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ABSTRACT

DNA-encoded library (DEL) screening has revolutionized protein-ligand bind-
ing detection, enabling rapid exploration of vast chemical spaces through read
count analysis. However, two critical challenges limit its effectiveness: distribu-
tion noise in low copy number regimes and systematic shifts between read counts
and true binding affinities. We present DEL-Ranking, a comprehensive frame-
work that simultaneously addresses both challenges through innovative ranking-
based denoising and activity-referenced correction. Our approach introduces a
dual-perspective ranking strategy combining Pair-wise Soft Rank (PSR) and List-
wise Global Rank (LGR) constraints to preserve both local and global count re-
lationships. Additionally, we develop an Activity-Referenced Correction (ARC)
module that bridges the gap between read counts and binding affinities through
iterative refinement and biological consistency enforcement. Another key con-
tribution of this work is the curation and release of three comprehensive DEL
datasets that uniquely combine ligand 2D sequences, 3D conformational informa-
tion, and experimentally validated activity labels. We validate our framework on
five diverse DEL datasets and introduce three new comprehensive datasets fea-
turing 2D sequences, 3D structures, and activity labels. DEL-Ranking achieves
state-of-the-art performance across multiple correlation metrics and demonstrates
strong generalization ability across different protein targets. Importantly, our ap-
proach successfully identifies key functional groups associated with binding affin-
ity, providing actionable insights for drug discovery. This work advances both
the accuracy and interpretability of DEL screening, while contributing valuable
datasets for future research.

1 INTRODUCTION

DNA-encoded library (DEL) technology has emerged as a revolutionary approach for protein-ligand
binding detection, offering unprecedented advantages over traditional high-throughput screening
methods(Franzini et al., 2014; Neri & Lerner, 2018; Peterson & Liu, 2023; Ma et al., 2023). The
DEL screening process involves multiple stages including cycling, binding, washing, elution, and
amplification (as shown in Figure 1). This process generates large-scale read count data, serving as
a proxy for potential binding affinity(Machutta et al., 2017; Foley et al., 2021). The read counts rep-
resent the frequency of each compound in the selected pool after undergoing target protein binding
and subsequent processing steps (Favalli et al., 2018). These read counts typically include matrix
counts and target counts, representing values corresponding to the scenarios without and with spe-
cific protein targets, respectively.

DEL screening enables rapid and cost-effective evaluation of vast chemical spaces, typically en-
compassing billions of compounds (Satz et al., 2022), against biological targets (Neri & Lerner,
2017). This approach has gained widespread adoption in drug discovery due to its ability to iden-
tify novel chemical scaffolds and accelerate lead compound identification (Brenner & Lerner, 1992;
Goodnow Jr & Davie, 2017; Yuen & Franzini, 2017). Despite its advantages, DEL screening faces
two critical challenges: (1) DEL screening read counts are subject to Distribution Noise, stemming
from both experimental factors and intrinsic library characteristics. This noise predominantly affects
the low copy number regime (<10 copies) where read counts follow a Poisson distribution, creating
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Figure 1: Illustration of the DEL screening process. Cycling: Creating unique compounds, each
tagged with a distinctive DNA sequence. Binding: These compounds are then exposed to the target
protein. Wash, Elute and Amplify: Compounds that bind to the target are retained, while others
are washed away. The DNA tags of the bound compounds are then amplified and analyzed using
sequencing techniques. Sequence & Counting: This process results in a distribution of read counts
for both the target-bound samples and control samples.

significant discrepancies between observed counts and true binding affinities (Ki values) (Kuai et al.,
2018; Favalli et al., 2018); and (2) DEL screening data faces Distribution Shift, where the mapping
from read counts to binding affinities is systematically biased. While read counts reflect initial bind-
ing events, true binding affinity (Ki value) depends on multiple molecular properties that cannot be
captured by enrichment data alone, creating a fundamental gap between read count-based and actual
affinity distributions (Yung-Chi & Prusoff, 1973; Kuai et al., 2018). This study aims to address both
challenges by enhancing the correlation between predicted read counts and true binding affinity.

To address these challenges, various approaches have been developed. Early methods focused on
mitigating Distribution Noise through threshold-based filtering of enrichment factors calculated
as target count to matrix count ratios (Gu et al., 2008; Kuai et al., 2018). While computationally
efficient and interpretable, these methods only consider read count properties, ignoring the com-
plex relationships between molecular structures and their corresponding counts (McCloskey et al.,
2020). Recent advances have taken two main directions. First, machine learning approaches were
introduced to capture non-linear relationships between ligand molecules and their count labels (Mc-
Closkey et al., 2020; Ma et al., 2021). This was further enhanced by incorporating distribution-level
constraints, using ligand sequence embeddings to jointly predict enrichment factors and ensure count
consistency (Lim et al., 2022; Hou et al., 2023). Second, recognizing the limitations of 2D represen-
tations, DEL-Dock (Shmilovich et al., 2023) introduced 3D conformational information to improve
denoising. By incorporating Zero-Inflated Poisson distribution (ZIP) modeling with 3D structural
information, DEL-Dock achieved superior performance in read count prediction and demonstrated
strong generalization ability across different protein targets.

A critical yet often overlooked aspect in current approaches is the biological activity information
inherent in molecular structures. While the presence of certain functional groups, such as benzene
sulfonamide, can serve as reliable indicators of binding potential and provide complementary in-
formation to read counts (Hou et al., 2023), current methods still face significant limitations in fully
utilizing this information. These methods primarily focus on absolute read count values instead of
more robust relative ordering information, and rely solely on enrichment data without incorporating
crucial biological activity labels needed for accurate ligand-activity relationship modeling. Although
recent advanced computational approaches have made progress in addressing Distribution Noise,
the fundamental challenge of Distribution Shift between enrichment data and true binding affini-
ties remains largely unaddressed in current literature. This gap underscores the need for methods
that can better integrate both functional group activity indicators and binding affinity information to
improve both read count regression and the discovery of novel high-affinity functional groups.

To address these multifaceted challenges, we propose DEL-Ranking, an innovative framework that
synergistically tackles both Distribution Noise and Distribution Shift. Our approach uniquely
combines theoretically grounded ranking constraints with activity-referenced correction mecha-
nisms that leverage molecular structural features, enabling robust read count denoising while pre-
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serving biological relevance. At the core of DEL-Ranking’s Distribution Noise mitigation is a
novel dual-perspective ranking strategy. We introduce two complementary constraints: the Pair-
wise Soft Rank (PSR) that captures local discriminative features, and the List-wise Global Rank
(LGR) that maintains global distribution patterns. This ranking-based approach emphasizes relative
relationships while preserving absolute count information, theoretically complementing the existing
ZIP-based regression loss and reducing the expected error bound. To address Distribution Shift,
we develop the Activity-Referenced Correction (ARC) module that bridges the gap between read
counts and binding affinities. ARC operates through a two-stage process: a Refinement Stage that
leverages self-training techniques (Zoph et al., 2020) for iterative optimization, and a Correction
Stage that employs targeted consistency loss to ensure biological relevance. By incorporating novel
activity labels derived from ligand functional group analysis, ARC effectively aligns read count
predictions with true binding properties.

We validate our approach through extensive experiments on five diverse DEL datasets and introduce
three new comprehensive datasets featuring ligand 2D sequences, 3D structures, and activity labels.
Our method not only achieves state-of-the-art performance across multiple metrics but also success-
fully identifies key functional groups associated with high binding affinities. Through detailed abla-
tion studies, we demonstrate each component’s effectiveness and show how our activity-referenced
framework can reveal structure-activity relationships that guide rational drug design. This work
advances both DEL screening accuracy and interpretability, potentially accelerating drug discovery
through more precise binding affinity predictions and actionable structural insights.

2 RELATED WORKS

Traditional DEL data analysis approaches, like QSAR models (Martin et al., 2017) and molecular
docking simulations (Jiang et al., 2015; Wang et al., 2015), offer interpretability and mechanistic in-
sights. DEL-specific methods such as data aggregation (Satz, 2016) and normalized z-score metrics
(Faver et al., 2019) address unique DEL screening challenges. However, these methods face limita-
tions in scalability and handling complex, non-linear relationships in large-scale DEL datasets.

Machine learning techniques such as Random Forest, Gradient Boosting Models, and Support Vector
Machines have improved DEL data analysis (Li et al., 2018; Ballester & Mitchell, 2010). Combined
with Bayesian Optimization (Hernández-Lobato et al., 2017), these methods offer better scalability
and capture complex, non-linear relationships in high-dimensional DEL data. Despite outperform-
ing traditional methods, they are limited by their reliance on extensive training data and lack of
interpretability in complex biochemical systems.

Deep learning approaches, particularly Graph Neural Networks (GNNs), have significantly ad-
vanced protein-ligand interaction predictions in DEL screening. GNN-based models predict en-
richment scores and accommodate technical variations (Stokes et al., 2020; Ma et al., 2021), while
Graph Convolutional Neural Networks (GCNNs) enhance detection of complex molecular struc-
tures (McCloskey et al., 2020; Hou et al., 2023). Recent innovations include DEL-Dock, combining
3D pose information with 2D molecular fingerprints (Shmilovich et al., 2023), and sparse learning
methods addressing noise from truncated products and sequencing errors (Kómár & Kalinic, 2020).
Large-scale prospective studies have validated these AI-driven approaches, confirming improved hit
rates and specific inhibitory activities against protein targets (Gu et al., 2024).

Existing methods demonstrate improved scalability and molecular interaction modeling. How-
ever, they face challenges in data interpretability and theoretical foundations. Current modeling
approaches for DEL read count data primarily rely on theoretical prior distribution assumptions,
lacking sophisticated noise handling mechanisms and robust statistical frameworks. These limita-
tions manifest in the inability to incorporate information beyond prior distributions and insufficient
reliable activity validation data for denoising, leading to suboptimal performance when addressing
Distribution Noise and Distribution Shift in DEL data.

To address these limitations, we propose a novel denoising framework that integrates a theoretically
grounded combined ranking loss with an iterative validation loop. This approach aims to correct
read count distributions more effectively, addressing both Distribution Noise and Distribution Shift,
while improving the interpretability and reliability of binding affinity predictions in DEL screening.
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Figure 2: Overview of DEL-Ranking framework. The model directly fuses molecule binding poses
and fingerprints as input features. ARDC employs target effects and binding affinity to enhance read
count prediction. The ranking-based loss incorporates target effects and matrix effects for noise
removal, improving the correlation between predicted read counts and true binding affinities.

3 METHOD

We present DEL-Ranking framework that directly denoises DEL read count values and incorporates
new activity information. In Section 3.1, we directly formulate the problem. Sections 3.2 and 3.3
detail our innovative modules, while Section 3.4 introduces the overall training objective.

3.1 PROBLEM FORMULATION AND PRELIMINARIES

DEL Prediction Framework. Given a DEL dataset D = {(fi,pi,Mi, Ri, yi)}Ni=1, where fi ∈ Rd

denotes the molecular fingerprint, pi ∈ Rm represents the binding pose, Mi ∈ R is the matrix
count derived from control experiments without protein targets, Ri ∈ R is the target count obtained
from experiments involving protein target binding, and yi ∈ {0, 1} indicates the activity label. We
propose a joint multi-task learning framework F : Rd × Rm → R× R× [0, 1] such that:

F(fi,pi) = (M̂i, R̂i, p̂i) (1)

where M̂i represents the predicted matrix count, R̂i denotes the predicted target count, and p̂i is the
predicted activity likelihood. The primary focus of this framework lies in predicting accurate read
count values that strongly correlate with the actual Ki values.

Zero-Inflated Poisson Distribution (ZIP) & ZIP Loss. DEL screening often results in read count
distributions with a high proportion of zeros due to experimental factors. To address this, previ-
ous methods (Shmilovich et al., 2023; Lim et al., 2022) have employed zero-inflated distributions,
modeling read counts ri that can take values from either from target counts Mi or target counts Ri.
Similarly, we define r̂i ∈ {M̂i, R̂i} as the model’s predicted read count values.

P (X = ri|λ, π) =

{
π + (1− π)e−λ, if ri = 0

(1− π)
λr
i e

−λ

ri!
, if ri > 0

(2)

where π denotes the probability of excess zeros, and λ denotes the mean parameter of the Poisson
component. In (Shmilovich et al., 2023), ZIP of Mi, Ri are modeled respectively by different
π values, including πM and πR, based on orders of magnitude, with the regression achieved by
minimizing the Negative Log-Likelihood (NLL) for all predicted read counts M̂i and R̂j .

LZIP = −
∑
i

log[P (M̂i|λM , πM )]−
∑
j

log[P (R̂j |λM + λR, πR)] (3)
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where λM and λR represent Poisson mean parameters for matrix and target counts, and πM and
πR denote their zero-excess probabilities. Joint modeling of target and control counts captures the
relationship between DEL experiments while enhancing the model’s understanding of read count
correlations with inputs.

Ki Estimation. DEL read count prediction aims to estimate compound-target binding affinities –
experimental-valided Ki values, which are crucial for identifying promising drug candidates. We
evaluate our model’s effectiveness using the Spearman rank correlation coefficient (ρs) between
predicted read counts and true Ki values: ρs = 1− 6

∑
d2

n(n2−1) where n is the sample number and d is
the ranking discrepancy between predictions and true values. Ideally, Ki values and read counts are
negatively correlated.

3.2 RANKING-BASED DISTRIBUTION NOISE REMOVAL

To effectively remove Distribution Noise in DEL read count data, we propose a novel ranking-
based loss function Lrank. This loss function integrates both local and global read count information
to achieve a well-ordered Zero-Inflated Poisson distribution for read count values:

Lrank = βLPSR + (1− β)LLGR (4)

where β ∈ [0, 1] is a balancing hyperparameter to fit the relative magnitude of two components. LPSR
(Pairwise-Soft Ranking Loss) addresses local pairwise comparisons, while LLGR (listwise Global
Ranking Loss) captures global ranking information. Together, they aim to achieve a well-ordered
Zero-Inflated Poisson distribution for read count values. To formally establish the effectiveness of
our ranking-based approach, we provide the following theoretical justification:
Lemma 1. Given a set of feature-read count pairs {(xi, ri)}ni=1, where xi is the fused representation
of sample i based on fi and pi, and a well-fitted Zero-Inflated Poisson model fZIP(r|x), the ranking
loss Lrank provides positive information gain over the zero-inflated loss LZIP:

I(Lrank|LZIP) = H(R|LZIP)−H(R|LZIP,Lrank) > 0

where H(R|·) denotes the conditional entropy of read counts R.

Building upon this information gain, we can further demonstrate that our combined approach, which
incorporates both the zero-inflated and ranking losses, outperforms the standard zero-inflated model
in terms of expected loss. This improvement is formalized in the following theorem:
Theorem 2. Given a sufficiently large dataset {(xi, ri)}ni=1 of feature-read count pairs, let LZIP
be the loss function of standard zero-inflated model and Lrank be the combined ranking loss. For
predictions r̂ZI and r̂C from the standard and combined models respectively. Define LC = αLZIP+
(1− α)Lrank, there exists α ∈ [0, 1] such that:

E[LC(r̂
C)] < E[LZIP(r̂

ZI)]

The incorporated ranking information aligns read count across compounds, mitigating experimental
biases in DEL screening data. Detailed proof and analysis are provided in Appendices A.1 and A.2.

3.2.1 PAIRWISE SOFT RANKING LOSS

To better model the relationships between compound pairs and handle read count noise, we introduce
a novel Pairwise Soft Ranking (PSR) loss function. The PSR loss enables smooth comparison
between compounds while maintaining stable optimization. LPSR is defined as:

LPSR(r̂i, r̂j , T ) = −
n∑

i=1

r̂i

∑
j ̸=i

(∆ij · σij)−
∑
j ̸=i

(∆ji · σji)


σij =

1

1 + e−|ri−rj |/T
, ∆ij =

∆Gij ·∆Dij

Z

(5)

where r̂i and r̂j represent the predicted read count value for compound i and j, respectively. To
ensure smooth gradients and numerical stability, we introduce a scaling factor σij with temperature
T ensures smooth transitions between rankings.
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To accurately model ranking changes, we design a pairwise importance term ∆ij that quanti-
fies the impact of swapping compounds i and j. This term incorporates a gain function Gi =
softplus(ri) that reflects the relevance of each compound, and a rank-based discount function
Di = 1/(log2(ranki+1)+ϵ), where ϵ is a small constant for numerical stability. These gain and dis-
count mechanisms are crucial as they emphasize high-ranking samples, enabling the model to focus
on top-ranking cases and effectively identify potentially high-activity compounds. By combining
these components into smooth Delta functions, we ensure stable gradient flow during optimization:

∆Gij = Gi −Gj = softplus(ri)− softplus(rj)

∆Dij = Di −Dj =
1

(log2(ranki + 1) + ϵ)
− 1

(log2(rankj + 1) + ϵ)

(6)

To normalize ranking effects, we introduce a normalization factor computed from the top-K pre-
dicted values in each batch. By choosing K smaller than the batch size N, we achieve two benefits:
enhanced computational efficiency and avoidance of ranking noise from zero-value predictions.

Z =

K∑
k=1

softplus(r̂[k])
log2(k + 1) + ϵ

(7)

where r̂[k] represents the k-th highest predicted read count in descending order; ϵ is set to 1e−8 to
avoid division by zero. This normalization factor adjusts the loss scale across different dataset sizes
and read count distributions, ensuring robust model training regardless of data variations.

3.2.2 LISTWISE GLOBAL RANKING LOSS

To further consider global order in compound ranking, we propose the listwise Global Ranking
(LGR) loss LLGR as a complement to the Pairwise Soft Ranking loss LPSR, which is expressed as :

LLGR(r̂, τ, T ) = −
N∑
i=1

log
exp(r̂π(i)/T )∑N
j=i exp(r̂π(j)/T )

+ σ

N∑
i=1

∑
j ̸=i

Lcon(r̂i, r̂j , τ) (8)

where π is the true ranking permutation of the compounds; τ represents the minimal margin of
predicted read count pair (ri, rj); T is a temperature parameter for score rescaling to sharpen the
predicted distribution, and Lcon denotes a contrastive loss among ranking scores to capture local
connections, and σ denotes the weight. This formulation is designed to achieve two critical objec-
tives in DEL experiments: (1) Near-deterministic selection of compounds with the highest read
counts, corresponding to the highest binding affinities; (2) Increased robustness to small noise
perturbations in the experimental data. As T approaches 0, our model becomes increasingly se-
lective towards high-affinity compounds while maintaining resilience against common experimental
noises. This dual optimization leads to more consistent identification of promising drug candidates
and enhanced reliability in the face of experimental variability.

Despite the strengths of LPSR and LLGR, they struggle to differentiate activity levels among com-
pounds with identical read count values, particularly those affected by experimental noise. This
limitation can lead to misclassification of high-activity samples with artificially low read counts
as truly low-activity samples. To address this critical issue, we introduce a novel contrastive loss
function Lcon, designed to enhance discrimination between varying levels of biological activity, es-
pecially for samples with zero or identical read count values. Let f : R → R be a ranking function
and τ > 0 a fixed threshold. We define Lcon : R×R×R → R≥ 0 as:

Lcon(r̂i, r̂j , τ) = max{0, τ − (f(r̂i)− f(r̂j))} (9)

This loss function is positive if and only if f(r̂i) − f(r̂j) < τ , enforcing a minimum mar-
gin τ between differently ranked samples. The constant gradients ∂Lcon/∂f(r̂i) = −1 and
∂Lcon/∂f(r̂j) = 1 for f(r̂i)− f(r̂j) < τ promote robust ranking relationships.

3.3 ACTIVITY-REFERENCED DISTRIBUTION CORRECTION FRAMEWORK

To effectively leverage activity information and address Distribution Shifts in DEL experiments,
we propose the Activity-Referenced Correction (ARC) framework. This algorithm enhances read

6
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Algorithm 1 Refinement Stage for Activity-Referenced Correction (ARC) Algorithm
Require: Pose structure embeddings hp, Fingerprint sequence embeddings hf , Sequence-structure

balancing weight ς , num iterations n, use feedback
1: x← PostAddLayer(ςhp + hf )

2: M̂ ← MatrixHead(hf )

3: Initialize R̂← 0, ŷ ← 0
4: for i = 1 to n do
5: if use feedback then
6: R̂← [x; p̂], p̂← [x; R̂]
7: else
8: R̂← x, p̂← x
9: end if

10: R̂← EnrichmentHead(ReadHead(R̂))
11: p̂← ActHead(p̂)
12: end for

return M̂ , R̂, p̂

count distribution fitting through two complementary stages: the Refinement Stage, which integrates
activity information, and the Consistency Stage, which performs distribution adjustment, jointly op-
timizing the fitting from both dimensions. The Refinement Stage leverages dual information streams
- activity labels and read counts - which reflect compound activity from complementary angles: ac-
tivity labels capture overall binding potential, while read counts quantify binding strength. As de-
tailed in Algorithm 1, our approach generates initial predictions using both 2D SMILES embeddings
and 2D-3D joint embeddings for matrix and target counts. To fuse these predictions effectively, we
implement an adaptive iterative mechanism inspired by self-training techniques (Zoph et al., 2020).
This mechanism is particularly valuable for distinguishing compounds with similar read count val-
ues but different activity labels. Through multiple rounds of updates, a bidirectional feedback loop is
established: activity information calibrates noisy read count predictions, while read count patterns
help validate activity predictions. This iterative refinement ensures biological consistency while
enhancing prediction accuracy through mutual correction between both information spaces.

To address error accumulation and better align predictions with biological reality, we introduce
a consistency loss function in the Correction Stage. This function not only regresses predicted
values but also aligns prediction trends with activity labels. Following (Hou et al., 2023), we
define ground-truth labels based on the presence of benzene sulfonamide in molecules. Although
there may exist high-affinity molecules without benzene sulfonamide, this labeling scheme provides
effective supervision signals for both read count regression and novel high-affinity functional group
discovery, as demonstrated in Section 4.2. This approach helps resolve discrepancies in compounds
that exhibit low read counts but high activity. The consistency loss is defined as:

Lconsist(ri, r̂i, yi, ŷi) = ∥ŷi − yi∥+max
(
0, ∥ŷi −

r̂i
maxi∈{1,...,N} r̂i

∥22 − ∥yi −
ri

maxi∈{1,...,N} ri
∥22
)

(10)
where N denotes training batch size. The first term ensures prediction accuracy, while the second
term bounds the discrepancy between read count and activity predictions to minimize the impact of
large errors in either space.

3.4 TOTAL TRAINING OBJECTIVE

The total training objective integrates three distinct components. The Zero-Inflated Poisson distri-
bution loss LZIP models the overall read count distribution, while the combined ranking loss Lrank
refines the predicted ZIP distribution based on ordinal relationships. Additionally, the consistency
loss Lconsist further adjusts the distribution using activity labels. These components are combined
into the total loss function as follows:

Ltotal = LZIP + ρLrank + γLconsist (11)

where ρ and γ are weighting factors for the ranking and consistency losses, respectively.

7
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Table 1: Comparison of our framework DEL-Ranking with existing DEL affinity predictions on CA2
& CA12 datasets. Results in bold and underlined are the top-1 and top-2 performances, respectively.

3p3h (CA2) 4kp5-A (CA12) 4kp5-OA (CA12)
Metric Sp SubSp Sp SubSp Sp SubSp
Mol Weight -0.250 -0.125 -0.101 0.020 -0.101 0.020
Benzene 0.022 0.072 -0.054 0.035 -0.054 0.035
Vina Docking -0.174±0.002 -0.017±0.003 0.025±0.001 0.150±0.003 0.025±0.001 0.150±0.003

Dos-DEL -0.048±0.036 -0.011±0.035 -0.016±0.029 -0.017±0.021 -0.003±0.030 -0.048±0.034

DEL-QSVR -0.228±0.021 -0.171±0.033 -0.004±0.178 0.018±0.139 0.070±0.134 -0.076±0.116

DEL-Dock -0.255±0.009 -0.137±0.012 -0.242±0.011 -0.263±0.012 0.015±0.029 -0.105±0.034

DEL-Ranking -0.286±0.002 -0.177±0.005 -0.268±0.012 -0.277±0.016 -0.289±0.025 -0.233±0.021

4 EXPERIMENT

Datasets. CA9 Dataset From the original data containing 108,529 DNA-barcoded molecules tar-
geting human carbonic anhydrase IX (CA9) (Gerry et al., 2019), we derived two separate datasets.
The first, denoted as 5fl4-9p, uses 9 docked poses that we generated ourselves. The second, 5fl4-
20p, employs 20 docked poses using the 5fl4 structure. Both datasets lack activity labels. CA2
and CA12 Datasets From the CAS-DEL library (Hou et al., 2023), we generated three datasets
comprising 78,390 molecules selected from 7,721,415 3-cycle peptide compounds. We performed
docking to create 9 poses per molecule for each dataset. The CA2-derived dataset uses the 3p3h
PDB structure (denoted as 3p3h), while two CA12-derived datasets use the 4kp5 PDB structure:
4kp5-A for normal expression and 4kp5-OA for overexpression. The binary activity label is set to
1 when there is benzene sulfonamide (BB3-197) in the compound (Hou et al., 2023). Validation
Dataset from ChEMBL (Zdrazil et al., 2024) includes 12,409 small molecules with affinity mea-
surements for CA9, CA2, and CA12. Molecules have compatible atom types, molecular weights
from 25 to 1000 amu, and inhibitory constants (Ki) from 90 pM to 0.15 M. A subset focusing on the
10-90th percentile range of the training data’s molecular weights provides a more challenging test
scenario. Virtual Docking details for ligand poses are shown in Appendix B.1.

Evaluation Metrics and hyper-parameters. To evaluate our framework’s effectiveness, we employ
two Spearman correlation metrics on the ChEMBL dataset (Zdrazil et al., 2024). The first metric,
overall Spearman correlation (ρoverall), measures the correlation between predicted read counts and
experimentally determined Ki values across the entire validation dataset. Also, we utilize the subset
Spearman correlation (ρsubset), which focuses on compounds with molecular weights within the 10th
to 90th percentile range of the training dataset. Since multiple hyper-parameters are shown in DEL-
Ranking method, we provide a detailed hyper-parameter ssetting in Appendix B.2.

Baselines. We examine the performance of existing binding affinity predictors. Traditional meth-
ods based on binding poses and fingerprints inculde Molecule Weight, Benzene Sulfonamide, Vina
Docking (Koes et al., 2013), and Dos-DEL(Gerry et al., 2019). AI-aided methods dependent of
read count values and molecule information include DEL-QSVR, and DEL-Dock (Lim et al., 2022;
Shmilovich et al., 2023). All methods are tested on 5 different target datasets.

4.1 PERFORMANCE COMPARISON

Benchmark Comparison. We conducted comprehensive experiments across five diverse datasets:
3p3h, 4kp5-A, 4kp5-OA, and two variants of 5fl4. For each dataset, we performed five runs to
ensure statistical robustness. As shown in Table 1-2, our method consistently achieves state-of-the-
art results in both Spearman (Sp) and subset Spearman (SubSp) coefficients across all datasets.

Our analysis reveals several key insights: (1) Experimental Adaptability: DEL-Ranking shows
consistent advantages across diverse datasets, with notable gains in challenging conditions. It main-
tains improvements even in lower-noise environments like purified protein datasets (3p3h and 5fl4),
versatility highlighting DEL-Ranking’s adaptability to various experimental setups. (2) Noise Re-
silience: DEL-Ranking excels in high-noise scenarios, particularly in membrane protein experi-
ments. Its exceptional results on the 4kp5 dataset, especially the challenging 4kp5-OA variant,
demonstrate this. Where baseline methods struggle, our approach effectively distinguishes signal
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Table 2: Comparison of our framework DEL-Ranking with existing DEL affinity predictions on two
CA9 datasets. Results in bold and underlined are the top-1 and top-2 performances, respectively.

5fl4-9p (CA9) 5fl4-20p (CA9)
Metric Sp SubSp Sp SubSp
Mol Weight -0.121 -0.028 -0.121 -0.074
Benzene -0.174 -0.134 -0.199 -0.063
Vina Docking -0.114±0.009 -0.055±0.007 -0.279±0.044 -0.091±0.061

Dos-DEL -0.115±0.065 -0.036±0.010 -0.231±0.007 -0.091±0.012

DEL-QSVR -0.086±0.060 -0.036±0.074 -0.298±0.005 -0.075±0.011

DEL-Dock -0.308±0.000 -0.169±0.000 -0.320±0.009 -0.166±0.017

DEL-Ranking -0.323±0.015 -0.175±0.000 -0.330±0.007 -0.187±0.013

from noise in complex experimental conditions. (3) Structural Flexibility: Our approach effec-
tively uses structural information, as shown in the 5fl4 dataset. Increasing poses from 9 to 20 im-
proves model performance, highlighting our method’s ability to utilize additional structural data.
This underscores DEL-Ranking’s effectiveness in extracting insights from comprehensive structural
information. (4) Dual Analysis Capability: DEL-Ranking’s consistent performance in both Sp
and SubSp metrics shows its versatility in drug discovery. This enables effective broad-spectrum
screening and detailed subset analysis, enhancing its utility across various stages of drug discovery.

Zero-shot Generalization. We evaluated the zero-shot generalization ability of DEL-Dock
(Shmilovich et al., 2023) and DEL-Ranking on CA9 target, where the models are trained on CA2
and CA12 targets (3p3h, 4kp5-A, and 4kp5-OA datasets). As shown in Table 3, DEL-Ranking
consistently outperforms DEL-Dock across all datasets. The results on the 4kp5-OA dataset demon-
strate the strong generalization capability of DEL-Ranking - even when confronted with protein
targets significantly different from those in the training set, the model maintains robust predictive
performance, validating its potential in generalizing to novel protein targets.

4.2 DISCOVERY OF POTENTIAL HIGH AFFINITY FUNCTIONAL GROUP
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Figure 3: Quantitative analysis of Top-50 selec-
tion, including Ki distribution and accuracy.

To evaluate DEL-Ranking’s capability in iden-
tifying potent compounds, we analyzed the
Top-50 cases from our model across five
datasets. Detailed in Figure 3, selected com-
pounds consistently exhibited low Ki values, re-
vealing the model’s ability to prioritize high-
affinity compounds from large DEL libraries.

Known Group Accuracy. DEL-Ranking
shows exceptional accuracy in detecting ben-
zene sulfonamide, a key high-affinity group
for carbonic anhydrase inhibitors (Hou et al.,
2023). From Figure 3, we can observe that
the model achieved high detection rates on five
datasets, indicating effective incorporation of
chemical space information through activity labels. To further explore the potential high-affinity
compounds, we conducted the same study of DEL-Dock (Shmilovich et al., 2023) in Appendix C.3.

Novel Group Discovery Our analysis of the 3p3h and 5fl4 datasets revealed a significant finding:
20% (10/50) of high-ranking compounds in 3p3h and 10% (5/50) in 5fl4 lack the expected ben-
zene sulfonamide group. Remarkably, all these compounds contain a common functional group -
Pyrimidine Sulfonamide - which shares high structural similarity with benzene sulfonamide.

Further investigation through case-by-case Ki value determination yielded compelling results. Five
compounds from 3p3h and five from 5fl4 containing pyrimidine sulfonamide exhibited Ki values
comparable to or even surpassing those of benzene sulfonamide-containing compounds. This find-
ing profoundly validates DEL-Ranking’s dual capability: successfully incorporating activity label
information, while simultaneously leveraging multi-level information along with integrated ranking
orders to uncover potential high-activity functional groups. Notably, this discovery reveals DEL-
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Table 3: Zero-shot Generalization Results Comparison evaluated on CA9 dataset
3p3h (CA2) 4kp5-A (CA12) 4kp5-OA (CA12)

Metric Sp SubSp Sp SubSp Sp SubSp
DEL-Dock -0.272±0.013 -0.118±0.005 -0.211±0.007 -0.118±0.010 0.065±0.021 -0.125±0.034

DEL-Ranking -0.310±0.005 -0.120±0.011 -0.228±0.010 -0.127±0.018 -0.300±0.026 -0.129±0.021

Ranking’s ability to identify unexplored scaffolds, showing potential to improve compound prioriti-
zation and accelerate hit-to-lead optimization in early-stage drug discovery. Detailed visualization of
Top-50 samples and selected Pyrimidine Sulfonamide cases are shown in Appendices C.3 and C.5.

4.3 ABLATION STUDY

To further explore the effectiveness of our enhancement, we compare DEL-Ranking with some
variants on 3p3h, 4kp5-A, and 4kp5-OA datasets. We can observe from Table 4 that (1) LPSR and
LLGR contribute most significantly to model performance across all datasets. (2) The impact of
LPSR is more pronounced in datasets with higher noise levels, as evidenced by the larger relative
performance drop in the 3p3h dataset. (3) Temperature adjustment and Lconsist help improve the
performance by correcting the predicted distributions, but count less than ranking-based denoising.

Table 4: Ablation Study Results of DEL-Ranking on 3p3h, 4kp5-A, and 4kp5-OA datasets.
3p3h (CA2) 4kp5-A (CA12) 4kp5-OA (CA12)

Metric Sp SubSp Sp SubSp Sp SubSp
w/o All -0.255±0.004 -0.137±0.012 -0.242±0.011 -0.263±0.012 0.015±0.029 -0.105±0.034

w/o LPSR -0.273±0.012 -0.155±0.013 -0.251±0.015 -0.271±0.011 0.015±0.028 -0.105±0.033

w/o LLGR -0.280±0.011 -0.168±0.015 -0.256±0.023 -0.273±0.016 -0.269±0.024 -0.209±0.034

w/o Lcon -0.283±0.004 -0.172±0.007 -0.260±0.018 -0.273±0.014 -0.273±0.024 -0.218±0.034

w/o Temp -0.279±0.011 -0.166±0.015 -0.247±0.022 -0.265±0.014 -0.256±0.033 -0.181±0.046

w/o ARC -0.284±0.007 -0.174±0.010 -0.260±0.015 -0.272±0.012 -0.269±0.023 -0.223±0.045

DEL-Ranking -0.286±0.002 -0.177±0.005 -0.268±0.012 -0.277±0.016 -0.289±0.025 -0.233±0.021

To further validate the robustness of DEL-Ranking and the incorporation of additional pose 3D
structure information, we conducted ablation studies on both loss weight and structure information
weight. The detailed results can be found in Appendices C.1 and C.2. The experimental results cor-
roborate the capability of our approach and the feasibility of our hyperparameter selection criteria.

5 CONCLUSION

In this paper, we propose DEL-Ranking to addresses the challenge of noise in DEL screening
through innovative ranking loss and activity-based correction algorithms. Experimental results
demonstrate significant improvements in binding affinity prediction and generalization capability.
Besides, the ability to identify potential binding affinity determinants advances the field of DEL
screening analysis. Current limitations revolve around the challenges of acquiring, integrating, and
comprehensively analyzing high-quality multi-modal molecular data at scale. Future works will aim
to improve multi-modal data integration and analysis to advance DEL-based drug discovery.
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A THEORETICAL ANALYSIS

A.1 PROOF OF LEMMA AND THEOREM

Proof. [Proof of Lemma1] Let (Ω,F , P ) be a probability space and (X,Y ) : Ω → X × N0

be random variables representing features and read counts respectively. Define fZIP(y|x) as the
probability mass function of a well-fitted Zero-Inflated Poisson model.

Define:

Ŷ (x) = E[Y |X = x] =

∞∑
y=0

y · fZIP(y|x)

LZIP(fZIP,D) = −
∑

(x,y)∈D

log fZIP(y|x)

Lrank(Ŷ ,D) =
∑

(xi,yi),(xj ,yj)∈D:yi>yj

max(0, Ŷ (xj)− Ŷ (xi) + δ)

where D is the observed dataset and δ > 0.

We aim to prove I(Lrank|LZIP) > 0, where I(·|·) denotes conditional mutual information.

Consider (xi, yi), (xj , yj) ∈ D with yi > yj . It’s possible that Ŷ (xi) ≤ Ŷ (xj) due to the nature of
likelihood optimization in the ZIP model.

In this case:

LZIP(fZIP, {(xi, yi), (xj , yj)}) = − log fZIP(yi|xi)− log fZIP(yj |xj)

Lrank(Ŷ , {(xi, yi), (xj , yj)}) = max(0, Ŷ (xj)− Ŷ (xi) + δ) > 0

This implies:
P (Yi > Yj |LZIP,Lrank) > P (Yi > Yj |LZIP)

Consequently:
H(Y |LZIP,Lrank) < H(Y |LZIP)

Therefore, I(Lrank|LZIP) = H(Y |LZIP)−H(Y |LZIP,Lrank) > 0.

Proof. [Proof of Theorem2] Given Lemma1, We firstly prove that there exists a set of predictions
r̂C and a sufficiently small γ0 > 0 such that for all γ ∈ (0, γ0):

E[LZIP(r̂
C , R)]− E[LZIP(r̂

ZI , R)] <
1− γ

γ
(E[Lrank(r̂

ZI , R)]− E[Lrank(r̂
C , R)])

Define the combined loss function LC(ŷ, Y ;α) = αLZIP(ŷ, Y ) + (1 − α)Lrank(ŷ, Y ), where α ∈
(0, 1). Let ŷC(α) be the minimizer of LC :

ŷC(α) = argmin
ŷ

E[LC(ŷ, Y ;α)]

By the definition of ŷC(α), for any α ∈ (0, 1), we have:

E[LC(ŷ
C(α), Y ;α)] ≤ E[LC(ŷ

ZIP, Y ;α)]

Expanding this inequality:

αE[LZIP(ŷ
C(α), Y )]+(1−α)E[Lrank(ŷ

C(α), Y )] ≤ αE[LZIP(ŷ
ZIP, Y )]+(1−α)E[Lrank(ŷ

ZIP, Y )]

Let ∆LZIP(α) = E[LZIP(ŷ
C(α), Y )] − E[LZIP(ŷ

ZIP, Y )] and ∆Lrank(α) = E[Lrank(ŷ
ZIP, Y )] −

E[Lrank(ŷ
C(α), Y )]. Rearranging the inequality:
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α∆LZIP(α) ≤ (1− α)∆Lrank(α)

Given that I(Lrank|LZIP) > 0, Lrank provides information not captured by LZIP. This implies that
there exists α1 ∈ (0, 1) such that for all α ∈ (0, α1], ∆Lrank(α) > 0.

Now, consider the function:

f(α) = (1− α)∆Lrank(α)− α∆LZIP(α)

We know that f(α) ≥ 0 for all α ∈ (0, 1) from the earlier inequality. Moreover, f(0) =
∆Lrank(0) > 0 due to the information gain assumption.

By the continuity of f(α), there exists α0 ∈ (0, α1] such that for all α ∈ (0, α0]:

f(α) > 0

This implies:
(1− α)∆Lrank(α) > α∆LZIP(α)

Dividing both sides by α(1− α) (which is positive for α ∈ (0, 1)):

∆Lrank(α)

α
>

∆LZIP(α)

1− α

This is equivalent to:

∆LZIP(α) <
1− α

α
∆Lrank(α)

Substituting back the definitions of ∆LZIP(α) and ∆Lrank(α):

E[LZIP(ŷ
C(α), Y )]− E[LZIP(ŷ

ZIP, Y )] <
1− α

α
(E[Lrank(ŷ

ZIP, Y )]− E[Lrank(ŷ
C(α), Y )])

Let ŷC = ŷC(α0), we have:

E[LZIP(ŷ
C , Y )]− E[LZIP(ŷ

ZIP, Y )] <
1− α

α
(E[Lrank(ŷ

ZIP, Y )]− E[Lrank(ŷ
C , Y )])

Rearranging this inequality:

αE[LZIP(ŷ
C , Y )] + (1− α)E[Lrank(ŷ

C , Y )] < αE[LZIP(ŷ
ZIP, Y )] + (1− α)E[Lrank(ŷ

ZIP, Y )]

The left-hand side of this inequality is E[LC(ŷ
C)] by definition. The right-hand side is strictly

greater than E[LZIP(ŷ
ZIP)] since E[Lrank(ŷ

ZIP, Y )] > 0 for any non-trivial ranking loss and α < 1.

Therefore:

E[LC(ŷ
C)] < αE[LZIP(ŷ

ZIP, Y )] + (1− α)E[Lrank(ŷ
ZIP, Y )] < E[LZIP(ŷ

ZIP)]

This completes the proof.

A.2 GRADIENT ANALYSIS

We analyze the composite ranking loss function Lrank, which combines Pairwise Soft Ranking Loss
and Listwise Global Ranking Loss. The gradient of Lrank with respect to ŷi is:

∂Lrank

∂ŷi
= β

∂LPSR

∂ŷi
+ (1− β)

∂LLGR

∂ŷi
(12)

∂LPSR

∂ŷi
= −

∑
j ̸=i

(∆ij · σij)−
∑
j ̸=i

(∆ji · σji)

− ŷi
∑
j ̸=i

∆ij ·
∂σij

∂ŷi
+ ŷi

∑
j ̸=i

∆ji ·
∂σji

∂ŷi
(13)
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where
∂σij

∂ŷi
=

sign(ŷi − ŷj)

T
σij(1− σij) (14)

The gradient ∂LPSR
∂ŷi

is primarily determined by ∆ij and σij , which represent pairwise comparisons
between item i and other items j. ∆ij captures the NDCG impact of swapping items i and j, while
σij adjusts this impact based on the difference between ŷi and ŷj . This formulation ensures that
LPSR focuses on local ranking relationships, particularly between adjacent or nearby items.

∂LLGR

∂ŷi
= − 1

T

n∑
k=i

(
exp(ŷπ(k)/T )∑n
j=k exp(ŷπ(j)/T )

− ⊮[π(k) = i]

)
+

∂Lcon

∂ŷi
(15)

The gradient ∂LLGR
∂ŷi

incorporates information from all items ranked from position i to n. Through
its softmax formulation, it considers the position of item i relative to all items ranked below it. This
allows LLGR to capture global ranking information.
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B EXPERIMENTAL SETTINGS

B.1 VIRTUAL DOCKING FOR DATASET CONSTRUCTION

We employed molecular docking to define the three-dimensional conformations of molecules within
our DEL datasets. This method was applied to both the training and evaluation sets, generating lig-
and binding poses for all molecules. We concentrated on three pivotal carbonic anhydrase proteins:
Q16790 (CAH9 HUMAN), P00918 (CAH2 HUMAN), and O43570 (CAH12 HUMAN).

For the Q16790 target, we sourced the 5fl4 and 2hkf PDB structures from the PDBbind database
and utilized the Gerry dataset (Gerry et al., 2019). which comprised 108,529 molecules, generating
up to nine potential poses per molecule. For the targets P00918 and O43570, we selected 127,500
SMILES strings from the DEL-MAP dataset (Hou et al., 2023) and conducted self-docking using
the 3p3h and 5doh PDB structures for P00918, and 4kp5 and 4ht2 for O43570, as sourced from
PDBbind. For the validation set, we applied the same docking methodology to the corresponding
ligands of CA9, CA2, and CA12, involving 3,324, 6,395, and 2,690 ligands respectively.

In the specific docking procedures, initial 3D conformations of ligands were created using RDKit.
The binding sites in the protein-ligand complexes were identified using 3D structural data of known
binding ligands from PDBbind as reference points. Targeted docking was performed by defining
the search space as a 22.5 Å cube centered on the reference ligand in the corresponding PDBbind
complex. Using SMINA docking software, we generated 9 potential poses for each protein-ligand
pair.

B.2 HYPERPARAMETER SETTING

The model was trained using the Adam optimizer with mini-batches of 64 samples. The network
architecture employed a hidden dimension of 128. The self-correction mechanism was applied for
3 iterations. All experiments were conducted on a single NVIDIA RTX 3090 GPU with 24GB
memory. The implementation utilized PyTorch-Lightning version 1.9.0 to streamline the training
process and enhance reproducibility. The hyperparameter settings for different datasets, including
loss function weights, temperature, and margin, are detailed in Table B.2.

Hyper-parameter Selection The hyperparameter configuration in the appendix requires clarifi-
cation regarding the weight settings. The key parameters include Lrank weight, LPSR weight, LLGR
weight, and ARC weight. The Lrank weight is logarithmically distributed between 1e9 and 1e11 to
align with the magnitude of ZIP loss. LPSR and LLGR weights are calibrated to maintain appropriate
balance among different ranking objectives. Given that ARC loss naturally aligns with ZIP loss
magnitude, its weight is simply set to 1.0 or 0.1.

Temperature settings are determined by the characteristics of DEL read count data distribution, with
denser distributions requiring lower temperatures. A detailed analysis of read count distribution and
supporting theoretical proposition are provided in the Section C.1. Besides, the contract weight
and margin serve as penalty terms for LLGR, with the weight selected based on LLGR’s relative
magnitude. Detailed in Table B.2, these values remain stable and consistent across experiments.

Table 5: Hyperparameter Settings for DEL-Ranking on Different Datasets
3p3h 4kp5-A 4kp5-OA 5fl4-9p 5fl4-20p

Lconsist weight γ 1 0.1 0.1 – –
Lrank weight ρ 1e11 1e9 1e10 1e8 1e8
LPSR weight β 0.5 0.91 0.91 0.67 0.5
LLGR weight 1-β 0.5 0.09 0.09 0.33 0.5
Temperature T 0.8 0.3 0.2 0.9 0.2
Lcon weight σ 1e−3 1e−3 1e−3 1e−4 1e−3
Margin τ 1e−3 1e−3 1e−3 1e−3 1e−3

Proposition 1. As T → 0, the model simultaneously achieves: (1) Near-deterministic selection
of compounds with the highest read counts, corresponding to the highest binding affinities; (2)
Increased robustness to small noise perturbations in the DEL experiment data.
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Based on the Proposition, the adaptive-ranking model would obtain more consistent identification of
high-affinity compounds, reducing errors due to random fluctuations. Also, it achieves enhanced ro-
bustness against common DEL experimental noises such as PCR bias and sequencing errors. While
lowering the temperature leads to a more deterministic ranking with high-affinity sensitivity and
noise resistance, there exists overlooking of compounds with slightly lower rankings when the tem-
perature goes to extremely low. In experiments, we demonstrate that [0.1, 0.4] should be a proper
range for the distribution sharping.
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C EXPERIMENTAL RESULTS

C.1 ABLATION STUDY ON HYPER-PARAMETERS

In order to evaluate the robustness of our method, we conduct a comprehensive analysis of four crit-
ical hyperparameters: the consistency loss weight γ, ranking loss weight ρ, LGR loss weight β, and
temperature T across three datasets (3p3h, 4kp5-A, and 4kp5-OA). As shown in Table 6, we employ
logarithmic search spaces for all loss-related hyperparameters to align the magnitudes of ranking
and consistency losses with the ZIP loss, while adopting a linear search space for temperature.

The empirical results demonstrate that our selected hyperparameters consistently achieve optimal
performance across all search spaces. The model exhibits strong stability, with performance varia-
tions remaining minimal under most hyperparameter adjustments. Nevertheless, we observe dataset-
specific sensitivities: the 4kp5-OA dataset shows increased sensitivity to ranking loss weight vari-
ations, potentially due to elevated read count noise levels. Similarly, the 4kp5-A dataset exhibits
performance fluctuations at higher values of ranking loss and LLGR weights, which we attribute to
magnitude imbalances in the numerical representations.

The performance progression with respect to temperature demonstrates a consistent linear relation-
ship, providing empirical support for our distribution sharpening hypothesis. These findings collec-
tively indicate that while our model maintains robustness across the hyperparameter search space
with well-justified parameter selections, its sensitivity can be influenced by dataset-specific charac-
teristics, particularly read count distribution noise and magnitude disparities in the underlying data.

Table 6: Comparison of different hyper-parameters on binding affinity prediction performance. The
best performance within one set of hyperparameter group is set bold.
Parameter Value 3p3h (CA2) 4kp5-A (CA12) 4kp5-OA (CA12)

Metric Sp SubSp Sp SubSp Sp SubSp
0.1 -0.275±0.011 -0.163±0.017 -0.268±0.012 -0.277±0.016 -0.289±0.025 -0.233±0.021

Lconsist weight γ 1 -0.286±0.002 -0.177±0.005 -0.266±0.008 -0.238±0.008 -0.287±0.005 -0.213±0.014

10 -0.276±0.010 -0.163±0.015 -0.258±0.019 -0.239±0.010 -0.278±0.024 -0.227±0.040

1e9 -0.266±0.011 -0.151±0.016 -0.268±0.012 -0.277±0.016 -0.152±0.045 -0.225±0.023

Lrank weight ρ 1e10 -0.269±0.006 -0.151±0.009 -0.257±0.005 -0.189±0.016 -0.289±0.025 -0.233±0.021

1e11 -0.286±0.002 -0.177±0.005 -0.135±0.012 -0.060±0.036 -0.084±0.095 -0.058±0.077

0.09 -0.277±0.009 -0.165±0.013 -0.268±0.012 -0.277±0.016 -0.289±0.025 -0.233±0.021

LLGR weight β 0.5 -0.286±0.002 -0.177±0.005 -0.267±0.033 -0.240±0.016 -0.288±0.025 -0.247±0.019

0.91 -0.275±0.011 -0.160±0.019 -0.173±0.054 -0.089±0.038 -0.279±0.007 -0.222±0.033

0.2 -0.280±0.021 -0.173±0.029 -0.267±0.013 -0.247±0.009 -0.289±0.025 -0.233±0.021

Temperature T 0.5 -0.279±0.009 -0.169±0.014 -0.266±0.014 -0.236±0.012 -0.275±0.013 -0.216±0.005

0.8 -0.286±0.002 -0.177±0.005 -0.268±0.010 -0.222±0.010 -0.275±0.035 -0.220±0.029

1 -0.279±0.011 -0.166±0.015 -0.247±0.022 -0.265±0.014 -0.256±0.033 -0.181±0.046

C.2 ABLATION STUDY ON STRUCTURE INFORMATION

To assess the value of structural information from docking software and its complementarity with
sequence features, we performed an ablation study focusing on the additive combination of structure
and fingerprint embeddings in the ARC algorithm. We applied varying scaling factors (0, 0.3, 0.6,
1.0, 1.5, and 2.0) to the structure embedding across three datasets (3p3h, 4kp5-A, and 4kp5-OA) with
five random seeds. Table 7 shows that incorporating structural information significantly improves
model performance. The analysis revealed higher model sensitivity in the noise-prone 4kp5-OA
dataset, while performance degradation was observed in 4kp5-A when scaling factors exceeded
1.0. These results indicate that while structural information enhances model performance, excessive
weighting of potentially uncertain structural data can impair predictions. Nevertheless, our chosen
parameterization demonstrates consistent performance across all datasets.

C.3 COMPARISON RESULT OF TOP-50 SELECTION CASES BY DEL-DOCK
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Table 7: Parameter value comparison for structure scaling factor. The best performance within one
set of hyperparameter group is set bold.

Value ς 3p3h (CA2) 4kp5-A (CA12) 4kp5-OA (CA12)
Metric Sp SubSp Sp SubSp Sp SubSp

0 -0.236±0.010 -0.112±0.013 -0.253±0.012 -0.218±0.017 -0.195±0.044 -0.103±0.055

0.3 -0.262±0.008 -0.145±0.012 -0.265±0.017 -0.227±0.017 -0.124±0.146 -0.062±0.090

0.6 -0.263±0.008 -0.146±0.011 -0.250±0.017 -0.231±0.019 -0.210±0.040 -0.121±0.047

1 -0.286±0.002 -0.177±0.005 -0.268±0.012 -0.277±0.016 -0.289±0.025 -0.233±0.021

1.5 -0.270±0.011 -0.155±0.016 -0.244±0.022 -0.252±0.022 -0.152±0.156 -0.139±0.104

2 -0.271±0.012 -0.155±0.015 -0.191±0.089 -0.216±0.060 -0.230±0.038 -0.152±0.051
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Figure 4: Quantitative analysis of Top-50 selec-
tion, including Ki distribution and accuracy for
DEL-Dock (Shmilovich et al., 2023).

To evaluate the DEL-Dock model’s perfor-
mance, we analyzed the Ki value distributions
and benzenesulfonamide identification rates for
the top-50 compounds across multiple datasets.
Figure 4 demonstrates that DEL-Dock outper-
formed DEL-Ranking in the 3p3h dataset and
showed comparable results in 4kp5-A and 5fl4-
9p datasets, while DEL-Ranking exhibited su-
perior performance in 4kp5-OA and 5fl4-20p
datasets. The benzenesulfonamide identifica-
tion accuracy mirrored these trends across all
datasets, with DEL-Dock showing strength in
3p3h, equivalent performance in 4kp5-A and
5fl4-9p, and DEL-Ranking maintaining advan-
tage in 4kp5-OA and 5fl4-20p datasets. Further analysis indicated that ranking-based methods per-
formed better in datasets with higher noise levels and increased read counts, aligning with theoretical
expectations.

Figure 5: Visualization of Top-50 high affinity
cases without benzene sulfonamide.

Moreover, analysis of high-affinity com-
pounds devoid of benzenesulfonamide func-
tional groups was performed across the 4kp5-
OA, 5fl4-9p, and 5fl4-20p datasets. The
identification of thiocarbonyl and sulfonamide
groups exhibiting Ki values below 10.0 yielded
two significant insights. First, it validated
the benzenesulfonamide-based activity labeling
approach, particularly given that DEL-Dock
achieved these results independent of activity
label data. Second, the label-guided DEL-
Ranking model successfully identified struc-
turally analogous functional groups to benzene-
sulfonamides, demonstrating that ranking su-
pervision effectively enhances the discovery of
novel, high-activity molecular scaffolds.

C.4 VISUALIZATION
OF TOP-50 SELECTION OF DEL-RANKING
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Figure 6: Visualization of the top-50 DEL-Ranking results on the 3p3h dataset. In molecules con-
taining benzenesulfonamide, the benzenesulfonamide structure is highlighted.
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Figure 7: Visualization of the top-50 DEL-Ranking results on the 4kp5-A dataset. In molecules
containing benzenesulfonamide, the benzenesulfonamide structure is highlighted.
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Figure 8: Visualization of the top-50 DEL-Ranking results on the 4kp5-OA dataset. In molecules
containing benzenesulfonamide, the benzenesulfonamide structure is highlighted.
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Figure 9: Visualization of the top-50 DEL-Ranking results on the 5fl4(9 pose) dataset. In molecules
containing benzenesulfonamide, the benzenesulfonamide structure is highlighted.
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Figure 10: Visualization of the top-50 DEL-Ranking results on the 5fl4(20 pose) dataset. In
molecules containing benzenesulfonamide, the benzenesulfonamide structure is highlighted.
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C.5 VISUALIZATION ON SELECTED CASES
CONTAINING PYRIMIDINE SULFONAMIDE

Figure 11: In 3p3h, THR199 likely forms hydrogen bonds with the ligand, while ASP72 and GLU69
participate in hydrogen bonding and electrostatic interactions. The corresponding ki value is 84.0.

Figure 12: In 5fl4, LEU74 contributes through van der Waals forces or hydrophobic interactions,
HIS94’s imidazole side chain potentially forms hydrogen bonds, and THR201 engage in hydrogen
bonding with the ligand. The corresponding ki value is 0.5.
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