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Abstract

Among the challenges not yet resolved for Counterfactual Explanations (CE),1

there are stability, synthesis of the various CE and the lack of plausibility/sparsity2

guarantees. From a more practical point of view, recent studies show that the3

prescribed counterfactual recourses are often not implemented exactly by the4

individuals and demonstrate that most state-of-the-art CE algorithms are very likely5

to fail in this noisy environment. To address these issues, we propose a probabilistic6

framework that gives a sparse local counterfactual rule for each observation: we7

provide rules that give a range of values that can change the decision with a given8

high probability instead of giving diverse CE. In addition, the recourses derived9

from these rules are robust by construction. These local rules are aggregated10

into a regional counterfactual rule to ensure the stability of the counterfactual11

explanations across observations. Our local and regional rules guarantee that the12

recourses are faithful to the data distribution because our rules use a consistent13

estimator of the probabilities of changing the decision based on a Random Forest.14

In addition, these probabilities give interpretable and sparse rules as we select15

the smallest set of variables having a given probability of changing the decision.16

Codes for computing our counterfactual rules are available, and we compare their17

relevancy with standard CE and recent similar attempts.18

1 Introduction19

In recent years, many explanations methods have been developed for explaining machine learning20

models, with a strong focus on local analysis, i.e., generating explanations for individual prediction21

(see [Molnar, 2022] for a survey). Among this plethora of methods, one of the most prominent and22

active techniques are Counterfactual Explanations [Wachter et al., 2017b]. Unlike popular local23

attribution methods, e.g., SHAP [Lundberg et al., 2020] and LIME [Ribeiro et al., 2016], which24

highlight the importance score of each feature, Counterfactuals Explanations (CE) describe the25

smallest modification to the feature values that changes the prediction to a desired target. Although26

CE are intuitive and user-friendly by giving recourse in some scenarios (e.g., loan application), they27

have many shortcomings in practice. Indeed, most counterfactual methods rely on a gradient-based28

algorithm or heuristics approaches [Karimi et al., 2020b], thus can fail to identify the most natural29

explanations and lack guarantees. Most algorithms either do not guarantee sparse counterfactuals30

(changes in the smallest number of features) or do not generate in-distribution samples (see [Verma31

et al., 2020, Chou et al., 2022] for a survey on counterfactuals methods). Although some works32

[Parmentier and Vidal, 2021, Poyiadzi et al., 2019, Looveren and Klaise, 2019] try to solve the33

plausibility/sparsity problem, the suggested solutions are not entirely satisfactory.34

In another direction, many papers [Mothilal et al., 2020, Karimi et al., 2020a, Russell, 2019] encour-35

ages the generation of diverse counterfactuals in order to find actionable recourse [Ustun et al., 2019].36

Actionability is a vital desideratum, as some features may be non-actionable, and generating many37
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counterfactuals increases the chance of getting actionable recourse. However, the diversity of CE38

makes the explanations less intelligible, and the synthesis of various CE or local explanations, in39

general, is yet to be comprehensively solved [Lakkaraju et al., 2022]. In addition, recently Pawelczyk40

et al. [2022] highlights a new problem of local CE called: noisy responses to prescribed recourses.41

Indeed, in real-world scenarios, some individuals may not be able to implement exactly the prescribed42

recourses, and they show that most CE methods fail in this noisy environment. Therefore, we propose43

to reverse the usual way of explaining with counterfactual by computing Counterfactual rules. We44

introduce a new line of counterfactuals: we build interpretable policies for changing a decision with45

a given probability that ensure the stability of the deduced recourse. These policies are optimal (in46

sparsity) and faithful to the data distribution. Their computation comes with statistical guarantees47

as they use a consistent estimator of the conditional distribution. Our proposal is to find a general48

policy or rule that permits changing the decision while fixing some features instead of generating49

many counterfactual samples. One of the main challenges is to identify the (minimal) set of features50

that provide the best promising directions for changing the decision to the desired output. We also51

show this approach can be extended for finding a collection of regional counterfactuals, such that we52

have a global counterfactual policy for analyzing a model. An example of the counterfactual rules53

that we introduce is given in figure 1.

Figure 1: Illustration of the local and regional Counterfactuals Rules that we introduced on a dataset
with 4 variables: Age, Salary, Sex, and HoursPerWeek. The Counterfactual Rules define intervals on
the minimal subset of features to change the decision of a model prediction in the local counterfactual
rule or the decision of a rule that applies on a sub-population in the regional counterfactual rule. In
Blue, we have the proposed rules to change the decision.

54

2 Motivation and Related works55

Most of the methods that propose Counterfactuals Explanations are based on the approach of the56

seminal work of Wachter et al. [2017a]: the counterfactuals are generated by optimizing a cost, but57

this procedure does not account directly the plausibility of the counterfactual examples (see [Verma58

et al., 2020] for classification of CE methods). Indeed, a major shortcoming is that the adverse59

decision needed for obtaining the counterfactual is not designed to be feasible or representative of the60

underlying data distribution. However, some recent studies proposed ad-hoc plausibility constraint61

in the optimization, using for instance an outlier score [Kanamori et al., 2020], an Isolation Forest62

[Parmentier and Vidal, 2021] or a density-weighted metrics [Poyiadzi et al., 2019] to generate in-63

distribution samples. In another direction, Looveren and Klaise [2019] proposes to use an autoencoder64

that penalizes out-of-distribution candidates. Instead of relying on ad-hoc constraints, we propose CE65

that gives plausible explanations by design. Indeed, for each observation, we identify the variables66

and associated ranges of values that have the highest probability of changing the prediction. We can67

compute this probability with a consistent estimator of the conditional distribution P (Y |XS). As a68

consequence, the sparsity of the counterfactuals is not encouraged indirectly by adding a penalty term69

(ℓ0 or ℓ1) as existing works [Mothilal et al., 2020]. Our approach is inspired by the concept of Same70

Decision Probability (SDP) (introduced in [Chen et al., 2012]) that can be used for identifying the71

smallest subset of features to guarantee (with a given probability) the stability of a prediction. This72

minimal subset is called Sufficient Explanations. In [Amoukou and Brunel, 2021], it has been shown73
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that the SDP and the Sufficient Explanations can be estimated and computed efficiently for identifying74

important local variables in any classification and regression models. For counterfactuals, we are75

interested in the dual set: we want the minimal subset of features that have a high probability of76

changing the decision (when the other features are fixed). Another limitation of the current CE is their77

local nature and the multiplicity of the explanations produced. While some papers [Mothilal et al.,78

2020, Karimi et al., 2020a, Russell, 2019] promote the generation of diverse counterfactual samples79

to ensure actionable recourse, such diverse explanations should be summarized to be intelligible80

[Lakkaraju et al., 2022], but the compilation of local explanations is often a very difficult problem. To81

address this problem, we do not generate counterfactual samples, but we build a rule Counterfactual82

Rules (CR) from which we can derive counterfactuals. Contrary to classic CE which gives the nearest83

instances with a desired output, we find the most effective rule for each observation (or group of similar84

observations) that changes the prediction to the desired target. This local rule easily aggregates similar85

counterfactuals. For example, if x = {Age=20, Salary=35k, HoursWeek=25h, Sex=M, . . . }86

with Loan=False, fixing the variables Age and Sex and changing the Salary and HoursWeek87

change the decision. Therefore, instead of given multiples combination of Salary and HoursWeek88

(e.g. 35k and 40h or 40k and 55h, . . . ) that result in many instances, the counterfactual89

rule gives the range of values: IF HoursWeek ∈ [35h, 50h], Salary ∈ [40k, 50k], and90

the remaining features are fixed THEN Loan=True. It can be extended at a regional scale,91

e.g., given a rule R = {IF Salary ∈ [35k, 20k], Age ∈ [20, 80] THEN Loan=False},92

the regional Counterfactual Rule (CR) could be {IF Salary ∈ [40k, 50k], HoursWeek ∈93

[35h, 50h] and the remaining rules are fixed THEN Loan=True}. The main difference be-94

tween a local and a global CR is that the Local-CR explain a single instance by fixing the remaining95

feature values (not used in the CR) ; while a regional-CR is defined by keeping the remaining variables96

in a given interval (not used in the regional-CR). Moreover, by giving ranges of values that guarantee97

a high probability of changing the decision, we partly answer the problem of noisy responses to98

prescribed recourses [Pawelczyk et al., 2022] so long as the perturbations are within our ranges.99

Although the Local Counterfactual Rule is new, the Regional Counterfactual Rule can be related to100

some recent works. Indeed, Rawal and Lakkaraju [2020] proposed Actionable Recourse Summaries101

(AReS), a framework that constructs global counterfactual recourses in order to have a global insight102

of the model and detect unfair behavior. While AReS is similar to the Regional Counterfactual103

Rule, we emphasize some significant differences. Our methods can address regression problems and104

deal with continuous features. Indeed, AReS needs to discretize the continuous features, inducing a105

trade-off between speed and performance as noticed by [Ley et al., 2022]. Thus, too few bins result106

in unrealistic recourse, while too many bins result in excessive computation time. In addition, AReS107

uses a greedy heuristic search approach to find global recourse, which might produce sub-optimal108

recourse. As we have already mentioned, the changes we provide overcome these two limitations109

because the consistency of our counterfactual is controlled by an estimation of the probability of110

changing the decision, and because we favor changes of a minimum number of features. Another111

global CE framework has been introduced in [Kanamori et al., 2022] to ensure transparency: the112

Counterfactual Explanation Tree (CET) partitions the input space with a decision tree and assigns113

an appropriate action for changing the decision of each subspace. Therefore, it gives a unique114

action for changing the decision of multiple instances. In our case, we offer more flexibility in the115

counterfactual explanations because we provide a range of possible values that guarantee a change116

with a given probability. In our approach, we do not make any assumption about the cost of changing117

the feature nor the causal structure. If we have such information, then we can add it as additional118

post-processing such that it can be made more explicit and more transparent for the final user as119

required for trustworthy AI.120

3 Minimal Counterfactual Rules121

We assume that we have an i.i.d sample Dn = {(Xi, Yi)i=1,...,n} such that (X, Y ) ∼ P(X,Y ) where122

X ∈ X (typically X = Rp) and Y ∈ Y . The output Y can be discrete or continuous. We want to123

explain the predictor f : Rp 7→ Y , that has been learned with the dataset Dn. We use uppercase124

letters for random variables and lowercase letters for their value assignments. For a given subset125

S ⊂ [p], XS = (Xi)i∈S denotes a subgroup of features, and we write x = (xS ,xS̄) (with some126

abuse of notation).127
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For an observation (x, y = f(x)), we have a target set Y ⋆ ⊂ Y , such that y /∈ Y ⋆. For the simple128

case of classification problem, Y ⋆ = {y⋆} is the standard singleton such that y⋆ ∈ Y is different of129

y. Contrary to standard approaches, our definition of the counterfactual deals also with the regression130

case by considering Y ⋆ = [a, b] ⊂ R; our definitions and computations of counterfactuals are the131

same for both classification and regression. We remind that the classic CE problem (defined only for132

classification) is to find a function a : X 7→ X , such that for all observations x ∈ X , f(x) ̸= y⋆,133

and we have f(a(x)) = y⋆. With standard CE, the function is defined point-wise by solving an134

optimisation program. Most often a(·) is not a real function, as a(x) may be in fact a collection of135

(random) values {x⋆
1, . . . ,x

⋆
p}. A more recent point of view was proposed by Kanamori et al. [2022],136

and it defines a as a decision tree, where in each leaf L, the best perturbation aL is predicted and add137

it to all the instances x ∈ L.138

Our approach is hybrid, because we do not propose a single action for each subspace of X or sub-group139

of population, but we give sets of possible perturbations. Indeed, a Local Counterfactual Rule (Local-140

CR) for Y ⋆ and observation x (with f(x) /∈ Y ⋆) is a rectangle CS(x;Y ⋆) =
∏

i∈S [ai, bi], ai, bi ∈141

R such that for all perturbations of x = (xS ,xS̄) obtained as x⋆ = (zS ,xS̄) with zS ∈ CS(x;Y ⋆)142

and x⋆ an in-distribution sample, then f (x⋆) is in Y ⋆ with a high probability.143

Similarly, a Regional Counterfactual Rule (Regional-CR) CS(R;Y ⋆) is defined for Y ⋆ and a144

rectangle R =
∏d

i=1[ai, bi], ai, bi ∈ R, if for all observations x = (xS ,xS̄) ∈ R, the perturbations145

obtained as x⋆ = (zS ,xS̄) with zS ∈ CS(R,Y ⋆) and x⋆ an in-distribution sample are such that146

f (x⋆) is in Y ⋆ with high probability.147

We build such rectangles sequentially, first, we propose to find the best directions S ⊂ [p] that offers148

the best probability of change. Then, we find the best intervals [ai, bi], i ∈ S that change the decision149

to the desired target. A central tool in this approach is the Counterfactual Decision Probability.150

Definition 3.1. Counterfactual Decision Probability (CDP). The Counterfactual Decision Prob-151

ability of the subset S ⊂ J1, pK, w.r.t x = (xS ,xS̄) and the desired target Y ⋆ (s.t. f(x) /∈ Y ⋆)152

is153

CDPS (Y ⋆;x) = P (f(X) ∈ Y ⋆ |X S̄ = xS̄ ) .

The CDP of the subset S is the probability that the decision changes to the desired target Y ⋆154

by sampling the features XS given X S̄ = xS̄ . It is related to the Same Decision Probability155

SDPS(Y ;x) = P (f(X) ∈ Y |XS = xS) used in [Amoukou and Brunel, 2021] for solving the156

dual problem of selecting the most local important variables for obtaining and maintaining the decision157

f(x) ∈ Y (where f(x) ∈ Y ⊂ Y). The set S is called the Minimal Sufficient Explanation. Indeed,158

we have CDPS(Y ⋆;x) = SDPS̄(Y
⋆;x). The computation of these probabilities is challenging159

and discussed in Section 4. We now focus on the minimal subset of features S such that the model160

makes the desired decision with a given probability π.161

Definition 3.2. ( Minimal Divergent Explanations). Given an instance x and a desired target Y ⋆,162

S is a Divergent Explanation for probability π > 0, if CDPS (Y ⋆;x) ≥ π, and no subset Z of S163

satisfies CDPZ (Y ⋆;x) ≥ π. Hence, a Minimal Divergent Explanation is a Divergent Explanation164

with minimal size.165

The set minimizing this probability is not unique, and we can have several Minimal Divergent166

Explanations. Note that the probability π represents the minimum level required for a set to be chosen167

for generating counterfactuals, and its value should be as high as possible and depends on the use168

case. We have now enough material to define our main criterion for building a Local Counterfactual169

Rule (Local-CR):170

Definition 3.3. (Local Counterfactual Rule). Given an instance x, a desired target Y ⋆ ̸∋ f(x) , a171

Minimal Divergent Explanation S, the rectangle CS(x;Y ⋆) =
∏

i∈S [ai, bi], ai, bi ∈ R is a Local172

Counterfactual Rule with probability πC if173

CRPS(Y
⋆,x, CS(x; y

⋆)) ≜ P (f(X) ∈ Y ⋆ |XS ∈ CS(x;Y
⋆),X S̄ = xS̄) ≥ πC . (3.1)

The CRPS is the Counterfactual Rule Probability.174

The higher the probability πC is, the better the relevance of the rule CS(x;Y ⋆) is, for this instance.175

Given a set S, we seek for the maximal rectangle in the direction S satisfying Definition 3.1.176

In practice, we can observe that the Local-CR CS(·;Y ⋆) for neighbors x,x′ are often quite close, be-177

cause the Minimal Divergent Explanations are similar and the corresponding rectangles often overlaps.178
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Hence, this motivates a generalisation of these Local-CR to hyperrectangle R =
∏d

i=1[ai, bi], ai, bi ∈179

R regrouping similar observations. We denote supp(R) = {i : [ai, bi] ̸= R} the support of the180

rectangle, and we extend the Local-CR to Regional Counterfactual Rules (Regional-CR). In order181

to do it, we denote RS̄ =
∏

i∈S̄ [ai, bi] as the rectangle with intervals of R in supp(R) ∩ S̄ and we182

also defines the corresponding Counterfactual Decision Probability CDP (Definition 3.1) for rule R183

and subset S as CDPS(Y ⋆;R) = P (f(X) ∈ Y ⋆ |X S̄ ∈ RS̄ ). Therefore, we can also compute184

the Minimal Divergent Explanation for rule R using Definition 3.2 with the CDP for rules.185

Definition 3.4. (Regional Counterfactual Rule). Given any rectangle R, a desired target Y ⋆,186

a Minimal Divergent Explanation S of R, the rectangle CS(R; y⋆) =
∏

i∈S [ai, bi] is a Regional187

Counterfactual Rule with probability πC if188

CRPS(Y
⋆;R, CS(R,Y ⋆)) ≜ P (f(X) ∈ Y ⋆ |XS ∈ CS(R,Y ⋆),X S̄ ∈ RS̄) ≥ πC . (3.2)

CRPS(Y ⋆;R, CS(R)) is the corresponding Counterfactual Rule Probability for rule R.189

Remarks: Local-CR and regional-CR differ slightly: for local, we condition by X S̄ = xS̄ in Eq.190

3.1, while for regional, we condition by X S̄ ∈ RS̄ . For computing regional-CR, we can start for a191

rectangle generated by any method, such as [Wang et al., 2017, Lin et al., 2020]. The only condition192

is that it contains a homogeneous group, i.e. with almost the same output. However, by default193

we use as initial rules the Sufficient Rules derived in [Amoukou and Brunel, 2021] as it handles194

regression problem. The Sufficient Rules are minimal support rectangles define for a given output Y195

as CS(Y ) = Πi∈S [ai, bi] such that ∀x ∈ X ,xS ∈ CS(Y ), P (f(X) ∈ Y |XS = xS) ≥ π.196

4 Estimation of the CDP and CRP197

In order to compute the probabilities CDPS and CRPS for any S, we use a dedicated Random198

Forest (RF) mk,n that learns the model f to explain. Indeed, the conditional probabilities CDPS199

and CRPS can be easily computed from a RF by combining the Projected Forest algorithm [Bénard200

et al., 2021a] and the Quantile Regression Forest [Meinshausen and Ridgeway, 2006]: hence we can201

estimate consistently the probabilities CDPS(Y ⋆;x). We adapt the approach used in [Amoukou and202

Brunel, 2021] and remind for the sake of completeness, the computation of the estimate of SDPS .203

4.1 Projected Forest and CDPS204

The estimator of the SDPS is built upon a learned Random Forest [Breiman et al., 1984]. A Random205

Forest (RF) is a predictor consisting of a collection of k randomized trees (see [Loh, 2011] for a206

detailed description of decision tree). For each instance x, the predicted value of the j-th tree is207

denoted mn(x,Θj) where Θj represents the resampling data mechanism in the j-th tree and the208

successive random splitting directions. The trees are then averaged to give the prediction of the forest209

as:210

mk,n(x,Θ1:k,Dn) =
1

k

k∑
l=1

mn(x; Θl,Dn) (4.1)

However, the RF can also be view as an adaptive nearest neighbor predictor. For every instance x,211

the observations in Dn are weighted by wn,i(x; Θ1:k,Dn), i = 1, . . . , n. Therefore, the prediction212

of RF can be rewritten as213

mk,n(x,Θ1:k,Dn) =

n∑
i=1

wn,i(x; Θ1:k,Dn)Yi.

This emphasizes the central role played by the weights in the RF’s algorithm, see [Meinshausen and214

Ridgeway, 2006, Amoukou and Brunel, 2021] for detailed description of the weights. Therefore,215

it naturally gives estimators of other quantities e.g., Cumulative hazard function [Ishwaran et al.,216

2008], Treatment effect [Wager and Athey, 2017], conditional density [Du et al., 2021]. For instance,217

Meinshausen and Ridgeway [2006] showed that we can used the same weights to estimate the218

Conditional Distribution Function with the following estimator:219

F̂ (y|X = x,Θ1:k,Dn) =

n∑
i=1

wn,i(x; Θ1:k,Dn)1Yi≤y (4.2)

In another direction, Bénard et al. [2021a] introduced the Projected Forest algorithm [Bénard et al.,220

2021c,a] that aims to estimate E[Y |XS ] by modifying the RF’s prediction algorithm.221
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Projected Forest: To estimate E[Y |XS = xS ] instead of E[Y |X = x] using a RF, Bénard et al.222

[2021b] suggests to simply ignore the splits based on the variables not contained in S from the223

tree predictions. More formally, it consists of projecting the partition of each tree of the forest on224

the subspace spanned by the variables in S. The authors also introduced an algorithmic trick that225

computes the projected partition efficiently without modifying the initial tree structures. We drop226

observations down in the initial trees, ignoring the splits which use a variable not in S: when a227

split involving a variable outside of S is met, the observations are sent both to the left and right228

children nodes. Therefore, each instance falls in multiple terminal leaves of the tree. We drop the229

new query point xS down the tree, following the same procedure, and gather the set of terminal230

leaves where xS falls. Next, we collect the training observations which belong to every terminal leaf231

of this collection, in other words, we keep only the observations that fall in the intersection of the232

leaves where xS falls. Finally, we average the outputs Yi of the selected training points to generate233

the estimation of E[Y |XS = xS ]. Notice that this algorithm converges asymptotically to the true234

projected conditional expectation E[Y |XS = xS ].235

As the RF, the PRF gives also a weight to each observation. The associated PRF is denoted236

m
(xS)
k,n (xS) =

∑n
i=1 wn,i(xS)Yi. Therefore, as the weights of the original forest was used to237

estimate the CDF in equation 4.2, Amoukou and Brunel [2021] used the weights of the Projected238

Forest Algorithm to estimate the SDP as ŜDPS (Y ;x) =
∑n

i=1 wn,i(xS)1Yi∈Y . The idea is239

essentially to replace Yi by 1Yi∈Y in the Projected Forest equation defined above. The authors also240

show that this estimator converges asymptotically to the true SDPS . Therefore, we can estimate the241

CDP with the following estimator242

ĈDPS (Y ⋆;x) =

n∑
i=1

wn,i(xS̄)1Yi∈Y ⋆ . (4.3)

Remarks: Note that we only give the estimator of the CDPS of an instance x. The estimator of the243

CDPS of a rule R will be discussed in the next section as it is related to the estimator of the CRPS .244

4.2 Regional RF and CRPS245

In this section, we focus on the estimation of the CRPS(Y ⋆,x, CS(x;Y ⋆)) = P (f(X) ∈246

Y ⋆ |XS ∈ CS(x;Y ⋆),X S̄ = xS̄) and CRPS(Y ⋆,R, CS(R;Y ⋆)) = P (f(X) ∈ Y ⋆ |XS ∈247

CS(R;Y ⋆),X S̄ ∈ RS̄). For simplicity, we remove the dependency of the rectangles in Y ⋆. Based248

on the previous Section, we already know that the estimators using the RF will be in the form of249

ĈRPS (Y ⋆,x, CS(x)) =
∑n

i=1 wn,i(x)1Yi∈Y ⋆ , thus we only need to find the right weighting.250

The main challenge is that we have a condition based on a region, e.g., XS ∈ CS(x) or X S̄ ∈ RS̄251

(regional-based) instead of condition of type XS = xS (fixed value-based) as usually. However, we252

introduced a natural generalization of the RF algorithm to make predictions when the conditions253

are both regional-based and fixed value-based. Thus, the case where there are only regional-based254

conditions are naturally derived.255

Regional RF to estimate CRPS(Y ⋆,x, CS(x)) = P (f(X) ∈ Y ⋆ |XS ∈ CS(x),X S̄ = xS̄):256

The algorithm is based on a slight modification of RF. Its works as follow: we drop the observations257

in the initial trees, if a split used variable i ∈ S̄, i.e., fixed value-based condition, we use the258

classic rules of RF, if xi ≤ t, the observations go to the left children, otherwise the right children.259

However, if a split used variable i ∈ S, i.e, regional-based condition, we use the rectangles CS(x) =260 ∏|S|
i=1[ai, bi]. The observations are sent to the left children if bi ≤ t, right children if ai > t and261

if t ∈ [ai, bi] the observations are sent both to the left and right children. Therefore, we use the262

weights of the Regional RF algorithm to estimate the CRPS as in equation 4.3, the estimator is263

ĈRPS(y
⋆;x, CS(x)) =

∑n
i=1 wn,i(x)1Yi=y⋆ . A more detailed version of the algorithm is provided264

and discussed in Appendix.265

To estimate the CDP of a rule CDPS (Y ⋆;R) = P (f(X) ∈ Y ⋆ |X S̄ ∈ RS̄ ), we just have to266

apply the projected Forest algorithm to the Regional RF, i.e., when a split involving a variable outside267

of S̄ is met, the observations are sent both to the left and right children nodes, otherwise we use the268

Regional RF split rule, i.e., if an interval of RS̄ is below t, the observations go to the left children,269

otherwise the right children and if t is in the interval, the observations go to the left and right children.270
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The estimator of the CRPS(Y ⋆;R, CS(R)) for rule is also derived from the Regional RF. Indeed, it271

is a special case of the Regional RF algorithm where there are only regional-based conditions.272

5 Learning the Counterfactual Rules273

We compute the Local and Regional CR using the estimators of the previous section. First, we find274

the Minimal Divergent Explanation in the same way as Minimal Sufficient Explanation can be found275

[Amoukou and Brunel, 2021]. As the exploration of all possible subsets is exponential, we search276

the Minimal Divergent Subset among the K = 10 most frequently selected variables in the RF mk,n277

used to estimate the probabilities CDPS , CRPS (K is an hyper-parameter to select according to the278

use case and computational power). We can also use any importance measure.279

Given an instance x or rectangle R (and set Y ⋆) and their corresponding Minimal Divergent280

Explanation S, we want to find a rule CS(x) =
∏

i∈S [ai, bi] s.t. given X S̄ = xS̄ or X S̄ ∈ RS̄ and281

XS ∈ CS(x), the probability that Y ∈ Y ⋆ is high. More formally, we want: P (f(X) ∈ Y ⋆|XS ∈282

CS(x),X S̄ = xS̄) or P (f(X) ∈ Y ⋆|XS ∈ CS(x),X S̄ ∈ RS̄) above πC .283

The computation of the rectangles CS(x) =
∏

i∈S|[ai, bi] relies heavily on our use of RF and on the284

algorithmic trick of the projected RF. Indeed, the rectangles defining the rules arise naturally from RF,285

while AReS [Rawal and Lakkaraju, 2020] relies on binned variables to generate candidate rules and286

tests all these possible rules for choosing an optimal one. We overcome the computational burden287

and the challenge of choosing the number of bins.288

Figure 2: The partition of the
RF learned to classify the toy
data (Green/Blue stars). Its
has 10 leaves. The explainee
x is the Blue triangle in leaf 5.

Figure 3: The partition of the
projected Forest when we con-
dition on X0, i.e., ignoring the
splits based on X1 (the dashed
lines).

Figure 4: The optimal CR for
x when we condition given
X0 = x0 is the Green region,
its corresponds to the union of
leaf 3 and 4 of the forest

To illustrate the idea, we use a two-dimensional data (X0, X1) with label Y represented as Green/Blue289

stars in figure 2. We fit a Random Forest to classify this dataset and show its partition in figure 2. The290

explainee x is the Blue triangle observation.291

By looking at the different cells/leaves of the RF, we can guess that the Minimal Divergent Explanation292

of x is S = X1. Indeed, in figure 3, we observe the leaves of the Projected Forest when we do not293

condition on S = X1, thus projected the RF’s partition only on the subspace X0. Its consists of294

ignoring all the splits in the other directions (here the X1-axis), thus x falls in the projected leaf 2295

(see figure 3) and its CDP is CDPX1
(Green;x) = 10 Green

10 Green+17 Blue = 0.58.296

Finally, the problem of finding the optimal rectangle CS(x) = [ai, bi] in the direction of X1 s.t. the297

decision changes can be easily solved by using the leaves of the RF. In fact, by looking at the leaves298

of the RF (figure 2) of the observations that belong in the projected RF leaf 2 (figure 3) where x falls,299

we see in figure 4 that the optimal rectangle to change the decision given X0 = x0 or being in the300

projected RF leaf 2 is the union of the intervals on X1 of the leaf 3 and 4 of the RF (see the Green301

region of figure 4).302

Given an instance x and its Minimal Divergent Explanation S, the first step is the collect of the303

observations which belong to the leaf of the Projected Forest given S̄ where x falls. It corre-304

sponds to the observations that has positive weights in the computation of the CDPS(Y ⋆;x) =305

7



∑n
i=1 wn,i(xS̄)1Yi∈Y ⋆ , i.e., {xi : wn,i(xS̄) > 0}. Then, we used the partition of the original forest306

to find the possible leaves CS(x) in the direction S. The possible leaves is among the RF’s leaves307

of the collected observations {xi : wn,i(xs̄) > 0}. Let denote L(xi) the leaves of the observations308

xi with wn,i(xS̄) > 0. A possible leaf is a leaf L(xi) s.t. CRPS(Y ⋆,x, L(xi)S) = P (f(X) ∈309

Y ⋆|XS ∈ L(xi)S ,X S̄ = xS̄) ≥ πC . Finally, we merge all the neighboring possible leaves to get310

the largest rectangle, and this maximal rectangle is the counterfactual rule. Note that the union of the311

possible leaves is not necessary a connected space, thus we can have multiple counterfactual rules.312

We apply the same idea to find the regional CR. Given a rule R and its Minimal Divergent Explanation313

S, we used the Projection given X S̄ ∈ RS̄ to find the compatible observations and their leaves314

and combine the possible ones to obtain the regional CR that has CRPS(Y ⋆,R, CS(R)) ≥ πC .315

For example, if we consider the leaf 5 of the original forest as a rule: If X ∈ Leaf 5, then316

predict Blue. Its Minimal Divergent Explanation is also S = X1. The R-CR would also be the317

Green region in figure 4. Indeed, if we satisfy the X0 condition of the leaf 5 and X1 condition of the318

leaf 3 and 4, then the decision change to Green.319

6 Experiments320

To demonstrate the performance of our framework, we conduct two experiments on real-world321

datasets. The first consists of showing how we can use the Local Counterfactual Rules for explaining322

a regression model. In the second experiment, we compare our approaches with the 2 baselines323

methods in classification problem: (1) CET [Kanamori et al., 2022], which partition the input324

space using a decision tree and associate a vector perturbation for each leaf, (2) AReS [Rawal and325

Lakkaraju, 2020] performs an exhaustive search for finding global counterfactual rules, but we used326

the implementation of Kanamori et al. [2022] that adapts the algorithm for returning counterfactuals327

samples instead of rules. We compare the methods only in classification problem as most prior works328

do not deal regression problem. In all experiments, we split our dataset into train (75%) - test (25%),329

and we learn a model f , a LightGBM (estimators=50, nb leaves=8), on the train set that is the330

explainee. We learn f ’s predictions on the train set with an approximating RF mnb,n (estimators=20,331

max depth=10): that will be used to generate the CR with π = 0.9. The used parameters for AReS,332

CET are max rules=8, bins=10 and max iterations=1000, max leaf=8, bins=10 respectively. Due to333

page limitation, the detailed parameters of each method are provided in Appendix.334

Sampling CE using the Counterfactual Rules: Notice that our approaches cannot be directly335

compare with the baseline methods since they all return counterfactual samples while we give rules336

(range of vector values) that permit to change the decision with high probability. However, we adapt337

the CR to generate also counterfactual samples using a generative model. For example, given an338

instance x = (xS ,xS̄), target Y ⋆ and its counterfactual rule CS(x;Y ⋆), we want to find a sample339

x⋆ = (zS ,xS̄) with zS ∈ CS(x,Y ⋆) s.t x⋆ is an in-distribution sample and f(x⋆) ∈ Y ⋆. Instead340

of using a complex conditional generative model as [Xu et al., 2019, Patki et al., 2016] that can be341

difficult to calibrate, we use an energy-based generative approach [Grathwohl et al., 2020, Lecun et al.,342

2006]. The core idea is to find zS ∈ CS(x, y
⋆) s.t. x⋆ maximize a given energy score to ensure that343

it is an in-distribution sample. As an example of an energy function, we use the negative outlier score344

of an Isolation Forest [Liu et al., 2008]. We use Simulated Annealing (see [Guilmeau et al., 2021] for345

a review) to maximize the negative outlier score using the information of the counterfactual rules346

CS(x;Y ⋆). In fact, the range values given by the CR CS(x;Y ⋆) reduce the search space for zS347

drastically. We used the training set Dn to find the possible values i.e., we defined Pi, PS as the list of348

values of the variable i ∈ S found in Dn and PS = {zS = (z1, . . . , zS) : zS ∈ CS(x, y
⋆), zi ∈ Pi}349

the possible values of zS respectively. Then, we sample zS in the set PS and use Simulated Annealing350

to find a x⋆ that maximizes the negative outlier score. Note that the algorithm is the same for sampling351

CE with the Regional-CR. A more detailed version of the algorithm is provided in Appendix.352

Finally, we compare the methods on unseen observations using three criteria. Correctness is the aver-353

age number of instances for which acting as prescribed change to the desired prediction. Plausibility354

is the average number of inlier (predict by an Isolation Forest) in the counterfactual samples. Sparsity355

is the average number of features that have been changed, and especially for the global counterfactual356

methods (AReS, Regional-CR) that do not ensure to cover all the instances, we compute Coverage357

that corresponds to the average number of unseen observations we cover.358
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Local counterfactual rules for regression: We give recourse for the California House Price359

dataset [Kelley Pace and Barry, 1997] derived from the 1990 U.S. census. We have information about360

each district (demography, . . . ), and the goal is to predict the median house value of each district.361

To illustrate the efficiency of the Local-CR, we select all the observations in the test set having a price362

lower than 100k (1566 houses), and we aim to find the recourse that permit to increase their price363

: we want the price y to be in the interval Y ⋆ = [200k, 250k]. For each instance x, we compute364

the Minimal Divergent Explanation S, the Local-CR CS(x; [200k, 250k]) and a CE using the365

Simulated Annealing as described above. We succeed in changing the decision of all the observations366

(Correctness = 1) and most of them passed the outlier test with Plausibility = 0.92. On top of that,367

our Local-CR have sparse support (Sparsity = 4.45). For example, the Local-CR of the instance x =368

(Longitude=-118.2, latitude=33.8, housing median age=26, total rooms=703,369

total bedrooms=202, population=757, households=212, median income=2.52) is370

CS(x, [200k, 250k]) = (total room ∈ [2132, 3546], total bedrooms ∈ [214, 491]). It371

means if total room and total bedrooms satisfy the conditions in CS(x, [200k, 250k]) and372

the remaining features of x is fixed, then the probability that the price is in [200k, 250k] is 0.97.373

Comparisons of Local-CR and Regional-CR with baselines (AReS, CET): We use 3 real-world374

datasets: Diabetes [Kaggle, 2016] contains diagnostic measurements and aims to predict whether375

or not a patient has diabetes, Breast Cancer Wisconsin (BCW) [Dua and Graff, 2017] consists of376

predicting if a tumor is benign or not using the characteristic of the cell nuclei, and Compas [Larson377

et al., 2016] was used to predict recidivism, and it contains information about the criminal history,378

demographic attributes. During the evaluation, we observe that AReS, CET are very sensitive to the379

number of bins and the maximal number of rules or actions as noticed by [Ley et al., 2022]. A bad380

parameterization gives completely useless explanations. Moreover, a different model needs to be381

trained for each class to be accurate, while we only need to have a RF that has good precision.382

In table 1, we notice that the Local and Regional-CR succeed in changing decisions with a high383

accuracy in all datasets, outperforming AReS and CET with a large margin on BCW, and Diabetes.384

Moreover, we notice that the baselines struggle to change at the same time the positive and negative385

class, (e.g. CET has Acc=1 in the positive class, and 0.21 for the negative class on BCW) or when386

they have a good Acc, the CE are not plausible. For instance, CET has Acc=0.98 and Psb=0 on387

Compas, meaning that all the CE are outlier. Regarding the coverage of the global CE, CET covers388

all the instances as it partitions the space, but we observe that AReS has a smaller Coverage=389

{0.43, 0.44, 0.81} than the Regional-CR which has {1, 0.7, 1} for BCW, Diabetes, and Compas390

respectively. To sum up, the CR is easier to train and provides more accurate and plausible rules than391

the baselines methods.392

Table 1: Results of the Correctness (Acc), Plausibility, and Sparsity (Sprs) of the different methods.
We compute each metric according to the positive (Pos) and negative (Neg) class.

COMPAS BCW Diabetes
Acc Psb Sps Acc Psb Sps Acc Psb Sps

Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg
L-CR 1 0.9 0.87 0.73 2 4 1 1 0.96 1 9 7 0.97 1 0.99 0.8 3 4
R-CR 0.9 0.98 0.74 0.93 2 3 0.89 0.9 0.94 0.93 9 9 0.99 0.99 0.9 0.87 3 4
AReS 0.98 1 0.8 0.61 1 1 0.63 0.34 0.83 0.80 4 3 0.73 0.60 0.77 0.86 1 1
CET 0.85 0.98 0.7 0 2 2 1 0.21 0.6 0.80 8 2 0.84 1 0.60 0.20 6 6

7 Conclusion393

Most current works that generate CE are implicit through an optimization process or a brunch of394

random samples, thus lacking guarantees. For this reason, we rethink CE as Counterfactual Rules.395

For any individual or sub-population, it gives the simplest policies that change the decision with396

high probability. Our approach learns robust, plausible, and sparse adversarial regions where the397

observations should be moved. We make central use of Random Forests, which give consistent398

estimates of the interest probabilities and naturally give the counterfactual rules we want to extract.399

In addition, it permits us to deal with regression problems and continuous features. Consequently,400

our methods are suitable for all datasets where tree-based model performs well (e.g., tabular data). A401

prospective work is to evaluate the robustness of our methods to noisy human responses, i.e., when402

the prescribed recourse is not implemented exactly, and to refine the methodology for selecting the403

threshold probabilities π and πC .404
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applicable? [No] Not relevant567

(b) Did you describe any potential participant risks, with links to Institutional Review568

Board (IRB) approvals, if applicable? [No] Not relevant569

(c) Did you include the estimated hourly wage paid to participants and the total amount570

spent on participant compensation? [No] Not relevant571
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