attn
(l,h)
t (X) = W

(l,h)
V

+∞∑
s=0

xt−s exp
(〈

W
(l,h)
Q xt,W

(l,h)
K xt−s

〉
+ p(l,h)ϕtype(s)

)
.

Since the proof of this theorem is similar to the proof of Theorem C.2, we mainly discuss the
differences.

The proof can be summarized as the following process:

• Case type = lin.

– Regime M ≥ K + 1.

x
(0)
t

Step 1. 1-st Attn ↓

x
(1/2)
t = x

(0)
t

Step 2. 1-st FFN ↓

x
(1)
t = x

(1/2)
t + (0⊤, t1,0

⊤
M−1, 1)

⊤

Step 3. 2-st Attn ↓

x
(3/2)
t ≈ x

(1)
t + (0⊤

d ,x
⊤
t−t1 ,0

⊤)⊤

Step 4. 2-st FFN ↓

x
(2)
t = x

(3/2)
t + (0⊤, t2,0

⊤
M−1)

⊤

Step 5. 3-st Attn ↓

x
(5/2)
t ≈ x

(2)
t + (0⊤

2d,x
⊤
t−t2 ,0

⊤)⊤

· · ·
Step 2K + 1. K + 1-st Attn ↓

x
(K+1/2)
t ≈ x

(K)
t + (0⊤

Kd,x
⊤
t−tK ,0

⊤)⊤

Step 2K + 2. K + 1-st FFN ↓

x
(K+1)
t = x

(K+1/2)
t + (0⊤, tK+1, · · · , tM , 0)⊤

Step 2K + 3. K + 2-st Attn ↓

x
(K+3/2)
t ≈ x

(K+1)
t + (0⊤

(K+1)d,x
⊤
t−tK+1

, · · · ,x⊤
t−tM , 0)

⊤

Step 2K + 4. K + 2-st FFN ↓

x
(K+2)
t ≈ f(xt,xt−t1 , · · · ,xt−tM )

– Regime M = K.

x
(0)
t

Step 1. 1-st Attn ↓

x
(1/2)
t = x

(0)
t

Step 2. 1-st FFN ↓

x
(1)
t = x

(1/2)
t + (0⊤, t1,0

⊤
M−1, 1)

⊤

Step 3. 2-st Attn ↓

x
(3/2)
t ≈ x

(1)
t + (0⊤

d ,x
⊤
t−t1 ,0

⊤)⊤

39



Step 4. 2-st FFN ↓

x
(2)
t = x

(3/2)
t + (0⊤, t2,0

⊤
M−1)

⊤

Step 5. 3-st Attn ↓

x
(5/2)
t ≈ x

(2)
t + (0⊤

2d,x
⊤
t−t2 ,0

⊤)⊤

· · ·
Step 2K + 1. K + 1-st Attn ↓

x
(K+1/2)
t ≈ x

(K)
t + (0⊤

Kd,x
⊤
t−tK ,0

⊤)⊤

Step 2K + 2. K + 1-st FFN ↓

x
(K+1)
t ≈ f(xt,xt−t1 , · · · ,xt−tM )

• Case type = log.

– Regime M ≥ K + 1.

x
(0)
t

Step 1. 1-st Attn ↓

x
(1/2)
t = x

(0)
t

Step 2. 1-st FFN ↓

x
(1)
t = x

(1/2)
t + (0⊤, log t1,0

⊤
M−1, log 2)

⊤

Step 3. 2-st Attn ↓

x
(3/2)
t ≈ x

(1)
t + (0⊤

d ,x
⊤
t−t1 ,0

⊤)⊤

Step 4. 2-st FFN ↓

x
(2)
t = x

(3/2)
t + (0⊤, log t2,0

⊤
M−1)

⊤

Step 5. 3-st Attn ↓

x
(5/2)
t ≈ x

(2)
t + (0⊤

2d,x
⊤
t−t2 ,0

⊤)⊤

· · ·
Step 2K + 1. K + 1-st Attn ↓

x
(K+1/2)
t ≈ x

(K)
t + (0⊤

Kd,x
⊤
t−log tK ,0

⊤)⊤

Step 2K + 2. K + 1-st FFN ↓

x
(K+1)
t = x

(K+1/2)
t + (0⊤, log tK+1, · · · , log tM , 0)⊤

Step 2K + 3. K + 2-st Attn ↓

x
(K+3/2)
t ≈ x

(K+1)
t + (0⊤

(K+1)d,x
⊤
t−tK+1

, · · · ,x⊤
t−tM , 0)

⊤

Step 2K + 4. K + 2-st FFN ↓

x
(K+2)
t ≈ f(xt,xt−t1 , · · · ,xt−tM )

– Regime M = K.

x
(0)
t

Step 1. 1-st Attn ↓

x
(1/2)
t = x

(0)
t

Step 2. 1-st FFN ↓

x
(1)
t = x

(1/2)
t + (0⊤, log t1,0

⊤
M−1, log 2)

⊤

Step 3. 2-st Attn ↓

x
(3/2)
t ≈ x

(1)
t + (0⊤

d ,x
⊤
t−t1 ,0

⊤)⊤

Step 4. 2-st FFN ↓
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x
(2)
t = x

(3/2)
t + (0⊤, log t2,0

⊤
M−1)

⊤

Step 5. 3-st Attn ↓

x
(5/2)
t ≈ x

(2)
t + (0⊤

2d,x
⊤
t−t2 ,0

⊤)⊤

· · ·
Step 2K + 1. K + 1-st Attn ↓

x
(K+1/2)
t ≈ x

(K)
t + (0⊤

Kd,x
⊤
t−tK ,0

⊤)⊤

Step 2K + 2. K + 1-st FFN ↓

x
(K+1)
t ≈ f(xt,xt−t1 , · · · ,xt−tM )

For simplicity, we denote the following projection matrices:

P (k) := (0d×kd Id×d 0) ∈ Rd×D, 1 ≤ k ≤M ;

P
(k)
⊥ :=

(
Ikd×kd 0d×d 0

0 0d×d I(D−(k+1)d)×(D−(k+1)d)

)
∈ R(D−d)×D, 1 ≤ k ≤M ;

Q(k) :=
(
I(k+1)d×(k+1)d 0

)
∈ R(k+1)d×D, 1 ≤ k ≤M ;

Q
(k)
⊥ :=

(
0 I(D−(k+1)d)×(D−(k+1)d)

)
∈ R(D−(k+1)d)×D, 1 ≤ k ≤M ;

R :=
(
0(M−K)d×(K+1)d I(M−K)d×(M−K)d 0

)
∈ R(M−K)d×D;

R⊥ :=

(
I(K+1)d×(K+1)d 0 0

0 0 I(M+1)×(M+1)

)
∈ R(D−(M−K)d)×D.

Step 1 is trivial due to the use of the residual block.

Step 2. In the same way as Step II in the proof of Theorem C.2, we obtain the conclusion in this step:
If the width of FFN satisfies

m ≥

Ω̃
(
∥g1∥2B

)
, type = lin

Ω̃
(
∥log g1∥2B T 2

1

)
, type = log

,

then the following holds:

x
(1)
t = x

(1/2)
t + (0⊤, t1,0

⊤
M , 1)

⊤.

Thus, (E1) holds for l = 2.

Step 3 ∼ Step 2K + 1.

• Case type = lin.

– FFN layers.
We use l-th (2 ≤ l ≤ K) FFN layer to express l-th memory tl exactly.
By Lemma G.6, there exists a two-layer neural network with m neurons defined on Rld

f2NN
(l) (x) =

m∑
k=1

a
(l)
k σ(b

(l)
k

⊤x+ c
(l)
k )

such that ∥∥∥gl − f2NN
(l)

∥∥∥
L∞([−2,2]ld)

≤ Õ
(
∥gl∥B√
m

)
.

For l-th FFN layer, we only need to arrange the parameters a(l)k , b(l)k , and c(l)k (k ∈
[m], 2 ≤ l ≤M).
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Denote b̄
(l)
k = (b

(l)
k

⊤
,0⊤)⊤ ∈ RD for k ∈ [m], 2 ≤ l ≤ K − 1. Consider the

following two-layer neural network with m neurons defined on RD:

FFN(l)(x) =

m∑
k=1

eD−M+l−1a
(l)
k σ

(
b̄
(l)
k

⊤x+ c
(l)
k

)
.

It is easy to verify

FFN(l)(x) =
(
0⊤, f2NN

(l)

(
Q(l)x

)
,0⊤

D−M+l−1

)⊤
∈ RD, ∀x ∈ RD.

Notice that if the width m satisfies

Õ
(
∥gl∥B√
m

)
<

1

4
,

and the input x(l−1/2)
t satisfies

∥gl∥Lip ·
∥∥∥(x⊤

t , · · · ,x⊤
t−tl−1

)⊤ −Q(l−1)x
(l−1/2)
t

∥∥∥
2
≤ 1

4

the following holds:∣∣∣gl(xt, · · · ,xt−tl−1
)− f2NN

(l)

(
Q(l)x

(l−1/2)
t

)∣∣∣
≤
∣∣∣gl(xt, · · · ,xt−tl−1

)− gl(Q
(l−1)x

(l−1/2)
t )

∣∣∣
+
∣∣∣gl(Q(l−1)x

(l−1/2)
t )− f2NN

(l) (Q(l−1)x
(l−1/2)
t )

∣∣∣
≤∥gl∥Lip

∥∥∥(x⊤
t , · · · ,x⊤

t−tl−1
)⊤ −Q(l−1)x

(l−1/2)
t

∥∥∥
2
+
∥∥∥gl − f2NN

(l)

∥∥∥
L∞

<
1

4
+

1

4
=

1

2
,

Noticing tl = gl(xt, · · · ,xt−tl−1
) ∈ N+, we have

f̃2NN
(l) (Q(l−1)x

(l−1/2)
t ) = tl.

Thus, it holds that:

F̃FN
(l)

(x
(l−1/2)
t ) = (0⊤, tl,0

⊤
D−M+l−1)

⊤.

– Attn layers.
By Lemma F.2, for any rate n ∈ N+, there exists a constant C(n) and K functions

ϕexpl (t;B) =
∑
h=1

αl,h exp(−βl,h(t−B))

=

H∑
h=1

αl,h exp
(
βl,hB − βl,ht

)
, 1 ≤ l ≤ K

such that βl,h > 0 and

sup
1≤B≤Tl

∥I{· = B} − ϕexpl (·;B)∥
ℓ1(N) ≤

C(n)e0.01(n+1)Tl

Hn
, 1 ≤ l ≤ K.

Moreover, Noticing that 1 ≤ gl(·) ≤ Tl holds for any X = (xt)t∈Z ∈ X and
2 ≤ l ≤ K, the following holds:

sup
X

∥I{· = tl} − ϕexpl (·; tl)∥ℓ1(N)

≤ sup
1≤B≤Tl

∥I{· = B} − ϕexpl (·;B)∥
ℓ1(N) ≤

C(n)e0.01(n+1)Tl

Hn
.
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Therefore, for the attention heads h (h ∈ [H]) in each layer l (1 ≤ l ≤ K), we can
choose:

p(l+1,h) = βl,h, W
(l+1)
O = I, W

(l+1,h)
V = αl,hδ

(d×d)
(l+1,1) ∈ RD×D,

W
(l+1,h)
Q =

√
βl,hδ

(1×1)
(D−M+l,1) ∈ RD×(D/H),

W
(l+1,h)
K =

√
βl,hδ

(1×1)
(D,1) ∈ RD×(D/H),

where δ
(r×r)
(p1,p2)

means that: it equals to Ir×r for the (p1, p2)-th r × r blocks, and 0r×r

for the other r × r blocks.

• Case type = log.

– FFN layers.
We use l-th (2 ≤ l ≤ K) FFN layer to express l-th memory tl exactly.
By Lemma G.6, there exists a two-layer neural network with m neurons defined on Rld

f2NN
(l) (x) =

m∑
k=1

a
(l)
k σ(b

(l)
k

⊤x+ c
(l)
k )

such that

∥∥∥log gl − f2NN
(l)

∥∥∥
L∞

≤ Õ
(
∥log gl∥B√

m

)
.

For l-th FFN layer, we only need to arrange the parameters a(l)k , b(l)k , and c(l)k (k ∈
[m], 2 ≤ l ≤M).

Denote b̄
(l)
k = (b

(l)
k

⊤
,0⊤)⊤ ∈ RD for k ∈ [m], 2 ≤ l ≤ K − 1. We consider the

following l-th layer 2NN with m neurons defined on RD:

FFN(l)(x) =

m∑
k=1

eD−M+l−1a
(r)
k σ

(
b̄
(r)
k

⊤x+ c
(r)
k

)
.

It is easy to verify

FFN(l)(x) =
(
0⊤, f2NN

(l)

(
Q(l)x

)
,0⊤

D−M+l−1

)⊤
∈ RD, ∀x ∈ RD.

Notice that if the width m satisfies

Õ
(
∥log gl∥B√

m

)
<

1

8Tl
,

and the input x(l−1/2)
t satisfies

∥log gl∥Lip ·
∥∥∥(x⊤

t , · · · ,x⊤
t−tl−1

)⊤ −Q(l)x
(l−1/2)
t

∥∥∥
2
≤ 1

8Tl
,

the following holds:

∣∣∣log gl(xt, · · · ,xt−tl−1
)− f2NN

(l) (Q(l)x
(l−1/2)
t )

∣∣∣
≤
∣∣∣log gl(xt, · · · ,xt−tl−1

)− log gl(Q
(l)x

(l−1/2)
t )

∣∣∣
+
∣∣∣gl(Q(l)x

(l−1/2)
t )− f2NN

(l) (Q(l)x
(l−1/2)
t )

∣∣∣
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≤∥log gl∥Lip
∥∥∥(x⊤

t , · · · ,x⊤
t−tl−1

)⊤ −Q(l)x
(l−1/2)
t

∥∥∥
2
+
∥∥∥log gl − f2NN

(l)

∥∥∥
L∞

<
1

8Tl
+

1

8Tl
=

1

4Tl
,

which ensures∣∣∣exp(f2NN
(l) (Q(l)x

(l−1/2)
t )

)
− gl(xt, · · · ,xt−tl−1

)
∣∣∣

=
∣∣∣exp(f2NN

(l) (Q(l)x
(l−1/2)
t )

)
− exp

(
log
(
gl(xt, · · · ,xt−tl−1

)
))∣∣∣

≤ exp
(
max

{
f2NN
(l) (Q(l)x

(l−1/2)
t ), log

(
gl(xt, · · · ,xt−tl−1

)
)})

·
∣∣∣f2NN

(l) (Q(l)x
(l−1/2)
t )− log

(
gl(xt, · · · ,xt−tl−1

)
)∣∣∣

≤ exp

(
log
(
gl(xt, · · · ,xt−tl−1

)
)
+

1

8

)
1

4Tr

≤e1/8 · Tr ·
1

4Tr
<

1

2
.

Noticing tl = gl(xt, · · · ,xt−tl−1
) ∈ N+, we have

f̃2NN
(l) (Qlx

(l−1/2)
t ) = log

(
exp

[
FFN(l)(xt, · · · ,xt−tl−1

)
])

= log tl.

Thus, it holds that:

F̃FN
(l)

(x
(l−1/2)
t ) = (0⊤, log tl,0

⊤
D−M+l−1)

⊤.

– Attn layers.
By Lemma F.5, for any rate n ∈ N+, there exists a constant C(n) and K functions

ϕpolyl (t;B) =
∑
h=1

αl,h(t/B)−βl,h

=

H∑
h=1

αl,h exp
(
− βl,h log(t/B)

)
, 1 ≤ l ≤ K

such that βl,h > 0 and

sup
1≤B≤Tl

∥∥∥I{· = B} − ϕpolyl (·;B)
∥∥∥
ℓ1(N+)

≤
C(n)T

1.01(n+1)
l

Hn
, 1 ≤ l ≤ K.

Moreover, Noticing that 1 ≤ gl(·) ≤ Tl holds for any X = (xt)t∈Z ∈ X and
1 ≤ l ≤ K, the following holds:

sup
X

∥∥∥I{· = tl} − ϕpolyl (·; tl)
∥∥∥
ℓ1(N+)

≤ sup
1≤B≤Tl

∥∥∥I{· = B} − ϕpolyl (·;B)
∥∥∥
ℓ1(N+)

≤
C(n)T

1.01(n+1)
l

Hn
.

Therefore, for the attention heads h (h ∈ [H]) in each layer l (1 ≤ l ≤ K), we can
choose:

p(l+1,h) = βl,h, W
(l+1)
O = I, W

(l+1,h)
V = αl,hδ

(d×d)
(l+1,1) ∈ RD×D,

W
(l+1,h)
Q =

√
βl,hδ

(1×1)
(D−M+l,1) ∈ RD×(D/H),

W
(l+1,h)
K =

√
βl,hδ

(1×1)
(D,1) ∈ RD×(D/H),

where δ
(r×r)
(p1,p2)

means that: it equals to Ir×r for the (p1, p2)-th r × r blocks, and 0r×r

for the other r × r blocks.
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Similar to the estimate in Step II and Step III in the proof of Theorem C.2, it is easy to prove the
following estimates by induction.

If the width satisfies

m ≥


Ω̃

(
max
l∈[K]

∥gl∥2B

)
= Ω̃

(
∥gK∥2B

)
, type = lin

Ω̃

(
max
l∈[K]

∥log gl∥2B T 2
l

)
= Ω̃

(
∥log gK∥2B T 2

K

)
, type = log

,

and the head number satisfies
C(n)
Hn

√∑K−1
l=1 e0.02(n+1)Tl ≤ 1

4 max
l∈[K−1]

∥gl∥Lip
, type = lin

C(n)
Hn

√∑K−1
l=1 T

2.02(n+1)
l ≤ 1

4 max
l∈[K−1]

∥log gl∥Lip
, type = log

,

then the following estimates hold:

• (E1) for any 2 ≤ l ≤ K,

x
(l)
t = x

(l−1/2)
t + (0⊤, tl,0

⊤
M−l+1)

⊤;

• (E2) for any 1 ≤ l ≤ K,
P

(l)
⊥ x

(l+1/2)
t = P

(l)
⊥ x

(l)
t ;

• (E3) for any 1 ≤ l ≤ K,∥∥∥P (l)
(
x
(l+1/2)
t −

(
x
(l)
t + (0⊤

ld,x
⊤
t−tl

,0⊤)⊤
))∥∥∥

2
≤

{
C(n)e0.01(n+1)Tl

Hn , type = lin
C(n)T

1.01(n+1)
l

Hn , type = log
;

∥∥∥Q(l)
(
x
(l+1/2)
t − x

(0)
t

)∥∥∥
2
≤


C(n)
Hn

√∑l
j=1 e

0.02(n+1)Tl , type = lin

C(n)
Hn

√∑l
j=1 T

2.02(n+1)
j , type = log

.

The Remained Steps.

• Regime M ≥ K + 1.

Step 2K + 2 and 2K + 3.

In the similar way as Step 3 ∼ Step 2K − 1 in this proof and Step II, Step III in the proof
of Theorem C.2, it is easy to verify the following estimate.

If the width satisifes

m ≥

Ω̃
(∑M

l=K+1 ∥gl∥
2
B

)
, type = lin

Ω̃
(∑M

l=K+1 ∥log gl∥
2
B T

2
l

)
, type = log

,

and the head number satisfies
C(n)
Hn

√∑K
l=1 e

0.02(n+1)Tl ≤ 1
4 max

l∈[K]
∥gl∥Lip

, type = lin

C(n)
Hn

√∑K
l=1 T

2.02(n+1)
l ≤ 1

4 max
l∈[K]

∥log gl∥Lip
, type = log

,

then the following estimates hold:

x
(K+1)
t = x

(K+1/2)
t + (0⊤, tK+1, · · · , tM , 0)⊤;
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R⊥x
(K+3/2)
t = R⊥x

(K+1)
t ;

∥∥∥R(x(K+3/2)
t −

(
x
(K+1)
t + (0⊤

(K+1)D,x
⊤
t−tK+1

, · · · ,x⊤
t−tM ,0

⊤)⊤
))∥∥∥

2

≤


C(n)

(∑M
l=K+1 e0.01Tl

H
n

n+1

)n+1

, type = lin

C(n)

(∑M
l=K+1 T 1.01

l

H
n

n+1

)n+1

, type = log

,

∥∥∥Q(M)
(
x
(K+3/2)
t − x

(0)
t

)∥∥∥
2

≤


C(n)
Hn

√∑K
l=1 e

0.02(n+1)Tl +
(∑M

l=K+1 e
0.01Tl

)2n+2

, type = lin

C(n)
Hn

√∑K
l=1 T

2.02(n+1)
l +

(∑M
l=K+1 T

1.01
l

)2n+2

, type = log

.

Step 2K + 4 and the final bound.

In the same way as Step IV in the proof of Theorem C.2, there exists FFN, such that the
following estimate holds for any t and X:∥∥∥Ht(X)− x

(K+2)
t

∥∥∥ ≤∥f∥Lip ·
∥∥∥Q(M)

(
x
(K+3/2)
t − x

(0)
t

)∥∥∥
2
+ EFFN

= ∥f∥Lip · EAttn(type) + EFFN,

where

EFFN = O
(
∥f∥B√
m

)
,

EAttn(type) =
∥∥∥Q(M)

(
x
(K+3/2)
t − x

(0)
t

)∥∥∥
2

=


C(n)
Hn

√∑K
l=1 e

0.02(n+1)Tl +
(∑M

l=K+1 e
0.01Tl

)2n+2

, type = lin

C(n)
Hn

√∑K
l=1 T

2.02(n+1)
l +

(∑M
l=K+1 T

1.01
l

)2n+2

, type = log

.

Recalling our analysis, we need the head number satisfies


C(n)
Hn

√∑K
l=1 e

0.02(n+1)Tl ≤ 1
4 max

l∈[K]
∥gl∥Lip

, type = lin

C(n)
Hn

√∑K
l=1 T

2.02(n+1)
l ≤ 1

4 max
l∈[K]

∥log gl∥Lip
, type = log

.

Due to 
C(n)
Hn

√∑K
l=1 e

0.02(n+1)Tl ≤ EAttn(type), type = lin

C(n)
Hn

√∑K
l=1 T

2.02(n+1)
l ≤ EAttn(type), type = log

,

when we is large enough, this condition holds naturally and do not affect the approximation
rate.

Moreover, we need the following condition on the width:
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m ≥


Ω̃

(
max
l∈[K]

∨
∑M

l=K+1 ∥gl∥
2
B

)
, type = lin

Ω̃

(
max
l∈[K]

∨
∑M

l=K+1 ∥log gl∥
2
B T

2
l

)
, type = log

,

• Regime M = K.

Step 2K + 2 and the final bound.

In the same way as Step IV in the proof of Theorem C.2, there exists FFN, such that the
following estimate holds for any t and X:

∥∥∥Ht(X)− x
(K+1)
t

∥∥∥ ≤∥f∥Lip ·
∥∥∥Q(M)

(
x
(K+1/2)
t − x

(0)
t

)∥∥∥
2
+ EFFN

= ∥f∥Lip · EAttn(type) + EFFN,

where

EFFN = O
(
∥f∥B√
m

)
,

EAttn(type) =
∥∥∥QM

(
x
(K+1/2)
t − x

(0)
t

)∥∥∥
2

=


C(n)
Hn

√∑K
l=1 e

0.02(n+1)Tl , type = lin

C(n)
Hn

√∑K
l=1 T

2.02(n+1)
l , type = log

.

Recalling our analysis, we need the head number satisfies


C(n)
Hn

√∑K−1
l=1 e0.02(n+1)Tl ≤ 1

4 max
l∈[K−1]

∥gl∥Lip
, type = lin

C(n)
Hn

√∑K−1
l=1 T

2.02(n+1)
l ≤ 1

4 max
l∈[K−1]

∥log gl∥Lip
, type = log

.

Due to 
C(n)
Hn

√∑K−1
l=1 e0.02(n+1)Tl ≤ EAttn(type), type = lin

C(n)
Hn

√∑K−1
l=1 T

2.02(n+1)
l ≤ EAttn(type), type = log

,

when H is large enough, this condition holds naturally and do not affect the approximation
rate.

Moreover, we need the following condition on the width:

m ≥


Ω̃

(
max
l∈[K]

∥gl∥2B

)
, type = lin

Ω̃

(
max
l∈[K]

∥log gl∥2B T 2
l

)
, type = log

,

Combining these two regimes, we complete our proof.
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D.2 Proof of Proposition 4.5

Proof of Proposition 4.5.
This proposition is a direct corollary of Theorem 4.4. It can be seen as a special case of M = K in
Theorem 4.4.

Therefore, under the same conditions, there exists a K + 1-layer Transformer TF ∈
T FNF,type

(K+1,H,m) (12) and a constant C(n) such that: if the width satisfies

m ≥


Ω̃
(
max
i∈[K]

∥gi∥2B
)
, type = lin,

Ω̃
(
max
i∈[K]

∥log gi∥2B T 2
i

)
, type = log

,

then the following approximation rate holds:

|||H−TF||| ≤ EFFN + ∥f∥Lip EAttn(type),

where EFFN = Õ
(

∥f∥B√
m

)
and

EAttn(type) =


O
(

C(n)
Hn

√∑K
l=1 e

0.02(n+1)Tl

)
, type = lin

O
(

C(n)
Hn

√∑K
l=1 T

2.02(n+1)
l

)
, type = log

.

Comparison between Proposition 4.5 and Theorem 4.1.

We compare 2-layer Transformer and M + 1-layer Transformer regarding the requirement of the
number of heads and width.

• The required width of FFN layers.

– For 2-layer Transformer, the required width of FFN layers m(2)
need is proportionally

linked to the sum of all the memory functions’ complexity:

m
(2)
need =


Ω̃
( ∑

i∈[K]

∥gi∥2B
)
, type = lin,

Ω̃
( ∑

i∈[K]

∥log gi∥2B T 2
i

)
, type = log

.

– For M + 1-layer Transformer, the required width of FFN layers m(M+1)
need correlates

with the maximum complexity of the memory functions:

m
(M+1)
need =


Ω̃
(
max
i∈[K]

∥gi∥2B
)
, type = lin,

Ω̃
(
max
i∈[K]

∥log gi∥2B T 2
i

)
, type = log

.

It is easy to see that:

m
(M+1)
need

m
(2)
need

=
max{a1, · · · , aM}∑M

k=1 ak
,

max{a1, · · · , aM} ≤
M∑
k=1

ak

• The required number of Attn heads. To achieve the same EAttn(type) = ϵ,
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– for 2-layer Transformer, the required number of Attn heads H(2)
need satisfies:

ϵ =


O
(

C(n)(
H

(2)
need

)n

√∑K
l=1 e

0.02(n+1)Tl

)
, type = lin

O
(

C(n)(
H

(2)
need

)n

√∑K
l=1 T

2.02(n+1)
l

)
, type = log

.

– for M + 1-layer Transformer, the required number of Attn heads H(M+1)
need satisfies:

ϵ =


O
(

C(n)(
H

(M+1)
need

)n

(∑M
i=1 e

0.01Ti

)n+1
)
, type = lin

O
(

C(n)(
H

(M+1)
need

)n

(∑M
i=1 T

1.01
i

)n+1
)
, type = log

.

It is easy to see that: (
H

(M+1)
need

H
(2)
need

)2n

=
b21 + · · ·+ b2M
(b1 + · · · bM )2

,

b21 + · · ·+ b2M ≤ (b1 + · · · bM )2.

This finding suggests that increased depth can significantly reduce the demands on the number of
heads and the width. The underlying reason is that deep networks can distribute memories across
different layers for processing, with each layer focusing on approximating only a single memory
function.
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E Proof of Section 5

E.1 Proof of Theorem 5.1

In this subsection, we give the detailed proofs of the warm-up case of (fixed) essentially sparse
memories as follows:

yt = f ((X ∗ ρ1) (t), · · · , (X ∗ ρM ) (t)) ,

where ρ1(·), · · · , ρM (·) ∈ ℓ1(N) serve as memory kernels, and (X ∗ ρk)(t) =
∑+∞

s=0 xt−sρk(s)
denotes the convolution of the inputs with kernel ρk.
Theorem E.1 (Restatement of Theorem 5.1).
(A) Consider HEss (14) with exponentially decayed memory kernels, i.e., there exists β > 0 such that
ρ1(t), · · · , ρM (t) = O(e−βt). Then for any target H ∈ HEss, rate n ∈ [⌊99β⌋], and H,m ∈ N+,
there exists a 1-layer DP-free Transformer TF ∈ T FDPF,exp

(1,H,m) (7) and a constant C(n) such that

|||H−TF||| ≤ EFFN + ∥f∥Lip EAttn(type);

(B) Consider HEss (14) with polynomially decayed memory kernels, i.e., there exists β > 1 such
that ρ1(t), · · · , ρM (t) = O(t−β). Then for any target H ∈ HEss, rate n ∈ [⌊0.99β⌋ − 1], and
H,m ∈ N+, there exists a 1-layer DP-free Transformer TF ∈ T FDPF,poly

(1,H,m) (7) and a constant C(n)
such that

|||H−TF||| ≤ EFFN + ∥f∥Lip EAttn(type);

where EFFN = Õ
(

∥f∥B√
m

)
and

EAttn(type) = O
(
C(n)Mn+1

Hn

)
.

Proof of Theorem E.1.
The proof of this theorem is highly similar to the proof of Theorem B.1. The only difference is
that the Attn layer needs to be used to approximate general memory kernel ρk(·) instead of simple
I{· = Tk}. But for the completeness of the proof in this section, we still provide the detailed proof.

First, we choose the embedding dimension D = Md, and select the simple embedding WE =
(Id×d,0)

⊤ ∈ RD×d, bE = 0 ∈ RD.

For any input sequence X = (xt)t∈Z, the token after embedding satisfies:

xE
t = WExt + bE = (x⊤

t ,0
⊤)⊤ ∈ RD.

Then for one-layer Dot-product-free Transformer TF ∈ T FDPF,type
(1,H,m) without residual blocks, the

output token TFt(X) of t-th input token xt satisfies:

x
(1/2)
t = W

(1)
O

H∑
h=1

Attn
(1,h)
t (X(0)),

x
(1)
t = FFN(1)(x

(1/2)
t )

where

Attn
(1,h)
t (X) = W

(1,h)
V

+∞∑
s=0

xt−s exp
(
p(1,h)ϕtype(s)

)∑+∞
j=0 exp

(
p(1,h)ϕtype(j)

) .
This proof can be summarized as the following process:

· · · xE
t · · ·
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Step I. Attn layer ↓

· · · x
(1/2)
t ≈ ((X ∗ ρ1)(t), · · · , (X ∗ ρM )(t))⊤ · · ·

Step II. FFN layer ↓

· · · x
(1)
t ≈ f ((X ∗ ρ1)(t), · · · , (X ∗ ρM )(t)) · · ·

Now we give the formal proof.

Step I. Extract the memory locations by (Dot-product-free) Attn layer.

We consider to use Hk attention heads (from
∑k−1

i=1 Hi + 1-th head to
∑k

i=1Hi-th head) to extract
it, and it satisfies to

∑M
k=1Hk = H .

P (k) :=
(
0d×(k−1)d Id×d 0

)
∈ Rd×D, 1 ≤ k ≤M.

P
(k)
⊥ :=

(
I(k−1)d×(k−1)d 0d×d 0

0 0d×d I(M−k−1)d×(M−k−1)d

)
∈ R(M−1)d×D, 1 ≤ k ≤M.

Now we consider the extraction of k-th memory (X ∗ ρk)(t) (1 ≤ k ≤M ).

• Case (A). Approximating exponentially decayed memories by type = lin.

Because there exists β > 0 such that ρk(t) = O(e−βt), by Lemma F.3, for any n ∈ [⌊99β⌋]
and m ∈ N+, there exists an absolute constant C(n) only depending on n and a function

ϕexpk (t) =
∑

∑k−1
i=1 Hi+1≤h≤

∑k
i=1 Hi

αhe
−βht

such that βh > 0 and

∥ρk(·)− ϕexpk (·)∥
ℓ1(N) =

+∞∑
s=0

|ρk(s)− ϕexpk (s)| ≤ C(n)

mn
.

Therefore, for these attention heads (
∑k−1

i=1 Hi + 1 ≤ h ≤
∑k

i=1Hi), we can choose

p(1,h) = βh, W
(1,h)
V = αh

+∞∑
j=0

exp(−βhj)

 δd×d
(k,1),

where δ(k,1) ∈ RD×D means that: it equals to Id×d for the (k, 1)-th d×d blocks, and 0d×d

for the other d× d blocks.

Then it holds that:

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

Attn
(1,h)
t (X(0)) =

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

αh

+∞∑
s=0

e−βhs

(
0(k−1)d

xt−s

0

)
∈ RD,

This implies:

P (k)

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

Attn
(1,h)
t (X(0)) =

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

αh

+∞∑
s=0

e−βhsxt−s,
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P
(k)
⊥

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

Attn
(1,h)
t (X(0)) = 0,

moreover, the following estimate holds:

∥∥∥∥∥∥
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

P (k)Attn
(1,h)
t (X(0))− (X ∗ ρk)(t)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

αh

+∞∑
s=0

e−βhsxt−s −
+∞∑
s=0

xt−sρk(s)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
+∞∑
s=0

 ∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

αhe
−βhs − I{s = Tk}

xt−s

∥∥∥∥∥∥
2

≤
+∞∑
s=0

∣∣∣∣∣∣
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

αhe
−βhs − ρk(s)

∣∣∣∣∣∣
= ∥ϕexpk (·)− ρk(·)∥ℓ1(N) ≤

C(n)

Hn
k

.

• Case (B). Approximating polynomially decayed memories by type = log.

Because there exists β > 0 such that ρk(t) = O(t−β), by Lemma F.6, for any n ∈
[⌊0.99β⌋ − 1] and m ∈ N+, there exists an absolute constant C(n) only depending on n
and a function

ϕpolyk (t) =
∑

∑k−1
i=1 Hi+1≤h≤

∑k
i=1 Hi

αht
−βh

such that βh > 1 and∥∥∥ρk(·)− ϕpolyk (·)
∥∥∥
ℓ1(N+)

=

+∞∑
s=1

∣∣∣ρk(s)− ϕpolyk (s)
∣∣∣ ≤ C(n)

mn
.

Therefore, for these attention heads (
∑k−1

i=1 Hi + 1 ≤ h ≤
∑k

i=1Hi), we can choose

p(1,h) = βh, W
(1,h)
V = αh

+∞∑
j=1

j−βh

 δ(k,1),

where δ(k,1) ∈ RD×D means that: it equals to Id×d for the (k, 1)-th d×d blocks, and 0d×d

for the other d× d blocks.

Then it holds that:∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

Attn
(1,h)
t (X(0)) =

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

αh

+∞∑
s=1

s−βh

(
0(k−1)d

xt−s

0

)
,

This implies:

P (k)

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

Attn
(1,h)
t (X(0)) =

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

αh

+∞∑
s=1

s−βhxt−s,
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P
(k)
⊥

∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

Attn
(1,h)
t (X(0)) = 0,

∥∥∥∥∥∥
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

P (k)Attn
(1,h)
t (X(0))− (X ∗ ρk)(t)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

αh

+∞∑
s=1

s−βhxt−s −
+∞∑
s=0

xt−sρk(s)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
+∞∑
s=1

 ∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

αhs
−βh − ρk(s)

xt−s

∥∥∥∥∥∥
2

≤
+∞∑
s=1

∣∣∣∣∣∣
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

αhs
−βh − ρk(s)

∣∣∣∣∣∣
=
∥∥∥ϕpolyHk

(·)− ρk(·)
∥∥∥
ℓ1(N+)

≤ C(n)

Hn
k

.

Then we combine the estimate for all k ∈ [M ] for these two cases. By choose WO = ID, we have:

∥∥∥∥∥∥∥x(1/2)
t −

 (X ∗ ρ1)(t)
...

(X ∗ ρM )(t)


∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
M∑
k=1

 ∑k
i=1 Hi∑

h=
∑k−1

i=1 Hi+1

Attn
(1,h)
t (X)−

(
0(k−1)d

(X ∗ ρk)(t)
0d

)∥∥∥∥∥∥
2

≤
M∑
k=1

∥∥∥∥∥∥
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

Attn
(1,h)
t (X)−

(
0(k−1)d

(X ∗ ρk)(t)
0d

)∥∥∥∥∥∥
2

=

M∑
k=1

∥∥∥∥∥∥
∑k

i=1 Hi∑
h=

∑k−1
i=1 Hi+1

P (k)Attn
(1,h)
t (X(0))− (X ∗ ρk)(t)

∥∥∥∥∥∥
2

≤EAttn :=

M∑
k=1

C(n)

Hn
k

, for both Case (A) and Case (B).

Consequently, one detail is to assign the head number {Hk}Mk=1 such that the error’s sum EAttn(type)
is as small as possible. Here, we simply choose the same Hk:

Hk =
H

M
, k ∈ [M ].

Thus, we obtain the bound in Step I:

EAttn =

M∑
k=1

C(n)

Hn
k

=
C(n)Mn+1

Hn
.
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Furthermore, by choosing EAttn ≤ 1, it holds that

∥∥∥x(1/2)
t

∥∥∥
∞

≤

∥∥∥∥∥∥∥x(1/2)
t −

 (X ∗ ρ1)(t)
...

(X ∗ ρM )(t)


∥∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥∥
 (X ∗ ρ1)(t)

...
(X ∗ ρM )(t)


∥∥∥∥∥∥∥
∞

≤ EAttn + 1 ≤ 2.

Step II. Approximate the readout function by FFN layer.

In this step, we aim to approximate the function f using two-layer network. By Lemma G.6, there
exists a two-layer neural network with m neurons defined on RD

FFN(1)(y) =

m∑
k=1

akσ(b
⊤
k y + ck)

such that

EFFN :=
∥∥∥FFN(1) − f

∥∥∥
L∞([−2,2]D)

≤ Õ
(
∥f∥B√
m

)
.

The final bound.

For any t and X ∈ X , it holds that∥∥∥Ht(X)− x
(1)
t

∥∥∥ =
∣∣∣f((X ∗ ρ1)(t), · · · , (X ∗ ρM )(t))− FFN(1)

(
x
(1/2)
t

)∣∣∣
=
∣∣∣f((X ∗ ρ1)(t), · · · , (X ∗ ρM )(t))− f

(
x
(1/2)
t

)
+ f

(
x
(1/2)
t

)
− FFN(1)

(
x
(1/2)
t

)∣∣∣
≤
∣∣∣f((X ∗ ρ1)(t), · · · , (X ∗ ρM )(t))− f

(
x
(1/2)
t

)∣∣∣+ ∣∣∣f (x(1/2)
t

)
− FFN(1)

(
x
(1/2)
t

)∣∣∣
≤∥f∥Lip

∥∥∥((X ∗ ρ1)(t)⊤, · · · , (X ∗ ρM )(t)⊤)⊤ − x
(1/2)
t

∥∥∥
2
+
∥∥∥f − FFN(1)

∥∥∥
L∞([−2,2]D)

≤∥f∥Lip · EAttn + EFFN,

where

EFFN =
∥f∥B√
m

; EAttn =
C(n)Mn+1

Hn
, for both Case (A) and Case (B).

Due to the arbitrariness of t and X , the proof is completed.
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F Key Lemmas about Approximation

F.1 Approximation by the sum of exponential decay

Lemma F.1 (Exp decay, fixed Delta function). For any T ∈ N+, n,m ∈ N+, there exists and

absolute constant C(n) only depending on n and a ϕexpm (t) =
m∑

k=1

αke
−βkt such that

∥I(· = T )− ϕexpm (·)∥ℓ1(N) ≤
C(n)e0.01(n+1)T

mn
.

where βk > 0 holds for any k ∈ [m].

Proof of Lemma F.1.
Let α, γ > 0 be constants, and they will take specific values at the end of the proof.

First, recall the standard bump function on [−1, 1]:

Ψ(x) :=

{
exp

(
− 1

1−x2

)
, x ∈ (−1, 1)

0, otherwise
,

and we can define the following constants for T ≥ 1:

µT = e−αT , σT = e−αT − e−α(T+1).

Then we consider the following bump function ΨT ∈ C∞([0, 1]):

ΨT (x) =

{
VTΨ

(
x−µT

σT

)
, x ∈ (µT − σT , µT + σT )

0, otherwise
,

where VT is a scaling constant such that ΨT (e
−αT ) = eγT .

First, we consider the approximation of ΨT on [0, 1].

Notice that ΨT ∈ C∞([0, 1]), and Ψ
(k)
T (0) = 0 for any k ∈ N. For the standard bump function

Ψ, for any n ∈ N+, there exists an absolute constant M(n) > 0 only depending on n, such that
max

0≤k≤10
sup

x∈[−1,1]

∣∣Ψ(k)(x)
∣∣ ≤M(n).

Notice that for any k ∈ N and x ∈ [0, 1],

Ψ
(k)
T (x) =

VT
σk
T

Ψ(k)

(
x− µT

σT

)
.

Therefore, the following upper bound holds:

MT (n) = max
0≤k≤n

VT
σk
T

M(n) =
VT
σn
T

M(n)

=
eγT · e(

e−αT − e−α(T+1)
)nM(n) =

M(n)e

(1− 1/e)n
e(γ+nα)T := C(n, α)e(γ+nα)T .

By Lemma G.5, for any m ∈ N+, there exists a polynomial Qm(x) =
m−1∑
k=0

αkx
k such that

sup
x∈[0,1]

|ΨT (x)−Qm(x)| ≤ MT (n)

mn
≤ C(n, α)e(γ+nα)T

mn
.

Now we use the transform x = e−αt on the function Ψ and consider

ΦT (t) := e−γtΨT (e
−αt), t ∈ [0,+∞).
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It is easy to verify that ΦT satisfies that

ΦT (t)
∣∣
N = I(t = T ).

Moreover, we consider the function

Pm(t) := e−γtQm(e−αt), t ∈ [0,+∞).

Then by choosing α = γ = 0.01, the following error estimate holds:

∥Pm(·)− I(· = T )∥ℓ1(N) =
+∞∑
t=0

|Pm(t)− ΦT (t)|

=

+∞∑
t=0

e−γt|Qm(e−αt)−ΨT (e
−αt)| ≤

+∞∑
t=0

e−γtMT (n)

mn

≤C(n, α)e
(γ+nα)T

mn

+∞∑
t=0

e−γt ≤ C(n)e0.01(n+1)T

mn

1

1− e−γ

=
C̃(n)e0.01(n+1)T

mn
.

Finally, notice that Pm(t) = e−γtQm (e−αt) =
m−1∑
k=0

αke
−(0.01+0.01k), so we can select ϕexpm (t) :=

Pm(t).

Lemma F.2 (Exp decay, adaptive Delta function). For any T ∈ N, n,m ∈ N+, there exists an

absolute constant C(n) only depending on n and a ϕexpm (t;B) =
m∑

k=1

αke
−βk(t−B) such that

max
1≤B≤T

∥I(· = B)− ϕexpm (·;B)∥ℓ1(N) ≤
C(n)e0.01(n+1)T

mn
.

where βk > 0 holds for any k ∈ [m].

Proof of Lemma F.2.
The key point of the proof is to note that the adaptability of B can be eliminated by the translation
operator t−B.

First, recall our proof of Lemma F.1. For the same ΨT (·), for any n,m ∈ N+, there exists an absolute

constant C(n) only depending on n and a polynomial Qm(x) =
m−1∑
k=0

αkx
k such that

sup
x∈[0,1]

|ΨT (x)−Qm(x)| ≤ C(n)e0.01(n+1)T

mn
.

Moreover, using the transform x = e−0.01(t−B+T ) (t ≥ 0) on the function Ψ and consider

ΦT (t;B) := e−0.01(t−B+T )ΨT

(
e−0.01(t−B+T )

)
, t ∈ [0,+∞).

It is easy to verify that ΦT (·; ·) satisfies that

ΦT (t;B)
∣∣
N = I(t = B).

And we consider the function

Pm(t;B) := e−0.01(t−B+T )Qm

(
e−0.01(t−B+T )

)
, t ∈ [0,+∞).
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Then, for any 1 ≤ B ≤ T , the following error estimate holds:

∥Pm(·;B)− I(· = B)∥ℓ1(N) =
+∞∑
t=0

|Pm(t;B)− ΦT (t;B)|

=

+∞∑
t=0

e−0.01(t−B+T )
∣∣∣Qm

(
e−0.01(t−B+T )

)
−ΨT

(
e−0.01(t−B+T )

)∣∣∣
≤

+∞∑
t=0

e−0.01t sup
x∈[0,1]

|Qm(x)−ΨT (x)|

≤C(n)e
0.01(n+1)T

mn

+∞∑
t=0

e−0.01t =
C̃(n)e0.01(n+1)T

mn
.

Due to the arbitrariness of B, the proof is completed.

Lemma F.3 (Exp decay, fixed Delta function). Consider a exponentially decayed memory ρ(·): there
exists β > 0 such that ρ(t) = O(e−βt). Then for any n ∈ [⌊99β⌋] and m ∈ N+, there exists an

absolute constant C(n) only depending on n and a ϕexpm (t) =
m∑

k=1

αke
−βkt such that

∥ρ(·)− ϕexpm (·)∥ℓ1(N) ≤
C(n)

mn
,

where βk > 0 holds for any k ∈ [m].

Proof of Lemma F.3.
There exists C > 0 such that |ρ(t)| ≤ Ce−βt.

Let α, γ > 0 be constants, and they will take specific values at the end of the proof.

First, recall the standard bump function on [−1, 1]:

Ψ(x) :=

{
exp

(
− 1

1−x2

)
, x ∈ (−1, 1)

0, otherwise
,

and we can define the following constants for T ≥ 1:

µT = e−αT , σT =
1

2

(
e−αT − e−α(T+1)

)
,

and we consider the following bump function ΨT ∈ C∞([0, 1]):

ΨT (x) =

{
VTΨ

(
x−µT

σT

)
, x ∈ (µT − σT , µT + σT )

0, otherwise
,

where VT is a scaling constant such that ΨT (e
−αT ) = eγT ρ(T ).

Consequently, we consider the sum of bump functions on [0, 1]:

φ(x) :=

+∞∑
T=1

ΨT (x).

It is easy to verify that (µT1 − σT1 , µT1 + σT1) ∩ (µT2 − σT2 , µT2 + σT2) = ∅ for any T1 ̸= T2 and

φ(x) =

{
ΨT (x), µT − σT ≤ x ≤ µT + σT
0, otherwise

.
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First, we study the property of φ(·).

We denote the absolute constants Mk = supx |φ(k)(x)|. Notice that for any k ∈ N,

Ψ
(k)
T (x) =

VT
σk
T

Ψ(k)

(
x− µT

σT

)
.

Therefore, it holds that

sup
x∈(µT−σT ,µT+σT )

|φ(k)(x)| = sup
x∈(µT−σT ,µT+σT )

|Ψ(k)
T (x)|

≤VT
σk
T

Mk =
eγT ρ(T )(

e−αT − e−α(T+1)
)kMke ≤

CMke

(1− e−α)k
e(γ+kα−β)T .

Therefore, if β ≥ γ + kα, then the following uniform bounds holds:

sup
x∈(0,1]

|φ(k)(x)| = sup
T≥1

sup
x∈(µT−σT ,µT+σT )

|φ(k)(x)|

≤ sup
T≥1

CMke

(1− e−α)k
e(γ+kα−β)T ≤ CMke

(1− e−α)k
:= C(k, α).

Consequently, we consider the smoothness of Φ at x = 0.

Recalling the previous results, for any x ∈ (0, 1], we have

|φ(k)(x)|
x

≤ C(k, α)
e(γ+kα−β)T

µT − σT
=

2C(k, α)

1− e−α
e(γ+(k+1)α−β)T , x ∈ (µT − σT , µT + σT );

|φ(k)(x)|
x

= 0, otherwise

Thus, by induction, it is easy to verify that for any i < β−γ
α (i ∈ N),

φ(i)(0) = 0.

Therefore, for any n < β−γ
α (n ∈ N), φ(k)(0) = 0 holds for any 0 ≤ k ≤ n. Moreover, there exists

absolute constant C(n, α) such that:

max
0≤k≤n

sup
x∈[0,1]

|φ(k)(x)| ≤ C(n, α).

By Lemma G.5, for any m ∈ N+, there exists a polynomial Qm(x) =
m−1∑
k=0

αkx
k such that

sup
x∈[0,1]

|φ(x)−Qm(x)| ≤ C(n, α)

mn
.

Now we use the transform x = e−αt (t ≥ 0) on the function φ and consider

Φ(t) :=
1

eγt
φ

(
1

eαt

)
, t ∈ [0,+∞).

It is easy to verify that Φ satisfies that

Φ(t)
∣∣
N = ρ(t)

∣∣
N.

Moreover, we consider the function

Pm(t) :=
1

eγt
Qm

(
1

eαt

)
, t ∈ [0,+∞).
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Then for any n < β−γ
α (n ∈ N), the following error estimate holds:

∥Pm(·)− ρ(·)∥ℓ1(N) =
+∞∑
t=0

|Pm(t)− Φ(t)|

=

+∞∑
t=0

e−γt
∣∣Qm

(
e−αt

)
−ΨT

(
e−αt

)∣∣ ≤ C(n, α)

mn

+∞∑
t=0

e−γt.

By choosing α = 5 · 10−3 and γ = 10−2β, it holds that 99β < β−γ
2α = β−γ

α .

Thus, we obtain our result: for any n ∈ [⌊99β⌋] (β ≥ 1/99), the following error estimate holds:

∥Pm(·)− ρ(·)∥ℓ1(N) ≤
C(n)

mn

+∞∑
t=0

e−γt =
C(n)

mn

1

1− e−10−2β
=
C̃(n)

mn
.

F.2 Approximation by the sum of polynomial decay

Lemma F.4 (Poly decay, fixed Delta function). For any T, n,m ∈ N+, there exists an absolute

constant C(n) only depending on n and a ϕpolym (t) =
m∑

k=1

αkt
−βk such that

∥∥I(· = T )− ϕpolym (·)
∥∥
ℓ1(N+)

≤ C(n)T 1.01(n+1)

mn
,

where βk > 1 holds for any k ∈ [m].

Proof of Lemma F.4.
Let α, γ > 0 be constants, and they will take specific values at the end of the proof

First, recall the standard bump function on [−1, 1]:

Ψ(x) :=

{
exp

(
− 1

1−x2

)
, x ∈ (−1, 1)

0, otherwise
,

and we can define the following constants for T ≥ 1:

µT =
1

Tα
, σT =

1

Tα
− 1

(T + 1)α
.

Then we consider the following bump function ΨT ∈ C∞([0, 1]):

ΨT (x) =

{
VTΨ

(
x−µT

σT

)
, x ∈ (µT − σT , µT + σT )

0, otherwise
,

where VT is a scaling constant such that ΨT (
1
Tα ) = T 1+γ .

First, we consider the approximation of ΨT on [0, 1].

Notice that ΨT ∈ C∞([0, 1]), and Ψ
(k)
T (0) = 0 for any k ∈ N. For the standard bump function

Ψ, for any n ∈ N+, there exists an absolute constant M(n) > 0 only depending on n, such that
max

0≤k≤n
sup

x∈[−1,1]

∣∣Ψ(k)(x)
∣∣ ≤M(n).

Notice that for any k ∈ N and x ∈ [0, 1],

Ψ
(k)
T (x) =

VT
σk
T

Ψ(k)

(
x− µT

σT

)
.
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Therefore, the following upper bound holds:

MT (n) = max
0≤k≤n

VT
σk
T

M(n) =
VT
σn
T

M(n) =
T 1+γe

(1/Tα − 1/(T + 1)α)
nM(n)

≤T
1+γ(T + 1)n(1+α)M(n)e

αn
≤ 2nM(n)e

αn
T 1+γ+n(1+α) := C(n, α)T 1+γ+n(1+α).

By Lemma G.5, for any m ∈ N+, there exists a polynomial Qm(x) =
m−1∑
k=0

αkx
k such that

sup
x∈[0,1]

|ΨT (x)−Qm(x)| ≤ MT (n)

mn
≤ C(n, α)T 1+γ+n(1+α)

mn
.

Now we use the transform x = 1
tα (t ≥ 1) on the function Ψ and consider

ΦT (t) :=
1

t1+γ
ΨT

(
1

tα

)
, t ∈ [1,+∞).

It is easy to verify that ΦT satisfies that

ΦT (t)
∣∣
N+

= I(t = T ).

Moreover, we consider the function

Pm(t) :=
1

t1+γ
Qm

(
1

tα

)
, t ∈ [1,+∞).

Then by choosing α = γ = 0.01, the following error estimate holds:

∥Pm(·)− I(· = T )∥ℓ1(N+) =

+∞∑
t=1

|Pm(t)− ΦT (t)|

=

+∞∑
t=1

1

t1+γ

∣∣∣∣Qm

(
1

tα

)
−ΨT

(
1

tα

)∣∣∣∣ ≤ +∞∑
t=1

1

t1+γ

MT (n)

mn

≤C(n, α)T
1+γ+n(1+α)

mn

+∞∑
t=1

1

t1+γ
=
C(n)T 1.01(n+1)

mn

+∞∑
t=1

1

t1+0.01

=
C̃(n)T 1.01(n+1)

mn
.

Finally, notice that Pm(·) satisfies to Pm(t) = 1
t1+γQm

(
1
tα

)
=

m−1∑
k=0

αkt
−(1.01+0.01k), so we can

select ϕpolym (t) := Pm(t).

Lemma F.5 (Poly decay, adaptive Delta function). For any T, n,m ∈ N+, there exists an absolute

constant C(n) only depending on n and a ϕpolym (t;B) =
m∑

k=1

αk(t/B)−βk such that

max
1≤B≤T

∥∥I(· = B)− ϕpolym (·;B)
∥∥
ℓ1(N+)

≤ C(n)T 1.01(n+1)

mn
,

where βk > 1 holds for any k ∈ [m].

Proof of Lemma F.5.
The key point of the proof is to note that the adaptability of B can be eliminated by the rescaling
operator t/B.
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First, recall our proof of Lemma F.4. For the same ΨT (·), for any n,m ∈ N+, there exists an absolute

constant C(n) only depending on n and a polynomial Qm(x) =
m−1∑
k=0

αkx
k such that

sup
x∈[0,1]

|ΨT (x)−Qm(x)| ≤ C(n)T 1.01(n+1)

mn
.

We use the transform x = 1
t0.01 (t ≥ 1) on the function Ψ and consider

ΦT (t;B) :=

(
B

tT

)1.01

ΨT

((
B

tT

)0.01
)
, t ∈ [1,+∞).

It is easy to verify that ΦT (·; ·) satisfies that

ΦT (t;B)
∣∣
N+

= I(t = B).

And we consider the function

Pm(t;B) :=

(
B

tT

)1.01

Qm

((
B

tT

)0.01
)
, t ∈ [1,+∞).

Then, for any 1 ≤ B ≤ T , the following error estimate holds:

∥Pm(·;B)− I(· = B)∥ℓ1(N+) =

+∞∑
t=1

|Pm(t;B)− ΦT (t;B)|

=

+∞∑
t=1

(
B

tT

)1.01
∣∣∣∣∣Qm

((
B

tT

)0.01
)

−ΨT

((
B

tT

)0.01
)∣∣∣∣∣

≤
+∞∑
t=1

1

t1.01
sup

x∈[0,1]

|Qm(x)−ΨT (x)|

≤C(n)T
1.01(n+1)

mn

+∞∑
t=1

1

t1.01
=
C̃(n)T 1.01(n+1)

mn
.

Due to the arbitrariness of B, the proof is completed.

Lemma F.6 (Poly decay, fixed Delta function). Consider a polynomially decayed memory ρ(·): there
exists β > 1 such that ρ(t) = O(t−β). Then for any n ∈ [⌊0.99β⌋ − 1] and m ∈ N+, there exists an

absolute constant C(n) only depending on n and a ϕpolym (t) =
m∑

k=1

αkt
−βk such that

∥∥ρ(·)− ϕpolym (·)
∥∥
ℓ1(N+)

≤ C(n)

mn
,

where βk > 1 holds for any k ∈ [m].

Proof of Lemma F.6.
There exists C > 0 such that |ρ(t)| ≤ C/tβ .

Let α, γ > 0 be constants, and they will take specific values at the end of the proof

First, recall the standard bump function on [−1, 1]:

Ψ(x) :=

{
exp

(
− 1

1−x2

)
, x ∈ (−1, 1)

0, otherwise
,
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and we can define the following constants for T ≥ 1:

µT =
1

Tα
, σT =

1

2

(
1

Tα
− 1

(T + 1)α

)
,

and we consider the following bump function ΨT ∈ C∞([0, 1]):

ΨT (x) =

{
VTΨ

(
x−µT

σT

)
, x ∈ (µT − σT , µT + σT )

0, otherwise
,

where VT is a scaling constant such that ΨT (
1
Tα ) = T 1+γρ(T ).

Consequently, we consider the sum of bump functions on [0, 1]:

φ(x) :=

+∞∑
T=1

ΨT (x).

It is easy to verify that (µT1
− σT1

, µT1
+ σT1

) ∩ (µT2
− σT2

, µT2
+ σT2

) = ∅ for any T1 ̸= T2 and

φ(x) =

{
ΨT (x), µT − σT ≤ x ≤ µT + σT
0, otherwise

.

First, we study the property of φ(·).

We denote the absolute constants Mk = supx |φ(k)(x)|. Notice that for any k ∈ N,

Ψ
(k)
T (x) =

VT
σk
T

Ψ(k)

(
x− µT

σT

)
.

Therefore, it holds that

sup
x∈(µT−σT ,µT+σT )

|φ(k)(x)| = sup
x∈(µT−σT ,µT+σT )

|Ψ(k)
T (x)|

≤VT
σk
T

Mk =
T 1+γρ(T )(

1
Tα − 1

(T+1)α

)k 2kMke

≤ (T + 1)k(1+α)T 1+γ−βC2kMke

αk
≤ 2k(2+α)CMke

αk
T 1+γ+k(1+α)−β .

Therefore, if k ≤ β−(1+γ)
1+α , the following uniform bounds hold:

sup
x∈(0,1]

|φ(k)(x)| = sup
T≥1

sup
x∈(µT−σT ,µT+σT )

|φ(k)(x)|

≤ sup
T≥1

2k(2+α)CMke

αk
T 1+γ+k(1+α)−β ≤ 2k(2+α)CMke

αk
:= C(k, α).

Consequently, we consider the smoothness of Φ at x = 0.

Recalling the previous results, for any x ∈ (0, 1], we have

|φ(k)(x)|
x

≤ C(k, α)
T 1+γ+k(1+α)−β

µT − σT
≤ C(k, α)22+α

α
T 1+γ+(k+1)(1+α)−β , x ∈ (µT − σT , µT + σT );

|φ(k)(x)|
x

= 0, otherwise

Thus, by induction, it is easy to verify that for any i < β−(1+γ)
1+α (i ∈ N),

φ(i)(0) = 0.
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Therefore, for any n < β−(1+γ)
1+α (n ∈ N+), φ(k)(0) = 0 holds for any 0 ≤ k ≤ n. Moreover, the

following uniform bound holds:

max
0≤k≤n

sup
x∈[0,1]

|φ(k)(x)| ≤ C(n, α).

By Lemma G.5, for any m ∈ N+, there exists a polynomial Qm(x) =
m−1∑
k=0

αkx
k such that

sup
x∈[0,1]

|φ(x)−Qm(x)| ≤ C(n, α)

mn
.

Now we use the transform x = 1
tα (t ≥ 1) on the function φ and consider

Φ(t) :=
1

t1+γ
φ

(
1

tα

)
, t ∈ [1,+∞).

It is easy to verify that Φ satisfies that

Φ(t)
∣∣
N+

= ρ(t)
∣∣
N+
.

Moreover, we consider the function

Pm(t) :=
1

t1+γ
Qm

(
1

tα

)
, t ∈ [1,+∞).

Then for any n < β−(1+γ)
1+α (n ∈ N), the following error estimate holds:

∥Pm(·)− ρ(·)∥ℓ1(N+) =

+∞∑
t=1

|Pm(t)− Φ(t)|

=

+∞∑
t=1

1

t1+γ

∣∣∣∣Qm

(
1

tα

)
−ΨT

(
1

tα

)∣∣∣∣ ≤ C(n, α)

mn

+∞∑
t=1

1

t1+γ
.

By choosing α = 10−2 and γ = 10−4β, we have 0.99β − 1 = β−γ
1+α − 1 = β−(1+γ+α)

1+α < β−(1+γ)
1+α .

Thus, we obtain our result: for any n ∈ [⌊0.99β⌋ − 1] (β ≥ 2/0.99), the following error estimate
holds:

∥Pm(·)− ρ(·)∥ℓ1(N+) ≤
C(n)

mn

+∞∑
t=1

1

t1+γ
≤ C(n)

mn

+∞∑
t=1

1

t1+10−4 =
C̃(n)

mn
.
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G Some Background and Proof Preparation

G.1 T5’s relative positional encoding

The T5’s Relative Positional Encoding is primary focus of this study. Its standard form in practical
applications (Raffel et al., 2020) adheres to Rt,s = r(t− s), where

−r(n) =


n, if n < B
B + ⌊B · log(n/B)

log(D/B)⌋, if B ≤ n < D
2B − 1, if n ≥ D

.

Here, D is a large integer, signifying the longest distance of concern, while B is a small integer. One
can see that for n < B, r(·) exhibits polynomial decay, whereas for B < n < D , r(·) demonstrates
logarithmic decay. Consequently, the overall decay rate of r(·) is logarithmic.

The following Table further provides an example of standard T5’s Relative Positional Encoding.

Table 1: An example of standard T5’s Relative Positional Encoding
t− s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

−r(t− s) 0 1 2 3 4 5 6 7 8 8 8 8 9 9 9 9

t− s 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 · · ·
−r(t− s) 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 · · ·

G.2 Barron space theory

The well-known universal approximation result for 2NNs asserts that 2NNs can approximate any
continuous function (Barron, 1992; 1993; 1994). Nonetheless, this result lacks a characterization of
the approximation efficiency, i.e., how many neurons are needed to achieve a certain approximation
accuracy? This gap was addressed by the Barron space theory (E et al., 2019; 2021). It is established
that for any function within Barron space f ∈ B, 2NNs with m neurons (denoted by Hm) can approx-
imate them efficiently, at a rate of inffm∈Hm ∥f − fm∥ ≤ O(∥f∥B /

√
m), remarkably independent

of the input dimension d, thus avoiding the Curse of Dimensionality (Bellman, 1966; Bach, 2017).
Specifically, the Barron space is defined by:

Definition G.1 (Barron space (E et al., 2019; 2021; Ma et al., 2020)). Consider functions f : X → R
that admit the following representation:

f(x) =

∫
Ω

aσ(b⊤x+ c)ρ(da, db, dc), x ∈ X.

For any p ∈ [1,+∞], we define the Barron norm:

∥f∥Bp
:= inf

ρ

(
Eρ [|a|p(∥b∥1 + |c|)p]

)1/p
.

Then the Barron space are defined as:

Bp := {f ∈ C : ∥f∥Bp
< +∞}.

Proposition G.2. For any p ∈ [1,+∞], Bp = B∞ and ∥f∥Bp
= ∥f∥B∞

.

Remark G.3. From the Proposition above, the Barron spaces Bp are equivalent for any p ∈ [1,+∞].
Consequently, in this paper, we use B and ∥·∥B to denote the Barron space and Barron norm.

Remark G.4. For Barron space B, both Direct and Inverse Approximation Theorems hold (E et al.,
2021). In this paper, we mainly utilize the Direct Approximation Theorem, stated in Lemma G.6.
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G.3 Useful approximation lemmas

Lemma G.5 (Jackson (1930)). Let f ∈ Cn([0, 1]) with f(0) = f ′(0) = · · · = f (n)(0) = 0. Then

for any m ∈ N+, there exists a polynomial Qm(x) =
m−1∑
k=0

αkx
k such that

∥f −Qm∥L∞([0,1]) ≤
M(n)

mn
,

where M(n) = max
k≤n

∥∥f (k)∥∥
L∞([0,1])

.

Lemma G.6 (Ma et al. (2020)). For any f ∈ B and m ∈ N, there exists a two-layer ReLU neural

network fm(x) =
m∑

k=1

akσ(b
⊤
k x+ ck) with m neurons such that

∥f − fm∥L∞([0,1]d) ≤ Õ
(
∥f∥B√
m

)
.
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H Experiments

H.1 Restatement of our theoretical insights

As detailed in Section 1, our theoretical analysis reveals the following novel insights into the
expressive power and mechanisms of Transformer:

Insight (1). The distinct roles of the number of layers, the number of Attn heads, and the
width of FFN layers. (1a) Deeper Transformers can handle tasks with memories with more intricate
interrelationships, such as nested relationships (Type II). (1b) In contrast, for tasks with memories
lacking such interrelationships (Type I), a single-layer Transformer with sufficient Attn heads and
FFN width should suffice.

Insight (2). The different roles of Attn layers and FFN layers. (2a) FFN layers are tasked with
approximating nonlinear memory functions and the readout function, (2b) while Attn layers are
responsible for extracting the tokens from the memory locations.

Insight (3). The functionality and necessity of Dot-product (DP). (3a) For the relatively simple
Task I, DP is not necessary and can be omitted. (3b) However, for the more complex Task II,
DP provides necessary nonlinearity: the cooperation between DP and RPE provides the needed
interaction between the temporal space and the token space.

Insight (4). The efficiency of Relative Positional Encoding (RPE) in modeling long-range
correlations. The primary role of RPE is to approximate the memory kernels. (4a) Transformer with
log-type RPE can handle heavy-tailed memories. (4b) Transformer with lin-type RPE can handle
light-tailed memories.

H.2 Experimental Validation

To validation of our theoretical insights (1a)∼(4b), we conduct 8 experiments, from simple toy
models to more complex LLM pre-training. The experiments are conducted on 1 A100.

H.2.1 Validation of Insight (1a)

Objective. As indicated in Section 4, numerous NLP tasks exhibit complex interrelationships among
tokens and belong to our Task II. This experiment aims to verify our Insight (1a): for such tasks,
increasing the number of layers L is more efficient than increasing the number of Attn heads H .

Setup. Specifically, we pretrain decoder-only Transformers (Vaswani et al., 2017) with different L and
H on the OpenWebText dataset (Gokaslan and Cohen, 2019) for 10,000 iterations (approximately 1B
tokens) on 1 A100, using cross-entropy loss and AdamW with the same hyperparameters. To ensure
comparability, we meticulously balance the total number of parameters across both experimental
setups.

Results and conclusion. The final validation losses are shown in Table 2. By comparing these
two subtables, the benefits brought by increasing L are much greater than the benefits brought by
increasing H (0.802 > 0.136), thereby corroborating our Insight (1a).

Table 2: Results of the experiment supporting Insight (1a).
L = 1, H = 8 (26M) L = 1, H = 12 (29M) L = 1, H = 12 (32M)

5.796 (baseline) 5.689 (↓ 0.107) 5.660 (↓ 0.136)

L = 1, H = 8 (26M) L = 4, H = 8 (29M) L = 8, H = 8 (32M)
5.796 (baseline) 5.374 (↓ 0.422) 4.994 (↓ 0.802)

H.2.2 Validation of Insight (1b)

Objective. As mentioned in Section 3, sparse Boolean functions have no interactions among the
memories and belong to our Task I. This experiment aims to verify our Insight (1b): for such tasks,
a single-layer Transformer equipped with a sufficient number of Attn heads H and FFN width m
suffices, and there is no need to increase the number of layers L.
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Setup. Specifically, we train single-layer DP-free Transformers with different H and
m to learn a sparse Boolean target function f∗: f∗(x) := g∗(x48, x56, x99) :=∑64

k=1 ReLU(⟨w∗
k, (x48, x56, x99)⟩) for input sequence x = (x1, · · · , x1000) ∈ {±1}1000, where

w∗
k are generated by w∗

k ∼ N(0, I3). Training proceeds for 10,000 iterations (1M samples) using
squared loss and AdamW with the same hyperparameters.

Results and conclusion. The final validation losses are shown in Table 3. As shown in this table, a
single-layer Transformer equipped with a sufficient H (32) and m (256) is adequate for representing
this sparse Boolean function. This empirical evidence supports our Insight (1b).

Table 3: Results of the experiment supporting Insight (1b).
H = 2,m = 16 H = 8,m = 64 H = 32,m = 256

0.21 0.04 0.01

H.2.3 Validation of Insight (2a)

Objective. This experiment aims to verify our Insight (2a): to learn a sparse Boolean function with a
“complex” readout function and “simple” memories, increasing the FFN width m can significantly
improve the performance, whereas increasing the number of Attn heads H brings almost no benefit.

Setup. Specifically, we train single-layer DP-free Transformers with different H and m to learn
a sparse Boolean function with a "complex" readout function (g∗) and a "simple" single memory
(x99): f∗(x) := g∗(x99) :=

∑64
k=1 ReLU(w∗

k · x99) for any input sequence x = (x1, · · · , x1000) ∈
{±1}1000, where w∗

k are generated by w∗
k ∼ N(0, 1). Training proceeds for 10,000 iterations (1M

samples) using squared loss and AdamW with the same hyperparameters.

Results and conclusion. The final validation losses are shown in Table 4. The tables indicate that,
for learning a sparse Boolean function with a “complex” readout function and “simple” memories,
increasing m can significantly improve the performance (0.49 → 0.002), almost completing this task
perfectly. Conversely, increasing H fails to yield substantial improvement. This empirical evidence
supports our Insight (2a).

Table 4: Results of the experiment supporting Insight (2a).
m = 8 m = 64 m = 512

H = 8 0.49 0.006 0.002
H = 8 H = 64 H = 512

m = 8 0.49 0.49 0.52

H.2.4 Validation of Insight (2b)

Objective. Contrasting with Experiment (2a), this experiment aims to verify our Insight (2b): for
learning a sparse Boolean function with a “simple” readout function and “complex” memories,
increasing the number of Attn headers H can substantially improve the performance while increasing
FFN width m will offer almost no benefit.

Setup. Specifically, we train single-layer DP-free Transformers with different H and m to learn
a sparse Boolean function with a “simple” linear readout function (g∗) and relatively “complex”
memories (x48, x56, x99): f∗(x) := g∗(x48, x56, x99) := x48 + x56 + x99 for any input sequence
x = (x1, · · · , x1000) ∈ {±1}1000. Training processes for 10,000 iterations (1M samples), using
squared loss and AdamW with the same hyperparameters.

Results and conclusion. The final validation losses are presented in Table 5. The tables indicate that,
for learning a sparse Boolean function with a “simple” readout function and “complex” memories,
increasing m can significantly improve the performance (1.16 → 10−6), closely achieving task
perfection. In contrast, increasing m brings almost no benefits. This empirical evidence supports our
Insight 2(b).

H.2.5 Validation of Insight (3a)

Objective. As mentioned in Section 3, learning sparse Boolean functions has no interactions among
the memories and belongs to our Task I. This experiment aims to verify our insight (3a): for such
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Table 5: Results of the experiment supporting Insight (2b).
m = 2 m = 64 m = 256

H = 2 1.16 0.81 1.23
H = 2 H = 64 H = 256

m = 2 1.16 <1e-6 <1e-6

tasks, a DP-free Transformer equipped with a sufficient number of Attn heads H and FFN width m
is sufficiently capable. Moreover, there is no need to use DP structure in Attn.

Setup. Specifically, we train single-layer DP-free Transformers with different H and m and with
DP or without DP to learn a sparse Boolean target function f∗: f∗(x) := g∗(x48, x56, x99) :=∑64

k=1 ReLU(⟨w∗
k, (x48, x56, x99)⟩) for input sequence x = (x1, · · · , x1000) ∈ {±1}1000, where

w∗
k are generated by w∗

k ∼ N(0, I3). Training proceeds for 10,000 iterations (1M samples) using
squared loss and AdamW with the same hyperparameters.

Results and conclusion. The final validation losses are shown in Table 6. The findings illustrate
that a DP-free Transformer equipped with a sufficient H (32) and m (256) is adept at accurately
representing the given sparse Boolean function. Additionally, the Incorporation of the DP structure
into the layers contributes marginally to performance enhancement. This substantiates our Insight
(3a).

Table 6: Results of the experiment supporting Insight (3a).
H = 2,m = 16 H = 8,m = 64 H = 32,m = 256

with DP 0.21 0.04 0.01
without DP 0.17 0.11 0.02

H.2.6 Validation of Insight (3b)

Objective. As indicated in Section 4, numerous NLP tasks exhibit complex interrelationships among
tokens and belong to our Task II. This experiment aims to verify our Insight (3b): for such tasks, the
utilization of DP structure in Attn layers is necessary.

Setup. Specifically, we pre-train Transformers with DP or without DP on the OpenWebText dataset
for 10,000 iterations (approximately 1B tokens) on 1 A100, using cross-entropy loss and AdamW
with the same hyperparameters.

Results and conclusion. The final validation losses are presented in Table 7. As shown in the table, for
NLP pre-training tasks, Transformer incorporating DP structure is more efficient than Transformer
without DP (5.796 < 5.830, 5.374 < 5.486, 4.994 < 5.274), thereby supporting our Insight 3(b).

Table 7: Results of the experiment supporting Insight (3b).
L = 1, H = 8 L = 4, H = 8 L = 8, H = 8

with DP 5.796 5.374 4.994
without DP 5.830 5.486 5.274

H.2.7 Validation of Insight (4a)

Objective. This experiment aims to verify our Insight (4a): for learning Task III with heavy-tailed
memories, Transformers with log-type RPE are efficient, whereas those with lin-type RPE fail.

Setup. Specifically, we train single-layer, FFN-free, DP-free Transformers with log-type RPE or lin-
type RPE and varying numbers of Attn heads H . The target function involves a heavy-tailed memory
kernel ρ(t) = t−0.5: f∗(x) :=

∑1000
s=1 xsρ(1000− s) for any input sequence x = (x1, · · · , x1000) ∈

{±1}1000. Training processes for 10,000 iterations (1M samples) using squared loss and AdamW
with the same hyperparameters.

Results and conclusion. The final validation losses are shown in Table 8. As shown in the table,
to learn heavy-tailed memories, even single-head Transformer with log-type RRE can complete it
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perfectly (< 10−5). Conversely, Transformers employing lin-type RRE exhibit limited improvement
even with up to 64 heads (0.19). This empirical evidence supports our Insight (4a).

Table 8: Results of the experiment supporting Insight (4a).
H = 1 H = 4 H = 16 H = 64

type=log <1e-5 <1e-5 <1e-5 <1e-5
type=lin 0.73 0.68 1.16 0.19

H.2.8 Validation of Insight (4b)

Objective. In contrast to Experiment (4a), this experiment aims to verify that for learning our Task III
with light-tailed memories, Transformers with lin-type RPE are efficient, whereas those with log-type
RPE fail.

Setup. Specifically, we train single-layer, FFN-free, DP-free Transformers with log-type RPE or lin-
type RPE and varying numbers of Attn heads H . The target function involves a heavy-tailed memory
kernel ρ(t) = e−5t: f∗(x) :=

∑1000
s=1 xsρ(1000− s) for any input sequence x = (x1, · · · , x1000) ∈

{±1}1000. Training processes for 10,000 iterations (1M samples) using squared loss and AdamW
with the same hyperparameters.

Results and conclusion. The final validation losses are shown in Table 9. As shown in the table,
to learn light-tailed memories, even single-head Transformer with lin-type RRE can complete it
perfectly (< 10−7). Conversely, Transformers employing log-type RRE exhibit limited improvement
even with up to 64 heads (5.3× 10−4). This empirical evidence supports our Insight (4b).

Table 9: Results of the experiment supporting Insight (4b).
H = 1 H = 4 H = 16 H = 64

type=log 9.1e-4 3.7e-3 2.6e-3 5.3e-4
type=lin <1e-7 <1e-7 <1e-7 <1e-7

H.3 Practical Implications

Our theoretical insights and empirical evidence can directly lead to the following 8 practical implica-
tions, such as the strategic selection of Transformer hyperparameters for specific tasks.

• Implication (1a). (supported by Insight (1a) and Experiment (1a))
For sequence modeling tasks with complex interrelations between memories, such as many NLP
applications, enhancing the number of layers L is more beneficial than increasing the number of
Attn heads H and FFN width m.

• Implication (1b). (supported by Insight (1b) and Experiment (1b))
For simple sequence modeling tasks with almost no memory intercorrelation, such as the learning
of sparse Boolean function, improving performance necessitates only sufficient H and m in a
single-layer Transformer, without a need to increase L.

• Implication (2a). (supported by Insight (2a) and Experiment (2a))
For sequence modeling tasks with complex readout or memory functions, increasing m can
significantly improve performance.

• Implication (2b). (supported by Insight (2b) and Experiment (2b))
For sequence modeling tasks with multiple memories, increasing H can markedly improve
performance.

• Implication (3a). (supported by Insight (3a) and Experiment (3a))
For simple sequence modeling tasks with almost no memory correlations, such as learning
sparse Boolean functions, omitting the DP structure in Attn layers can still perform well.

• Implication (3b). (supported by Insight (3b) and Experiment (3b))
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For sequence modeling tasks with complex correlations between memories, such as many NLP
tasks, preserving the DP structure in attention layers is crucial for achieving high performance
due to its indispensable nonlinearity.

• Implication (4a). (supported by Insight (4a) and Experiment (4a))
For sequence modeling tasks with heavy-tailed memories, the employment of log-type RPE
(such as T5’s RPE and KERPLE (log)) is recommended over lin-type RPE (such as Alibi).

• Implication (4b). (supported by Insight (4b) and Experiment (4b))
For sequence modeling tasks with light-tailed memories, the employment of lin-type RPE (such
as Alibi) is recommended over log-type RPE (such as T5’s RPE and KERPLE (log)).

70



NeurIPS Paper Checklist
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We believe that the abstract and introduction reflect the contributions and
scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
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address problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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a complete (and correct) proof?
Answer: [Yes]
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4. Experimental Result Reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We believe that all of the experimental results are reproducible in our work.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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be necessary to either make it possible for others to replicate the model with the same
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to reproduce that algorithm.
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In the case of closed-source models, it may be that access to the model is limited in
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to have some path to reproducing or verifying the results.

5. Open access to data and code
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versions (if applicable).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.
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• If the authors answer No, they should explain the special circumstances that require a
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eration due to laws or regulations in their jurisdiction).
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Justification: [NA]
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• The answer NA means that there is no societal impact of the work performed.
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should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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