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ABSTRACT

Large language models (LLMs) deliver the impressive capability, while their pa-
rameter scales hinder the deployment ability. Post-training matrix/tensor decom-
position offers a promising strategy to alleviate this by exploiting structural re-
dundancies within model weights. However, it faces the critical dense core bot-
tleneck. This bottleneck caps achievable compression level as dense core tensor
becomes a new storage burden. To solve this, we introduce LeSTD (Learning-
based Sparse Tensor Decomposition), a two-stage, data-free compression frame-
work. LeSTD first learns a high-quality shared basis for model weights, then
applies a theoretically-ground pruning mechanism: guided by a derived closed-
form importance score, to create an ultra-sparse core tensor. Therefore, resulting
a superior compression-accuracy trade-off: LeSTD achieves substantially higher
compression ratios than dense-core methods without sacrificing performance. Ex-
periments on the LLMs up to 30B parameters confirm that LeSTD consistently
attains lower perplexity and higher task accuracy at matched compression levels,
and critically, maintains strong performance under aggressive compression where
prior methods degrade. Operationally, LeSTD executes the inference directly in
its compressed domain, delivering significant throughput gains on standard hard-
ware without requiring any custom kernels.

1 INTRODUCTION

Transformer-based Large Language Models (LLMs) (Vaswani et al., 2017) form the backbone of
contemporary AI, demonstrating remarkable performance in natural language understanding (Nie
et al., 2019; Gatt & Krahmer, 2018), code generation (Gu, 2023), and mathematical reasoning (Zeng
et al., 2023; Imani et al., 2023). However, these advances are accompanied by an ever-growing
model scale, with models comprising hundreds of billions of parameters. This imposes formidable
storage and memory demands (Kwon et al., 2023; Hu et al., 2024), limiting their deployment in
resource-constrained environments and necessitating effective model compression strategies.

Among various paradigms, post-training LLM compression approach have emerged as practical so-
lutions as it can avoid the expensive retraining. This paradigm includes the pruning (Ma et al., 2023;
Fu et al., 2024), quantization Liu et al. (2023; 2024); Zhao et al. (2024), and low-rank decomposi-
tion (Wang et al., 2024b; Yuan et al., 2023). Among all these different approaches, even the simplest
low-rank approach, e.g., Singular Value Decomposition (SVD), has shown the promise on individual
weight matrices (Wang et al., 2024b), demonstrates strong application potential.

Most existing low-rank methods (Yuan et al., 2023; Wang et al., 2024b) adopt a matrix-by-matrix
compression strategy. While this approach is intuitive, it overlooks higher-order correlations and
the structural redundancies spanning related weight matrices (Szekely et al., 2024). Consequently, it
misses the opportunity to treat them as a unified object, which could further improve the achievable
compression ratio. Moreover, vast studies have shown that multiple attention heads (MHA) within
a single Transformer layer often learn the redundant patterns (Michel et al., 2019; Voita et al., 2019;
Yang et al., 2024), highlighting additional opportunities for joint compression.

Motivation. Achieving joint compression is non-trivial. A fundamental question is whether a shared
structure truly exists across heads within one layer? Intuitively, because all heads in a layer process
the same input distribution, their weight matrices might lie in (or near) a common subspace.
Diagnostic. To test this hypothesis, we design a diagnostic that quantifies subspace sharing. Core

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 200 400 600 800 10000.0

0.5

1.0

O
PT

-6
.7

B
ex

pl
ai

ne
d 

en
er

gy (a)

0 200 400 600 800 10000.0

0.5

1.0 (b)

0 200 400 600 800 10000.0

0.5

1.0 (c)

0 200 400 600 800 1000
rank r

(one head)

0.0

0.5

1.0

LL
aM

A-
2-

7B
ex

pl
ai

ne
d 

en
er

gy (d)

0 200 400 600 800 1000
rank r

(two heads)

0.0

0.5

1.0 (e)

0 200 400 600 800 1000
rank r

(three heads)

0.0

0.5

1.0 (f)

self intra-layer inter-layer

Figure 1: Subspace-sharing diagnostic on OPT-6.7B and Llama2-7B across multiple heads.
For each column, we compute a rank-r orthonormal basis from the concatenated weights
[WQ|WK |W V |(WO)⊤] of layer-15 using: (Figure (a),(d)) one head (head 0), (Figure (b), (e))
two heads (heads 0, 1), and (Figure (c), (f)) three heads (heads 0, 1, and 2), and evaluate the ex-
plained energy on self, intra-layer (other heads in layer 15), and inter-layer (layer-25 head 0), with
r ∈ {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}. The top row shows OPT-6.7B and the bottom row
shows Llama2-7B.

idea is to learn a basis from one attention head and assess how well it transfers to other heads.
Concretely, for a given head i in layer l, we construct its complete linear transformation by con-
catenating its constituent Query (WQ), Key (WK), Value (W V ) and Output (WO) weights into
a single matrix: Hl,i = [WQ|WK |W V |(WO)⊤] ∈ Rdmodel×4·dhead . We then perform an SVD and
extract top-r left singular vectors to form an orthonormal basis U (r). This basis is used to project
and reconstruct three targets: (i) the source matrix itself (self), (ii) another head j (j ̸= i)’s matrix
from the same layer (intra), and (iii) a head’s matrix from a different layer k (k ̸= l) (inter). Re-
construction quality is measured by the explained energy (Greenacre et al., 2022; Wiskott, 2013),
defined as 1 − E2, where E = ∥H−Ĥ∥F

∥H∥F
is relative Frobenius reconstruction error (Tong et al.,

2021) and Ĥ = U (r)(U (r))⊤H is reconstructed matrix (Eckart & Young, 1936). Explained energy
quantifies how much of a target matrix’s total information is retained when projected onto another
head’s basis, a higher value indicates stronger overlap between two subspaces and thus greater sub-
space sharing. The curves in Figure 1 directly address the central question posed in our motivation:
does a shared subspace exist across heads within the same layer? The answer is affirmative. As the
subspace rank r and the number of heads increase, explained energy for intra systematically rises
and remain consistently above inter. This pattern shows that a basis learned from one or more heads
capture nontrivial portions of the variation of other heads in the same layer, and that captured portion
grows as more dimensions are allowed. Hence, there is real, layer-local structure that different heads
share. At the same time, for a single head, the intra-layer curves saturate well below the self ceiling.
However, by examining layers with a larger number of heads, we find that the shared similarity be-
tween heads in terms of explained energy increases as the number of heads grows. Geometrically,
this suggests that the corresponding subspaces exhibit greater overlap when more heads are present.
This trend highlights additional untapped structure and indicates the potential for new methods that
more effectively exploit the unexplained energy.

These two facts together validate our motivation and revealed a research gap: shared structure does
exist, but exploiting it requires a mechanism that is richer than matrix-by-matrix (single-head) trans-
fer. This mandates a joint optimization approach to identify a common subspace that can efficiently
represent all heads simultaneously. Recent methods, such as the TensorLLM (Gu et al., 2025), apply
a global Tucker decomposition to the MHA block and successfully identify a high-quality shared
basis. While this represents a clear step forward beyond matrix-by-matrix compression, it also in-
troduces a critical and unresolved limitation:
Dense Core Bottleneck. Tucker decomposition factorizes a tensor into a set of compact factor ma-
trices and a core tensor. In our setting, the factor matrices capture low-dimensional shared subspaces
along each mode, while the core tensor encodes the remaining cross-mode interactions.. While the
factor matrices can be relative small, the core tensor remains fully dense (Ahmadi-Asl et al., 2021;
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Wang & Yang, 2022). To preserve model accuracy, the Tucker ranks must be sufficiently large, but
the size of the core tensor grows polynomial with these ranks. This dense core rapidly becomes the
new storage bottleneck, imposing a hard limit on the achievable compression ratio.

This limitation exposes a fundamental gap: current tensor-based methods reduce dimensionality but
fail to eliminate redundancy within the compressed latent space itself. To achieve the truly high-ratio
compression, we must moving beyond low-rank approximation and into the domain of sparse tensor
representation (Park et al., 2021).

To fill this critical gap, we propose LeSTD (Learning-based Sparse Tensor Decomposition), a frame-
work that synergistically combines iterative basis optimization with the learned core tensor sparsity.
LeSTD operates in two stages: first, it optimizes a high-quality shared basis for all attention heads;
second, it learns an ultra-sparse representation for the core tensor within that basis. This integrated
approach yields a representation that is both more accurate and vastly more compact. Main contri-
butions of LeSTD are as follows:

1. The proposal of LeSTD, a data-free post-training compression framework where Stage I learns a
high-quality shared basis via iterative optimization, and Stage II introduces a principled pruning
strategy to create an ultra-sparse core tensor.

2. We provide a theoretical justification for the magnitude-based pruning in the Tucker-decomposed
latent space. We derive a closed-form importance score for each core element, directly linking
its magnitude to its impact on the Frobenius reconstruction error. This allows for a principled,
rather than purely heuristic, sparsification of the core

3. We demonstrate how inference can operate directly on the compressed representation, avoiding
the full weight reconstruction. It reduces arithmetic complexity and delivers practical throughput
gains (tokens/sec) measured directly within the standard Transformers library (Wolf et al., 2020),
requiring no specialized hardware or custom kernels.

4. Across GPT-J (6B), Llama2 (13B), and OPT (30B) on WikiText-2, MathQA, GSM8K, and Truth-
fulQA, LeSTD consistently outperforms baselines at matched size fractions: maintaining higher
accuracy under strong compression and delivering competitive-to-superior throughput.

2 BACKGROUND AND PRELIMINARY
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Figure 2: An illustration of the Transformer ar-
chitecture (right) alongside the corresponding ten-
sorization process used in our scheme (left).

Notation. We denote tensors by uppercase cal-
ligraphic letters, e.g., X ∈ RI1×I2×···×IN , ma-
trices by uppercase bold letters, e.g., X ∈
RI1×I2 , and vectors by the lowercase bold let-
ters, e.g., x ∈ RI1 . The Frobenius norm of
a tensor (Defant & Floret, 1992) is ∥X∥F =∑

i1,...,iN
x2
i1,...,iN

. The mode-n unfolding of
X is a matrix X(n) ∈ RIn×(

∏
k ̸=n Ik) whose

columns are the mode-n fibers of the tensor.
Transformer Architecture. Modern LLMs
typically employ a decoder-only Transformer
architecture (Vaswani et al., 2017; Fu et al.,
2023), composed of a stack of identical layers,
as shown at the right of Figure 2. Each layer
contains a Multi-Head Attention (MHA) block
and a Feed-Forward Network (FFN). MHA
block allows the model to jointly attend to
information from different representation sub-
spaces. For the i-th attention head, the query
Q, key K, and value V inputs are linearly projected via weighted matrices WQ

i ,WK
i ,W V

i ∈
Rdmodel×dhead , 1 ≤ i ≤ h, and dhead = dmodel

h is the per-head dimension:

headi = Att(QWQ
i ,KWK

i ,V W V
i ) = softmax

(
(QWQ

i )(KWK
i )⊤√

dhead

)
(V W V

i ) (1)

To improve stability and training efficiency, residual connections (Xie et al., 2023) and layer nor-
malization (Xiong et al., 2020) are usually applied, though omitted here for clarity. The outputs of h
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Figure 3: Overview of LeSTD. Left: MHA weights are tensorized. Middle: An iterative optimiza-
tion finds high-quality shared orthogonal factor matrices (U (n)) and a dense core (Gi) for each head.
Right: A pruning mechanism enforces extreme sparsity on the core tensors.

attention heads are concatenated and projected back into the latent space via an output matrix WO:

MultiHead(Q,K,V ) = Concat(head1, ..., headh)WO (2)

Thus, MHA block involves four weight matrices: the query projection WQ, key projection WK ,
value projection W V , and the output projection WO. We refer to these as the MHA weight matri-
ces, which constitute the target of our compression.
Tensor Operations and Decompositions. The n-mode product of a tensor X ∈ RI1×I2×···×IN

with a matrix U ∈ RJn×In is a tensor Y ∈ RI1×···×Jn×···×IN , denoted as Y = X ×n U . Element-
wise, this is defined as (Y)i1,...,jn,...,iN =

∑In
in=1 xi1,...,jn,...,iNujn,in . This operation can be under-

stood as multiplying the matrix U with every mode-n fiber of the tensor X . Tucker decomposition
is a fundamental higher-order generalization of SVD. It decomposes a tensor X into a (typically
smaller) core tensor G ∈ RR1×···×RN and a set of factor matrices {U (n) ∈ RIn×Rn}Nn=1, one for
each mode. The decomposition is expressed as X ≈ G ×1 U

(1) ×2 U
(2) · · · ×N U (N). The core

tensor G can be interpreted as containing the latent interactions between the factors, while the factor
matrices U (n) represent the principal components in each mode. The dimensions of the core tensor,
(R1, ..., RN ), are referred to as the Tucker ranks of the decomposition. By choosing Rn ≪ In, a
compressed representation of X is achieved.

3 DESIGN OF LESTD

LeSTD is a two-stage, data-free post-training compression framework for the MHA blocks of LLMs.
Its goal is to dramatically reduce the storage cost of MHA parameters while preserving model accu-
racy. Figure 3 provides an overview of LeSTD. At a high level, LeSTD first learns a shared low-rank
orthonormal subspace in which all heads and all Q/K/V/O projections can be represented com-
pactly (Stage I), and then sparsifies the resulting core tensor in this subspace with closed-form error
control (Stage II). The final model performs inference directly in the compressed domain, without
ever reconstructing the original dense weight matrices.

Two-stage design. In Stage I (refer to Section 3.1), we perform an iterative, shared-subspace Tucker
decomposition (left sides of Figure 2 and Figure 3) on the MHA weight tensor. This procedure yields
a set of shared orthogonal factor matrices U (n) and, for each attention head i, a small but dense core
tensor Gi. By iteratively refining the shared factors to jointly represent all heads, Stage I captures the
common structure across heads while allowing head-specific variation to reside in the cores. In Stage
II (refer to Section 3.2), we explicitly address the remaining dense-core bottleneck by introducing
an importance-based pruning algorithm that learns an ultra-sparse core tensor. By systematically
identifying and removing the least important core coefficients, and refitting the remaining ones in
closed form, Stage II maximizes sparsity while tightly controlling the reconstruction error.

Both stages are executed sequentially (Stage I followed by Stage II), resulting in a highly compact
representation of the MHA block. Section 3.3 then describes how the compressed model carries out
inference without reconstructing the original weight matrices, thereby reducing storage and trans-
mission costs: all Q/K/V/O projections are evaluated directly from the shared factors and the
sparse core, i.e., LeSTD enables LLMs to run inference directly on compressed weights without any
decompression step.
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3.1 SHARED-SUBSPACE TUCKER DECOMPOSITION (STAGE I)

Tensorizing MHA Parameters. Following the recent works (Gu et al., 2025), we restructure MHA
parameters into a single 4th-order tensor (as Figure 3 Left). For each attention head i, we stack
it four weight matrices: WQ

i ,WK
i ,W V

i ∈ Rdmodel×dhead where dhead = dmodel/h, and (WO
i )⊤ ∈

Rdmodel×dhead , into a 3D tensor: Wi =
[
WQ

i ,WK
i ,W V

i , (WO
i )⊤

]
∈ Rdmodel×dhead×4. We then stack

these h tensors along a fourth mode to form the final MHA weight tensor: W total ∈ Rdmodel×dhead×4×h.
Shared Low-Rank Decomposition. We perform a standard Tucker decomposition (Malik &
Becker, 2018; Ahmadi-Asl et al., 2021) of W total that factorizes along modes 1, 2, and 3, while
leaving mode-4 (the head index) uncompressed. This means all heads share the same factor ma-
trices (U (n), n = {1, 2, 3}) but each retains its own slice of the core tensor (Gi, i ∈ {1, 2, ..., h}).
Topology of decomposited W total is shown in Figure 4. Approximation is:

W total ≈ Ŵ total = Gtotal ×1 U
(1) ×2 U

(2) ×3 U
(3) (3)

where Gtotal ∈ RR1×R2×R3×h is the dense core tensor produced in Stage I, and U (1),U (2),U (3)

are the shared column-orthogonal factor matrices with column dimensions R1, R2, R3 respectively
(Tucker ranks (Rn ≪ In). Since we do not factorize the head mode, each head i retains its
own core slice Gi = Gtotal [:, :, :, i] ∈ RR1×R2×R3 that can encode head-specific information,
yet all slice Gi live in joint coordinate system defined by the shared factors U (1),U (2),U (3).
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Figure 4: The shape of W total
before (Left) and after (Right)
decomposition.

Optimization Procedure. We determine U (1),U (2),U (3) and the
Gtotal by minimizing reconstruction error between the original and
factorized weights (Böttcher & Wenzel, 2008):

min
U(1),U(2),U(3),Gtotal

∥W total−Ŵ total∥2F s.t. (U (n))⊤U (n) = IRn

(4)
We solve Eq. (4) using the Higher-Order Orthogonal Iteration
(HOOI) algorithm (Liu et al., 2014; Matstoms, 1997). Each sweep
updates one factor by projecting W total onto the current subspaces
of the other modes, taking a truncated SVD of the resulting mode-
n matricization, and setting U (n) to the top-Rn left singular vec-
tors. After updating modes 1, 2, 3, the core is recomputed as
Gtotal = W total ×1 (U

(1))⊤ ×2 (U
(2))⊤ ×3 (U

(3))⊤. This loop repeats until convergence, yielding
the shared low-rank factors and the dense core tensor for all heads.

3.2 LEARNING AN ULTRA-SPARSE CORE VIA IMPORTANCE-BASED PRUNING (STAGE II)

Algorithm 1: Stage II - Importance-based Core Pruning

Input : Gtotal,U
(n)(n = 1, 2, 3), W total, target sparsity

Starget, pruning rate α
Output: Gsparse
Initialize G ← Gtotal
while ∥G∥0 > Starget do

# Step 1: Compute Importance
Calculate Imp(gβ) for all non-zero gβ ∈ G using Eq. (5)
# Step 2: Prune
k ← ∥G∥0 // number of non-zero elements
Λ← ⌈α · k⌉ // lowest Imp(·) score
for β ∈ Λ do

gβ ← 0 mark as pruned
# Step 3: Refit
for each unpruned element gγ ∈ G do

Update gγ using Eq. (6)

return Gsparse ← G

Stage I (Eq. (3) in Section 3.1)
yields a high-quality, but dense
core tensor Gtotal within a shared
orthonormal subspace. We now
aim to eliminate the dense core
bottleneck by enforcing extreme
sparsity on the Gtotal while pre-
serving reconstruction fidelity.
Our approach in Stage II is ex-
plicitly importance-driven: we
prune the least important ele-
ments of Gtotal and set them to
zero, thereby producing an ultra-
sparse core Gsparse that maintains
the accuracy under a shared
orthonormal (Stage I). Overall
procedure of Stage II is pre-
sented in Algorithm 1. The criti-
cal question is thus: how should
we define and compute the im-
portance of an individual core

5
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element? We work entirely within the orthonormal subspace identified in Stage I (Eq. (3)). Re-
call that Stage I reconstruction is Ŵ total = Gtotal ×1 U

(1) ×2 U
(2) ×3 U

(3). Let β = (r1, r2, r3, i)

be a multi-index and denote by u
(n)
rn the rn-th column of U (n). Define rank-1 basis tensor as-

sociated with β as the outer product: Bβ = u
(1)
r1 ◦ u

(2)
r2 ◦ u

(3)
r3 ◦ ei where ei is the i-th stan-

dard basis vector along the head mode. Because factor matrices are column-orthonormal, the
collection {Bβ} is mutually orthonormal with unit Frobenius norms, i.e., ⟨Bβ ,Bγ⟩ = δβγ and
∥Bβ∥F = 1. Let R = W total−Ŵ total be Stage I residual. Since Ŵ total is the orthogonal projection
of W total onto the span of {Bβ}, orthogonality of the decomposition implies that: ⟨R,Bβ⟩ = 0 and
∥W total∥2F = ∥R∥2F +

∑
β g

2
β , where gβ denotes the coefficient of Bβ in Gtotal.

Defining Importance. We quantify the importance of an element gβ of the normalized increase in
reconstruction error caused by zeroing it out while holding all other quantities fixed. Writing Stage
I error as E = ∥R∥2F , consider the hypothetical reconstruction in which gβ is set to zero, the corre-
sponding reconstruction tensor is Ŵ total(gβ=0) = Ŵ total − gβBβ , because removing a single basis
coefficient subtracts exactly its rank-1 contribution. The new residual is therefore

R(gβ=0) = W total − Ŵ total(gβ=0) = R+ gβBβ

Corresponding reconstruction error is obtained by expanding Frobenius norm and the orthogonality:

E(gβ=0) = ∥R+ gβBβ∥2F = ⟨R+ gβBβR+ gβBβ⟩ = ∥R∥2F + 2gβ ⟨R,Bβ⟩+ g2β∥Bβ∥2F
= E + 2gβ · 0+ g2β · 1 = E + g2β

which yields the efficient expression (as shown in Algorithm 1, Step 1):

E(gβ = 0) = E + g2β (5)

Hence the normalized importance is Imp(gβ) =
E(gβ=0)−E

E =
g2
β

E . Because the basis tensors are
orthonormal, ordering elements by Imp(gβ) is exactly equivalent to ordering by |gβ |. It follows that,
under the Frobenius loss, the best k-term approximation is achieved by keeping the k largest |gβ |
coefficients (i.e., hard-thresholding). This gives a principled, closed-form criterion for pruning: the
least important elements (smallest magnitudes) are removed first and set to 0 (Algorithm 1 Step 2).
Refitting remaining coefficients. After pruning a subset of indices Λ (setting gβ ← 0 for β ∈ Λ),
we optionally refit remaining coefficients to counter numerical drift (Step 3). Fix all factors and the
pruned pattern, and consider a surviving index γ /∈ Λ. We determine the optimal gγ by solving one-
dimensional least-squares problem: g⋆γ ← argming′

γ
∥W total −

(
g′γBγ +

∑
β ̸=γβ/∈Λ gβBβ

)
∥2F . Ex-

panding the squared norm and differentiating with respect to g′γ , we obtain the first-order optimality

condition: ∂
∂g′

γ

(
∥W total∥2F − 2g′γ⟨W total,Bγ⟩+ 2g′γ

∑
β ̸=γ,β /∈Λ gβ⟨Bβ ,Bγ⟩+ (g′γ)

2∥Bγ∥2F
)
= 0.

Using ⟨Bβ ,Bγ⟩ = δβγ and ∥Bγ∥2F = 1, the mixed terms vanish and we get−2⟨W total,Bγ⟩+2g′γ =
0⇒ g′γ = ⟨W total,Bγ⟩. Thus the refitting update takes the closed form:

gγ ← ⟨W total,Bγ⟩ (6)

which coincides with original coefficient when the factors are fixed and arithmetic is exact. Per-
forming this refit after each pruning step helps to stabilize the reconstruction in finite precision.

3.3 INFERENCE WITHOUT RECONSTRUCTION

A key benefit of LeSTD is that inference operates directly in the compressed domain: the full dense
matrices are never materialized. All computations are expressed through the shared low-rank factors
(in Stage I) and the learned sparse core (in Stage II). The overall process is shown in Algorithm 2,
we detailed the steps below:
One-off left projection (shared across heads). Let X ∈ RT×dmodel be token representations (em-
beddings) for a mini-batch (or T = 1 in the autoregressive single-step). We project X once into the
rank-R1 subspace and reuse it for all heads and all of Q,K, V : Y = XU (1) ∈ RT×R1 .
Core contraction and per-head slices. Denote Stage II sparse core by Gsparse ∈ RR1×R2×R3×h

and the third-mode factor by U (3) ∈ R4×R3 , where t ∈ {1:Q, 2:K, 3:V, 4:O} indexes the projection
type. For each head i and type t, we define the slice, which is also typically sparse due to Gsparse, as:
Mi,t[r1, r2] =

∑R3

r3=1 Gsparse[r1, r2, r3, i] ·U (3)[t, r3], where Mi,t[r1, r2] ∈ RR1×R2 and depends

6
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only on the compressed parameters and can be precomputed and cached offline.
Input-side linear maps (Q,K, V ) without reconstruction. With U (2) ∈ Rdhead×R2 , the three pro-
jections (Eq. (1)) for head i are computed by Qi = Y Mi,1(U

(2))⊤, Ki = Y Mi,2(U
(2))⊤, and

Vi = Y Mi,3(U
(2))⊤, yielding Qi,Ki,Vi ∈ RT×dhead without ever forming WQ

i ,WK
i ,W V

i .
Attention and output-side map without reconstruction. We scaled dot-product attention proceeds
as usual: Ai = softmax

(
QiK

⊤
i√

dhead

)
and Oi = AiVi ∈ RT×dhead . For output projection (Eq. (2)), note

that (WO
i )⊤ = U (1) Mi,4(U

(2))⊤ ⇒WO
i = U (2)M⊤

i,4(U
(1))⊤. Thus, projected output for head

i is O′
i = OiW

O
i = (OiU

(2))M⊤
i,4(U

(1))⊤ ∈ RT×dmodel . Aggregating all attention heads (e.g.,
Concat in original Eq. (2) gives the final output. An optimization is to delay the final multiplication
by (U (1))⊤:

∑h
i=1 O

′
i =

(∑h
i=1(OiU

(2))M⊤
i,4

)
(U (1))⊤, so that (U (1))⊤ is applied only once.

By performing above processes, the original matrices {WQ
i ,WK

i ,W V
i ,WO

i } are not instantiated.
All products are composed from U (1), U (2), precomputed (sparse) Mi,t, and activations. A formal
theoretical complexity analysis is deferred to Appendix F.

Algorithm 2: Inference Without Reconstruction in LeSTD

Input : Token representations X ∈ RT×dmodel ; Shared factors U (1) ∈ Rdmodel×R1 ,
U (2) ∈ Rdhead×R2 , U (3) ∈ R4×R3 ; Sparse core Gsparse ∈ RR1×R2×R3×h.

Output: MHA output Z ∈ RT×dmodel .
# One-off left projection (shared across heads and types)
Y ←XU (1) ∈ RT×R1

# Precompute per-head, per-type compressed matrices
for i← 1 to h do

for t ∈ {1:Q, 2:K, 3:V, 4:O} do
for r1 ← 1 to R1 do

for r2 ← 1 to R2 do

Mi,t[r1, r2]←
R3∑

r3=1

Gsparse[r1, r2, r3, i]U
(3)[t, r3]

# Input-side linear maps (Q,K, V ) in compressed form
for i← 1 to h do

Qi ← Y Mi,1(U
(2))⊤ ∈ RT×dhead

Ki ← Y Mi,2(U
(2))⊤ ∈ RT×dhead

Vi ← Y Mi,3(U
(2))⊤ ∈ RT×dhead

# Scaled dot-product attention
for i← 1 to h do

Ai ← softmax
(

QiK
⊤
i√

dhead

)
Oi ← AiVi ∈ RT×dhead

# Output-side projection in compressed form
for i← 1 to h do

Hi ← OiU
(2) ∈ RT×R2

Si ←HiM
⊤
i,4 ∈ RT×R1

S ←
∑h

i=1 Si ∈ RT×R1

# Final projection back to model dimension
Z ← S(U (1))⊤ ∈ RT×dmodel

return Z

4 EVALUATION

We compare LeSTD against SVD-based approaches (Yuan et al., 2023; Wang et al., 2024b; Gu
et al., 2025) and pruning techniques (Ashkboos et al., 2024). We further consider quantization as

7
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another representative post-training compression paradigm (Huang et al., 2024; Shang et al., 2023).
Specifically, we examine the direct comparisons in terms of compression ratio vs. model accuracy,
with detailed results and analysis provided in Appendix D.

We conduct a series of internal ablation studies to validate LeSTD’s design choices. These studies
analysis the individual contributions of our two-stage approach and examine the model’s sensitivity
to key hyperparameters, such as Tucker ranks. The comprehensive results, which confirm effective-
ness of each component, are presented in Appendix C.

4.1 EXPERIMENTAL SETTING

Baselines. We compare LeSTD with three post-training LLM compression schemes: (1) Low-rank
decomposition: ASVD (Yuan et al., 2023), SVD-LLM (Wang et al., 2024b), and TensorLLM (Gu
et al., 2025); (2) Pruning: SliceGPT (Ashkboos et al., 2024); (3) Quantization: PB-LLM (Shang
et al., 2023) and BiLLM (Huang et al., 2024). Note that LeSTD is a post-training compression
framework. Training-aware approaches, such as OneBit (Xu et al., 2024), fall outside scope of this
work. Please refer to Appendix E for a detailed discussion of related works.
LLM models and Datasets. We evaluate performance of LeSTD and baselines on three families of
LLM models at different scales (GPT-J (Wang, 2021), Llama2-13B (Touvron et al., 2023), and OPT-
30B (Zhang et al., 2022)). Experiments spans four datasets covering diverse tasks: natural language
modeling (WikiText-2 (Merity et al., 2016)), natural language understanding (MathQA (Amini et al.,
2019)), math reasoning (GSM8K (Cobbe et al., 2021)), and the natural language generation (Truth-
fulQA (Lin et al., 2021)). For a detailed description of datasets, please refer to Appendix A.
Software&Hardware Environment. All experiments are conducted on a server equipped with an
Intel(R) Xeon(R) Platinum 8470 CPU, 1024 GB of DDR4 memory, and one NVIDIA H100 GPU
with 80 GB GPU memory, running Ubuntu 22.04.5 LTS. Implementation is based on Python 3.10.12
and PyTorch 2.7.0, with CUDA version of 12.9. The efficiency index (tokens/sec) were measured
under the Transformer Library (Wolf et al., 2020) (version 4.53.0). For detailed setting of base-
lines and LeSTD, such as hyperparameters and implementation, please refer to Appendix B. Due
to the presence of Stage II (Section 3.2), compression ratio of LeSTD is not as straightforward to
compute as that of baselines. In Appendix G, we present our approach for precisely controlling the
compression ratio budget in LeSTD.

4.2 OVERALL COMPARISON

We evaluate four datasets: WikiText-2, MathQA, GSM8K, and TruthfulQA across three LLMs with
different scales/families, namely GPT-J (6B), Llama2-13B, and OPT-30B. Evaluation focuses on
two aspects: trade-off between compression ratio and model accuracy, and inference efficiency, the
latter quantified by tokens per second (tokens/sec).
Compression Rate vs. The Model Accuracy. As shown in the Table 1, across all the three model
scales/families and four benchmarks, same trend recurs: as the compression strengthens, LeSTD
preserves accuracy more faithfully than matrix-by-matrix SVD (ASVD and SVD-LLM) and than
dense-core Tucker (TensorLLM). At a aggressive ratio (e.g., 0.2), LeSTD lowers WikiText-2 per-
plexity by∼ 15% relative to SVD-LLM (e.g., 42.70 vs. 50.25 on OPT-30B). Besides, when the core
becomes the bottleneck for Tucker at very small ratio (e.g., 0.2), LeSTD outperforms TensorLLM
by ∼ 10% (e.g., 80.37 vs. 89.52 on GPT-J). On MathQA and GSM8K, LeSTD typically matches or
edges out the best baseline by ∼ 3 points, and on TruthfulQA it remains stable where the pruning
scheme (SliceGPT) or matrix-by-matrix SVD can collapse.

These results align with our design and analysis. Stage I learns a single, shared subspace per layer
(Eq.(3) and Eq.(4)) that captures cross-head regularities, explaining the flatter degradation relative
to matrix-wise SVD. Stage II then breaks the dense-core ceiling by pruning in an orthonormal latent
basis, where reconstruction is an orthogonal projection and coefficient importance has a closed form
(Eq.(5) and Eq.(6)). This is why LeSTD sustains accuracy at compression levels where dense-core
Tucker, for example, TensorLLM, must retain large ranks.
Inference Efficiency. As shown in the Figure 5, LeSTD delivers competitive-to-superior through-
put while retaining accuracy across LLMs, datasets and compression rate. At a mild compression
(e.g., 0.8), it is at least on par with fastest baselines and often ahead: on WikiText-2 it edges SVD-
LLM on GPT-J (11571.82 vs. 11521.82) and improves ∼ 3% on Llama2-13B. The gains over

8
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Table 1: The overall results of compression rate (defined as compressed
original ) vs. model accuracy across four

datasets. Some results are marked as “–”, indicating that value is 0 when rounded to two decimal
places. Uparrow ”↑” indicates higher measure value are better, and downarrow ”↓” indicates lower
is better. Columns with a compression ratio of 1 refers to the original model without compression.

(a) WikiText2 (Metric: Perplexity ↓)

Method
Ratio GPT-J Llama2-13B OPT-30B

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

ASVD 4412.47 3873.72 273.52 15.91

8.86

2826.88 139.26 49.95 14.97

4.88

2423.65 998.26 100.48 24.89

9.56
SVD-LLM 100.08 50.11 20.19 14.95 34.25 22.52 14.88 9.93 50.25 20.09 14.34 11.95
TensorLLM 89.52 49.70 9.90 8.92 14.97 14.09 9.96 8.01 49.53 19.97 14.92 11.95
SliceGPT 502.87 397.62 59.69 12.01 50.09 19.83 14.97 10.05 45.03 24.77 15.08 9.99
LeSTD (Ours) 80.37 49.56 9.51 8.92 13.99 11.94 7.93 6.98 42.70 20.13 14.02 9.98

(b) MathQA (Metric: Accuracy ↑)

Method
Ratio GPT-J Llama2-13B OPT-30B

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

ASVD 0.14 0.20 0.21 0.22

0.23

− 0.08 0.11 0.26

0.32

− 0.06 0.17 0.20

0.31
SVD-LLM 0.18 0.20 0.21 0.22 0.16 0.22 0.24 0.30 0.14 0.21 0.26 0.29
TensorLLM 0.16 0.19 0.20 0.21 0.15 0.20 0.26 0.29 0.10 0.18 0.24 0.28
SliceGPT 0.11 0.16 0.19 0.21 0.06 0.14 0.24 0.27 0.06 0.15 0.20 0.28
LeSTD (Ours) 0.14 0.19 0.20 0.22 0.16 0.23 0.26 0.30 0.13 0.22 0.25 0.29

(c) GSM8K (Metric: Exact-match Accuracy ↑)

Method
Ratio GPT-J Llama2-13B OPT-30B

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

ASVD − − 0.02 0.08

0.13

− − 0.06 0.16

0.23

− − 0.03 0.07

0.11
SVD-LLM − − − 0.03 0.06 0.10 0.14 0.20 0.03 0.04 0.08 0.10
TensorLLM − 0.01 0.03 0.05 0.03 0.08 0.14 0.19 0.02 0.03 0.07 0.08
SliceGPT − − 0.01 0.04 − 0.03 0.17 0.21 − 0.02 0.05 0.08
LeSTD − 0.02 0.04 0.09 0.05 0.08 0.17 0.21 0.03 0.03 0.07 0.09

(d) TruthfulQA (Metric: BLEU-1 ↑)

Method
Ratio GPT-J Llama2-13B OPT-30B

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

ASVD − − − 0.02

0.06

− − 0.03 0.05

0.08

− − 0.03 0.04

0.08
SVD-LLM − 0.01 0.01 0.05 0.03 0.03 0.04 0.06 0.03 0.03 0.06 0.07
TensorLLM − 0.02 0.02 0.04 0.02 0.02 0.05 0.07 0.02 0.03 0.05 0.07
SliceGPT − − 0.01 0.03 − 0.02 0.03 0.06 − − 0.02 0.05
LeSTD − 0.02 0.04 0.06 0.03 0.05 0.06 0.07 0.01 0.03 0.05 0.08

TensorLLM (dense-core Tucker) are large: up to ∼ 40% improvement tokens/sec. For short-context
workloads (Zhou et al., 2025) such as GSM8K and TruthfulQA, LeSTD’s advantage at an aggres-
sive compression (e.g., 0.2) is consistent, yielding ∼ 10% improvement averagely over SVD-LLM
on GPT-J and OPT-30B. On MathQA, throughput at 0.8 is mixed: small positive on GPT-J, near
parity on Llama2-13B, and a modest deficit on OPT-30B, consistent with cases where heavily tuned
GEMMs (General Matrix Multiplications) favor purely low-rank baselines (Sun et al., 2025).

At stronger compression (e.g., 0.4), LeSTD maintains competitive throughput as dense-core Tucker
degrades more sharply and matrix-by-matrix SVD increasingly pays for redundant per-head pro-
jections. This behavior follows from LeSTD execution (Section 3.3): inference never reconstructs
dense Q,K, V,O, a single shared left projection XU (1) is reused across heads and across Q,K, V ,
and the right side applies (U (2))⊤ with head-local, precomputable slices Mi,t. Stage II’s ultra-
sparse core reduces arithmetic consumption, whereas dense-core Tucker (TensorLLM) retains poly-
nomial many latent interactions. In summary, share once, sparsity what remains, and execute directly
in compressed domain, the observed tokens/sec reflect exactly this design. To ensure our results
reflect the real-world scenarios, all throughput benchmarks were conducted within the standard li-
brary (Wolf et al., 2020) (v4.53.0) without any custom-written sparse kernels. Observed speedups
(Figure 5) stem from the library’s underlying Pytorch (Paszke et al., 2019) implementation, which
can leverage the reduced computational load from the LeSTD’s sparse core tensor (Section 3.2) and
inference on compressed (Section 3.3). While performance of unstructured sparsity can be sensitive
to implementation and hardware details (Dave et al., 2021; Wang, 2020), our results demonstrate
that LeSTD provides tangible wall-clock time improvements in a widely-used environment.
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(c) GSM8K.
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(e) WikiText-2.
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(h) TruthfulQA.
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(k) GSM8K.
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Figure 5: Throughput (tokens/sec) of LLMs across datasets, comparing baselines with our LeSTD

5 RELATED WORK

Recent research has explored post-training compression techniques for LLMs (Zhu et al., 2024).
ASVD (Yuan et al., 2023) introduces activation-aware scaling to improve SVD-based low-rank ap-
proximations without retraining whole model. SVD-LLM (Wang et al., 2024b) further refines this
by incorporating truncation-aware whitening and closed-form updates, achieving superior accuracy
under aggressive compression. TensorLLM (Gu et al., 2025) applies Tucker decomposition to MHA,
enforcing a shared subspace across heads for up to 250X compression. SliceGPT (Ashkboos et al.,
2024) adopts a structured pruning approach by deleting rows and columns of weight matrices, reduc-
ing compute and memory while maintaining nearly full zero-shot accuracy. Our method, LeSTD,
follows this post-training paradigm but departs from prior designs through its shared-subspace sparse
Tucker formulation. A detailed description of related works, please refer to Appendix E.

6 CONCLUSION

We introduced LeSTD, a learning-based sparse tensor decomposition framework designed to solve
the critical dense core bottleneck in tensor-based post-training LLM compression. The key point is
a principled, two-stage design, which decouples basis optimization from core sparsification. This
allows LeSTD to first learn a high-quality shared latent space for all attention heads, and then ag-
gressively yet safely sparsify the core tensor within that stable basis. It is this ability to eliminate
redundancy within the compressed latent space itself that allows LeSTD to break the compression
ceiling imposed by dense-core methods. Our extensive experiments confirm this powerful synergy,
showing that LeSTD consistently outperforms existing methods and establishes a new state of the
art in the compression–accuracy trade-off for large language models.
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LIMITATION

A limitation of LeSTD is that Stage II (Section 3.2) pruning produces an unstructured sparse core
tensor. While this approach is highly effective at reducing theoretical FLOPs and storage (refer to
Appendix F), leading to practical speedups we demonstrate using standard software libraries (Sec-
tion 4.2), its performance on specialized hardware could be further amplified. Exploring methods to
enforce structured sparsity (e.g., block-sparsity) within the core is a promising direction for better
hardware co-design. Additionally, our work has focused on compressing the MHA blocks, adapting
the LeSTD framework to also compress the Feed-Forward Network (FFN) layers, which constitute
a significant portion of model parameters, remains an important avenue for future investigation.

ETHICS STATEMENT

In this paper, we present a design grounded in sparse tensor factorization that addresses the growing
scale of Large Language Models (LLMs). Our approach significantly reduces the storage and com-
putational requirements of these models without compromising performance, thereby promoting
the democratization and wider accessibility of powerful language technologies. This improvement
holds potential for a wide range of applications by enabling the deployment of LLMs on resource-
constrained devices. We believe that our method contributes positively to the advancement of ma-
chine learning research by promoting computational efficiency and sustainability. Although we do
not anticipate any immediate negative ethical implications or societal concerns from our approach,
it’s important to acknowledge that machine learning technologies, including LLMs, have broader
impacts. The increased accessibility of these models underscores the need for ongoing research
into their potential for misuse and the development of robust safeguards. Therefore, responsible
implementation and continued dialogue are crucial to ensure that such technologies are applied in a
manner that promotes fairness, transparency, and beneficial societal outcomes.

REPRODUCIBILITY STATEMENT

We provide the full source code, scripts, and configuration files for LeSTD at https://
figshare.com/s/74a0b68f22d3c9c579e7.
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A DATASET

WikiText-2 (Metric: Perplexity ↓). A word-level language-modeling corpus built from Wikipedia
”Good/Featured” articles that preserves case, punctuation, and numbers. The standard split contains
2.09M tokens (train), 217.6k (validation), and 245.6k (test) with a 33,278-word vocabulary, we eval-
uate by perplexity (lower is better).
MathQA (Metric: Accuracy ↑). A multiple-choice math word-problem dataset (≈37k items) cre-
ated by annotating AQuA problems with operation-programs. Authors use an 80/12/8 random split,
i.e., ≈29.8k train/4.4k validation/3k test, and we report answer accuracy on the evaluation set.
GSM8K (Metric: Accuracy ↑). A grade-school math benchmark of 8.5k authored problems tar-
geting multi-step reasoning. Canonical split is 7.5k train / 1k test. We follow the original protocol
and report exact-match accuracy of the final numeric answer.
TruthfulQA (Metric: BLEU-1 ↑). A truthfulness benchmark of 817 questions across 38 categories
(e.g., health, law, finance, politics). There is no official train/val/test split, evaluation is conducted on
the full question set via multiple-choice and/or free-generation protocols. In our setup, we compute
BLEU-1 (unigram BLEU) between model outputs and the provided references.

B BASELINES AND LESTD DETAILED SETTING

ASVD decomposes the attention weights with activation-aware scaling and a layerwise rank search,
in the original paper, auhtor experiments use a small, fixed calibration corpus drawn from WikiText-
2: 32 calibration datasets each containing 2048 tokens. We keep the exact same calibration budget,
and choose per-layer truncation ranks to meet the desired global compression ratio (e.g., 0.2 - 0.8).

SVD-LLM introduces truncation-aware whitening plus sequential low-rank updates (SLRA). Its im-
plementation details specify that whitening/truncation are fit on a random set of sentences with a con-
crete budge of 256 samples. SLRA recovery is performed with instruction data (Alpaca 50K (Taori
et al., 2023)). In our experiments, we use 256 calibration sentences (from WikiText-2) with sequence
length 2028 for whitening and truncation, and enable SLRA with SVD-LLM’s defaults.

SliceGPT performed column slicing guided by a second-order/Taylor criterion (Li et al., 2017) and
calibrates on either WikiText-2 or Alpaca. The paper fixes the main experiment calibration to 1024
sequences of length 2048, and uses the LM-Eval Harness (Gao et al., 2021) defaults for the zero-shot
tasks. Slicing levels reported across models are 10-30% with optional LoRA-based recovery fine-
tuning (with r = 32, α = 10). To remain the faithful across MathQA, GSM8K and TruthfulQA (not
originally supported in the paper), we keep the same calibration budget (1024×2048 on WikiText-
2), set a target slicing fraction that match the compression grid ([0.2, 0.4, 0.6, 0.8] overall by solving
for per-layer variance removal as in the paper), and evaluate with LM-Eval defaults.

TensorLLM factorizes multi-head attention (MHA) with a shared-factor Tucker decomposition and
is explicitly post-training, requiring no extra data, calibration, or fine-tuning (Hu et al., 2022). The
only operative knobs are the multi-linear ranks (equivalently a per-layer MHA compression rate),
which the paper sweeps broadly (e.g., on GPT-J, reported the MHA compression rates span ≈14X
- 247X depending on the layer/dataset) while keeping standard evalution. For all four datasets, we
reuse our dense prompts and simply set Tucker ranks to hit the target global compression ratios on
the attetion block (start with 8 - 16X on Q,K, V and 2 - 6X on output projections for decoder-only
models, then adjust to match the overall ratio).

For two 1-bit quantization baselines (for experimental results, please refer to Appendix D), BiLLM
and PB-LLM, emphasize ligh-weight post-training calibration on generic text. BiLLM quantize us-
ing C4 (Bandari et al., 2024) as the calibration source with blocksize 128 and the Hessian criterion
for salient-weight selection. PB-LLM partially binarizes weights while preserving a small salient
subset and use GPTQ-style (Frantar et al., 2022) Hessian-guided reconstruction. In our experiments,
we use PTQ-only settings across four datasets, the choice is to mirror BiLLM: take 128 - 512 cal-
ibration sequences from C4 (length is 2048), use blocksize 128 and Hessian saliency for BiLLM,
and for PB-LLM retain ∼ 5 − 10% salient weights in higher precision with GPTQ-style Hessian
reconstruction, and keep dataset prompts at LM-Eval defaults.

For our proposed LeSTD, we follow same evaluation setup as described above, but note that LeSTD
is a fully data-free post-training method (no calibration data or retraining is used). We set the multi-
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linear Tucker ranks (R1, R2, R3) in each attention layer so that the overall model meets the target
compression ratio (0.2, 0.4, 0.6, 0.8). Concretely, for each desired global size fraction, we solve
for the layer-wise ranks that yield approximately that compression of the MHA block. The Stage I
(Section 3.1, shared Tucker factorization) is computed with HOOI using a fixed number of iterations
(we typically run 5-10 iterations per layer, which reliably converges to a low reconstruction error).
After Stage I, Stage II (Section 3.2) performs importance-baseed pruning on the core tensor as fol-
lows: we fix a per-iteration prune fraction α = 0.5 (i.e., remove 10% of the smallest-magnitude core
elements each round). We continue pruning iteratively until the core has reached the target sparsity
(chosen so that the final compressed size matches the target ratio). After each pruning step, we refit
the remaining core coefficients by the closed-form update (Eq.(6)) to counteract numerical drift, this
ensures optimal reconstruction with the fixed basis. In summary, LeSTD requires no fine-tuning
or task-specific data. All hyperparameters (Tucker ranks, pruning schedule) are determined by the
global size target. Once the compression is done, inference proceeds directly on the compressed
representation as described. In our experiments, we found that this setting reliably achieves the
desired compression at the indicated performance levels, without using any extra data beyond what
the evaluation tasks provide. Please also refer to Appendix G for a detailed explanation of how the
compression ratio of LeSTD is precisely computed.

C ABLATION STUDIES

C.1 RANK-SENSITIVITY

Table 2: Perplexity under vary-
ing Tucker ranks for GPT-J (6B) at
∼0.6 overall compression.

R1 R2 R3 Ratio Perplexity (↓)
4096 256 4 1 8.86

1536 320 4 0.56 13.72
1536 384 4 0.66 11.91
1792 320 4 0.65 11.33
2048 224 4 0.56 10.53
2048 256 4 0.63 9.53
1920 256 4 0.60 9.92
2048 288 4 0.66 9.26

To gauge the sensitivity to Tucker ranks (R1, R2, R3 = 4),
we target an overall MHA compression ratio around 0.6 and
vary (R1, R2) while keeping R3 fixed (since rank R3 rep-
resents the Q,K, V,O axis of size 4). Table 2 reports sev-
eral representative configurations (the ”Ratio” column shows
the actual compression fraction achieved), and perplexity is
measured on WikiText-2 with GPT-J (6B). This is not an ex-
haustive grid search, but it already covers a reasonably wide
range of (R1, R2) in the ∼ 0.6 regime and illustrates clear
trends: larger ranks generally yield lower perplexity. In par-
ticular, increasing R1 or R2 consistently reduces perplexity,
and configurations such as (R1 = 2048, R2 = 256, R3 = 4)
and (R1 = 2048, R2 = 288, R3 = 4) achieve near-original
perplexity (down to 9.26) at compression ratios around 0.63–0.66, whereas smaller ranks (e.g.,
R1 = 1536, R2 = 320, R3 = 4) lead to noticeable degradation. Overall, the best perplexity in this
sweep occurs at higher ranks near the 0.6 compression point, confirming that our reported setting
(Table 1) lies in a regime that balances model size and accuracy.

C.2 EFFECT OF STAGE-II ON CORE STRUCTURE
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Figure 6: Visualization of a fixed Tucker-core slice before
and after Stage II sparsification.

We adopt a shared-subspace Tucker
decomposition with orthonormal
factors U (1),U (2),U (3) along the
corresponding modes, respectively,
while leaving the head mode unfac-
torized. For display, as shown in
Figure 6, we keep R3 (Q,K, V,O)
fixed and a particular head i = 5,
and show the resulting R1 × R2

core slice. Both panels share a
diverging colormap centered at zero
for strict comparability. Stage II
performs best-k pruning in the same
orthonormal basis by magnitude and refits the surviving coefficients. Because the basis tensors
are orthonormal, zeroing a single coefficient gβ increases the Frobenius error by exactly g2β , so
hard-thresholding by |gβ | is optimal for best-k approximation. On this GPT-J slice, Stage II keeps
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the top 30% coefficients (nnz = 87/288, 69.8% sparsity) while retaining 87.2% energy, visibly
concentrating mass onto a small set of latent interactions.

C.3 WALL-CLOCK TIME BREAKDOWN
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Figure 7: Wall-clock time breakdown of LeSTD
on GPT-J and OPT-30B.

To quantify the practical overhead of our two-
stage compression pipeline, we measure the of-
fline wall-clock time of LeSTD on GPT-J and
OPT-30B under the same hardware and soft-
ware setup as in Section 4. In this experiment,
we apply LeSTD only to the MHA blocks of all
transformer layers (MHA-only), using the same
rank and sparsity configuration as in our main
results (compression rate = 0.2).

Figure 7 summarize the breakdown. For GPT-
J, Stage I takes 883 s, while Stage II takes 436
s, for a total of 1319 s. For OPT-30B, Stage I
takes 9102s and Stage II takes 2385s, for a to-
tal of 11487 s. The relative share shifts from
roughly 67%/33% (Stage I/Stage II) on GPT-
J to about 79%/21% on OPT-30B, confirming
that Stage I dominates the offline cost as model
depth and hidden dimension grow. Importantly, this cost is incurred only once as an offline pre-
processing step. Even for OPT-30B, the total LeSTD runtime remains on the order of a few hours,
which is negligible compared to the cost of pretraining or repeated fine-tuning runs on such models.
After Stage I and II are completed, inference uses the compressed weights directly and introduces
no additional runtime overhead beyond the speedups reported in Section 4.

Table 3: Perplexity and throughput (tokens/sec) of GPT-J (6B) on WikiText-2 at compression ratio
0.6 over 10 runs. Results are reported as mean ± standard deviation. Lower perplexity and higher
throughput are better.

Method Perplexity (↓) Tokens/sec (↑)
SVD-LLM 20.28± 0.14 11105.18± 90.65
TensorLLM 9.87± 0.10 8572.11± 103.18
LeSTD (Ours) 9.48± 0.09 12025.90± 91.77

C.4 STATISTICAL SIGNIFICANCE

To evaluate the robustness of our observations in main evaluation (Section 4.2), we repeat the com-
pression procedure 10 times with different random seeds for GPT-J (6B) on WikiText-2 at a fixed
compression ratio of 0.6. We report the mean and standard deviation across runs for both perplex-
ity and throughput (tokens/sec) in Table 3, comparing LeSTD against the strongest matrix-based
baseline (SVD-LLM (Wang et al., 2024b)) and the dense-core Tucker method (TensorLLM (Gu
et al., 2025)). As shown in Table 3, LeSTD attains a mean perplexity of 9.48 ± 0.09, compared
to 9.87 ± 0.10 for TensorLLM and 20.28 ± 0.14 for SVD-LLM. The variance across runs is small
for all methods, and the gap between LeSTD and TensorLLM is substantially larger than one stan-
dard deviation, indicating that the accuracy improvements of LeSTD are not due to randomness in
the compression process. For efficiency, LeSTD achieves 12025.90 ± 91.77 tokens/sec, which is
comparable to or slightly higher than SVD-LLM (11105.18 ± 90.65) and significantly faster than
TensorLLM (8572.11±103.18). The standard deviations are again small relative to the mean values,
showing that the throughput advantages of LeSTD are stable across seeds.

Overall, these results demonstrate that the performance gains in the both perplexity and throughput
provided by LeSTD are consistent across multiple runs and are not artifacts of a particular random
seed or a single compression trial.

C.5 PRUNING RATE α SENSITIVITY
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Figure 8: Effect of pruning rate α in
Stage II for GPT-J (6B) on WikiText-2
at compression ratio 0.6. We fix target
core sparsity Starget and sweep α from
0.05 to 0.50. Reported numbers are
WikiText-2 perplexity (↓).

Stage II of LeSTD performs iterative importance-based
pruning on the shared core tensor G. At each iteration,
we compute an importance score for every non-zero co-
efficient gβ and remove the least important ones, followed
by a closed-form refitting step (Algorithm 1). The prun-
ing rate α controls how aggressively we prune at each it-
eration: given k non-zero coefficients, we remove ⌈α · k⌉
of them and refit the remaining ones. Importantly, α does
not determine the final sparsity of G, which is fixed by the
target sparsity Starget derived from the desired compres-
sion ratio. Instead, α trades off the number of pruning
iterations and the aggressiveness of each step.

To evaluate the sensitivity to α, we fix the target core spar-
sity according to a compression ratio of 0.6 for GPT-J
(6B) on WikiText-2 and sweep α from 0.05 to 0.50 in
steps of 0.05. Figure 8 reports the resulting perplexity
on WikiText-2. We observe that LeSTD is very robust to
the choice of α in a broad range: for α ∈ [0.05, 0.30], perplexity stays in the narrow range of
9.49–9.54, indicating that our importance-based pruning and refitting procedure consistently con-
verges to nearly the same solution under different per-iteration pruning rates. When α is made more
aggressive (e.g., α ≥ 0.35), the perplexity gradually increases (up to 9.82 at α = 0.50), which we
attribute to pruning a larger fraction of coefficients before the refitting step has fully adjusted the
remaining ones. Even in this regime, LeSTD remains noticeably better than matrix-wise SVD and
dense-core Tucker at the same compression ratio.

Table 4: Effect of the refitting step (Eq. (6)) in Stage II for GPT-J (6B) on WikiText-2 at compression
ratio 0.6. We compare the full LeSTD pipeline with a variant that skips the refitting step while
keeping the same target core sparsity Starget.

Method Perplexity (↓) Tokens/sec (↑)
LeSTD (full) 9.57 11925.90
LeSTD (w/o refit) 11.25 11932.45

C.6 REFITTING STEP IMPORTANCE

Stage II of LeSTD performs importance-based pruning on the shared core tensor G in an iterative
fashion (Algorithm 1). At each iteration, we (i) compute an importance score for every non-zero
coefficient gβ , (ii) remove the least important ⌈α · k⌉ coefficients among the current k non-zeros,
and (iii) refit the remaining coefficients by solving a closed-form least-squares problem (Eq. (6)).
Thus, Eq. (6) corresponds to a debiasing step on selected support: given the current sparsity pattern
of G, we recompute the values of the active entries so that the pruned core best approximates the
original weights in the least-squares sense.

To quantify the effect of this refitting step, we compare full LeSTD pipeline with a variant that skips
Eq. (6): in the ablated variant, we perform the same iterative importance-based pruning but never
refit G after pruning, instead, we simply zero out the selected coefficients and keep the remaining
ones fixed. We fix the target core sparsity Starget according to a compression rate of 0.6 for GPT-J
(6B) on WikiText-2, and we run both variants ten times with different random seeds. Table 4 reports
perplexity and inference throughput. As shown in Table 4, skipping the refitting step consistently
hurts accuracy: perplexity degrades from 9.57 for the full LeSTD to 11.25 for the variant without
refitting, a gap that is larger than several standard deviations and thus statistically significant. This
confirms that Eq. (6) is an essential debiasing step that takes advantage of the selected sparse struc-
ture to recover a better approximation of the dense core. In contrast, the inference throughput is
essentially unchanged (11925.90 vs. 11932.45), since both variants produce cores with the same
sparsity pattern and Tucker ranks; the difference between them lies purely in how well the non-zero
coefficients are fitted.

Overall, these results show that the refitting step in Eq. (6) plays a crucial role in obtaining high-
quality compressed models, while having negligible impact on inference-time efficiency.
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Table 5: Effect of replacing original used torch.matmulwith torch.sparse.mm on LeSTD’s
sparse core tensors for GPT-J on WikiText-2 at MHA compression rate 0.6.

Kernel / Implementation Throughput (tokens/sec)

torch.matmul (Current Implementation) 11945.98
Unstructured sparse (torch.sparse.mm) 12592.54

C.7 SPEEDUP FACTORS ANALYSIS

In this subsection, we explore the question that whether the throughput gains reported in Figure 5
might simply come from PyTorch (Paszke et al., 2019) silently exploiting unstructured sparsity in
our sparse cores. To isolate this factor, we replace the original torch.matmul-based implementa-
tion of LeSTD’s core contractions with PyTorch’s unstructured sparse kernel torch.sparse.mm,
while keeping all other components fixed (model: GPT-J (6B), dataset: WikiText-2, MHA com-
pression rate: 0.6, hardware and batch/sequence settings identical to the main experiment, refer to
Section 4.1 for details).

Table 5 shows that the baseline dense-kernel implementation reaches 11945.98 tokens/sec, whereas
the version that forces torch.sparse.mm achieves 12592.54 tokens/sec, corresponding to a very
modest ∼ 5.4% relative speedup. In contrast, under the same setting LeSTD as a whole achieves a
much larger throughput gain over the full-precision GPT-J baseline (cf. Figure 5). This indicates that
the bulk of our acceleration does not come from any special native support for unstructured sparsity
in PyTorch, but rather from the structural changes introduced by LeSTD, in particular, sharing the
input-side projection across heads and performing attention in a much lower-dimensional, sparsified
core space, which jointly reduce both FLOPs and memory traffic of the MHA block.

D COMPARISONS WITH QUANTIZATION

Table 6: Throughput (tokens/sec) and accuracy (perplexity) comparison of our proposed LeSTD
against quantization baselines PB-LLM and BiLLM on the WikiText-2, evaluated with Llama2-13B
and OPT-30B.

Method ∥ Setting
Compression Rate
( compressed

original )
Llama2-13B
Perplexity (↓)

Llama2-13B
Tokens/sec (↑)

OPT-30B
Perplexity (↓)

OPT-30B
Tokens/sec (↑)

LeSTD ∥ 0.2 0.2 13.99 15175.43 42.70 8545.22
LeSTD ∥ 0.4 0.4 11.94 11147.18 20.13 8447.63
LeSTD ∥ 0.6 0.6 7.93 12147.18 14.02 7139.44
LeSTD ∥ 0.8 0.8 6.98 11864.59 9.98 4122.30

BiLLM ∥ PTQ 1.08-bit ∼0.07 9.96 9732.96 12.71 3856.80
PB-LLM ∥ PTQ 10% salient 8-bit ∼0.17 11.77 10839.19 14.75 4020.87
PB-LLM ∥ PTQ 30% salient 8-bit ∼0.26 9.95 11666.06 13.70 3726.39

As shown in Table 6, putting the LeSTD side-by-side with SOTA post-training quantizers highlights
a complementary trade-off rather than a simple win or lose. BiLLM drives weights to an average
of ∼ 1.08 bits and reports strong perplexity at extreme compression, while PB-LLM partially bina-
rizes by reserving higher precision for salient weights. Both approaches achieve very small model
footprints (7-16% of the FP16 size) with competitive accuracy on WikiText-2. The advantage in
size does not always translate into throughput: at comparable accuracy targets, LeSTD’s factorized
and sparsified attention routinely runs faster. For example, at comparable or stronger compres-
sion settings on Llama2-13B and OPT-30B, LeSTD’s direct execution in the shared subspace yields
∼1.3-2.2X higher tokens/sec than the 1.08-bit BiLLM and a consistent lead over PB-LLM, depsite
the latter operating at lower bitwidths. This is consistent with the compute scheme of the methods:
LeSTD replaces three large input-side GEMMs with a single shared projection and contracts head-
local sparse cores, cutting memory traffic that often dominates short-context inference. Conversely,
ultra-low-bit PTQ still incurs packing/unpacking overheads and kernel inefficiencies that can bound
realized throughput even when the byte footprint is smaller.
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Accuracy-throughput also differ in shape. Quantization can reach lower perplexity at most aggres-
sive size targets, especially when binarization is carefully structured (BiLLM’s salient/non-salient
treatment and binary residual approximation) or when PB-LLM retains 8-bit precision on a subset
of critical weights (refer to Appendix B). LeSTD, by contrast, maintains perplexity close to full-
precision baselines at moderate compressions while delivering higher tokens/sec with no calibration
data and without custom kernels. Because LeSTD’s Stage II pruning operates in an orthonormal
Tucker latent space, pruning criterion admits a closed form and preserves the most influential inter-
actions, empirically this sustains accuracy as compression strengthens, while it sparse core directly
reduces runtime FLOPs and bandwidth. Taken together, results suggest the techniques are orthogo-
nal: LeSTD offers a strong operating point for deployment scenarios prioritizing throughput under
moderate size budgets, whereas extreme low-bit PTQ excels when model footprint is first constraint.

E DETAILED RELATED WORK

Data-free post-training compression methods for LLMs can be broadly grouped into low-rank, prun-
ing, and quantization, typically in the calibration-lite setting. Recent surveys (Zhu et al., 2024) syn-
thesize these lines and emphasize the practical importance of hardware-realizable structure and end-
to-end throughput when comparing methods. In what follows, we detail representative approaches
in each category: SVD-style and tensorized decompositions, channel/feature-level structured prun-
ing, and weight/activation quantization including extreme 1-bit schemes, highlighting their design
trade-offs and complementarity.

E.1 POST-TRAINING LOW-RANK DECOMPOSITION

A large body of research works compress LLM weights via training-free SVD-style factorizations.
ASVD (Yuan et al., 2023) introduces activation-aware reparameterization to absorb activation out-
liers into weights and performs layer-sensitive truncation with lightweight calibration, thus yielding
10–30% model size reduction. SVD-LLM (Wang et al., 2024b) makes the truncation explicitly loss-
aware by whitening activations so that the singular values align with approximation error, it further
applies sequential low-rank updates to mitigate post-truncation degradation, and its following ex-
tension, SVD-LLM-v2 (Wang et al., 2025), assigns per-layer compression via theoretical truncation
loss and improves the numerical pipeline. Beyond matrix SVD, tensorization exposes higher-order
structure. TensorLLM tensorizes multi-head attention and applies Tucker decomposition with shared
subspaces across heads, reporting substantial compression (up to 250X in MHA weights) and ac-
curacy benefits without specific dataset, related efforts (Xu et al., 2023) explore tensor-train (MPS)
decompositions (Oseledets, 2011b) for token embeddings to cut memory and latency.

E.2 POST-TRAINING STRUCTURED PRUNING

SliceGPT (Ashkboos et al., 2024) replaces each weight matrix with a smaller dense sub-matrix via
feature/channel selection, producing storage and wall-clock gains without retraining, it highlights
that structured sparsity patterns are critical for realizing speedups on real kernels. DISP-LLM (Gao
et al., 2024) relaxes rigid sharing by allocating different sub-spaces to different layers, strength-
ening the performance–cost trade-off for structural pruning at high sparsity ratio. Unstructured
one-shot pruning: SparseGPT solves a sequence of layerwise sparse-regression problems to prune
50%+ of parameters in a single pass on very large GPTs (Frantar & Alistarh, 2023). Wanda (Sun
et al., 2023) prioritizes weights by magnitude-activation products for fast one-shot pruning, and
subsequent work: Wanda++ (Yang et al., 2025) adds regional gradient signals for better robustness.
While unstructured sparsity may under-utilize hardware, these works motivate structured designs
(e.g., block/column pruning) to translate sparsity into the throughput, a principle adopted by newer
structural approaches, for example, SliceGPT (Ashkboos et al., 2024).

E.3 POST-TRAINING QUANTIZATION

Post-training quantization (PTQ) quantize weights and/or activations without task-specific finetun-
ing. GPTQ (Frantar et al., 2022) performs one-shot, second-order weight-only quantization (3–4
bit) via approximate Hessian inversion (Lieberman et al., 2013) and demonstrates minimal accu-
racy loss and end-to-end speedups on large GPTs. AWQ (Lin et al., 2024) is an activation-aware,
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hardware-friendly weight-only PTQ that protects salient channels using tiny calibration batches, en-
abling low-bit deployment across families of LLMs with strong accuracy. Building on this line, PB-
LLM (Shang et al., 2023) introduces partial binarization: binarizing most weights while reserving a
small salient subset at higher precision, and couples it with PTQ/QAT variants (e.g., GPTQ-guided
Hessian reconstruction) to stabilize ultra-low-bit regimes. Pushing further, BiLLM (Huang et al.,
2024) presents a 1-bit PTQ pipeline with salient weight selection, binary residual approximation,
and optimal splitting of non-salient weights, reporting competitive perplexities (e.g., on LLaMA2)
at 1–1.1 bit per weight and efficient binarization of multi-billion-parameter models, highlighting the
role of saliency-aware protection and structured binarization in preserving accuracy under aggres-
sive compression.

E.4 DIFFERENT TENSOR DECOMPOSITION FORMAT

Our method is built on a Tucker decomposition with a sparse core. In this section, we briefly discuss
why we adopt Tucker as the underlying topology and how it relates to alternative tensor formats and
structured Tucker variants.

CP decomposition. Given a N -way tensor X ∈ RI1×···×IN , the CANDECOMP/PARAFAC (CP)
decomposition (Goulart et al., 2016; Battaglino et al., 2017) writes

X ≈
R∑

r=1

a(1)
:,r ◦ a(2)

:,r ◦ · · · ◦ a(N)
:,r (7)

where a
(n)
:,r ∈ RIn is the r-th column of a factor matrix A(n) ∈ RIn×R and ◦ denotes the outer

product. This representation is extremely parameter-efficient (all information is stored in the factor
matrices), but each rank-1 term couples all modes through a single scalar coefficient, which limits
expressiveness. It is well documented in the tensor-decomposition literature (Kolda & Bader, 2009;
Song et al., 2017; de Silva & Lim, 2006; Krijnen et al., 2008; Paatero, 2000) that CP often requires
substantially larger rank than Tucker to achieve a comparable approximation error, and that CP fit-
ting can be prone to degeneracy and ill-conditioning, especially for complex or nearly collinear data.
In LeSTD, we construct a 4-way “joint MHA” tensor whose modes encode the model dimension,
head dimension, projection dimension (Q/K/V/O), and head index. Our design goal is to learn
shared subspaces along the first three modes (shared across all heads), while allowing per-head
mixing to be captured in a small core. A Tucker model

W ≈ G ×1 U
(1) ×2 U

(2) ×3 U
(3) ×4 U

(4) (8)

with U (1),U (2),U (3) shared and mode-4 slices of the core G playing the role of per-head param-
eters, matches this pattern directly. In contrast, a CP model would express W as a sum of rank-1
terms where each component simultaneously couples all four modes. To preserve per-head struc-
ture, one would either need to (i) tie the head-mode factors in a way that limits flexibility, or (ii)
significantly increase the CP rank to recover head-specific patterns. Both options undermine the
compression objective: the former sacrifices expressiveness and may hurt accuracy, while the lat-
ter expands the parameter budget and FLOPs. For this reason, we view Tucker as a more natural
compromise between expressiveness and compactness for our 4-way MHA tensor.

Tensor Train (TT) decomposition. The Tensor Train (TT) format is particularly attractive for very
high-order tensors with many small modes (Oseledets, 2011a). Given X ∈ RI1×···×IN , TT writes

X (i1, . . . , iN ) ≈ G(1)(i1, :)G(2)(:, i2, :) · · ·G(N)(:, iN ) (9)

where each G(n) is a 3-way core tensor with TT-ranks r0 = 1, r1, . . . , rN = 1. This long-chain
topology is well suited for high-order problems such as quantum many-body systems or large struc-
tured grids, where N is large and each In is relatively small. In our setting, however, the joint
MHA tensor is low-order (four modes) but with semantically structured dimensions: model dimen-
sion, head dimension, projection dimension, and head index. Mapping this tensor into a TT chain
would require non-trivial reshaping and ordering choices (Novikov et al., 2015; Bacciu & Mandic,
2020), and it becomes less clear how to (i) enforce a shared subspace across heads in a simple
way, and (ii) maintain per-head cores with a straightforward interpretation. In contrast, the Tucker
topology we adopt directly encodes a shared-basis and per-head-core structure: the factor matri-
ces U (1),U (2),U (3) span shared subspaces along the first three modes, and per-head variations are
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captured compactly in the fourth-mode slices of the dense core G. For these reasons, we prioritize
Tucker over TT in the current work.

Structured and block-sparse Tucker variants. Beyond plain Tucker and CP/TT, there exist many
structured Tucker variants that impose additional sparsity or block structure on the core tensor or
factor matrices (e.g., group-sparse (Mørup et al., 2008), block-diagonal (Jang & Kang, 2020), or
low-rank-plus-sparse cores (Heng et al., 2022; 2023)). Our LeSTD framework can be viewed as one
such instance: we adopt a Tucker topology and impose structured sparsity on the core via Stage II,
where the entries of G are pruned according to an importance measure derived from the downstream
contraction. This yields a compact, sparse core that is aligned with the semantics of the MHA
tensor (shared factors and per-head slices). Orthogonal structured Tucker approaches that focus, for
example, on block-diagonal or predefined block-sparse core patterns could in principle be combined
with LeSTD: our Stage I can be replaced by or augmented with such variants, and our Stage II
can be restricted to respect their block structure. A comprehensive empirical comparison between
different structured Tucker designs is beyond the scope of this paper. Here we adopt a minimal and
model-aligned choice that already provides strong compression and speedup.

E.5 RECENT AND MORE ADVANCED SVD-BASED PRUNING METHODS

Basis Sharing. Basis Sharing (Wang et al., 2024a) extends post-training SVD compression by ex-
plicitly sharing low-rank bases across layers. Instead of decomposing each weight matrix indepen-
dently, it factorizes selected matrices {W (ℓ)} into a small set of shared singular vectors and layer-
specific coefficient matrices, so that each layer weight can be reconstructed as a linear combination
of a layer-agnostic basis and layer-specific coefficients. The paper systematically studies which ma-
trix types (e.g., self-attention projections versus feed-forward layers) and which layer groups can
safely share bases without incurring large reconstruction error, and shows improved perplexity and
zero-shot accuracy over prior SVD-based compression methods across 20%–50% compression ra-
tios (Wang et al., 2024a). Our LeSTD framework is conceptually related in that both approaches
exploit shared subspaces to reduce redundancy, but the scope and representation differ. Basis Shar-
ing works at the matrix level and shares SVD bases across layers, its compressed representation is
still a dense low-rank factorization of each matrix. In contrast, LeSTD first constructs a four-way
MHA tensor that jointly encodes query, key, value, and output projections within a layer, then learns
a shared Tucker basis across heads and performs sparsification in the latent core. This tensorial view
lets LeSTD capture within-layer cross-head regularities that cross-layer SVD cannot see, and, im-
portantly, it replaces the dense core with an ultra-sparse one via Stage II importance-based pruning,
rather than only reducing rank.
Pivoting Factorization and MPIFA. Pivoting Factorization (PIFA) and its end-to-end variant
MPIFA (Zhao et al., 2025) start from a standard low-rank decomposition and then learn a meta low-
rank representation of the resulting factors. PIFA identifies a set of pivot rows (linearly independent
rows) in each low-rank matrix and represents all remaining rows as linear combinations of the piv-
ots, achieving additional parameter savings and speedups on top of low-rank pruning (e.g., around
24% extra memory reduction and 24% faster inference at r/d = 0.5 over a low-rank baseline).
MPIFA further couples PIFA with an online reconstruction scheme that mitigates error accumula-
tion across layers, enabling performance competitive with semi-structured pruning while preserving
the hardware-friendly nature of dense low-rank kernels. (Zhao et al., 2025). Compared with MPIFA,
LeSTD operates at a different granularity and representation. MPIFA assumes low-rank matrix fac-
tors and refines them with a lossless meta representation, it still ultimately applies dense low-rank
linear maps during inference. LeSTD instead defines a shared-subspace Tucker structure directly
on the multi-head attention tensor and prunes in an orthonormal latent basis, yielding an explicitly
sparse core with a closed-form importance score and inference executed fully in the compressed
domain. This allows LeSTD to break the dense-core bottleneck of tensor decompositions and to
realize throughput gains even with standard dense libraries, whereas MPIFA focuses on improving
the efficiency of matrix-wise low-rank pruning.

F COMPLEXITY ANALYSIS

Let dhead=dmodel/h. In a standard MHA block, the primary cost comes from the four dense weight
projections (for Q,K, V,O), each involving a matrix multiplication with the input activations. Per
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token, this results in a complexity of approximately O(4 · d2model). In LeSTD, inference operates on
the compressed factors, avoiding single large multiplication. Complexity breaks down as follows:
Input-side Projections (V Q,K, V ). The initial shared projection of the input X by U (1) costs
O(dmodelR1). This result is reused for all heads. For each of 3h projections (Q,K, V across
h heads), the subsequent operations are a sparse matrix multiplication involving the core ten-
sor slice Mi,t and a dense multiplication by U2. Let nnz(Gsparse) be the total number of non-
zero elements in the sparse core. The average cost of the sparse multiplication per projection is
O(nnz(Gsparse)/(4h)). This is followed by a dense multiplication costing O(R2dhead).
Output-side Projection. Logic is symmetric. Cost involves h multiplications of cost O(dheadR2),
followed by sparse multiplications related to the output slices of the core, and a final shared projec-
tion by (U (1))⊤ costing O(R1dhead).

When combining these steps, the total computational cost per token for LeSTD is dominated by:
2O(dmodelR1) +O(nnz(Gsparse)) +O(h · dheadR2). Given that h · dhead = dmodel, this simplifies to
O(dmodel(R1 + R2)) + O(nnz(Gsparse)). When the ranks R1, R2 ≪ dmodel and the core tensor is
highly sparse (low nnz(Gsparse)), this is substantially lower than O(d2model).

G DETAILED COMPUTATION OF COMPRESSION RATIO

For a standard Transformer layer (omit the biases), the multi-head attention (MHA) block has four
dense projections: WQ,WK ,W V ∈ Rdmodel×dmodel and WO ∈ Rdmodel×dmodel , given that dhead =
dmodel/h, so the original (uncompressed) parameter count per layer is Poriginal = 4 · d2model.

LeSTD does a Tucker factorization along the first three modes (shared across heads) plus a head
axis that is not factorized. Thus, for factor matrices: U (1) ∈ Rdmodel×R1 , U (2) ∈ Rdhead×R2 , U (3) ∈
R4×R3 , and the dense core tensor (Stage I generated): Gtotal ∈ RR1×R2×R3×h. For LeSTD with a
sparse core after Stage II, replace the dense core size by the number of nonzeros nnz(Gsparse). So
the compressed parameter count (ignoring sparse index overhead for the moment) is: Pcompressed =

dmodelR1 + dheadR2 + 4R3 + nnz(Gsparse). The ratio (ρ) defined in this paper is compressed
original , thereby,

it is equal to dmodelR1+dheadR2+4R3+nnz(Gsparse)

4d2
model

.

To fix ρ (e.g., ρ = 0.6) and search ranks:
1. Pick a candidate (R1, R2, R3) guided by TensorLLM (Gu et al., 2025), we start with a bit larger
(R1, R2, R3) since Stage II will prune the core;
2. Run Stage I to get the dense core (refer to Section 3.1);
3. In the Stage II (refer to Section 3.2), we prune the dense core until the core hits a target nnz:
nnztarget = 4d2model · ρ− (dmodelR1 + dheadR2 + 4R3). Stop pruning when nnz(Gsparse) ≤ nnztarget
(or when further pruning would degrade accuracy too much);
4. If accuracy is insufficient at that ρ, adjust ranks and repeat, e.g., increase R1 or R2 (as shown in
Table 2, these help for Perplexity) and tolerate a sparser core to keep ρ fixed.

H COMPARISONS WITH MORE ADVANCED SVD-BASED PRUNING METHODS

In this appendix, we provide an empirical comparison between LeSTD and two more recent SVD-
based pruning methods: Basis Sharing (Wang et al., 2024a) and MPIFA (Zhao et al., 2025). To keep
the study focused and computationally manageable, we consider one single representative setting:
GPT-J (6B) (Wang, 2021) evaluated on WikiText-2 (Merity et al., 2016). Experiment in this ap-
pendix are run on the same environment as in Section 4.1 to ensure comparability. We focus on two
global compression ratios, r ∈ {0.2, 0.8}, following the compression grid used in the main exper-
iments (Appendix G). For each method, we tune its internal ranks or sparsity budget to match the
target global parameter compression ratio as closely as possible, using the same accounting scheme
as for LeSTD. Specifically, at a given target ratio r, we adjust: (i) the matrix ranks and basis sharing
groups in Basis Sharing, (ii) the low-rank rank r/d and PIFA/MPIFA pivot schedule for MPIFA,
and (iii) the Tucker ranks and core sparsity level for LeSTD, until the overall parameter count of the
compressed model matches the desired budget within a small tolerance.
Setting of Basis Sharing. For Basis Sharing (Wang et al., 2024a), we adopt the official implementa-
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Table 7: GPT-J on WikiText-2: comparison between LeSTD and advanced SVD-based compression
methods (Basis Sharing (Wang et al., 2024a) and Pivoting Factorization/MPIFA (Zhao et al., 2025))
at two global compression ratios (r ∈ {0.2, 0.8}).

Method Compression Rate r = 0.2 Compression Rate r = 0.8

Perplexity(↓) Tokens/sec(↑) Perplexity(↓) Tokens/sec(↑)
Basis Sharing 99.16 14025.69 12.30 10091.19
MPIFA 102.15 14086.19 12.88 9488.84

LeSTD (Ours) 80.37 15636.24 8.92 11514.42

tion1 and follow the authors’ recommended configuration for GPT-style decoder-only architectures.
In particular, we enable cross-layer sharing for self-attention projection matrices (e.g., WQ, WK ,
WV ) while keeping output and feed-forward projections either unshared or less aggressively shared,
as suggested by their reconstruction-error analysis. We use the same type of small calibration cor-
pus as in the original paper to estimate the SVD bases (sampling from WikiText-2) and then adjust
the number of shared bases and per-layer coefficients so that the resulting global compression ratio
matches r ∈ {0.2, 0.8}.
Setting of MPIFA (Pivoting Factorization). For Pivoting Factorization and its end-to-end variant
MPIFA (Zhao et al., 2025), we again use the official code2 and default hyperparameters as a starting
point. Each weight matrix is first approximated by a low-rank factorization (as in standard SVD-
based pruning), and MPIFA is then applied as a meta low-rank representation that selects pivot rows
and reconstructs the remaining rows as linear combinations of these pivots. We select rank configu-
rations corresponding to overall densities close to r and apply MPIFA’s reconstruction procedure to
mitigate error accumulation across layers, in line with the original paper.

Table 7 summarizes the comparison on GPT-J with WikiText-2 at two global compression ratios.
At the more aggressive setting r = 0.2, all methods suffer from a substantial perplexity increase,
which is expected at such extreme compression levels. Basis Sharing and MPIFA reach validation
perplexities of 99.16 and 102.15, respectively, while achieving throughput of around 14k tokens/sec.
LeSTD attains a lower perplexity of 80.37 and a higher throughput of 15636 tokens/sec, indicating
that its tensor-level sparse Tucker representation remains more accurate and more efficient than the
matrix-wise SVD-based baselines in this extreme regime. At milder compression setting r = 0.8,
the differences become clearer. Both Basis Sharing and MPIFA incur a noticeable accuracy drop,
with perplexity increasing to 12.30 and 12.88, respectively. In contrast, LeSTD achieves a perplexity
of 8.92, and improving throughput to 11514 tokens/sec.

Overall, these results validate that LeSTD is competitive with, and often stronger than, more ad-
vanced SVD-based pruning methods. At moderate compression (r = 0.8), LeSTD preserves accu-
racy almost perfectly while providing larger speedups. At very aggressive compression (r = 0.2), all
methods degrade substantially, but LeSTD still offers a strictly better accuracy–efficiency trade-off
compared to Basis Sharing and MPIFA.

I EXTEND LESTD DESIGN TO FFN LAYER

In the main paper, we instantiate LeSTD on the Multi-Head Attention (MHA) block by tensorizing
the four projection matrices into a 4th-order tensor, and applying the two-stage procedure: (i) shared-
subspace Tucker decomposition (Stage I) and (ii) importance-based core pruning (Stage II). Here we
formally argue that exactly the same framework applies to the Feed-Forward Network (FFN) layers.

1https://github.com/TUDa-HWAI/Basis_Sharing
2https://github.com/biomedical-cybernetics/pivoting-factorization

26

https://github.com/TUDa-HWAI/Basis_Sharing
https://github.com/biomedical-cybernetics/pivoting-factorization


1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

I.1 TENSORIZING FFN BLOCKS

Consider a standard Transformer (as shown in Figure 2 in the main content) FFN block in one layer,
which maps Rdmodel → Rdmodel via an intermediate hidden dimension dff:

FFN(x) = Wdownϕ
(
W⊤

upx
)

where Wup ∈ Rdmodel×dff , Wdown ∈ Rdff×dmodel , and ϕ(·) is a pointwise nonlinearity (e.g., GELU (Lee,
2023) or SwiGLU (Zhang et al., 2024)). Analogous to the MHA case (Eq. (3) in Section 3.1), we
group the FFN weight matrices associated with a single layer into a 3rd-order tensor

WFFN ∈ Rdmodel×dff×p

where the mode-3 index enumerates the p linear projections used in the FFN block (e.g., p = 2 for a
vanilla two-layer FFN, p = 3 for a SwiGLU-style FFN with gate/up/down matrices). Concretely, if
{W (j)}pj=1 denotes these FFN matrices arranged so that each W (j) ∈ Rdmodel×dff acts on the same
input/output spaces, we define

WFFN[:, :, j] = W (j) 1 ≤ j ≤ p

In this way, FFN weights admit a higher-order representation entirely analogous to the MHA tensor:
each mode corresponds to a well-defined axis of variation (i.e., input model dimension, hidden FFN
dimension, and projection type index).

I.2 APPLYING STAGE I: SHARED-SUBSPACE TUCKER DECOMPOSITION

Given the FFN tensor WFFN ∈ Rdmodel×dff×p, we can apply the same shared-subspace Tucker de-
composition used for MHA (Eq. (4)):

min
U(1),U(2),U(3),GFFN

∥∥WFFN − GFFN ×1 U
(1) ×2 U

(2) ×3 U
(3)
∥∥2
F

s.t. (U (n))⊤U (n) = IRn
(10)

Here
U (1) ∈ Rdmodel×R1 , U (2) ∈ Rdff×R2 , U (3) ∈ Rp×R3

are column-orthonormal factor matrices, and GFFN ∈ RR1×R2×R3 is the FFN’s dense core. Eq. (10)
is a direct specialization of the MHA objective (Section 3.1) to a 3rd-order tensor, it can be solved
using the same HOOI procedure we employ for MHA.

Crucially, the derivation of the Stage I does not depend on the interpretation of each mode: it only re-
quires that the factor matrices are orthonormal and that the reconstruction is measured in Frobenius
norm Böttcher & Wenzel (2008). Hence, all guarantees and intuitions for MHA Tucker decomposi-
tion, e.g., capturing shared structure across projections, carry over to the FFN tensor.

I.3 APPLYING STAGE II: IMPORTANCE-BASED CORE PRUNING FOR FFN

Stage II (Section 3.2) derives a closed-form importance measure for each core element in the Tucker-
decomposed MHA tensor. The key observation is that the derivation relies only on: (i) the orthonor-
mality of the factor matrices {U (n)}, and (ii) use of Frobenius norm for reconstruction error. Both
properties hold identically for the FFN decomposition in Eq. (10). Therefore, the importance mea-
sure and the pruning rule extend verbatim. Formally, let

Ŵ
FFN

= GFFN ×1 U
(1) ×2 U

(2) ×3 U
(3)

be the Stage I reconstruction of WFFN, and let R = WFFN − Ŵ
FFN

be the residual. Denote by the
β = (r1, r2, r3) a multi-index into the core GFFN, and define the associated rank-1 basis tensor

Bβ = u(1)
r1 ◦ u

(2)
r2 ◦ u

(3)
r3 ,

where u
(n)
rn is the rn-th column of U (n). By orthonormality, the collection {Bβ} is orthonormal

with ⟨Bβ ,Bγ⟩ = δβγ and ∥Bβ∥F = 1. As in Section 3.2, we can write

Ŵ
FFN

=
∑
β

gβBβ with coefficients gβ ∈ R
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and the Stage I error satisfies
∥WFFN∥2F = ∥R∥2F +

∑
β

g2β

Now consider zeroing out a single core coefficient gβ . The new residual is

R(gβ = 0) = WFFN −
(
Ŵ

FFN
− gβBβ

)
= R+ gβBβ

and the corresponding reconstruction error becomes

E(gβ = 0) = ∥R+ gβBβ∥2F = ∥R∥2F + 2gβ⟨R,Bβ⟩+ g2β∥Bβ∥2F = E + g2β ,

where E = ∥R∥2F is the original Stage I error and we used ⟨R,Bβ⟩ = 0 and ∥Bβ∥2F = 1, exactly
as in Eq. (5) of the main text. Therefore, the normalized importance of gβ is

Imp(gβ) =
E(gβ = 0)− E

E
=

g2β
E

and, again, ordering elements by Imp(gβ) is equivalent to ordering by |gβ |. Under the Frobenius
loss, the best k-term approximation is obtained by keeping the k largest-magnitude coefficients and
pruning the rest, with an optional refitting step using Eq. (6). Thus, Stage II’s importance-based
pruning generalizes directly to the FFN core GFFN, with no modification to the theory or algorithm.

I.4 PRELIMINARY FFN EXPERIMENT

To provide an initial empirical check of the FFN extension discussed above, we conduct a small-
scale experiment on GPT-J (Wang, 2021) evaluated on WikiText-2 (Merity et al., 2016). We follow
the same protocol as in Section 4 (tokenization, context length, hardware, software, and evaluation
metric). We consider four configurations:

1. Original. The original GPT-J model without any modification.
2. MHA-Only. LeSTD is applied only to the MHA block.
3. FFN-Only. LeSTD is applied only to the FFN block.
4. MHA+FFN. LeSTD is applied simultaneously to both MHA and FFN blocks.

Table 8: GPT-J on Wikitext-2.

Configuration Perplexity(↓) Throughput (token/sec)

Original 8.86 7522.90

MHA-Only 9.53 12190.93
FFN-Only 12.44 16069.26
MHA+FFN 14.34 17604.24

Table 8 reports validation perplexity and through-
put on WikiText-2. The uncompressed GPT-J base-
line attains a perplexity of 8.86 and a through-
put of 7523 tokens/sec. Applying LeSTD only to
the MHA block (MHA-only, compression rate =
0.6) increases perplexity modestly to 9.53 (a rela-
tive change of about +7.6%) while already improv-
ing throughput to 12,191 tokens/sec (approximately
1.62× over the baseline), consistent with our main GPT-J results in Section 4.

When we apply LeSTD only to the FFN block (FFN-only, compression rate = 0.6), the throughput
further increases to 16069 tokens/sec, reflecting the fact that FFN layers account for a larger fraction
of total FLOPs. As expected, this more aggressive compression of FFN weights leads to a larger
accuracy drop, with perplexity rising to 12.44 (roughly +40% relative to the original model).

Compressing both MHA and FFN (MHA+FFN, with the same per-block compression rate) yields
the highest throughput, 17604 tokens/sec (∼ 2.34× speedup), at the cost of a further perplexity
increase to 14.34 (about +62%). Overall, this preliminary experiment confirms that the two-stage
LeSTD procedure extends straightforwardly from MHA to FFN: applying the same tensorization
and core-sparsification pipeline to FFN layers provides substantial additional speedups, with a tun-
able accuracy–efficiency trade-off that behaves consistently with our theoretical analysis.

J DISCUSSION ON THE FEASIBILITY OF INCORPORATING ACTIVATION
INFORMATION

A natural question is whether LeSTD, which is currently fully data-free, could be extended to exploit
activation information (e.g., a small calibration set) in order to further improve compression fidelity.
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Existing post-training methods such as ASVD (Yuan et al., 2023) and SVD-LLM (Wang et al.,
2024b) demonstrate that activation-aware objectives can be beneficial in matrix setting, especially
when the activations exhibit strong anisotropy or heavy-tailed directions. However, our framework
is built around a shared Tucker decomposition and a sparse core defined in an orthonormal latent
space. Below we explain why directly incorporating activations into this Tucker-based design is
non-trivial, and why we deliberately keep LESTD data-free in this work.
Activation-aware objectives in the matrix case. Consider a single linear map with weight matrix
W ∈ Rdin×dout and input activations x ∈ Rdin . Most data-free decompositions (including plain
SVD and our Stage I objective) implicitly minimize a Frobenius reconstruction error

∥W − W̃ ∥2F =
∑
i,j

(Wij − W̃ij)
2 (11)

which corresponds to assuming an isotropic input distribution. By contrast, activation-aware matrix
methods use a loss that reflects the output discrepancy on a calibration set. Let X ∈ RN×din collect
N input activations (rows), and let Y = XW and Ỹ = XW̃ be the corresponding outputs. The
natural squared error is

Lact(W , W̃ ) =
1

N
∥XW −XW̃ ∥2F =

1

N
∥X(W − W̃ )∥2F (12)

Defining the empirical activation covariance

Σx =
1

N
X⊤X ∈ Rdin×din , (13)

we can rewrite
Lact(W , W̃ ) = Tr

(
(W − W̃ )⊤Σx(W − W̃ )

)
(14)

Thus activation-aware compression effectively replaces the Euclidean metric ⟨A,B⟩F = Tr(A⊤B)
by a weighted inner product ⟨A,B⟩Σx

= Tr(A⊤ΣxB) that emphasizes directions with large acti-
vation variance. Methods such as ASVD and SVD-LLM can be interpreted as performing low-rank
approximation in this weighted geometry, often via whitening transformations that absorb Σ

1/2
x into

the weight matrices before applying SVD.

What an activation-aware Tucker objective would require. In LeSTD, the MHA parameters of
one layer are reshaped into a 4th-order tensor W total ∈ Rdmodel×dhead×4×h, and Stage I solves the
Tucker problem

min
Gtotal,U(1),U(2),U(3)

∥∥W total − Gtotal ×1 U
(1) ×2 U

(2) ×3 U
(3)
∥∥2
F

(15)

subject to (U (n))⊤U (n) = I and shared U (n) across all heads, as detailed in Section 3.1. To
make this objective activation-aware, one would have to replace the Frobenius norm in Eq. (15)
by a tensor analogue of the weighted metric Eq. (14). However, unlike the single-matrix case, an
MHA block couples: (i.) multiple types of projections (Q/K/V/O), (ii.) multiple heads, and (iii.)
multi-token activations flowing through attention. Formally, if we denote by X the joint tensor of
pre-activation features feeding into all MHA projections, the natural activation-aware loss would
involve an expectation of the form

LTucker
act = EX

[∥∥fW total(X )− fW̃ total
(X )

∥∥2
F

]
(16)

where fW denotes the linear part of the MHA block parametrized by W . Even under strong lin-
earization assumptions (ignoring softmax and non-linearities), this expectation induces a 4th-order
covariance operator over the tensorized weights:

LTucker
act = ⟨W total − W̃ total, C

(
W total − W̃ total

)
⟩ (17)

where C is a positive-definite linear operator that depends on the joint statistics of Q/K/V/O ac-
tivations, heads, and tokens. To retain the shared-factor structure of Eq. (3), one would need C
to factorize approximately as a Kronecker product over modes (e.g., Σ(1) ⊗ Σ(2) ⊗ Σ(3)), and
these mode-wise covariances would have to be compatible with a single set of orthogonal factors
U (1),U (2),U (3) shared across all heads and projections. In practice, Q/K/V/O activations have
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quite different distributions and scaling, and the covariance is neither separable nor shared across
heads. Therefore, there is no obvious way to define a single activation-weighted metric under which
all rank-1 basis tensors remain mutually orthogonal.

Impact on Stage II and sparse-core theory. Stage II of LeSTD crucially relies on the fact that,
under the Frobenius inner product, the rank-1 basis tensors {Bβ} induced by U (1),U (2),U (3)

form an orthonormal system: ⟨Bβ ,Bγ⟩F = δβγ . This orthonormality allows us to express the
reconstruction error as

∥W total − Ŵ total∥2F = ∥R∥2F +
∑
β

g2β

and to show that zeroing a single coefficient gβ increases the error by exactly g2β (Eq. (5)). Hence the
optimal k-term approximation is obtained by hard-thresholding on |gβ |, and the refitting step admits
a one-dimensional closed form (Eq. (6)). If switch to a general activation-weighted metric induced
by C, the basis {Bβ} is no longer orthonormal:

⟨Bβ ,Bγ⟩C = ⟨Bβ , C(Bγ)⟩F ̸= δβγ

The error becomes
∥W total − Ŵ total∥2C =

∑
β,γ

gβgγ⟨Bβ , C(Bγ)⟩F

and the increase in loss associated with pruning a single gβ depends on all cross-terms with γ ̸= β.
In this regime: (i.) magnitude-based ordering of |gβ | is no longer the optimal, (ii.) identifying the
best k coefficients is a coupled combinatorial problem, and (iii.) refitting remaining coefficients
no longer reduces to independent one-dimensional least squares. One can, in principle, define an
activation-weighted sparse Tucker objective and derive generalized normal equations, but doing so
would forfeit the key advantages of Stage II: data-free operation, closed-form importance scores,
and efficient pruning with guaranteed monotone error accounting.

Practical considerations and our choice in this work. From a practical standpoint, activation-
aware Tucker compression would also require: (i.) storing and streaming layer-wise activation
tensors for each MHA block during calibration, (ii.) estimating high-order covariances (or at least
their low-rank surrogates), and (iii.) calibrating separately for each model, dataset, and even down-
stream task. Recent empirical studies on PTQ and pruning show that compression quality can be
highly sensitive to the choice of calibration corpus (Frantar et al., 2022; Lin et al., 2024; Shang
et al., 2023), and that calibration on mismatched data can even hurt generalization to new tasks. In
contrast, LeSTD is fully data-free and immediately applicable to any pretrained checkpoint without
additional data curation or repeated activation collection.

In summary, while in principle one could attempt, but under our design constraints this is practically
infeasible to define an activation-weighted inner product and to formulate an activation-aware sparse
Tucker problem, such a design would:

1. break the orthonormal structure that underpins our closed-form importance scores and refitting
updates;

2. require strong and arguably unrealistic separability assumptions on multi-head, multi-projection
activation statistics to preserve shared factors;

3. sacrifice the data-free nature of LeSTD by introducing the non-trivial calibration overhead and
dataset dependence.

K LLM USAGE

During the preparation of this paper, we used OpenAI’s ChatGPT-5 to assist with language polishing
and improving readability of the manuscript. In addition, we used OpenAI’s Codex to help parse and
understand baseline implementations by reading and decomposing publicly available source code.
No part of the core technical contributions, experimental design, or results analysis was generated
by LLMs; all scientific ideas, methodology, and validation remain the sole work of the authors.
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