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Abstract

Neural Machine Translation (NMT) models
often use subword-level vocabularies to deal
with rare or unknown words. Although some
studies have shown the effectiveness of purely
character-based models, these approaches have
resulted in highly expensive models in compu-
tational terms. In this work, we explore the ben-
efits of quasi-character-level models for low-
resource NMT and their ability to mitigate the
effects of the catastrophic forgetting problem.
We first present a theoretical foundation along
with an empirical study on the effectiveness of
these models, as a function of the vocabulary
and training set size, for a range of languages,
domains, and architectures. Next, we study the
ability of these models to mitigate the effects
of catastrophic forgetting in machine transla-
tion. Our work suggests that quasi-character-
level models have practically the same general-
ization capabilities as character-based models
but at lower computational costs. Furthermore,
they appear to help achieve greater consistency
between domains than standard subword-level
models, although the catastrophic forgetting
problem is not mitigated.

1 Introduction

Neural machine translation (NMT) has become
the dominant paradigm in the field of machine
translation due to the impressive results achieved
with encoder-decoder architectures (Sutskever et al.
(2014); Cho et al. (2014); Wu et al. (2016);
Vaswani et al. (2017)).

Despite these advances, the translation of rare
or unknown words became a more complex prob-
lem than initially thought. Consequently, authors
proposed different approaches that can be grouped
into three categories: i) Character-based models ii)
Hybrid NMT models. iii) Subword-level models.

Character-based models can naturally deal with
rare or unseen words as they contain the minimum
set of characters to build all the words in a language.

However, these models have historically resulted
in unsatisfactory results (Vilar et al. (2007); Neu-
big et al. (2013)) or highly expensive models in
computational terms (Luong and Manning, 2016a).

Later, Hybrid NMT models appeared to close
the gap between word- and character-based repre-
sentations (Luong and Manning, 2016b). The idea
behind these models is to translate mainly at the
word level and only query character components
for rare words when necessary. However, these
models tend to be a bit cumbersome due to the need
for two models to do the back-off. Finally, word
segmentation approaches such as BPE (Sennrich
et al., 2016), or Unigram (Kudo, 2018) emerged
to encode words using a vocabulary of subwords
units efficiently.

Despite the success of subword-level models and
the evidence that each data set has an optimal vo-
cabulary size (Gowda and May, 2020), there is no
clear way to determine this optimal size without
resorting to trial and error. However, it has been
known that character-level models tend to work
better for extremely low resource settings.

Some researchers might argue that with the in-
crease of data volume and mining techniques, low-
resources languages are no longer a problem in
NMT. However, this is not entirely true since many
languages are spoken but not written on the internet
(e.g., Tigrinya, Sotho, Tsonga, etc.).

Motivated by these ideas, we decided to study
whether NMT quasi character-based models had
the same advantage as character-based approaches
for low-resource scenarios but at much lower com-
putational costs due to the exponential decrease in
the average number of tokens per sentence when
highly frequent char-pairs are merged.

Furthermore, we decided to study if these mod-
els could mitigate the effects of the catastrophic
forgetting phenomenon by exploiting its vocabu-
lary similarity between domains.

The contributions of this paper are twofold:



* Quasi-character-level models appear to out-
perform their character-based in terms of per-
formance while practically offering the same
generalization capabilities at much lower com-
putational costs.

* Quasi-character-level models appear to
achieve higher consistencies between do-
mains, although they also seem to be more
susceptible to the effects of catastrophic
forgetting.

2 Related work

Character-based models have been well-studied in
the Natural Language Processing (NLP) field to
deal with the open-vocabulary problem. One of the
first character-based models was proposed by Vilar
et al. (2007), who treated the source and target sen-
tences as a string of letters. Similarly, Neubig et al.
(2013) viewed translation as a single transduction
between character strings in the source. However,
their results were not satisfactory as their models
generally performed worse than their word-based
counterparts.

Consequently, authors proposed multiple strate-
gies based on Hybrid NMT models (Luong and
Manning, 2016b) and subword-level representa-
tions (Sennrich et al. (2016); Kudo (2018)) to get
the best of both worlds.

Luong and Manning (2016a) and Costa-jussa
and Fonollosa (2016) showed that competitive
purely character-based NMT models were possible
but extremely slow to train and infer. Chung et al.
(2016) demonstrated that an NMT model with a
character-based decoder could outperform NMT
models with subword-level decoders.

Many authors have studied the Zipfian nature
of languages in NMT. For instance, Gowda and
May (2020) did it to find the optimal vocabulary
size, and Raunak et al. (2020) to characterize the
long-tailed phenomena in NMT. Similarly, Cherry
et al. (2018) showed that character-level models
have their greatest advantage when data sizes are
small, and Sennrich and Zhang (2019) that reduc-
ing vocabulary size improves low-resource NMT.

Finally, this paper ends with a brief discussion on
the ability of quasi-character-based models to mit-
igate the catastrophic forgetting problem in NMT.
As far as we know, this is the first work that ad-
dresses this problem from this perspective, since
most of the works that we know of are based on reg-
ularization (Li and Hoiem (2016) and Kirkpatrick

et al. (2016)), dynamic architectures (Rusu et al.
(2016) and Draelos et al. (2016)) or Complemen-
tary Learning Systems (CLS) (Kemker and Kanan
(2017)).

3 Neural Machine Translation

3.1 Neural architectures for Machine
Translation

The goal of any translation system is to transform
an input sequence in a given language into an out-
put sequence in a target language.

Nowadays, this is usually done using neural mod-
els based on the encoder-decoder architecture, also
known as seq2seq models in the machine trans-
lation community ((Sutskever et al., 2014)). The
encoder part transforms the input sequence into an
internal representation, and then the decoder trans-
forms this internal representation into the output
sequence.

Recurrent architectures (RNNs) were the first
to be successfully applied in an encoder-decoder
setup for machine translation. Even though there
are many RNNs, most of them chain a series
of unit cells sequentially to process temporal se-
quences. We decided to use LSTMs ((Hochreiter
and Schmidhuber, 1997)) because their units cells
are explicitly designed to deal with long-term de-
pendencies.

Convolution-based architectures (CNN) do not
contain any recurrent elements. They can do this
because the idea behind this architecture is that the
convolutional filters can slide through the sequence
of tokens from beginning to end ((Gehring et al.,
2017)).

Lastly, Vaswani et al. (2017) introduced the
Transformer architecture, which is a state-of-the-
art model based entirely on the concept of atten-
tion (Bahdanau et al. (2015); Luong et al. (2015))
to draw global dependencies between the input
and output. Unlike RNNs or CNNs, this archi-
tecture processes its temporal sequences all at once
through the use of masks that encode their temporal
information.

This work is focused on the Transformer as
it is the current state-of-the-art model for NMT.
Nonetheless, RNNs and CNNss are briefly explored
for completeness.

3.2 The open vocabulary problem

In the written language, it is common to find alter-
native spellings (i.e., color-colour) and typos (i.e.,



acknowledge-acknowlege) that slightly modify the
spelling of a word but do not prevent us, the hu-
mans, from understanding its meaning. However,
suppose a model is using a word-level representa-
tion. In that case, it will stop knowing a known
word at the very first moment that it is slightly
modified (and this modification is not in its vocab-
ulary). Similarly, it has to be taken into account
that many languages use agglutination and com-
pounding mechanisms to form new words, making
word-based vocabularies a very inefficient strategy.

As a result, researchers have proposed multiple
approaches to deal with the open vocabulary prob-
lem. These approaches can be mostly grouped into
three categories: 1) Character-based models, ii) Hy-
brid NMT models iii) Subword-level models.

Character-based models contain the minimum
possible vocabulary to form all possible words in
a language. Therefore, these models can translate
rare or even unseen words character-by-character,
but at the same time, these models tend to be much
slower and harder to train than word-based models,
as they have to deal with longer long-term depen-
dencies.

Hybrid NMT approaches can be seen as a “trick”,
as they translate primarily at word-level but fall
back to character-level when a rare or unseen word
appears.

Lastly, subword-level representations allow us
to efficiently represent words as a sequence of sub-
words units. Although they practically solved the
unknown problem of word-based approaches, they
cannot solve it completely. To do so, the current
approach is to perform byte-fallback.

A side effect of subword-level representations is
that by changing the vocabulary size limit, they can
(partially) degenerate to character- or word-based
representations, which allow us to study the effects
of the vocabulary more closely.

4 Experimental setup

4.1 Datasets

The data used for this work comes mainly from the
WMT tasks (see Table 1)

These datasets contain parallel sentences from
different languages and domains (political, eco-
nomic, health, biological, talks, etc.).

In addition to the original datasets, we have cre-
ated smaller versions' for some training sets in

!The validation and test sets were shared across training
set versions

Dataset
Europarl (es-en)
Europarl (de-en)

Training set
1.9M/100K/50K
1.8M/100K/50K

Europarl (cs-en) 635K/100K/50K
CommonCrawl (es-en) 1.8M/100K
SciELO (es-en) 575K/120K
NewsCommentary (de-en) 357K/35K
Tatoeba (mr-en; mk-en) 50K
IWLST’16 (de-en) 196K
Multi30K (de-en) 29K

Table 1: All the values in this Table indicate the number
of sentences.

order to study the effects of the vocabulary size
as a function of training size (from low- to high-
resource language).

4.2 Training details

All the preprocessing was done using Sentence-
Piece (Kudo and Richardson, 2018), with Unigram
(Kudo, 2018) as the tokenization model.

To train our models’ we used Fairseq
v1.0.0a0(Ott et al., 2019), with a pretty standard set
of training hyper-parameters®. We tried to use sim-
ilar settings on most models. However, we noticed
that as we use smaller vocabularies and training
sets, these models became more sensitive to the
given hyper-parameters. This was particularly true
on character-based models.*

Similarly, we also experimented with different
neural architectures (Transformer, LSTMs, and
CNNs). In the case of the Transformer, we be-
gan to experiment with the Standard Transformer
(45-93M parameters), but then we switched to a
smaller version (4-25M parameters), as both per-
formed quite similarly in terms of performance (41
BLEU), and the later was notably faster.

4.3 Evaluation metrics

We evaluate all models using Sacrebleu (Post,
2018), which produces shareable, comparable, and
reproducible BLEU scores (Papineni et al., 2002).
Similarly, we also made use of BERTScore (Zhang
et al., 2019), a state-of-the-art neural metric for
machine translation.

“We use 2x NVIDIA GP102 (TITAN XP) - 12GB

SHyper-parameters: lr=[0.5¢-4, le-3], weight-decay=[le-
3, le-4], criterion=[ce, label-ce(0.1)], scheduler=[fixed,
inverse-sqrt], warmup-updates=[4000], optimizer=[adam,
sgd, nag], clip-norm=[0.0, 0.1, 1.0], beam-width=>5]

*Most trainings last between a few hours to 1-2 days



5 Experimentation

5.1 On Quasi-Character-Level Hypotheses

We will say that a vocabulary is complete, if and
only if we can represent any possible word of a
given language. Therefore, given two different
vocabularies, A and B, we will say that they are
grammatically equivalent if they are complete. Sim-
ilarly, the smaller a vocabulary is, the greater the
generalization capability of the model used will
have to be, as the amount of information per token
will be diluted by the number of tokens needed to
encode each string.

Based on these premises, we can infer that the
representation power of a given model will depend
on the degree of generalization required by its vo-
cabulary, the amount of data required to learn it
and if the complexity of the model can handle it.

In practice, this means that, given a model
with enough complexity, the generalization advan-
tage of character-based vocabularies with respect
to subword-based or word-based vocabularies de-
creases as the amount of data increases.

From these theories, supported by empirical evi-
dence (Sennrich and Zhang, 2019), we hypothesize
that quasi-character-based models should perform
similar to character-based models in low-resource
environments but with much lower computational
costs.

It is essential to highlight that a quasi-character-
level vocabulary is meant to depict a subword-level
vocabulary which is an order or two orders of mag-
nitude smaller than standard subword-level vocab-
ularies. The motivation for these vocabularies is to
provide practically the same generalization capabil-
ities as character-level models, but more efficiently,
by exploiting highly frequent n-grams to decrease
the sentence length exponentially.

5.2 Effects of the vocabulary and corpus size

In order to test the basis of our hypothesis, we chose
a medium-sized corpus such as Europarl-2M (de-
en). Then, we created two other versions, where
the training set was artificially reduced from 2M
sentences to 100k and 50k sentences. Similarly, we
created two vocabularies:

* A standard subword-level vocabulary with
32k entries

* A quasi-character-level vocabulary with 350
entries

The aim of this experiment was twofold. First,
we sought to ratify the observations made by other
authors that smaller vocabularies tend to help in
low-resource environments (Cherry et al. (2018)).
However, in our case, we provide additional data
points for smaller datasets (less than 2M sentences),
languages, and domains (following sections). Sec-
ond, we sought to establish baselines for our quasi-
character-based models so that we could later
study their computational advantage over purely
character-level models.
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Figure 1: As we limit the training data (left to right),
we see that quasi character-level Transformers performs
better than their large subword vocabularies versions.
Similarly, this phenomenon seems to occur regardless
of the language (top to bottom).

As expected, in Figure 1 we see that when there
is enough training data, standard subword-level
models outperform models with quasi-character-
level vocabularies (first column). In contrast, as
the amount of training data is reduced (second and
third columns), quasi-character-level models out-
performed the standard subword-level models.

In total, we performed this experiment for three
different language pairs (Spanish-English, German-
English, and Czech-English) in order to account
for potential language biases and domains (polit-
ical, economical, health, biological, transcripted
talks, etc.), to be able to generalize the findings of
previous authors to much smaller corpus and es-
pecially, to quasi-character-level vocabularies (See
section 5.4).

5.3 On the Effectiveness of
Quasi-Character-Level Models

As other studies have shown (Gowda and May,
2020), each dataset seems to have an optimal vo-
cabulary size. Therefore, this could imply that the



results from our previous experiment could be bi-
ased towards a sub-optimal vocabulary size. To
account for these possible biases, we performed a
similar set of experiments in which we gradually in-
creased the vocabulary size (at the subword-level)
from 100 entries to 16,000 entries (plus 256 ad-
ditional entries for the byte-fallback) in order to
obtain the characteristic curve for each dataset as a
function of the vocabulary size (See Figure 2).
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Figure 2: As we decrease the size of the vocabulary, the
average number of tokens per sentence increases expo-
nentially, so more complex models and more training
data are needed to exploit the additional generalization
capabilities of these vocabularies. However, by merging
a few highly frequent char-pairs into a single token, we
can have models that practically generalize as character-
based models but with much lower computational costs
at training and inference.

In Figure 2 we can see two variations of the
Europarl (de-en) dataset to emulate low-resource
settings, one with 50k sentences (orange line) and
another with 100k sentences (blue line).

The first thing to notice in this Figure 2 is that,
as we limit the number of entries in the vocabulary
in resource-poor environments, the performance of
our models increases. Although this was expected,
it was necessary to add more robustness to our pre-
vious conclusions. Similarly, it is also important to
point out that as we increase the amount of training
data (Europarl-100k), the phenomenon described
here is still present. Nonetheless, it is less notice-
able than in the smaller corpus (Europarl-50k), as
expected. This observation might indicate that for
high-quality corpus, the advantage of character-
level models could disappear much quicker than
was previously thought (Cherry et al., 2018).

Then, we see that as vocabularies approach
character-level representations, the average num-

ber of tokens per sentences increases exponentially
(dashed line), which directly impacts the perfor-
mance of the models due to: i) The additional
complexity needed to handle the greater general-
ization capabilities of smaller vocabularies. ii) The
problems imposed by having to deal with longer
long-term dependencies. iii) Higher computational
costs at training and run-time.

However, as we can see in Figure 2 when we in-
crease the vocabulary size, the average number of
tokens per sentence decreases exponentially. The
direct consequence of this is that quasi-character-
level models outperformed purely character-based
models (dashed lines) by a significant margin with-
out increasing the complexity of this model or
the training time. Following these observations,
we wonder what may be the benefit of using
character-based models instead of quasi-character-
based models, since a slight increase in vocabulary
size leads to the collapse of highly frequent pairs
that individually contribute little to the model’s
learning, but when collapsed, produce considerable
reductions in average sentence size, which results
in much lower computational costs and fewer prob-
lems from learning long-term dependencies and
complex generalizations.

5.4 On the Generalization of
Quasi-Character-based approaches

In this section, we study if the benefits of Quasi-
Character-based approaches generalize to other lan-
guages, domains, and neural architectures.

5.4.1 Domain generalization

As we have briefly described in Section 5.2, seemed
to generalize to other Latin-based languages such
as Spanish, German and Czech. However, we won-
dered whether the domain could be introducing
some biases since the Europarl dataset only con-
tains parallel sentences extracted from the Euro-
pean Parliament website.

To do so, we repeated the experiment but
on parallel corpus from different domains,
such as crawled data (CommonCrawl), political
and economic news (NewsCommentary), health
and biological sciences (SciELO), transcripted
talks (IWLST’16), and multimodal transcriptions
(Multi30k).

Interestingly, Quasi-Character-Level models
kept outperforming their standard subword-level
counterparts when then the training data was arti-
ficially reduced to emulate low-resource environ-



ments, so it seems that the advantages of quasi-
character-level models seem to be present regard-
less of the domain (See Figure 3).
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Figure 3: The benefits of quasi-character-level models
for low-resource settings appear to be consistent regard-
less of the domain.

5.4.2 Non-Latin and Low-Resource
Languages

After that, we wanted to study this phenomenon
for non-Latin languages and actual low-resource
languages. To do so, we use the Tatoeba dataset for
Marathi and Macedonian, both with 50K sentences
(See Figure 4).
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Figure 4: Quasi-Character-Level models outperformed
Character-based models for Marathi and Macedonian
(Tatoeba), using half of the average tokens per sentence.
A non-negligible optimization due to the quadratic com-
plexity of the Transformer’s self-attention

Again, in Figure 4 we see that Quasi-Character-
Level models outperformed their character-based
counterparts. However, this time we could not com-
pare the difference against standard subword-level
vocabularies (8k, 16k, and 32k) because there was
too little training data to build those vocabularies®.

>We have considered the results from IWLST’16 and
Multi30K redundant, so we decided not to included a Fig-
ure for them. Nonetheless, Quasi-Character-Level models
improved the BLEU score in 6.2pts for the IWLST 16 dataset
and 2.3pts for the Multi30k dataset.

®We could have used the number of merge operations

Nonetheless, the important thing to highlight here
is that when we use a vocabulary of around 1000
entries, the average number of tokens per sentence
was half of the character-based model, which is
non-trivial in computational- and memory terms
due to the quadratic complexity of the self-attention
of the Transformer architecture.

5.4.3 Neural architecture generalization

In this section, we were interested in studying
how much of the advantage of quasi-character-level
models was due to the ability of the Transformer ar-
chitecture to learn long-term dependencies. There-
fore, we briefly study if our findings could gen-
eralize to other neural machine translation archi-
tectures, such as LSTMs or CNNs. Specifically,
we focused our work on bidirectional LSTMs with
attention mechanisms and fully convolutional ar-
chitectures like the one described in (Gehring et al.,
2017).

Although the comparison of different neural ar-
chitectures is not trivial, we tried to naively explore
this topic by only comparing models that had a sim-
ilar number of parameters for a given vocabulary
(i.e., 25-30M parameters for vocabularies of 32k
subwords.

From our experimentation, we observed that
when standard subword-level models were trained
with enough data (all available data), they out-
performed all character- and quasi-character-level
models regardless of their architecture. However,
when this experiment was repeated on the low-
resource regime, the quasi-character-based models
performed better than their standard subword-level
counterparts when Transformer or Bi-LSTM archi-
tectures were used. Furthermore, if CNNs were
had given more training time’, it is highly likely
that they would have outperformed the standard
subword-level models too (see Figure 5).

In the left figure 5a, we see that quasi-character-
level Transformers consistently outperform the
ones with standard subword-level vocabularies.
This phenomenon is still present for LSTMs (the
central Figure 5b). However, it is not as evident
as with the Transformer architecture due to the
problems of RNNs with modeling long-term de-
pendencies. Finally, we see in the right Figure Sc

instead of the vocabulary size, but since it is not really a fair
comparison, we decided to make the comparison amongst
small vocabularies.

"The max-epochs hyper-parameter stopped the training,
and due to the lack of time we had not been able to repeat it
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Figure 5: The green lines refer to the best and worst runs of the models with standard subword-level vocabularies,
while the blue lines refer to the best run of the quasi character-level models.

that CNNs cannot easily model long-term depen-
dencies, so they do not benefit as easily from the
quasi-character-level representations

From these results, we conclude that the ability
of a neural architecture to model long-term depen-
dencies is critical to obtain significant benefits from
character- or quasi-character-based approaches.

5.5 On the Catastrophic Forgetting Problem

In this section, we study whether quasi-character-
level models could help mitigate the effects of the
catastrophic forgetting problem, whereby neural
networks forget previously learned information af-
ter learning new information.

To do this, we designed an experiment in which
we first train a model in a domain A and evaluate
it in domains A and B to establish the baselines.
Next, we fine-tune the model trained in domain
A with data from the new domain B, and then, it
is evaluate it in domains A and B. In theory, the
model trained in domain A should perform well
in the domain A, and poorly in the unseen domain
B. Similarly, after the fine-tuning on domain B, it
should perform worse in A and better in domain B
than the original model trained only on domain A.

In Figure 6a we see that the quasi-character-level
model trained on the health domain (SciELO) ob-
tained a BLEU of 33.3pts on its domain (Health)
and a BLEU of 14.3pts in the other domain (Biolog-
ical). Then, when we fine-tune it on the Biological
domain (SciELO), the BLEU obtained on this do-
main increased from 14.3 to 31.7pts, while BLEU
for the health domain fell from 33.3 to 21.0pts. In
Figure6b we see that something similar happened
for the standard subword-vocabulary. However, the
effects of the catastrophic forgetting problem were
not as strong as in the other model because the
BLEU score went from 28.7 to 28.0pts.

From Figure 6, we can infer that the vocabulary
seems to have a substantial impact on the effects
of catastrophic forgetting because character-level

Quasi-Character-Level Standard Subword-Level

33.3 317

foc. domain=H)

Figure 6: Vocabularies seem to have a strong impact
on the catastrophic forgetting effects. While the quasi
character-level model lost 12.3pts, the large subword-
level model only lost 0.7pts

vocabularies seem to make models more suscep-
tible to the catastrophic forgetting problem than
standard subword-level vocabularies.

To further explore this problem, we repeated the
previous experiment but taking into account the
vocabulary domain. As a result, we discovered that
the vocabulary domain has a stronger impact on the
model’s performance than we thought. As shown
in Figure 7, quasi-character-level models seem to
be highly consistent between domains, while stan-
dard subword-level models seem to be particularly
sensitive to their vocabulary’s domain, to the point
of achieving opposite results between domains (see
right column of the Figure 7).

Even though quasi-character-level models
achieved better consistencies across domains, they
appear to suffer more severely from the effects
of the catastrophic forgetting problem than their
standard subword-level counterparts. We believe
that by using specially designed regularization tech-
niques to address this issue, such as LwF ((Li and
Hoiem, 2016)) or EWC ((Kirkpatrick et al., 2016))
these problems could be mitigated, leading to more
robust and consistent models.

6 Conclusion

In this paper, we have empirically studied the
effectiveness of quasi-character-level models in
terms of performance and computational efficiency
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Figure 7: Quasi-character-level models (left figures) appear to be more consistent between domains than models

with standard subword-level vocabularies (right figures)

with regard to purely character-based and standard
subword-level models. In addition to this, we have
studied the generalization of quasi-character-level
vocabularies and their ability to tackle the catas-
trophic forgetting problem.

Our studies reveal that quasi-character-level
models offer virtually the same generalization ca-
pabilities as character-level models but with much
lower computational costs. Similarly, these mod-
els outperformed character-based and standard
subword-level models on low-resource settings for
a wide range of languages, domains, and neural
architectures.

Finally, we have showed that even though quasi-
character-level vocabularies do not seem to miti-
gate the effects of the catastrophic forgetting prob-
lem, they achieved a higher consistencies between
domains, which could lead to substantial improve-
ments if specific regularization techniques are ap-
plied to deal with catastrophic forgetting.
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