
On the Effectiveness of Quasi Character-Level Models for Machine
Translation

Anonymous ACL submission

Abstract

Neural Machine Translation (NMT) models001
often use subword-level vocabularies to deal002
with rare or unknown words. Although some003
studies have shown the effectiveness of purely004
character-based models, these approaches have005
resulted in highly expensive models in compu-006
tational terms. In this work, we explore the ben-007
efits of quasi-character-level models for low-008
resource NMT and their ability to mitigate the009
effects of the catastrophic forgetting problem.010
We first present a theoretical foundation along011
with an empirical study on the effectiveness of012
these models, as a function of the vocabulary013
and training set size, for a range of languages,014
domains, and architectures. Next, we study the015
ability of these models to mitigate the effects016
of catastrophic forgetting in machine transla-017
tion. Our work suggests that quasi-character-018
level models have practically the same general-019
ization capabilities as character-based models020
but at lower computational costs. Furthermore,021
they appear to help achieve greater consistency022
between domains than standard subword-level023
models, although the catastrophic forgetting024
problem is not mitigated.025

1 Introduction026

Neural machine translation (NMT) has become027

the dominant paradigm in the field of machine028

translation due to the impressive results achieved029

with encoder-decoder architectures (Sutskever et al.030

(2014); Cho et al. (2014); Wu et al. (2016);031

Vaswani et al. (2017)).032

Despite these advances, the translation of rare033

or unknown words became a more complex prob-034

lem than initially thought. Consequently, authors035

proposed different approaches that can be grouped036

into three categories: i) Character-based models ii)037

Hybrid NMT models. iii) Subword-level models.038

Character-based models can naturally deal with039

rare or unseen words as they contain the minimum040

set of characters to build all the words in a language.041

However, these models have historically resulted 042

in unsatisfactory results (Vilar et al. (2007); Neu- 043

big et al. (2013)) or highly expensive models in 044

computational terms (Luong and Manning, 2016a). 045

Later, Hybrid NMT models appeared to close 046

the gap between word- and character-based repre- 047

sentations (Luong and Manning, 2016b). The idea 048

behind these models is to translate mainly at the 049

word level and only query character components 050

for rare words when necessary. However, these 051

models tend to be a bit cumbersome due to the need 052

for two models to do the back-off. Finally, word 053

segmentation approaches such as BPE (Sennrich 054

et al., 2016), or Unigram (Kudo, 2018) emerged 055

to encode words using a vocabulary of subwords 056

units efficiently. 057

Despite the success of subword-level models and 058

the evidence that each data set has an optimal vo- 059

cabulary size (Gowda and May, 2020), there is no 060

clear way to determine this optimal size without 061

resorting to trial and error. However, it has been 062

known that character-level models tend to work 063

better for extremely low resource settings. 064

Some researchers might argue that with the in- 065

crease of data volume and mining techniques, low- 066

resources languages are no longer a problem in 067

NMT. However, this is not entirely true since many 068

languages are spoken but not written on the internet 069

(e.g., Tigrinya, Sotho, Tsonga, etc.). 070

Motivated by these ideas, we decided to study 071

whether NMT quasi character-based models had 072

the same advantage as character-based approaches 073

for low-resource scenarios but at much lower com- 074

putational costs due to the exponential decrease in 075

the average number of tokens per sentence when 076

highly frequent char-pairs are merged. 077

Furthermore, we decided to study if these mod- 078

els could mitigate the effects of the catastrophic 079

forgetting phenomenon by exploiting its vocabu- 080

lary similarity between domains. 081

The contributions of this paper are twofold: 082
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• Quasi-character-level models appear to out-083

perform their character-based in terms of per-084

formance while practically offering the same085

generalization capabilities at much lower com-086

putational costs.087

• Quasi-character-level models appear to088

achieve higher consistencies between do-089

mains, although they also seem to be more090

susceptible to the effects of catastrophic091

forgetting.092

2 Related work093

Character-based models have been well-studied in094

the Natural Language Processing (NLP) field to095

deal with the open-vocabulary problem. One of the096

first character-based models was proposed by Vilar097

et al. (2007), who treated the source and target sen-098

tences as a string of letters. Similarly, Neubig et al.099

(2013) viewed translation as a single transduction100

between character strings in the source. However,101

their results were not satisfactory as their models102

generally performed worse than their word-based103

counterparts.104

Consequently, authors proposed multiple strate-105

gies based on Hybrid NMT models (Luong and106

Manning, 2016b) and subword-level representa-107

tions (Sennrich et al. (2016); Kudo (2018)) to get108

the best of both worlds.109

Luong and Manning (2016a) and Costa-jussà110

and Fonollosa (2016) showed that competitive111

purely character-based NMT models were possible112

but extremely slow to train and infer. Chung et al.113

(2016) demonstrated that an NMT model with a114

character-based decoder could outperform NMT115

models with subword-level decoders.116

Many authors have studied the Zipfian nature117

of languages in NMT. For instance, Gowda and118

May (2020) did it to find the optimal vocabulary119

size, and Raunak et al. (2020) to characterize the120

long-tailed phenomena in NMT. Similarly, Cherry121

et al. (2018) showed that character-level models122

have their greatest advantage when data sizes are123

small, and Sennrich and Zhang (2019) that reduc-124

ing vocabulary size improves low-resource NMT.125

Finally, this paper ends with a brief discussion on126

the ability of quasi-character-based models to mit-127

igate the catastrophic forgetting problem in NMT.128

As far as we know, this is the first work that ad-129

dresses this problem from this perspective, since130

most of the works that we know of are based on reg-131

ularization (Li and Hoiem (2016) and Kirkpatrick132

et al. (2016)), dynamic architectures (Rusu et al. 133

(2016) and Draelos et al. (2016)) or Complemen- 134

tary Learning Systems (CLS) (Kemker and Kanan 135

(2017)). 136

3 Neural Machine Translation 137

3.1 Neural architectures for Machine 138

Translation 139

The goal of any translation system is to transform 140

an input sequence in a given language into an out- 141

put sequence in a target language. 142

Nowadays, this is usually done using neural mod- 143

els based on the encoder-decoder architecture, also 144

known as seq2seq models in the machine trans- 145

lation community ((Sutskever et al., 2014)). The 146

encoder part transforms the input sequence into an 147

internal representation, and then the decoder trans- 148

forms this internal representation into the output 149

sequence. 150

Recurrent architectures (RNNs) were the first 151

to be successfully applied in an encoder-decoder 152

setup for machine translation. Even though there 153

are many RNNs, most of them chain a series 154

of unit cells sequentially to process temporal se- 155

quences. We decided to use LSTMs ((Hochreiter 156

and Schmidhuber, 1997)) because their units cells 157

are explicitly designed to deal with long-term de- 158

pendencies. 159

Convolution-based architectures (CNN) do not 160

contain any recurrent elements. They can do this 161

because the idea behind this architecture is that the 162

convolutional filters can slide through the sequence 163

of tokens from beginning to end ((Gehring et al., 164

2017)). 165

Lastly, Vaswani et al. (2017) introduced the 166

Transformer architecture, which is a state-of-the- 167

art model based entirely on the concept of atten- 168

tion (Bahdanau et al. (2015); Luong et al. (2015)) 169

to draw global dependencies between the input 170

and output. Unlike RNNs or CNNs, this archi- 171

tecture processes its temporal sequences all at once 172

through the use of masks that encode their temporal 173

information. 174

This work is focused on the Transformer as 175

it is the current state-of-the-art model for NMT. 176

Nonetheless, RNNs and CNNs are briefly explored 177

for completeness. 178

3.2 The open vocabulary problem 179

In the written language, it is common to find alter- 180

native spellings (i.e., color-colour) and typos (i.e., 181
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acknowledge-acknowlege) that slightly modify the182

spelling of a word but do not prevent us, the hu-183

mans, from understanding its meaning. However,184

suppose a model is using a word-level representa-185

tion. In that case, it will stop knowing a known186

word at the very first moment that it is slightly187

modified (and this modification is not in its vocab-188

ulary). Similarly, it has to be taken into account189

that many languages use agglutination and com-190

pounding mechanisms to form new words, making191

word-based vocabularies a very inefficient strategy.192

As a result, researchers have proposed multiple193

approaches to deal with the open vocabulary prob-194

lem. These approaches can be mostly grouped into195

three categories: i) Character-based models, ii) Hy-196

brid NMT models iii) Subword-level models.197

Character-based models contain the minimum198

possible vocabulary to form all possible words in199

a language. Therefore, these models can translate200

rare or even unseen words character-by-character,201

but at the same time, these models tend to be much202

slower and harder to train than word-based models,203

as they have to deal with longer long-term depen-204

dencies.205

Hybrid NMT approaches can be seen as a “trick”,206

as they translate primarily at word-level but fall207

back to character-level when a rare or unseen word208

appears.209

Lastly, subword-level representations allow us210

to efficiently represent words as a sequence of sub-211

words units. Although they practically solved the212

unknown problem of word-based approaches, they213

cannot solve it completely. To do so, the current214

approach is to perform byte-fallback.215

A side effect of subword-level representations is216

that by changing the vocabulary size limit, they can217

(partially) degenerate to character- or word-based218

representations, which allow us to study the effects219

of the vocabulary more closely.220

4 Experimental setup221

4.1 Datasets222

The data used for this work comes mainly from the223

WMT tasks (see Table 1)224

These datasets contain parallel sentences from225

different languages and domains (political, eco-226

nomic, health, biological, talks, etc.).227

In addition to the original datasets, we have cre-228

ated smaller versions1 for some training sets in229

1The validation and test sets were shared across training
set versions

Dataset Training set
Europarl (es-en) 1.9M/100K/50K
Europarl (de-en) 1.8M/100K/50K
Europarl (cs-en) 635K/100K/50K
CommonCrawl (es-en) 1.8M/100K
SciELO (es-en) 575K/120K
NewsCommentary (de-en) 357K/35K
Tatoeba (mr-en; mk-en) 50K
IWLST’16 (de-en) 196K
Multi30K (de-en) 29K

Table 1: All the values in this Table indicate the number
of sentences.

order to study the effects of the vocabulary size 230

as a function of training size (from low- to high- 231

resource language). 232

4.2 Training details 233

All the preprocessing was done using Sentence- 234

Piece (Kudo and Richardson, 2018), with Unigram 235

(Kudo, 2018) as the tokenization model. 236

To train our models2 we used Fairseq 237

v1.0.0a0(Ott et al., 2019), with a pretty standard set 238

of training hyper-parameters3. We tried to use sim- 239

ilar settings on most models. However, we noticed 240

that as we use smaller vocabularies and training 241

sets, these models became more sensitive to the 242

given hyper-parameters. This was particularly true 243

on character-based models.4 244

Similarly, we also experimented with different 245

neural architectures (Transformer, LSTMs, and 246

CNNs). In the case of the Transformer, we be- 247

gan to experiment with the Standard Transformer 248

(45-93M parameters), but then we switched to a 249

smaller version (4-25M parameters), as both per- 250

formed quite similarly in terms of performance (±1 251

BLEU), and the later was notably faster. 252

4.3 Evaluation metrics 253

We evaluate all models using Sacrebleu (Post, 254

2018), which produces shareable, comparable, and 255

reproducible BLEU scores (Papineni et al., 2002). 256

Similarly, we also made use of BERTScore (Zhang 257

et al., 2019), a state-of-the-art neural metric for 258

machine translation. 259

2We use 2x NVIDIA GP102 (TITAN XP) - 12GB
3Hyper-parameters: lr=[0.5e-4, 1e-3], weight-decay=[1e-

3, 1e-4], criterion=[ce, label-ce(0.1)], scheduler=[fixed,
inverse-sqrt], warmup-updates=[4000], optimizer=[adam,
sgd, nag], clip-norm=[0.0, 0.1, 1.0], beam-width=5]

4Most trainings last between a few hours to 1-2 days
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5 Experimentation260

5.1 On Quasi-Character-Level Hypotheses261

We will say that a vocabulary is complete, if and262

only if we can represent any possible word of a263

given language. Therefore, given two different264

vocabularies, A and B, we will say that they are265

grammatically equivalent if they are complete. Sim-266

ilarly, the smaller a vocabulary is, the greater the267

generalization capability of the model used will268

have to be, as the amount of information per token269

will be diluted by the number of tokens needed to270

encode each string.271

Based on these premises, we can infer that the272

representation power of a given model will depend273

on the degree of generalization required by its vo-274

cabulary, the amount of data required to learn it275

and if the complexity of the model can handle it.276

In practice, this means that, given a model277

with enough complexity, the generalization advan-278

tage of character-based vocabularies with respect279

to subword-based or word-based vocabularies de-280

creases as the amount of data increases.281

From these theories, supported by empirical evi-282

dence (Sennrich and Zhang, 2019), we hypothesize283

that quasi-character-based models should perform284

similar to character-based models in low-resource285

environments but with much lower computational286

costs.287

It is essential to highlight that a quasi-character-288

level vocabulary is meant to depict a subword-level289

vocabulary which is an order or two orders of mag-290

nitude smaller than standard subword-level vocab-291

ularies. The motivation for these vocabularies is to292

provide practically the same generalization capabil-293

ities as character-level models, but more efficiently,294

by exploiting highly frequent n-grams to decrease295

the sentence length exponentially.296

5.2 Effects of the vocabulary and corpus size297

In order to test the basis of our hypothesis, we chose298

a medium-sized corpus such as Europarl-2M (de-299

en). Then, we created two other versions, where300

the training set was artificially reduced from 2M301

sentences to 100k and 50k sentences. Similarly, we302

created two vocabularies:303

• A standard subword-level vocabulary with304

32k entries305

• A quasi-character-level vocabulary with 350306

entries307

The aim of this experiment was twofold. First, 308

we sought to ratify the observations made by other 309

authors that smaller vocabularies tend to help in 310

low-resource environments (Cherry et al. (2018)). 311

However, in our case, we provide additional data 312

points for smaller datasets (less than 2M sentences), 313

languages, and domains (following sections). Sec- 314

ond, we sought to establish baselines for our quasi- 315

character-based models so that we could later 316

study their computational advantage over purely 317

character-level models. 318
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Figure 1: As we limit the training data (left to right),
we see that quasi character-level Transformers performs
better than their large subword vocabularies versions.
Similarly, this phenomenon seems to occur regardless
of the language (top to bottom).

As expected, in Figure 1 we see that when there 319

is enough training data, standard subword-level 320

models outperform models with quasi-character- 321

level vocabularies (first column). In contrast, as 322

the amount of training data is reduced (second and 323

third columns), quasi-character-level models out- 324

performed the standard subword-level models. 325

In total, we performed this experiment for three 326

different language pairs (Spanish-English, German- 327

English, and Czech-English) in order to account 328

for potential language biases and domains (polit- 329

ical, economical, health, biological, transcripted 330

talks, etc.), to be able to generalize the findings of 331

previous authors to much smaller corpus and es- 332

pecially, to quasi-character-level vocabularies (See 333

section 5.4). 334

5.3 On the Effectiveness of 335

Quasi-Character-Level Models 336

As other studies have shown (Gowda and May, 337

2020), each dataset seems to have an optimal vo- 338

cabulary size. Therefore, this could imply that the 339

4



results from our previous experiment could be bi-340

ased towards a sub-optimal vocabulary size. To341

account for these possible biases, we performed a342

similar set of experiments in which we gradually in-343

creased the vocabulary size (at the subword-level)344

from 100 entries to 16,000 entries (plus 256 ad-345

ditional entries for the byte-fallback) in order to346

obtain the characteristic curve for each dataset as a347

function of the vocabulary size (See Figure 2).348
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Figure 2: As we decrease the size of the vocabulary, the
average number of tokens per sentence increases expo-
nentially, so more complex models and more training
data are needed to exploit the additional generalization
capabilities of these vocabularies. However, by merging
a few highly frequent char-pairs into a single token, we
can have models that practically generalize as character-
based models but with much lower computational costs
at training and inference.

In Figure 2 we can see two variations of the349

Europarl (de-en) dataset to emulate low-resource350

settings, one with 50k sentences (orange line) and351

another with 100k sentences (blue line).352

The first thing to notice in this Figure 2 is that,353

as we limit the number of entries in the vocabulary354

in resource-poor environments, the performance of355

our models increases. Although this was expected,356

it was necessary to add more robustness to our pre-357

vious conclusions. Similarly, it is also important to358

point out that as we increase the amount of training359

data (Europarl-100k), the phenomenon described360

here is still present. Nonetheless, it is less notice-361

able than in the smaller corpus (Europarl-50k), as362

expected. This observation might indicate that for363

high-quality corpus, the advantage of character-364

level models could disappear much quicker than365

was previously thought (Cherry et al., 2018).366

Then, we see that as vocabularies approach367

character-level representations, the average num-368

ber of tokens per sentences increases exponentially 369

(dashed line), which directly impacts the perfor- 370

mance of the models due to: i) The additional 371

complexity needed to handle the greater general- 372

ization capabilities of smaller vocabularies. ii) The 373

problems imposed by having to deal with longer 374

long-term dependencies. iii) Higher computational 375

costs at training and run-time. 376

However, as we can see in Figure 2 when we in- 377

crease the vocabulary size, the average number of 378

tokens per sentence decreases exponentially. The 379

direct consequence of this is that quasi-character- 380

level models outperformed purely character-based 381

models (dashed lines) by a significant margin with- 382

out increasing the complexity of this model or 383

the training time. Following these observations, 384

we wonder what may be the benefit of using 385

character-based models instead of quasi-character- 386

based models, since a slight increase in vocabulary 387

size leads to the collapse of highly frequent pairs 388

that individually contribute little to the model’s 389

learning, but when collapsed, produce considerable 390

reductions in average sentence size, which results 391

in much lower computational costs and fewer prob- 392

lems from learning long-term dependencies and 393

complex generalizations. 394

5.4 On the Generalization of 395

Quasi-Character-based approaches 396

In this section, we study if the benefits of Quasi- 397

Character-based approaches generalize to other lan- 398

guages, domains, and neural architectures. 399

5.4.1 Domain generalization 400

As we have briefly described in Section 5.2, seemed 401

to generalize to other Latin-based languages such 402

as Spanish, German and Czech. However, we won- 403

dered whether the domain could be introducing 404

some biases since the Europarl dataset only con- 405

tains parallel sentences extracted from the Euro- 406

pean Parliament website. 407

To do so, we repeated the experiment but 408

on parallel corpus from different domains, 409

such as crawled data (CommonCrawl), political 410

and economic news (NewsCommentary), health 411

and biological sciences (SciELO), transcripted 412

talks (IWLST’16), and multimodal transcriptions 413

(Multi30k). 414

Interestingly, Quasi-Character-Level models 415

kept outperforming their standard subword-level 416

counterparts when then the training data was arti- 417

ficially reduced to emulate low-resource environ- 418
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ments, so it seems that the advantages of quasi-419

character-level models seem to be present regard-420

less of the domain (See Figure 3).5421
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Figure 3: The benefits of quasi-character-level models
for low-resource settings appear to be consistent regard-
less of the domain.

5.4.2 Non-Latin and Low-Resource422

Languages423

After that, we wanted to study this phenomenon424

for non-Latin languages and actual low-resource425

languages. To do so, we use the Tatoeba dataset for426

Marathi and Macedonian, both with 50K sentences427

(See Figure 4).428

1000 2000 3000 4000
Vocab sizes

0

10

20

30

40

50

60

Bl
eu

8

10

12

14

16

Av
g 

To
ke

ns

Bleu and Avg Tokens depending on the Vocab Size

Tatoeba-50K (mr-en)
Tatoeba-50K (mk-en)
Avg Tokens

char+bytes

char+bytes

Figure 4: Quasi-Character-Level models outperformed
Character-based models for Marathi and Macedonian
(Tatoeba), using half of the average tokens per sentence.
A non-negligible optimization due to the quadratic com-
plexity of the Transformer’s self-attention

Again, in Figure 4 we see that Quasi-Character-429

Level models outperformed their character-based430

counterparts. However, this time we could not com-431

pare the difference against standard subword-level432

vocabularies (8k, 16k, and 32k) because there was433

too little training data to build those vocabularies6.434

5We have considered the results from IWLST’16 and
Multi30K redundant, so we decided not to included a Fig-
ure for them. Nonetheless, Quasi-Character-Level models
improved the BLEU score in 6.2pts for the IWLST’16 dataset
and 2.3pts for the Multi30k dataset.

6We could have used the number of merge operations

Nonetheless, the important thing to highlight here 435

is that when we use a vocabulary of around 1000 436

entries, the average number of tokens per sentence 437

was half of the character-based model, which is 438

non-trivial in computational- and memory terms 439

due to the quadratic complexity of the self-attention 440

of the Transformer architecture. 441

5.4.3 Neural architecture generalization 442

In this section, we were interested in studying 443

how much of the advantage of quasi-character-level 444

models was due to the ability of the Transformer ar- 445

chitecture to learn long-term dependencies. There- 446

fore, we briefly study if our findings could gen- 447

eralize to other neural machine translation archi- 448

tectures, such as LSTMs or CNNs. Specifically, 449

we focused our work on bidirectional LSTMs with 450

attention mechanisms and fully convolutional ar- 451

chitectures like the one described in (Gehring et al., 452

2017). 453

Although the comparison of different neural ar- 454

chitectures is not trivial, we tried to naively explore 455

this topic by only comparing models that had a sim- 456

ilar number of parameters for a given vocabulary 457

(i.e., 25-30M parameters for vocabularies of 32k 458

subwords. 459

From our experimentation, we observed that 460

when standard subword-level models were trained 461

with enough data (all available data), they out- 462

performed all character- and quasi-character-level 463

models regardless of their architecture. However, 464

when this experiment was repeated on the low- 465

resource regime, the quasi-character-based models 466

performed better than their standard subword-level 467

counterparts when Transformer or Bi-LSTM archi- 468

tectures were used. Furthermore, if CNNs were 469

had given more training time7, it is highly likely 470

that they would have outperformed the standard 471

subword-level models too (see Figure 5). 472

In the left figure 5a, we see that quasi-character- 473

level Transformers consistently outperform the 474

ones with standard subword-level vocabularies. 475

This phenomenon is still present for LSTMs (the 476

central Figure 5b). However, it is not as evident 477

as with the Transformer architecture due to the 478

problems of RNNs with modeling long-term de- 479

pendencies. Finally, we see in the right Figure 5c 480

instead of the vocabulary size, but since it is not really a fair
comparison, we decided to make the comparison amongst
small vocabularies.

7The max-epochs hyper-parameter stopped the training,
and due to the lack of time we had not been able to repeat it
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(a) Transformer architecture (b) Bi-LSTM architecture (c) CNN architecture

Figure 5: The green lines refer to the best and worst runs of the models with standard subword-level vocabularies,
while the blue lines refer to the best run of the quasi character-level models.

that CNNs cannot easily model long-term depen-481

dencies, so they do not benefit as easily from the482

quasi-character-level representations483

From these results, we conclude that the ability484

of a neural architecture to model long-term depen-485

dencies is critical to obtain significant benefits from486

character- or quasi-character-based approaches.487

5.5 On the Catastrophic Forgetting Problem488

In this section, we study whether quasi-character-489

level models could help mitigate the effects of the490

catastrophic forgetting problem, whereby neural491

networks forget previously learned information af-492

ter learning new information.493

To do this, we designed an experiment in which494

we first train a model in a domain A and evaluate495

it in domains A and B to establish the baselines.496

Next, we fine-tune the model trained in domain497

A with data from the new domain B, and then, it498

is evaluate it in domains A and B. In theory, the499

model trained in domain A should perform well500

in the domain A, and poorly in the unseen domain501

B. Similarly, after the fine-tuning on domain B, it502

should perform worse in A and better in domain B503

than the original model trained only on domain A.504

In Figure 6a we see that the quasi-character-level505

model trained on the health domain (SciELO) ob-506

tained a BLEU of 33.3pts on its domain (Health)507

and a BLEU of 14.3pts in the other domain (Biolog-508

ical). Then, when we fine-tune it on the Biological509

domain (SciELO), the BLEU obtained on this do-510

main increased from 14.3 to 31.7pts, while BLEU511

for the health domain fell from 33.3 to 21.0pts. In512

Figure6b we see that something similar happened513

for the standard subword-vocabulary. However, the514

effects of the catastrophic forgetting problem were515

not as strong as in the other model because the516

BLEU score went from 28.7 to 28.0pts.517

From Figure 6, we can infer that the vocabulary518

seems to have a substantial impact on the effects519

of catastrophic forgetting because character-level520
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Health
(Voc. domain=H)

H B
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B
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16.0
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Standard Subword-Level

Health
Biological

Figure 6: Vocabularies seem to have a strong impact
on the catastrophic forgetting effects. While the quasi
character-level model lost 12.3pts, the large subword-
level model only lost 0.7pts

vocabularies seem to make models more suscep- 521

tible to the catastrophic forgetting problem than 522

standard subword-level vocabularies. 523

To further explore this problem, we repeated the 524

previous experiment but taking into account the 525

vocabulary domain. As a result, we discovered that 526

the vocabulary domain has a stronger impact on the 527

model’s performance than we thought. As shown 528

in Figure 7, quasi-character-level models seem to 529

be highly consistent between domains, while stan- 530

dard subword-level models seem to be particularly 531

sensitive to their vocabulary’s domain, to the point 532

of achieving opposite results between domains (see 533

right column of the Figure 7). 534

Even though quasi-character-level models 535

achieved better consistencies across domains, they 536

appear to suffer more severely from the effects 537

of the catastrophic forgetting problem than their 538

standard subword-level counterparts. We believe 539

that by using specially designed regularization tech- 540

niques to address this issue, such as LwF ((Li and 541

Hoiem, 2016)) or EWC ((Kirkpatrick et al., 2016)) 542

these problems could be mitigated, leading to more 543

robust and consistent models. 544

6 Conclusion 545

In this paper, we have empirically studied the 546

effectiveness of quasi-character-level models in 547

terms of performance and computational efficiency 548
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Figure 7: Quasi-character-level models (left figures) appear to be more consistent between domains than models
with standard subword-level vocabularies (right figures)

with regard to purely character-based and standard549

subword-level models. In addition to this, we have550

studied the generalization of quasi-character-level551

vocabularies and their ability to tackle the catas-552

trophic forgetting problem.553

Our studies reveal that quasi-character-level554

models offer virtually the same generalization ca-555

pabilities as character-level models but with much556

lower computational costs. Similarly, these mod-557

els outperformed character-based and standard558

subword-level models on low-resource settings for559

a wide range of languages, domains, and neural560

architectures.561

Finally, we have showed that even though quasi-562

character-level vocabularies do not seem to miti-563

gate the effects of the catastrophic forgetting prob-564

lem, they achieved a higher consistencies between565

domains, which could lead to substantial improve-566

ments if specific regularization techniques are ap-567

plied to deal with catastrophic forgetting.568
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