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Abstract
Vision graph neural networks (ViG) have demonstrated promise in vision tasks
as a competitive alternative to conventional convolutional neural nets (CNN) and
transformers (ViTs); however, common graph construction methods, such as k-
nearest neighbor (KNN), can be expensive on larger images. While methods such
as Sparse Vision Graph Attention (SVGA) have shown promise, SVGA’s fixed
step scale can lead to over-squashing and missing multiple connections to gain
the same information that could be gained from a long-range link. Through this
observation, we propose a new graph construction method, Logarithmic Scalable
Graph Construction (LSGC) to enhance performance by limiting the number of
long-range links. To this end, we propose LogViG, a novel hybrid CNN-GNN
model that utilizes LSGC. Furthermore, inspired by the successes of multi-
scale and high-resolution architectures, we introduce and apply a high-resolution
branch and fuse features between our high-resolution and low-resolution branches
for a multi-scale high-resolution Vision GNN network. Extensive experiments
show that LogViG beats existing ViG, CNN, and ViT architectures in terms
of accuracy, GMACs, and parameters on image classification and semantic
segmentation tasks. Our smallest model, Ti-LogViG, achieves an average top-1
accuracy on ImageNet-1K of 79.9% with a standard deviation of ± 0.2%, 1.7%
higher average accuracy than Vision GNN with a 24.3% reduction in parameters
and 35.3% reduction in GMACs. Our work shows that leveraging long-range
links in graph construction for ViGs through our proposed LSGC can exceed the
performance of current state-of-the-art ViGs.

1 Introduction

The meteoric rise of deep learning over the past decade has resulted in numerous successes in
computer vision. From the development of AlexNet [1] and convolutional neural networks (CNNs)
[2–5] to a new generation of vision Transformers (ViTs) [6–8], neural networks have demonstrated
their effectiveness in computer vision across the board. In the same vein, CNNs and ViTs have also
shown competitive performance toward dense prediction tasks, such as semantic segmentation [9, 10].
More recently, Graph neural networks (GNNs), specifically Vision GNNs (ViGs) have emerged as
competitive alternatives to current CNN and ViG models in computer vision [11–13]. Instead of a
sliding window over a grid of pixels as in CNNs or a sequence of patches in ViTs, ViGs represent
an image as a network of patches linked by content rather than spatial position [11]. Through these
patches, a ViG can identify objects within an image by relating each patch with its neighbor. For
example, if one patch contains features that are associated with a tire and another patch, connected
with the first, contains features that represent handlebars, then a ViG is capable of generalizing the
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object as a bicycle. Even if two patches are spatially distant, ViGs can exploit long-range links to
form the shortest path between spatially distant patches.

Despite promising results, ViGs are computationally complex, especially during network generation
[12]. A common method is to use K nearest neighbors (KNN) and generate a network by selecting a
patch and connecting each patch to the K most similar patches [11]. Yet, as mentioned earlier, this
method is computationally inefficient, especially for high-resolution images as the time needed to
generate a graph can grow exponentially depending on the size of the image. An alternative is a
static, structured grapher (SVGA) [12] which grows linearly horizontally and vertically across an
image. While this significantly simplifies the process, this method suffers from over-squashing where
too much information is being assimilated into a single vector. This becomes more apparent as the
resolution increases, causing the number of connected patches to grow quadratically. To address this
[14] proposed a fixed number of connections regardless of input resolution, but this can cause ViGs
to lose their global context in high-resolution images.

To address these issues, we propose Logarithmic Scalable Graph Construction (LSGC) as an efficient
alternative to KNN and SVGA-style ViGs. LSGC exploits logarithmic growth to create networks
that scale with image size, simultaneously avoiding over-squashing and reducing computational
complexity. We also deploy LSGC in a hybrid ViG-based CNN-GNN architecture, LogViG, and
utilize a high-resolution shortcut [15] to inject high-resolution features at later stages into the model.
We summarize our contributions as follows:

• We propose a novel approach to graph construction designed for efficient Vision GNNs. Instead
of scaling the graph linearly as in SVGA, we scale the graph logarithmically. Logarithmic
Scalable Graph Construction (LSGC) improves on SVGA in several ways. First, it generates
fewer connections for high-resolution images to help mitigate over-squashing. Second, it helps
preserve locality by prioritizing connections closer to a patch without sacrificing the ability to
make long-range connections.

• We introduce a novel CNN-GNN architecture, LogViG, for image classification and semantic
segmentation that uses LSGC and a high-resolution skip connection. We utilize convolutional
and grapher layers in all four stages, performing local and global processing at each stage.

• We demonstrate that LoGViG outperforms traditional CNN, ViT, and ViG architectures on
vision tasks and that LSGC broadly outperforms SVGA in image classification and semantic
segmentation.

The paper is arranged as follows. Section 2 covers related work in the ViG and efficient computer
vision architecture space. Section 3 describes the design methodology behind LSGC and the LogViG
architecture. Section 4 describes the experimental setup and results for ImageNet-1k [16] image
classification and ADE20K [17] semantic segmentation. Section 5 covers ablation studies on how
different design decisions impact performance on ImageNet-1k. Lastly, Section 6 summarizes our
main contributions.

2 Related Work
Current network architectures for computer vision commonly utilize convolution neural networks
(CNNs) [2–5] and vision Transformers (ViTs) [6–8]. On dense prediction tasks, ViTs tend to
outperform CNNs [18]; however, are computationally complex compared to CNNs, resulting in
higher compute times and latency [19, 20]. In addition, ViT performance degrades on high-resolution
images [18]. Conversely, CNNs lack a global receptive field and cannot capture global features when
compared with ViTs [18]. In both cases, CNNs and ViTs are limited in their ability to represent
image data, restricted to a grid of pixels or a sequence of patches respectively [11]. While CNNs
tend to be more efficient than ViTs [20], some headway has been made to make ViTs competitive
[21]. Still, pure CNN and ViT models suffer from the drawbacks discussed, opening the door for
alternative architectures.

Vision GNNS are a proposed alternative to CNN and ViT-based architectures. Traditional ViG
networks represent images by computing the k nearest-neighbors (KNN) for every patch in an image
[11], attending to similar patches across an entire image. The result is a network of short and long-
range connections across the image. By representing an image as a network of patches, it bypasses the
inflexibility issues of CNNs and ViTs. Additionally, the mixture of short and long-range connections
between patches allows ViGs to capture both local and global features, a trait lacking in CNNs.
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(a) SVGA Grapher (b) LSGC Forward Pass (c) LSGC Backward Pass

Figure 1: a) SVGA graph attention for the top left pixel of an 8× 8 image b) LSGC forward graph
attention pass for the top left pixel of an 8 × 8 image and an expansion rate K = 2. As depicted,
LSGC grows logarithmically rather than linearly. c) LSGC backward graph attention pass for the top
left pixel of an 8× 8 image and expansion rate K = 2. As shown, the LSGC wraps around the image
to create connections

Historically, graph neural networks (GNNs) have been used for biological, language, and social
data [22–25]. GNNs have also been used for vision tasks such as object localization, detection, and
classification [26–28]. After the introduction of Vision GNN [11] (ViGs), GNN-based networks
have grown dramatically [12, 29, 30]. Yet, despite significant progress, graph construction remains
computationally expensive [12]. While static grapher methods such as Sparse Vision Graph Attention
(SVGA) help mitigate the computational complexity issue of ViGs, they fail to scale with high-
resolution images and introduce over-squashing. To tackle this issue, we introduce Logarthimic
Scalable Graph Construction (LSGC), an efficient graph construction method capable of scaling
with high-resolution images, and LogViG, a novel CNN-GNN hybrid network utilizing LSGC that
outperforms competing state-of-the-art (SOTA) architectures.

3 Methodology

3.1 Logarthimic Scalable Graph Construction

We propose Logarthmic Scalable Graph Construction (LSGC) as an alternative efficient graph
construction method to KNN graph attention from Vision GNN (ViG) [11]. We expand upon SVGA
[12] by scaling the graph logarithmically based on the bit-length of an image rather than statically. In
this way, the grapher is efficient on large images by constructing fewer links than SVGA while still
creating global links over the entire image. In addition, these fewer, but global, connections avoid
over-squashing [31] and redundancy by limiting the number of links per image patch.

For ViG architectures, the k-Nearest-Neighbors (KNN) computation is required for every input image,
since one cannot know the nearest neighbors of every pixel on an image. This results in a graph
with connections scattered over the image. Due to the nature of KNN, ViG contains two reshaping
operations [11]. The first reshapes the input image from a 4D tensor to a 3D tensor for graph
convolution and the second reshapes the input from 3D back to 4D for convolutional layers. SVGA
[12] eliminates these reshaping operations utilizing a static graph where each patch is connected
to every Kth patch in its row and column as in Figure 1a. A follow-up work to MobileViG [12]
proposes MGC [14] which utilizes a fixed number of possible connections per token regardless of
input size.

LSGC replaces the static graph structure of SVGA or the fixed number of connections of MGC and
improves upon them with a logarithmic structure that scales based on the input image size. To do this,
we first obtain the bit-depth from H and W , the height and width of the input image in pixels. We
define bit-depth as the number of bits required to represent the dimensions in binary. For example, an
8× 8 input results in a bit-depth of four for both width and height. We reason that this will ensure
a global connection can be established for larger images because any pixel will be able to at least
reach across an image to establish a long-distance connection. After calculating the bit-depth, we
store these values as h and w as denoted in Algorithm 1.
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Table 1: Shortest Average Path on Various Resolutions and Network Structures.

Resolution Lattice LSGC SVGA

56 X 56 37.333 4.359 2.895
28 X 28 18.667 3.719 2.794
14 X 14 9.333 3.303 2.605

7 X 7 4.667 2.334 1.750

Next, we implement graph construction using a series of expand operations which we denote as
expandforward and expandbackward as described in Algorithm 1. Using the bit-depth h and w
as our scaling limit, and setting the expansion rate K, we first expandforward in the downwards
and right directions (denoted as expandforwardH and expandforwardW ) from a pixel and create
connections every 2n − 1 ∀ 1 ≤ n ≤ h,w pixels as shown for an 8 × 8 image in Figure 1b.
Similarly, we then expandbackward in the upwards and left directions (denoted as expandbackwardH

and expandbackwardW ) opposite of expandforward. If there is no room to expand, as our example
in Figure 1c demonstrates, we simply wrap the image around such that we expand to the other side
of the image. Then, after every directional expansion, we perform max-relative graph convolution
(MRConv). To do this, we compute the element-wise max operation over the difference between the
original image X and the expanded version computed by the expand operation and store the result
in Xj as shown in Algorithm 1. Finally, we concatenate Xj with the original image and apply a
Conv2d over the entire matrix. In this way, we achieve reduced computational complexity for graph
construction compared to SVGA and KNN whilst still establishing global connections throughout
the image. The effect of expansion is demonstrated in Table 1. While a normal square lattice has a
significantly larger shortest path length across the image, LSGC allows for links to be established
across an entire image with similar effectiveness to SVGA. For example, at the highest resolution
of 56 × 56, a regular square lattice has an average shortest path length of 37.333. After applying
LSGC or SVGA, the shortest path length is reduced to 4.359 and 2.895 respectively as shown in
Table 1. The reduction of shortest path length indicates that longer-range links are being established,
permitting global data over the entire image to be seen and processed. We note that SVGA has a
shorter average path length than LSGC due to making significantly more connections, which leads to
the over-squashing [31] effect SVGA suffers from.

Algorithm 1 LSGC

Require: H,W , the image resolution; X , the input image; K the expansion rate
h← bitdepth(H) ▷ Calculate bit depth
w ← bitdepth(W )
Xj ← 0
for i = 1, 2, . . . h do

Xc ← X − expandforwardH(X,Ki − 1) ▷ Get downwards relative features
Xj ← max(Xc, Xj) ▷ Keep max relative features

end for
for i = 1, 2, . . . w do

Xc ← X − expandforwardW (X,Ki − 1)
Xj ← max(Xc, Xj)

end for
for i = 1, 2, . . . h do

Xc ← X − expandbackwardH(X,Ki − 1)
Xj ← max(Xc, Xj)

end for
for i = 1, 2, . . . w do

Xc ← X − expandbackwardW (X,Ki − 1)
Xj ← max(Xc, Xj)

end for
return Conv2d(Concat(X,Xj)
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a) LogViG Architecture
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Figure 2: LogViG Architecture. (a) Network architecture showing the stages and blocks. (b) Stem.
(c) High-Resolution Shortcut (HRS). (d) MBConv Block. (e)Downsample. (f) LSGC Block. (g)
Logarithmic Grapher. (h) FFN. (i) Merge.

3.2 High-Resolution Shortcut

Networks typically downsample the feature maps to operate on lower-resolution representations due
to the associated computational complexity (increased GMACs) with operating on high-resolution
images [15, 32]. The issue with such networks is that they lack cross-resolution interaction, which
can lead to worse performance. Inspired by prior work such as HRNet [32], Lite-HRNet [33], and
HRViT [15] we propose to bring multi-scale high-resolution interactions to Vision GNNs.

To enable multi-scale feature interaction we use a High-Resolution Shortcut (HRS), which allows us
to merge our higher resolution features with our lower resolution features. Our HRS consists of two
3× 3 convolutions, one with a stride = 2 and the other with a stride = 1, each followed by batch
normalization (BN) and the GeLU activation function as shown in Figure 2c. We then merge the
features of our high-resolution branch with our low-resolution branch. To merge the features, first we
upsample our low-resolution features through bilinear interpolation. Next, we perform a pointwise
convolution to match the channel dimensions. Lastly, we sum our features, pass them into another
pointwise convolution, followed by BN and GeLU.
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3.3 Going Deeper Versus Going Wider

Deeper networks have been shown to better learn hierarchical features, which can improve accuracy
on complex and large datasets [34]. To optimize our proposed LogViG architecture we studied
whether our network performance is improved with a deeper and narrower network or a shallower
and wider network. Namely, we compared our Ti-LogViG architecture shown in Table 2 with the
Wide Ti-LogViG architecture. For our wider variation we cut the depth by 33% and increased the
channel width by 50% for stages 1 to 3. For stage 4 we increased the channel width to 384 from 224
to get a similar number of parameters to our Ti-LogViG so we could fairly compare the deeper and
wider network. The results in Table 5 show our comparison of both networks and we find the deeper
LogViG-Ti achieves a 0.4% accuracy increase with only a 0.1 M increase in parameters.

3.4 Network Architecture

The overall LogViG architecture is shown in Figure 2a. First, we pass the image through the
convolutional stem. The stem takes the input images and downsamples it 4× using convolutions of
stride = 2. The output of the stem is fed into two branches: The low-resolution branch and the
high-resolution branch. In the low-resolution branch, the stem output is passed through four stages.
Each stage is made up of two blocks: the MBConv Block and LSGC Block as described in Figure
2a. Between each stage are additional convolution-based downsampling steps. The high-resolution
branch is made up of a single High-Resolution Shortcut block as shown in 2a. The output of the
low-resolution branch is interpolated and channel adjusted before being added to the high-resolution
branch as demonstrated in Figure 2i. Lastly, the merge block output is put through an average pooling
step followed by a feed-forward network, producing the predicted class of the input image.

Table 2: Architecture details of LogViG showing configuration of the stem, stages, and classification
head. C represents the channel dimensions.

Stage Ti-LogViG S-LogViG B-LogViG Wide Ti-LogViG

Stem Conv ×2 Conv ×2 Conv ×2 Conv ×2

Stage 1
MBConv × 3
LSGC × 3
C = 32

MBConv × 5
LSGC × 5
C = 32

MBConv × 5
LSGC × 5
C = 48

MBConv × 1
LSGC × 1
C = 48

Stage 2
MBConv × 3
LSGC × 3
C = 64

MBConv × 5
LSGC × 5
C = 64

MBConv × 5
LSGC × 5
C = 96

MBConv × 1
LSGC × 1
C = 96

Stage 3
MBConv × 9
LSGC × 3
C = 128

MBConv × 15
LSGC × 5
C = 128

MBConv × 15
LSGC × 5
C = 192

MBConv × 3
LSGC × 1
C = 192

Stage 4
MBConv × 3
LSGC × 3
C = 224

MBConv × 5
LSGC × 5
C = 256

MBConv × 5
LSGC × 5
C = 384

MBConv × 1
LSGC × 1
C = 384

Head Pooling & MLP Pooling & MLP Pooling & MLP Pooling & MLP

The network architecture details for Ti-LogViG, S-LogViG, and B-LogViG are provided in Table 2.
We also provide the details of Wide Ti-LogViG, which we used to determine the improvement in
performance we would gain by going deeper versus wider in our network. We report the configuration
of the stem, stages, and classification head. For each stage we also report the channel dimensions and
the number of MBConv and LSGC blocks used.

4 Experimental Results
We compare LogViG to ViG[11] and MobileViG [12] to show its superior performance in terms of
image classification accuracy on ImageNet-1k[16] in Table 3 for all model sizes. We also demonstrate
superior performance in terms of semantic segmentation on ADE20K [17] for all model sizes
compared in Table 4. For each SOTA model we compare to LogViG obtains superior performance
for similar or less parameters and GMACs.
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Table 3: Classification results on ImageNet-1k for LogViG and other state-of-the-art models. Bold
entries show best results for competing models for each column. Gray highlighted entries indicate
results obtained for LogViG proposed in this paper. The Top-1 accuracy results for LogViG models
are averaged over four experiments and show the mean ± standard deviation.

Model Type Params (M) GMACs Epochs Acc (%)
ResNet18 [3] CNN 11.7 1.82 300 69.7
ResNet50 [3] CNN 25.6 4.1 300 80.4

ConvNext-T [35] CNN 28.6 7.4 300 82.7
EfficientFormer-L1 [36] CNN-ViT 12.3 1.3 300 79.2
EfficientFormer-L3 [36] CNN-ViT 31.3 3.9 300 82.4
EfficientFormer-L7 [36] CNN-ViT 82.1 10.2 300 83.3

LeViT-192 [37] CNN-ViT 10.9 0.7 1000 80.0
LeViT-384 [37] CNN-ViT 39.1 2.4 1000 82.6
HRViT-b1 [15] ViT 19.7 2.7 300 80.5
HRViT-b2 [15] ViT 32.5 5.1 300 82.3
HRViT-b3 [15] ViT 37.9 5.7 300 82.8
PVT-Small [38] ViT 24.5 3.8 300 79.8
PVT-Large [38] ViT 61.4 9.8 300 81.7

DeiT-S [7] ViT 22.5 4.5 300 81.2
Swin-T [39] ViT 29.0 4.5 300 81.4

PoolFormer-S12 [40] Pool 12.0 2.0 300 77.2
PoolFormer-S24 [40] Pool 21.0 3.6 300 80.3
PoolFormer-S36 [40] Pool 31.0 5.2 300 81.4

PViHGNN-Ti [13] GNN 12.3 2.3 300 78.9
PViHGNN-S [13] GNN 28.5 6.3 300 82.5
PViHGNN-B [13] GNN 94.4 18.1 300 83.9

PViG-Ti [11] GNN 10.7 1.7 300 78.2
PViG-S [11] GNN 27.3 4.6 300 82.1
PViG-B [11] GNN 92.6 16.8 300 83.7

MobileViG-S [12] CNN-GNN 7.2 1.0 300 78.2
MobileViG-M [12] CNN-GNN 14.0 1.5 300 80.6
MobileViG-B [12] CNN-GNN 26.7 2.8 300 82.6
Ti-LogViG (Ours) CNN-GNN 8.1 1.1 300 79.9 ± 0.2
S-LogViG (Ours) CNN-GNN 13.9 1.9 300 81.5 ± 0.1
B-LogViG (Ours) CNN-GNN 30.5 4.6 300 83.6 ± 0.1

4.1 Image Classification

We implement the model using PyTorch 1.12 [41] and Timm library [42]. The models are trained
from scratch for 300 epochs on ImageNet1K [16] with AdamW optimizer [43]. We set the learning
rate to 2e−3 with a cosine annealing schedule. We use a standard image resolution of 224 × 224,
for both training and testing. Following prior work [7, 12, 14, 36, 44, 45], we perform knowledge
distillation using RegNetY-16GF [46] with 82.9% top-1 accuracy. For data augmentation we use
RandAugment [47], Mixup[48], Cutmix[49] random erasing [50], and repeated augment [51].

As seen in Table 3, for a similar number of parameters and GMACs, LogViG outperforms high-
resolution architectures such as HRViT [15], as well as GNN architectures such as Pyramid ViG
(PViG) [11], Pyramid ViHGNN (PViHGNN) [13], and MobileViG [12] by a significant margin.
For example, our S-LogViG, achieves 81.5% top-1 accuracy on ImageNet-1K with 13.9 million
(M) parameters and 1.9 GMACs compared to HRViT-b2 [15] with 80.5% top-1 accuracy at 19.7
M parameters and 2.7 GMACs. Our largest model B-LogViG obtains 83.6% top-1 accuracy with
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only 30.5 M parameters and 4.6 GMACs. Meanwhile, HRViT-b3 [15] obtains only 82.8%, a 0.8%
decrease in accuracy, at a higher cost of 37.9 M parameters and 5.7 GMACs.

Compared to similar GNN architectures, our smallest model, Ti-LogViG outperforms PViHGNN-Ti
[13] and PViG-Ti[11] in accuracy with less parameters and GMACs. Ti-LogViG obtains 79.9% top-1
accuracy at 8.1 M parameters and 1.1 GMACs. Meanwhile, PViHGNN-Ti [13] only achieves 78.9%
top-1 accuracy at 12.3 M parameters and 2.3 GMACs, a 1.0% difference in accuracy for 4.3 M more
parameters and 1.1 more GMACs. Additionally, PViG-Ti [11] reaches 78.2% top-1 accuracy at 10.7
M parameters and 1.7 GMACs, a decrease of 1.7% for higher parameters and GMACs.

When juxtaposed to other architectures in Table 3, LogViG beats SOTA models in accuracy for
a similar number of parameters and GMACs. Ti-LogViG beats PoolFormer-S12 [40] with 2.7%
higher top-1 accuracy and 3.9 M fewer parameters and 0.9 fewer GMACs. S-LogViG beats DeiT
[7] with 0.3% higher top-1 accuracy while having 8.6 M fewer parameters and 2.6 fewer GMACs.
Additionally, B-LogViG beats the EfficientFormer [36] family of models with significantly fewer
parameters.

4.2 Semantic Segmentation

We further compare the performance of LogViG on semantic segmentation using the scene parsing
dataset, ADE20k [17]. The dataset contains 20K training images and 2K validation images with
150 semantic categories. We build LogViG with semantic FPN [52] as the segmentation decoder,
following the methodologies of [36, 40, 44, 45, 53]. The backbone is initialized with pretrained
weights on ImageNet-1K and the model is trained for 40K iterations on 8 NVIDIA RTX 6000
Ada generation GPUs. Following the process of prior works in segmentation, we use the AdamW
optimizer, set the learning rate as 2× 10−4 with a poly decay by the power of 0.9, and set the training
resolution to 512 × 512 [12, 36, 44, 45].

As shown in Table 4, S-LogViG outperforms PoolFormer-S12 [40], FastViT-SA12 [53],
EfficientFormer-L1 [36], and MobileViG-M by 6.9, 6.1, 5.2, and 2.3 mIoU , respectively. Addition-
ally, B-LogViG outperforms FastViT-SA36 [53] by 3.9 mIoU with only 0.1 M more parameters.
B-LogViG also outperforms EfficientFormer-L3 [36] by 3.3 mIoU with 0.8 M fewer parameters.

Table 4: Semantic segmentation results of LogViG and other backbones on ADE20K. Bold entries
indicate results obtained using LogViG and LSGC proposed in this paper. The * on MobileViG-M
indicates the authors do not report semantic segmentation results so we trained the model and report
the mIoU we obtained. For all other models that are not our LogViG we report the mIoU’s reported
in their original papers. The mIoU results for LogViG models are averaged over four experiments
and show the mean ± standard deviation.

Backbone Parameters (M) mIoU

ResNet18 [3] 11.7 32.9
PVT-Tiny [38] 13.2 35.7

EfficientFormer-L1 [36] 12.3 38.9
PoolFormer-S12 [40] 12.0 37.2
FastViT-SA12 [53] 10.9 38.0

MobileViG-M* [12] 14.0 41.8
S-LogViG (Ours) 13.9 44.1 ± 0.6

ResNet50 [3] 25.6 36.7
PVT-Small [38] 24.5 39.8
PVT-Large [38] 61.4 42.1

EfficientFormer-L3 [36] 31.3 43.5
EfficientFormer-L7 [36] 82.1 45.1

PoolFormer-S24 [40] 21.0 40.3
PoolFormer-S36 [40] 31.0 42.0
PoolFormer-M48 [40] 73.0 42.7

FastViT-SA36 [53] 30.4 42.9
B-LogViG (Ours) 30.5 46.8 ± 0.4
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4.3 Ablation Studies

We perform ablation studies to show the benefits of LSGC, our deeper network configuration, and of
our high-resolution shortcut (HRS). A summary of these results can be found in Tables 5 and 6.

Table 5: An ablation study of the effects of higher resolution graphers in our network, and using
deeper and narrower networks. A checkmark indicates this component was used in the experiment. A
(-) indicates this component was not used. 1-S indicates that graph convolutions were only used in
Stage 4 of the model, 3-S indicates that graph convolutions were used in stages 2, 3, and 4, and 4-S
indicates that graph convolutions were used in all stages of the network.

Base Model Params (M) LSGC 1-S 3-S 4-S Deep Network Top-1 (%)

MobileViG-S 7.2 - ✓ - - - 78.2
Ti-LogViG 7.0 ✓ ✓ - - ✓ 78.8
Ti-LogViG 8.0 ✓ - ✓ - ✓ 79.8
Ti-LogViG 8.0 ✓ - - ✓ - 79.6
Ti-LogViG 8.1 ✓ - - ✓ ✓ 79.9

Starting with MobileViG-S as a base model for comparison, we first try using our LSGC-style graph
construction and our deeper and narrower network architecture. We find our LogViT-Ti in this case
outperforms MobileViG-S by 0.6% with 0.2 M fewer parameters. Next we use graph convolutions in
stages 2, 3, and 4 of the model, the resulting model achieves a top-1 accuracy on ImageNet-1K of
79.8%, 1.0% higher than with only using graph convolutions in stage 4. Next when we use graph
convolutions in all 4 stages of the network we achieve a top-1 accuracy on ImageNet-1K of 79.9%
with 8.1 M parameters. When we modify the network to be wider and less deep as shown in Table
2 indicated by Wide Ti-LogViG, we see a decrease in accuracy of 0.3% with only 0.1 M fewer
parameters.

Table 6: An ablation study of the effects of our LSGC graph construction versus SVGA graph
construction and of our high-resolution branch using the high-resolution shortcut. A checkmark
indicates this component was used in the experiment. A (-) indicates this component was not used.

Base Model Params (M) SVGA LSGC High-Resolution Top-1 (%)

Ti-LogViG 8.0 ✓ - - 79.4
Ti-LogViG 8.0 - ✓ - 79.8
Ti-LogViG 8.1 - ✓ ✓ 79.9

Starting with Ti-LogViG with SVGA and without our high-resolution shortcut (HRS) we achieve a
Top-1 accuracy on ImageNet-1k of 79.4%. When we add our LSGC we gain 0.4% in accuracy with
no additional parameters. When we add HRS we gain another 0.1% in accuracy with only 0.1 M
additional parameters as shown in Table 6.

5 Conclusion
In this work, we have introduced Logarithmic Scalable Graph Construction (LSGC), a novel method
for constructing graphs in Vision GNNs that efficiently balances the inclusion of long-range links
with reducing the computational cost typically associated with methods like KNN. LSGC overcomes
the limitations seen in SVGA by scaling connections logarithmically, improving information flow. We
have also proposed LogViG, a hybrid CNN-GNN architecture that integrates LSGC, uses multi-scale
and high-resolution features, and leverages a deeper network architecture for enhanced performance.
LogViG outperforms existing ViG, CNN, and ViT models on key vision tasks such as image classifi-
cation and semantic segmentation. Our results demonstrate that LogViG is more efficient in terms
of GMACs and parameters while achieving superior accuracy, proving that LSGC and our hybrid
architecture offer a significant advancement in the design of Vision GNNs.
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