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Abstract

Large Language Models (LLMs) have shown remarkable ca-
pabilities across various domains, but their potential for solv-
ing combinatorial optimization problems remains largely un-
explored. In this paper, we investigate the applicability of
LLMs to the Job Shop Scheduling Problem (JSSP), a clas-
sic challenge in combinatorial optimization that requires effi-
cient job allocation to machines to minimize makespan. To
this end, we introduce Starjob, the first supervised dataset
for JSSP, comprising 120k instances specifically designed
for training LLMs. Leveraging this dataset, we fine-tune
the LLaMA 8B model with the LoRA method to develop
an end-to-end scheduling approach. Our evaluation on stan-
dard benchmarks demonstrates that the proposed LLM-based
method not only surpasses traditional Priority Dispatching
Rules (PDRs) but also achieves notable improvements over
state-of-the-art neural approaches like L2D, with an aver-
age improvement of 11.28% on DMU and 3.29% on Taillard
benchmarks. These results highlight the untapped potential
of LLMs in tackling combinatorial optimization problems,
paving the way for future advancements in this area.

Introduction
Large Language Models (LLMs), despite their powerful ca-
pabilities in natural language processing, have not tradition-
ally been associated with solving computationally intensive
problems. Specifically, their applicability to NP-hard com-
binatorial optimization problems is often considered limited
compared to other neural approaches. This perception is re-
inforced by the lack of examples where LLMs have success-
fully outperformed methods like reinforcement learning in
such domains. Furthermore, LLMs are prone to “hallucina-
tions,” where they not only fail to solve problem instances
but also produce infeasible solutions. Consequently, LLMs
have yet to be seriously explored (including fine-tuning) for
tackling hard combinatorial problems.

In this paper, we challenge this prevailing intuition by
demonstrating that LLMs, when fine-tuned, can be effective
for certain combinatorial optimization problems. We present
the first fine-tuned LLM model for the Job Shop Schedul-
ing Problem (JSSP)—and, to the best of our knowledge, for
any NP-hard combinatorial problem. Our results show that
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for JSSP, LLMs not only generate feasible solutions but also
surpass Priority Dispatch Rule (PDR) methods and outper-
form the earliest neural approaches that first exceeded PDR
performance (e.g., L2D (Zhang et al. 2020)). These findings
suggest that with further refinement, LLM-based approaches
could rival the most advanced neural methods for combina-
torial optimization. This work opens the door to exploring
LLM applications in a broader range of computational prob-
lems, potentially establishing a new paradigm in the field.

The job shop scheduling problem (JSSP) remains a well-
studied and computationally challenging problem in the
field of production scheduling and optimization. It entails
the efficient allocation of a set of NJ jobs, each with het-
erogeneous processing times, to a limited number of NM

machines. The primary objective is to optimize a perfor-
mance metric, such as minimizing the total completion time
(makespan, denoted by Cmax) or reducing the flow time
(average completion time) of individual jobs. JSSP finds
application in diverse manufacturing and service environ-
ments, impacting factors like production throughput, re-
source utilization, and ultimately, customer service levels.
Traditional approaches to JSSP have primarily relied on
mathematical programming techniques and heuristic algo-
rithms (Chaudhry and Khan 2015). However, these meth-
ods often exhibit limitations in scalability and effectiveness,
particularly for large-scale problems, or those with complex
job-machine precedence relationships. This has motivated
the exploration of alternative approaches, particularly with
the recent advances in artificial intelligence (AI). Techniques
like reinforcement learning and graph neural networks have
shown promise in addressing JSSP, offering data-driven so-
lutions to this problem(Zhang et al. 2020)(Corsini et al.
2024).

(Huang et al. 2022) examined the graph reasoning ca-
pabilities of large language models (LLMs) on tasks like
connectivity, shortest paths, maximum flow, and Hamilton
paths. While LLMs show promise, their performance de-
clines on complex problems, often relying on spurious cor-
relations. To address this, (Huang et al. 2022) introduced
improved prompting strategies. (Valmeekam et al. 2022) in-
troduce a benchmark to test for evaluating the planning/rea-
soning capabilities of LLMs. Recently, (Chen et al. 2024a)
investigate the application of LLMs to the task of graph node
classification.



Collectively, these studies underscore the growing use of
LLMs for tasks involving implicit structures, while their ap-
plication to scheduling problems remains unexplored. This
paper is the first to utilize LLMs for end-to-end scheduling
in JSSP, leveraging their ability to process and reason over
complex information to tackle this challenge. To this end,
we introduce the first supervised dataset Starjob 1 designed
to fine-tune LLMs specifically for the task of JSSP. In-
stead of traditional matrix representation format, this dataset
includes natural language description of the JSSP prob-
lem and solution. On two well-known JSSP benchmarks
Tai(Taillard 1993) and DMU(Demirkol, Mehta, and Uzsoy
1998), we show that minimal fine-tuning through RsLoRA
(Kalajdzievski 2023) on the proposed dataset enables LLM
to schedule, by finding high-quality solutions, surpassing
PDRs and exceeding or equating neural approaches.

The contributions of this work to the field of JSSP are
multifaceted:

• We introduce the first-ever supervised dataset Starjob
containing 120,000 instances specifically designed for
training LLMs in the context of JSSP

• This paper pioneers the use of LLMs for end-to-end
scheduling in JSSP. By fine-tuning LLMs with our Star-
job dataset using the RsLoRA method, we demonstrate
that LLMs can effectively process and reason over the
complexities of JSSP, offering a novel approach that
leverages the inherent strengths of language models in
handling complex information.

• We perform a comparative analysis of LLM-based
scheduling against four traditional priority dispatching
rules (PDRs) (Veronique Sels and Vanhoucke 2012):
Shortest Processing Time (SPT), Most Work Remain-
ing (MWKR), Most Operations Remaining (MOPNR),
and the minimum ratio of Flow Due Date to Most Work
Remaining (FDD/MWKR). Additionally, we compare
our approach to the state-of-the-art neural method L2D
(Zhang et al. 2020), highlighting the effectiveness of end-
to-end LLM-based scheduling in comparison to existing
classical and neural techniques.

• Leveraging the language capabilities of LLMs, our ap-
proach enables natural language interactions with the
scheduler. Users can pose questions about specific JSSP
instances directly to the LLM-based solver, gaining in-
sights into the problem’s inherent constraints. This fea-
ture enhances the transparency and usability of the
scheduling system.

Related Work
JSSP with more than two machines is proven to be NP-hard
(Garey, Johnson, and Sethi 1976). As a result, finding ex-
act solutions for JSSP is generally infeasible, leading to the
widespread use of heuristic and approximate methods for
practical efficiency (Cebi, Atac, and Sahingoz 2020). Tradi-
tional approaches to solving JSSP have primarily relied on
search and inference techniques developed by the constraint
programming community (Beck, Feng, and Watson 2010).

1https://github.com/starjob42/Starjob

These techniques effectively leverage constraints to define
the relationships and limitations between jobs and resources,
enabling efficient exploration of feasible solution spaces
and the identification of optimal or near-optimal schedules
(Nowicki and Smutnicki 2005). A widely used heuristic
method in real-world scheduling systems is the Priority Dis-
patching Rule (PDR) (Zahmani et al. 2015). PDRs are sim-
ple and effective, although designing an efficient PDR is
time-consuming and requires extensive domain knowledge.

Recently, approaches utilizing Deep Learning and Neural
Networks have gained attention for finding promising solu-
tions to the JSSP (Bonetta et al. 2023; Zhang et al. 2020;
Corsini et al. 2024). These methods can be broadly cate-
gorized into supervised learning and reinforcement learn-
ing (RL). Current research in deep reinforcement learning
(DRL) is actively focused on developing advanced methods
to tackle JSSP. Existing DRL methods typically represent
JSSP as a Markov Decision Process (MDP) and learn a pol-
icy network based on DRL techniques(Zhang et al. 2020).

Large language models (LLMs) are now being applied to
a wider range of tasks beyond language processing. In areas
like robotics and planning, LLMs have been employed to
direct agents through structured environments (Huang et al.
2022).

While there are currently no papers that directly address
the scheduling of Job Shop Scheduling Problems (JSSP)
using LLMs, some notable works explore the potential of
LLMs in mathematical reasoning and programming (Chen
et al. 2023; Wei et al. 2022; Ahn et al. 2024; Yang et al.
2023). Optimization using large language models (LLMs)
has gained significant interest in recent years, with sev-
eral works exploring their capabilities across various do-
mains (Yang et al. 2023). The ability of LLMs to understand
and generate natural language has opened new possibilities
for optimization tasks that were traditionally solved using
derivative-based algorithms or heuristic methods(Yang et al.
2023). Notably, (Chen et al. 2023) have done a comprehen-
sive evaluation of LLMs, incorporating an examination of
their performance in mathematical problem-solving. (Chen
et al. 2023) introduces a novel approach called ”Program of
Thoughts” (PoT) prompting. Unlike the Chain of Thoughts
(CoT) method(Wei et al. 2022), which uses language mod-
els to generate both reasoning steps and computations, PoT
separates these tasks. PoT uses language models to generate
programming language statements for the reasoning steps
and then delegates the actual computation to a program in-
terpreter. In (Ahn et al. 2024) the authors conduct a compre-
hensive survey of mathematical problems and correspond-
ing datasets investigated in the context of LLMs. (Ahn et al.
2024) examines the spectrum of LLM-oriented techniques
for mathematical problem-solving, providing insights into
their strengths and weaknesses. (Frieder et al. 2024) ex-
plores the impact of LLMs on mathematicians’ workflows,
envisioning changes in research and education through auto-
mated assistance and new exploration methods. It provides
empirical evidence on LLMs’ performance in solving prob-
lems and generating proofs, highlighting both successes and
failures to give a balanced view of their current capabilities.

More recent works, such as (Yang et al. 2023) highlight



the potential of LLMs as optimizers, capable of iteratively
refining solutions based on a trajectory of previously evalu-
ated solutions. By leveraging the unique strengths of LLMs,
such as their natural language understanding and generation
capabilities. Paper demonstrates case studies on two fun-
damental optimization problems: linear regression and the
traveling salesman problem. (Yang et al. 2023) demonstrates
that in small-scale optimization scenarios, LLMs can gener-
ate high-quality solutions solely through prompting, some-
times matching or even surpassing the performance of man-
ually crafted heuristic algorithms.

Explorations into using LLMs for graph learning tasks
have yielded notable approaches. (Huang et al. 2022) noted
that LLMs exhibit some initial graph reasoning capabilities,
but their performance decreases with problem complexity,
(Huang et al. 2022) introduced prompting strategies to im-
prove LLMs graph reasoning. (Valmeekam et al. 2022) de-
veloped a benchmark for assessing the planning and reason-
ing abilities of LLMs. More recently, (Chen et al. 2024a)
examined the use of LLMs for graph node classification
tasks. (Chen et al. 2024b) introduces two pipelines: LLMs-
as-Enhancers, where LLMs refine textual data for Graph
Neural Networks (GNNs), and LLMs-as-Predictors, where
LLMs generate predictions directly from graph structures in
natural language. Additionally, (Zhao et al. 2024) presents
GRAPHTEXT, a method that translates graphs into natu-
ral language for LLM-based reasoning. GRAPHTEXT con-
structs graph-syntax trees for training-free, interactive rea-
soning, achieving performance on par with or exceeding
supervised GNNs through in-context learning, highlighting
LLMs’ potential in graph machine learning. Together, these
studies emphasize the increasing application of LLMs for
tasks related to implicit graphs and structures, while their
use in scheduling problems remains largely unexamined.

Preliminary
JSSP is formally defined as a problem involving a set of jobs
J and a set of machines M . The size of the JSSP prob-
lem instance is described as NJ × NM , where NJ repre-
sents the number of jobs and NM the number of machines.
For each job Ji ∈ J , it must be processed through ni ma-
chines (where ni is the number of operations for job Ji) in
a specified order Oi1 → . . . → Oini , where each Oij (for
1 ≤ j ≤ ni) represents an operation of Ji with a process-
ing time pij ∈ N. This sequence also includes a precedence
constraint. Each machine can process only one job at a time,
and switching jobs mid-operation is not allowed. The ob-
jective of solving a JSSP is to determine a schedule, that
is, a start time Sij for each operation Oij , to minimize the
makespan Cmax = maxi,j{Cij = Sij + pij} while meeting
all constraints. The complexity of a JSSP instance is given
by NJ ×NM .

Dataset Generation
In order to try to solve the JSSP with LLM, we first need
to represent the problem in natural language. To do that, we
have to transform the matrix-based representation in stan-
dard JSSP format to a human-readable format. See the ex-

ample in Listing 1.

Listing 1: Job Shop Scheduling Problem instance
(ft06)(Fisher and Thompson 1963) with NJ = 6
and NM = 6. The problem instance begins with the
problem size on the first row, followed by the oper-
ations for each job. Odd columns list machines, and
even columns list durations. The last row indicates the
makespan (55.0)
1 6 6
2 2 1 0 3 1 6 3 7 5 3 4 6
3 1 8 2 5 4 10 5 10 0 10 3 4
4 2 5 3 4 5 8 0 9 1 1 4 7
5 1 5 0 5 2 5 3 3 4 8 5 9
6 2 9 1 3 4 5 5 4 0 3 3 1
7 1 3 3 3 5 9 0 10 4 4 2 1
8 55.0

Converting JSSP problem instance to Natural
Language: Feature Generation
The approach describes the machines required for each job,
providing a job-centric view of the scheduling problem.

• Initialization: Begins by introducing the problem, de-
tailing the number of jobs and machines involved.

• Problem Organization: Enumerates jobs, specifying the
sequence of the corresponding machines, and their re-
spective durations.

Listing 2: Natural Language description of a JSSP in-
stance of size NJ = 3 and NM = 3

1
2 Optimize schedule for 3 Jobs (denoted

as J) across 3 Machines (denoted
as M) to minimize makespan. The

makespan is the completion time
of the last operation in the
schedule. Each M can process only
one J at a time, and once

started, J cannot be interrupted.
3
4 J0:
5 M0:105 M1:29 M2:213
6 J1:
7 M0:193 M1:18 M2:213
8 J3:
9 M0:78 M1:74 M2:221

Definitions
• Lp: Natural language representation of a problem in-

stance p.
• s: A solution in natural language, detailing operation se-

quences, machine assignments, and timings.
• Sf

p : Set of feasible solutions satisfying all JSSP con-
straints.

• M(s): Makespan of solution s.
• Objective: Minimize M(s) for feasible solutions s ∈ Sf

p .



Proposed Method
1. Fine-Tuning: Train the LLM on problem-solution pairs

(Lp, s) to generate valid schedules.
2. Inference: Generate S candidate solutions:

{s1, . . . , sS} ∼ LLMθ(Lp).

3. Feasibility Check: Filter feasible solutions:

Sf
p = {s | All constraints are satisfied}.

4. Optimization: Select the solution with the minimum
makespan:

s∗ = arg min
s∈Sf

p

M(s).

Zero-shot inference and Label generation
Our choice of LLM is Meta-Llama-3.1-8B-Instruct-bnb-4bit
open-source model with 128K context size. Later we will
refer this model as Llama3.1 The model is one of the open-
source AI models developed by Meta. Llama3.1 is an auto-
regressive language model that uses an optimized trans-
former architecture (AI 2024a).

Initially, we considered performing zero-shot inference
with the Llama3.1 to solve the JSSP. However, the model
consistently produced general descriptions of how to solve
the problem instead of actual solutions please refer to Fig-
ure 8 in Appendix. Occasionally, it provided partial solu-
tions, however, during each inference time the structure of
the provided solution was different, making it hard to parse
the solution.

Because the zero-shot inference results were not satisfac-
tory, we decided to finetune the large language model (LLM)
using a supervised approach. This required creating a super-
vised dataset, which included not only the problem formu-
lations in natural language as described in Section but also
the solutions.

To generate feasible solutions, we employed Google’s
OR-Tools. The configuration for the Google’s OR-Tools
solver was set as follows:
• Maximum time allowed for the solver: 300 seconds.
• Number of search workers: 42.
• Search branching strategy:
cp model.AUTOMATIC SEARCH.

We have generated approximately 120,000 random JSSP
problems of various sizes 2, ranging from 2x2 to 20x20, with
the duration of each operation between 5 and 500 units. We
created problems with asymmetric sizes also, such as 3x2
and 10x5, to enhance the model’s generalization capability.
Overall, the final dataset consists of around 120,000 natu-
ral language descriptions of JSSP problems along with their
feasible solutions. Since we limited the maximum allowed
time for Google’s OR-Tools to 300 seconds, the optimality
of solutions for problems with NJ > 10 and NM > 10 is
not guaranteed. The the generated solution is converted to
LLM format as described in

2https://github.com/starjob42/Starjob

Listing 3: Natural Language description of the solution
of JSSP problem instance of size NJ = 3 and NM = 3

1 Solution:
2 J2-M0: 0+78 -> 78, J1-M2: 0+193 ->

193, J0-M0: 78+105 -> 183,
3 J0-M1: 183+29 -> 212, J2-M2: 193+74

-> 267, J1-M1: 212+18 -> 230,
4 J1-M0: 230+213 -> 443, J2-M1: 267+221

-> 488, J0-M2: 267+213 -> 480
5
6 Maximum end completion time or

Makespan: 488

Representation in summation format aids large language
models (LLMs) in performing computations effectively, en-
abling them to accurately calculate the makespan and pro-
duce feasible solutions with the minimum makespan; in con-
trast, our comparison with solutions generated without the
summation operation often resulted in infeasible outputs.

Training Details
We fine-tuned Llama 3.1, an 8 billion-parameter model from
Meta, utilizing a 4-bit quantized version to minimize mem-
ory usage. We used Rank-Stabilized Low-Rank Adaptation
(RSLoRA) (Kalajdzievski 2023) with a rank of r = 64 and
α = 64. The model was trained for one epoch, requiring
roughly 70 hours and about 30GB of GPU memory. We lim-
ited the context length of the model to 10k instead of the
original 128k context length, to reduce memory consump-
tion and increase the speed of fine-tuning. “Context length”
refers to the maximum number of tokens (words or sub-
words) the model can process at once as input. For additional
details on the training process, please refer to the appendix .

Evaluation
To ensure a fair comparison, we evaluated the fine-tuned
LLM on two well-known benchmarks, Tai (Taillard 1993)
and DMU (Demirkol, Mehta, and Uzsoy 1998), focusing
on problem instances with a maximum of NJ = 20 and
NM = 20. This limitation stems from the reduction of the
model’s context length to 10k tokens, which constrains its
ability to handle larger instances requiring longer input se-
quences. Since this is the first time an LLM has been em-
ployed for end-to-end scheduling on the JSSP problem, we
compared its performance to the first neural approach, L2D
(Zhang et al. 2020), which was one of the first methods that
demonstrated superiority over traditional priority dispatch-
ing rules (PDRs). The PDRs included in the comparison
are Shortest Processing Time (SPT), Most Work Remaining
(MWKR), Most Operations Remaining (MOPNR), and the
minimum ratio of Flow Due Date to Most Work Remaining
(FDD/MWKR).

During inference, the context length is set to 10k to align
with the configuration used during the fine-tuning phase. A
sampling strategy is employed, using the default hyperpa-
rameters. Additionally, a sample size of S = 20 is speci-
fied, meaning that at each inference step, the model gener-
ates and returns 20 different outputs for evaluation. During



Figure 1: Starjob 120k dataset average input (problem de-
scription) token count for Llama 3.1 8B

Figure 2: Starjob 120k dataset average output (solution) to-
ken count for Llama 3.1 8B

both training and inference time, the model was loaded in the
format float4. The inference process itself consumes ap-
proximately 30GB of memory on the NVIDIA A6000 GPU
with float4 data type. The largest instance to be tested in
total contains around 7200 tokens, please refer to Figure 1
and Figure 2. For faster inference, the fine-tuned model can
be converted to the llama.cpp format (Gerganov 2023).
This conversion achieves an inference speed of 102.22 to-
kens per second as reported in (Dai 2024) on an NVIDIA
RTX A6000 GPU with 48 GB of memory. Consequently,
for the largest instance consisting of 1,700 input tokens and
an expected 5,500 output tokens, each inference takes ap-

proximately 70.4 seconds.

Overview of JSSP Solution Parsing and Validation
Given a JSSP problem instance Lp and a solution s in natu-
ral language, the feasibility check ensures that s satisfies all
constraints and identifies feasible solutions Sf

p . The objec-
tive is to minimize the makespan:

s∗ = arg min
s∈Sf

p

M(s),

where M(s) is the makespan of solution s.

Validation Steps
1. Parsing Inputs: Extract jobs Ji, machines Mk, opera-

tions Oij , start times Sij , processing times pij , end times
Cij , and declared makespan Cmax.

2. Precedence Constraints: For each job Ji, ensure opera-
tions Oij follow their prescribed order:

Si(j+1) ≥ Cij , Cij = Sij + pij .

3. Machine Constraints: For each machine Mk, verify no
overlapping operations:

Sij ≥ Ckl or Skl ≥ Cij ,

where Oij and Okl are operations assigned to Mk.
4. Completeness and Validity: Check that:

• All jobs Ji and operations Oij are represented.
• Machines Mk process only one operation at a time.
• All start and end times Sij , Cij are within valid

bounds.

5. Makespan Validation: Compute:

Cmax = max
i,j

{Cij},

and compare it with the declared makespan. If mis-
matched, the solution is invalid.

If all these checks pass, the solution is deemed feasible.

Comparative Analysis with Other Neural
Approaches
Since this is the first time an LLM is applied as an end-
to-end scheduler for the JSSP, we compare our approach
with the work presented in ”Learning to Dispatch for Job
Shop Scheduling via Deep Reinforcement Learning” (L2D)
(Zhang et al. 2020). This comparison is fair because L2D
was the first approach to use neural networks to outperform
traditional priority dispatching rule (PDR) methods, making
it analogous to our work, which is the first to apply LLMs
to JSSP. For consistency, we used the network trained on
instances with NJ = 20 and NM = 20. L2D’s method uti-
lizes a Graph Neural Network (GNN) with Proximal Pol-
icy Optimization (PPO) and employs a size-agnostic pol-
icy network for generalization. Table 1 and Table 2 presents
the performance comparison of the Llama-Finetuned model
on the proposed Starjob dataset against various scheduling
methods (L2D, SPT, MWKR, FDD/WKR, MOPNR) on the



Tai (Taillard 1993) and DMU (Demirkol, Mehta, and Uz-
soy 1998) datasets, focusing on gap percentages relative to
optimal solutions makespan. On the Tai benchmark dataset
instances with 15 Jobs, 15 Machines, and with 20 Jobs, 20
Machines, finetuned Llama outperforms all other methods.
On instances with 20 Jobs and 20 Machines Llama (33.12%)
slightly trails L2D (31.60%) but is better than other PDRs.
Average Gap: Finetuned Llama (26.57%) is significantly
lower than SPT (61.33%), MWKR (57.66%), FDD/WKR
(48.86%), and MOPNR (45.88%).

On the DMU benchmark dataset with 20 Jobs and 15 Ma-
chines finetuned Llama (25.64%) again demonstrates supe-
rior performance against all methods including L2D(38.95
%) (Zhang et al. 2020). Finetuned Llama (28.50%) is also
notably lower average gap on DMU benchmark dataset
instances having 20 Jobs and 20 Machines. Interestingly,
the solutions generated by our model—the first end-to-
end LLM-based scheduling approach—demonstrate com-
petitive performance, achieving results within 20% of the
current state-of-the-art neural method (Corsini et al. 2024),
which utilizes pseudo labels generated by the policy for self-
supervised training.

Table 1: Comparison of PDRs on the TAI dataset. Lower
values indicate schedules closer to the optimal solution, rep-
resenting better performance.

Method 15x15 20x15 20x20 Average
L2D 25.95 30.03 31.60 29.86
SPT 54.64 65.24 64.11 61.33
MWKR 56.74 60.65 55.60 57.66
FDD/WKR 47.45 50.57 47.57 48.86
MOPNR 44.98 47.97 43.68 45.88
Llama-Finetuned-Ours 19.68 26.91 33.12 26.57

Table 2: Comparison of PDRs on the DMU dataset. Lower
values indicate schedules closer to the optimal solution, rep-
resenting better performance.

Method 20x15 20x20 Average
L2D 38.95 37.74 38.35
SPT 64.12 64.55 64.34
MWKR 62.14 58.16 60.15
FDD/WKR 53.58 52.51 53.05
MOPNR 49.17 45.18 47.18
Llama-Finetuned-Ours 25.64 28.50 27.07

Empirical Performance Analysis
In this section, we provide an in-depth comparison of vari-
ous job scheduling approaches in terms of the gap percent-
age, which measures the deviation from the optimal solution.
The comparison includes several Priority Dispatching Rules
(PDRs), a neural approach (L2D), and a fine-tuned Llama
model on proposed Starjob dataset. Figure 3 and Figure 4

presents the performance on both Tai(Taillard 1993) and
DMU (Demirkol, Mehta, and Uzsoy 1998) datasets across
various configurations of jobs (J) and machines (M ). The
lower the gap percentage, the closer the schedule is to the
optimal solution, thus representing better performance.

The five configurations analyzed are:

• J = 20, M = 20 (Tai dataset)
• J = 20, M = 20 (DMU dataset)
• J = 20, M = 15 (Tai dataset)
• J = 20, M = 15 (DMU dataset)
• J = 15, M = 15 (Tai dataset)

The SPT consistently exhibits the highest gap percent-
ages, exceeding 60% for most problem instances. This is
expected since SPT, while simple, often fails to account
for job-shop constraints in complex problem settings. The
MWKR and FDD/WKR heuristics, which are more sophis-
ticated than SPT, perform moderately better, with gap per-
centages ranging between 50% and 70%. However, these
heuristics are still outclassed by the machine learning-based
approaches, likely due to their myopic decision-making,
which does not factor in longer-term scheduling impacts.

The L2D (Zhang et al. 2020) model, which leverages
neural networks for decision-making, offers significant im-
provements, reducing the gap to the 30%-40% range. This
highlights the benefits of learning-based approaches over
traditional PDRs, as L2D can implicitly model complex job-
shop interactions and adapt to different problem instances.
Surprisingly fine-tuned Llama model on Starjob outper-
forms all pdr methods, consistently achieving gap percent-
ages below 45%. This demonstrates the ability of LLMs to
generalize across problem instances, effectively and some-
times even outperforming the specialized neural L2D model.

The results for the DMU dataset with J = 20, M = 20
mirror those of the Tai dataset (top-middle plot of Figure 3
and Figure 4). Here, we observe that traditional PDRs (SPT,
MWKR, FDD/WKR) consistently exhibit high gap percent-
ages, with little to no improvement across problem instances
. The L2D model once again shows significant improve-
ments over the PDRs, with gap percentages reduced to the
20%-50% range. Please refer to Table 3 and Table 4 in the
appendix for more detailed comparison.

Overall, the results highlight that with minimal fine-
tuning on the proposed Starjob dataset, not only Llama was
able to provide feasible solutions, but also surpass other tra-
ditional approaches.

Conclusion
This paper demonstrates the potential of Large Language
Models (LLMs) in addressing the JSSP. We introduced a
novel supervised dataset called Starjob for solving JSSP tai-
lored for LLM training. Our results on well known bench-
mark problems(Taillard 1993), (Demirkol, Mehta, and Uz-
soy 1998) indicate that with minimal fine-tuning using the
RsLoRA method(Kalajdzievski 2023), Llama 8B can effec-
tively schedule, matching or surpassing traditional PDRs
and neural network approaches.



Figure 3: Comparison of TAI metrics. This plot provides in-
sights into the performance of the approaches under consid-
eration.

Limitations and Future Work
This work represents the first exploration of utilizing LLMs
for tackling the Job Shop Scheduling Problem (JSSP),
demonstrating their significant potential in this complex do-
main. Our experiments show that LLMs can generate effec-
tive scheduling solutions, opening up new avenues for ap-
plying natural language processing advances to scheduling
problems.

An inherent advantage of LLMs is their ability as lan-
guage models to facilitate interactive exploration of the
JSSP. Users can engage with the LLM to ask questions about
the scheduling problem it is attempting to solve, gaining in-

Figure 4: Comparison of DMU metrics. This plot provides
insights into the performance of the approaches under con-
sideration.

sights into which constraints may hinder finding the optimal
solution.

While the results are promising, we acknowledge that
the generalizability of LLMs across diverse JSSP instances
poses a challenge. The models may require further refine-
ment to consistently perform well on a wider variety of prob-
lem sizes and configurations. Addressing this limitation of-
fers an opportunity for future research to enhance the robust-
ness of LLMs in scheduling applications.

By introducing the Starjob dataset and applying LLMs,
we have laid the groundwork for future research at the inter-
section of scheduling and language models. Exploring vari-
ous LLM architectures, fine-tuning strategies, and integrat-
ing LLMs with other artificial intelligence techniques like
reinforcement learning and graph neural networks may fur-
ther enhance performance.

In summary, our study successfully tests the potential of
LLMs on the JSSP problem for the first time, indicating
a promising direction for future exploration in the field of
scheduling.
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Appendix
Trainig Details

Model Overview
The model being fine-tuned is LLaMA 3.1, an 8 billion pa-
rameter model from Meta(AI 2024a), using a 4-bit quan-
tized version to reduce memory usage. Finetning was con-
ducted using Stabilized Low-Rank Adaptation (RsLoRA) ()



with rank r = 64 to introduce learnable parameters specif-
ically in targeted layers. (Kalajdzievski 2023) Compared to
Lora(Hu et al. 2022) RsLoRa improves the stability of train-
ing by modifying the rank during adaptation(Kalajdzievski
2023). The target modules include:

target modules = {q proj, k proj, v proj, o proj,

gate proj, up proj, down proj} (1)
The LoRA-specific parameters are configured as follows:
• Rank (r): 64
• LoRA Alpha (α): 64
• LoRA Dropout: 0
• Bias: none

This resulted in number of trainable parameters =
167, 772, 160 or 0.02 % of the entire Llama 8B model’s pa-
rameters.

Quantization and Memory Efficiency
The model is loaded in 4-bit precision to reduce memory
consumption. Gradient checkpointing is enabled using the
unsloth (AI 2024b) method, to fit longer sequences by
saving memory. This reduces the VRAM usage by approxi-
mately 30%, enabling larger batch sizes.

Training Parameters
The fine-tuning process is controlled by the following pa-
rameters:
• Batch size per device: 4
• Gradient accumulation steps: 4
• Max sequence length: 10,000 tokens
• Number of epochs: 1
• Warmup steps: 5
• Learning rate: 2× 10−4

• Optimizer: AdamW with 8-bit precision
• Weight decay: 0.01
• Learning rate scheduler: Linear decay
• FP16 precision:True
• Number of Epochs: 1

Data and Dataset Splitting
The dataset used for training is a local version of the pro-
posed Strajob dataset, and it is split into 98% training and
2% evaluation:

train : eval = 98% : 2%

The prompts are formatted using a predefined Alpaca-style
template, which ensures the model is trained on instruction-
following tasks.

Evaluation and Saving Strategy
The best model was loaded at the end of training based on
the evaluation loss:

Metric for Best Model = Evaluation Loss
Total number of saved models is limited to 50 to prevent
excessive memory usage.

Figure 5: Train loss of Llama 8B 4bt model on Starjob
dataset

Figure 6: Eval Loss of Llama 8B 4bt model on Starjob
dataset

GPU Utilization
The training process takes place on Nvidia A6000 GPU with
48GB of memory. Training took around 70 hours and re-
quired 30GB of GPU RAM.

General Statistics about dataset
The dataset comprises 120,000 randomly generated JSSP
instances with solutions in natural language, provided in
.json format with the following columns:
• num jobs (int64): 12 unique values.
• num machines (int64): 12 unique values.
• instruction (object): 120,000 unique values. Initial

problem description detailing jobs and machines.
• input (object): 120,000 unique values. Problem de-

scription formatted for LLM.
• output (object): 120,000 unique values. Solution in

LLM format.
• matrix (object): 120,000 unique values. OR-Tool

makespan and solution in matrix format.
The output column serves as the target or label column,

providing the solution to the JSSP problem in natural lan-
guage and the associated makespan.



Figure 7: Makespan metrics across different job-machine combinations. The x-axis represents the combinations of jobs and
machines (e.g., a 3-2 instance refers to 3 jobs and 2 machines), the right y-axis shows the standard deviation, while the left
y-axis shows the makespan values.

Figure 8: Zero Shot inference on LLama 8B 4bt



Table 3: Comparison of PDRs against L2D gainist Finetuned Llama on Starjob dataset and the average Gaps on Tai Benchmark
Dataset. The lower the value, the closer the schedule is to the optimal solution, thus representing better performance.

J M Instance SPT MWKR FDD/WKR MOPNR L2D Optimal Llama-Finetuned-Ours

15 15 Ta01 1872 (52.1%) 1786 (45.1%) 1841 (49.6%) 1864 (51.4%) 1443 (17.2%) 1231.0 1453.0 (18.0%)
15 15 Ta02 1709 (37.4%) 1944 (56.3%) 1895 (52.3%) 1680 (35.0%) 1544 (24.1%) 1244.0 1440.0 (15.8%)
15 15 Ta03 2009 (64.9%) 1947 (59.9%) 1914 (57.1%) 1558 (27.9%) 1440 (18.2%) 1218.0 1521.0 (24.9%)
15 15 Ta04 1825 (53.3%) 1694 (44.2%) 1653 (40.7%) 1755 (49.4%) 1637 (39.3%) 1175.0 1387.0 (18.0%)
15 15 Ta05 2044 (67.0%) 1892 (54.6%) 1787 (46.0%) 1605 (31.1%) 1619 (32.3%) 1224.0 1461.0 (19.4%)
15 15 Ta06 1771 (43.1%) 1976 (59.6%) 1748 (41.2%) 1815 (46.6%) 1601 (29.3%) 1238.0 1499.0 (21.1%)
15 15 Ta07 2016 (64.3%) 1961 (59.8%) 1660 (35.3%) 1884 (53.5%) 1568 (27.8%) 1227.0 1473.0 (20.0%)
15 15 Ta08 1654 (35.9%) 1803 (48.2%) 1839 (51.1%) 1839 (51.1%) 1468 (20.6%) 1217.0 1475.0 (21.2%)
15 15 Ta09 1962 (54.0%) 2215 (73.9%) 1848 (45.1%) 2002 (57.1%) 1627 (27.7%) 1274.0 1534.0 (20.4%)
15 15 Ta10 2164 (74.4%) 2057 (65.8%) 1937 (56.1%) 1821 (46.7%) 1527 (23.0%) 1241.0 1465.0 (18.0%)
20 15 Ta11 2212 (63.0%) 2117 (56.0%) 2101 (54.8%) 2030 (49.6%) 1794 (32.2%) 1357.0 1691.0 (24.6%)
20 15 Ta12 2414 (76.6%) 2213 (61.9%) 2034 (48.8%) 2117 (54.9%) 1805 (32.0%) 1367.0 1677.0 (22.7%)
20 15 Ta13 2346 (74.7%) 2026 (50.9%) 2141 (59.4%) 1979 (47.4%) 1932 (43.9%) 1343.0 1749.0 (30.2%)
20 15 Ta14 2190 (56.8%) 2164 (60.9%) 1841 (36.9%) 2036 (51.4%) 1664 (23.7%) 1345.0 1660.0 (23.4%)
20 15 Ta15 2163 (61.5%) 2180 (62.6%) 2187 (63.3%) 1939 (44.8%) 1730 (29.2%) 1339.0 1770.0 (32.2%)
20 15 Ta16 2232 (64.1%) 2528 (85.9%) 1926 (41.6%) 1980 (45.6%) 1710 (25.7%) 1360.0 1731.0 (27.3%)
20 15 Ta17 2185 (49.5%) 2015 (37.8%) 2093 (43.2%) 2211 (51.2%) 1897 (29.8%) 1462.0 1846.0 (26.3%)
20 15 Ta18 2267 (62.4%) 2275 (63.0%) 2064 (47.9%) 1981 (44.9%) 1794 (28.5%) 1396.0 1706.0 (22.2%)
20 15 Ta19 2238 (68.0%) 2201 (65.2%) 1958 (47.0%) 1899 (42.6%) 1682 (26.3%) 1332.0 1685.0 (26.5%)
20 15 Ta20 2370 (75.8%) 2188 (62.3%) 2195 (62.8%) 1986 (47.3%) 1739 (29.0%) 1348.0 1802.0 (33.7%)
20 20 Ta21 2836 (72.7%) 2622 (59.7%) 2455 (49.5%) 2320 (41.3%) 2252 (37.1%) 1642.0 2077.0 (26.5%)
20 20 Ta22 2672 (67.0%) 2554 (59.6%) 2177 (36.1%) 2415 (50.9%) 2102 (31.4%) 1600.0 2443.0 (52.7%)
20 20 Ta23 2397 (53.9%) 2408 (54.7%) 2514 (61.5%) 2194 (40.9%) 2085 (33.9%) 1557.0 2086.0 (34.0%)
20 20 Ta24 2787 (69.5%) 2553 (55.3%) 2391 (45.4%) 2250 (36.9%) 2200 (33.8%) 1644.0 2135.0 (29.9%)
20 20 Ta25 2513 (57.6%) 2582 (61.0%) 2267 (42.1%) 2146 (43.4%) 2201 (38.0%) 1595.0 2304 (44.4%)
20 20 Ta26 2649 (61.2%) 2506 (52.5%) 2484 (60.9%) 2284 (50.9%) 2176 (32.4%) 1643.0 2195.0 (33.6%)
20 20 Ta27 2707 (61.1%) 2768 (64.8%) 2514 (49.6%) 2298 (36.8%) 2132 (26.9%) 1680.0 2172.0 (29.3%)
20 20 Ta28 2654 (65.0%) 2370 (47.8%) 2330 (45.0%) 2259 (40.4%) 2146 (33.9%) 1603.0 2088.0 (30.3%)
20 20 Ta29 2681 (65.0%) 2399 (47.6%) 2322 (37.4%) 2367 (45.7%) 1952 (20.1%) 1625.0 2209 (35.9%)
20 20 Ta30 2662 (68.1%) 2424 (53.0%) 2348 (48.2%) 2370 (49.6%) 2035 (28.5%) 1584.0 2038.0 (28.7%)

Table 4: Comparison of PDRs against L2D gainist Finetuned Llama on Starjob dataset and the average Gaps on DMU Bench-
mark Dataset. The lower the value, the closer the schedule is to the optimal solution, thus representing better performance.

J M Instance SPT MWKR FDD/WKR MOPNR L2D Optimal Llama-Finetuned-Ours

20 15 Dmu01 4516 (76.2%) 3988 (55.6%) 3535 (37.9%) 3882 (51.5%) 3323 (29.7%) 2563.0 3064 (19.5%)
20 15 Dmu02 4593 (69.7%) 4555 (68.3%) 3847 (42.2%) 3884 (43.5%) 3630 (34.1%) 2706.0 3233 (19.5%)
20 15 Dmu03 4438 (62.5%) 4117 (50.8%) 4063 (48.8%) 3979 (45.7%) 3660 (34.0%) 2731.0 3296 (20.7%)
20 15 Dmu04 4533 (69.8%) 3995 (49.7%) 4160 (55.9%) 4079 (52.8%) 3816 (43.0%) 2669.0 3299 (23.6%)
20 15 Dmu05 4420 (60.8%) 4977 (81.0%) 4238 (54.2%) 4116 (49.7%) 3897 (41.8%) 2749.0 3458 (25.8%)
20 15 Dmu41 5283 (62.7%) 5377 (65.5%) 5187 (59.7%) 5070 (56.1%) 4316 (32.9%) 3248.0 4137 (27.4%)
20 15 Dmu42 5354 (57.9%) 6076 (79.2%) 5583 (64.7%) 4976 (46.8%) 4858 (43.3%) 3390.0 4169 (23.0%)
20 15 Dmu43 5328 (54.8%) 4938 (43.5%) 5086 (47.8%) 5012 (45.7%) 4887 (42.0%) 3441.0 4634 (34.7%)
20 15 Dmu44 5745 (64.7%) 5630 (61.4%) 5550 (59.1%) 5213 (49.5%) 5151 (47.7%) 3488.0 4429 (27.0%)
20 15 Dmu45 5305 (62.1%) 5446 (66.4%) 5414 (65.5%) 4921 (50.4%) 4615 (41.0%) 3272.0 4423 (35.2%)
20 20 Dmu06 6230 (92.0%) 5556 (71.3%) 5258 (62.1%) 4747 (46.3%) 4358 (34.3%) 3244.0 4173 (28.6%)
20 20 Dmu07 5619 (84.5%) 4636 (52.2%) 4789 (57.2%) 4367 (43.4%) 3671 (20.5%) 3046.0 3821 (25.4%)
20 20 Dmu08 5239 (64.3%) 5078 (59.3%) 4817 (51.1%) 4480 (40.5%) 4048 (27.0%) 3188.0 3982 (24.9%)
20 20 Dmu09 4874 (57.6%) 4519 (46.2%) 4675 (51.2%) 4519 (46.2%) 4482 (45.0%) 3092.0 4376 (41.5%)
20 20 Dmu10 4808 (61.1%) 4963 (66.3%) 4149 (39.0%) 4133 (38.5%) 4021 (34.8%) 2984.0 3853 (29.1%)
20 20 Dmu46 6403 (58.7%) 6168 (52.9%) 5778 (43.2%) 6136 (52.1%) 5876 (45.6%) 4035.0 5447 (35.0%)
20 20 Dmu47 6015 (52.7%) 6130 (55.6%) 6058 (53.8%) 5908 (50.0%) 5771 (46.5%) 3939.0 4899 (24.4%)
20 20 Dmu48 5345 (42.0%) 5701 (51.5%) 5887 (56.4%) 5384 (43.1%) 5034 (33.8%) 3763.0 4854 (29.0%)
20 20 Dmu49 6072 (63.7%) 6089 (64.1%) 5807 (56.5%) 5469 (47.4%) 5470 (47.4%) 3710.0 4674 (26.0%)
20 20 Dmu50 6300 (68.9%) 6050 (62.2%) 5764 (54.6%) 5380 (44.3%) 5314 (42.5%) 3729.0 4515 (21.1%)


