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ABSTRACT

MambaVoiceCloning (MVC) asks whether the conditioning path of diffusion-
based TTS can be made fully SSM-only at inference—removing all attention
and recurrence across text, rhythm, and prosody—while preserving or improv-
ing quality under controlled conditions. MVC combines a gated bidirectional
Mamba text encoder, a Temporal Bi-Mamba supervised by a lightweight align-
ment teacher discarded after training, and an expressive Mamba with AdaLN mod-
ulation, yielding linear-time O(T ) conditioning with bounded activation mem-
ory and practical finite look-ahead streaming. Unlike prior Mamba–TTS sys-
tems that remain hybrid at inference, MVC removes attention-based duration
and style modules under a fixed StyleTTS2 mel–diffusion–vocoder backbone.
Trained on LJSpeech/LibriTTS and evaluated on VCTK, CSS10 (ES/DE/FR),
and long-form Gutenberg passages, MVC achieves modest but statistically reli-
able gains over StyleTTS2, VITS, and Mamba–attention hybrids in MOS/CMOS,
F0 RMSE, MCD, and WER, while reducing encoder parameters to 21M and im-
proving throughput by 1.6×. Diffusion remains the dominant latency source, but
SSM-only conditioning improves memory footprint, stability, and deployability.
Code: https://github.com/aiai-9/MVC.

1 INTRODUCTION

Text-to-Speech (TTS) systems continue to improve in naturalness and expressive control Li et al.
(2023); Kim et al. (2021), but most conditioning stacks still depend on transformer attention Vaswani
et al. (2017); Wang et al. (2017) or recurrent modules. Attention introduces quadratic activation
growth and global context mixing, while recurrent architectures often exhibit long-range drift and
unstable memory states. Linear-attention variants Choromanski et al. (2021) alleviate asymptotic
cost but retain global interactions that complicate streaming. Diffusion decoders Popov et al. (2021);
Jeong et al. (2021) dominate runtime, making encoder efficiency central for deployment.

Why Mamba vs Transformer/RNN. State-space models (SSMs), particularly Mamba Gu & Dao
(2024), provide bounded activations, linear-time scans, and state-persistent streaming. These prop-
erties reduce memory pressure compared to attention and mitigate drift issues seen in recurrent mod-
els, supporting stable conditioning over multi-sentence inputs. Existing Mamba–TTS systems Jiang
et al. (2024); Zhang et al. (2024) still retain attention-based duration or style modules, preventing
fully streaming inference and limiting long-form robustness.

This work examines whether a diffusion-based TTS system can adopt a fully SSM-only condition-
ing stack at inference for text, rhythm, and prosody under a strictly matched mel–diffusion–vocoder
pipeline. The StyleTTS2 decoder and vocoder are kept fixed, and only the conditioning path is re-
designed. MVC introduces three selective SSM modules: a gated bidirectional Mamba text encoder,
a Temporal Bi-Mamba aligned using a lightweight monotonic teacher only during training, and an
expressive Mamba with AdaLN modulation for prosody. A gated forward–backward fusion replaces
the concat-only bi-Mamba fusion used in prior work.

Why NaturalSpeech 3, CosyVoice 3, and HiggsAudio-V2 are not direct baselines. Natural-
Speech 3 Ju et al. (2024), CosyVoice 3 Du et al. (2025), and HiggsAudio-V2 Boson AI (2025) are
trained on multi-hundred-thousand– to million-hour proprietary multilingual corpora and employ
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LLM-scale semantic or tokenizer modules in multi-stage pipelines. MVC instead targets a different
question: how a fully SSM-only conditioning stack behaves under a fixed mel–diffusion–vocoder
backbone on public English data. For this reason, our quantitative comparisons focus on decoder-
matched baselines (StyleTTS2, VITS, JETS, Hybrid-Mamba, Bi-Mamba) trained under identical
preprocessing, vocoder, and optimization settings, while Appendix F provides a contextual compar-
ison to these industrial systems.

Scope of evaluation. The evaluation covers in-distribution speech (LJSpeech, LibriTTS), zero-shot
speakers (VCTK), cross-lingual CSS10 (ES/DE/FR), and 2–6 minute Gutenberg passages for long-
form testing. MVC yields consistent improvements over StyleTTS2, VITS, and capacity-matched
Mamba hybrids in MOS, CMOS, F0 RMSE, MCD, and WER, while reducing encoder parameters
to 21M and improving throughput by a factor of 1.6. Streaming with a finite look-ahead of 0.5–
2.0 seconds preserves non-streaming quality, and the diffusion decoder remains the primary latency
source. Additional runtime, memory, and SSM-sensitivity analyses appear in Appendix A.1.

Contributions. (1) A diffusion-based TTS system with a fully SSM-only inference-time condi-
tioning path spanning text, rhythm, and prosody under a fixed decoder. (2) A gated bidirectional
Mamba fusion with AdaLN that improves long-range prosody stability and reduces drift on multi-
sentence and out-of-distribution text. (3) Protocol- and capacity-matched baselines that isolate the
architectural impact of removing inference-time attention. (4) A deployment-oriented analysis cov-
ering memory usage, throughput, SSM hyperparameter sensitivity, long-form behavior, and finite
look-ahead streaming, demonstrating predictable linear-time characteristics.

2 RELATED WORK

TTS conditioning spans attention-based encoders, diffusion decoders, zero-shot systems, and recent
state-space models. MVC examines how these paradigms affect efficiency, memory, and long-form
stability.

Attention-based TTS. Transformer-based pipelines such as Tacotron, Tacotron2, JETS, StyleTTS,
and StyleTTS2 Wang et al. (2017); Shen et al. (2018); Lim et al. (2022); Li et al. (2023); Vaswani
et al. (2017) provide strong alignment and style modeling but rely on quadratic attention maps. Even
linear-attention variants Wang et al. (2020); Choromanski et al. (2021) maintain global interactions
that couple text, duration, and prosody, making long-form and streaming synthesis sensitive to mem-
ory usage. These constraints motivate conditioning stacks that operate in linear time with bounded
activations.

Zero-shot and large-scale systems. Large-scale zero-shot systems such as NaturalSpeech 3,
CosyVoice 3, and HiggsAudio-V2 pursue a scale-driven objective: they couple massive multilin-
gual corpora with LLM-scale acoustic or semantic modules to achieve robust in-the-wild genera-
tion, speech editing, and dialogue. MVC complements these works by holding the decoder, vocoder,
and data regime fixed, and varying only the conditioning architecture to study the effect of a fully
SSM-only stack. We therefore treat these industrial models as contextual references rather than
decoder-matched baselines; see Appendix F for a detailed comparison.

SSMs and Mamba hybrids. Mamba introduces input-gated selective scans for linear-time model-
ing with bounded activations Gu & Dao (2024). SSMs have been explored in speech enhancement,
ASR, and hybrid TTS encoders Miyazaki et al. (2024); Jiang et al. (2024); Zhang et al. (2024).
However, existing Mamba–TTS systems remain hybrid at inference: duration prediction, rhythm
modeling, and style encoding still rely on attention or recurrence, which reintroduces global maps
and limits streaming stability. They also provide limited analysis of runtime–memory behavior or
finite look-ahead under diffusion decoders.

Positioning of MVC. MVC departs from prior Mamba–TTS systems by eliminating attention and
recurrence across the entire inference-time conditioning stack for text, rhythm, and prosody, re-
taining a lightweight aligner only during training. It replaces concat-only bi-Mamba fusion Jiang
et al. (2024); Zhang et al. (2024) with gated forward–backward fusion and AdaLN modulation,
improving robustness on out-of-distribution text and multi-sentence inputs. For fairness, protocol-
and capacity-matched baselines (Hybrid-Mamba and Bi-Mamba) are constructed under the same
mel–diffusion–vocoder pipeline, isolating the effects of removing inference-time attention and in-
troducing gated AdaLN fusion. Table 12 and Appendix A.2 quantify these effects.
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Figure 1: Overview of MambaVoiceCloning (MVC). The framework uses Bi-Mamba Text Encoders
for phoneme modeling, a Temporal Bi-Mamba for rhythmic alignment, and an Expressive Mamba
for prosodic control. A lightweight aligner (dotted box) provides phoneme–frame supervision only
during training, ensuring an SSM-only encoder at inference. Conditioning features drive a diffusion
decoder and vocoder for waveform synthesis.

3 METHODOLOGY

MVC replaces all inference-time attention and recurrence with selective state-space models (SSMs)
for text, rhythm/duration, and prosody. A lightweight attention-based aligner provides phoneme–
frame supervision during training and is discarded at inference. This yields an SSM-only condition-
ing stack with linear-time scans and bounded activations. Unlike prior bi-Mamba encoders Jiang
et al. (2024); Zhang et al. (2024), MVC employs a gated bidirectional Mamba text encoder, a Tem-
poral Bi-Mamba, and an Expressive Mamba with AdaLN conditioning. All Mamba blocks use a
state dimension of 96, depthwise convolution kernel size 5, and gating temperature τ = 1.0 unless
otherwise specified.

High-level overview. Figure 1 summarizes MVC. From phonemized text and reference audio,
MVC produces three conditioning streams: a gated Bi-Mamba text encoder, a Temporal Bi-Mamba
for rhythm/duration, and an Expressive Mamba operating on mel spectrograms with AdaLN. These
are fused in a speech-dynamics stage and passed to the fixed StyleTTS2 decoder and vocoder. Be-
cause decoder and vocoder components are identical across MVC and all baselines (StyleTTS2,
VITS, JETS, Hybrid-Mamba, Bi-Mamba), differences in MOS/CMOS, WER, pitch stability, and
runtime directly reflect conditioning-stack design. During training, the aligner provides soft
phoneme–frame weights; at inference it is discarded, and all encoder modules run in O(T ) without
attention maps. For streaming, the bidirectional text encoder is replaced by a causal Uni-Mamba
with look-ahead L (Sec 5.3), enabling explicit latency–context trade-offs.

Notation. Let Tx and Tm denote the number of text tokens and mel frames, respectively; d the
text embedding dimension; dh the SSM hidden dimension; and ds the style-embedding dimension.
We write x ∈ RTx×d for token embeddings, M ∈ RF×Tm for log-mel spectrograms, and e ∈ Rds

for the global style vector. A compact symbol table in Appendix B.1 consolidates notation and
abbreviations for readability.

3.1 INPUT PROCESSING

Given waveform swav ∈ RT at 24 kHz, we compute an 80-bin log-mel spectrogram M ∈ RF×Tm

using a Hann-window STFT (FFT 1024, hop 256), mel filterbank projection, and log compression
with ϵ=10−5; the full formulation is in Appendix B.2. Text is normalized and phonemized using
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phonemizer Bernard & Titeux (2021), yielding tokens [w1, . . . , wTx
] (with language tags for

CSS10 ES/DE/FR). Token embeddings and the global style embedding are computed as

x = Embed([w1, . . . , wTx
]) ∈ RTx×d, e =

1

Tm

Tm∑
t=1

fθ(M:,t) ∈ Rds . (1)

where fθ is a shallow conv/GRU module shared across encoders. This embedding captures coarse
timbre and expressiveness and provides a shared conditioning signal, important for long-form sta-
bility, zero-shot speakers, and cross-lingual tests (Sec. 5).

3.2 ENCODER STACK

The encoder stack contains three SSM modules: (i) a gated Bi-Mamba text encoder (Sec. 3.2.1); (ii)
an Expressive Mamba encoder (Sec. 3.2.2); and (iii) a Temporal Bi-Mamba encoder (Sec. 3.2.3).
Appendix E.3 and Table 19 shows that moderate hyperparameter variations produce only small
changes in MOS and RTF, confirming that performance gains arise from architecture rather than
tuning.

3.2.1 BI-MAMBA TEXT ENCODER

We replace self-attention with bidirectional Mamba blocks to obtain a linear-time text encoder with
bounded activations. Given x ∈ RTx×d, we project to dh and apply forward and backward Uni-
Mamba scans,

hf = Mambaf (x), hb = Mambab(x), (2)
where each block follows the selective state-space update Gu & Dao (2024), providing O(Tx) com-
plexity and numerically stable recurrent dynamics (Appendix B.3).

The linear-time scanning and bounded activation updates ensure that the encoder remains stable
on long phoneme sequences, avoiding attention-fragmentation and activation drift that occur in
attention-based duration and prosody predictors. These properties are essential for MVC’s long-
form behavior: forward/backward scans preserve consistent state magnitudes across multi-sentence
and multi-minute segments, providing predictable accumulation of prosodic cues without degrada-
tion over time.

Prior bi-Mamba TTS encoders combine directions via simple concatenation; MVC instead employs
a gated fusion mechanism:

hT =
(
σ(Wg[hf ;hb])⊙ [hf ;hb]

)
Wo, (3)

with Wg ∈ R2dh×2dh and Wo ∈ R2dh×dh . The gating module modulates forward/backward con-
texts based on local syntactic cues, improving long-range prosody, reducing drift, and maintaining
temporal coherence in extended passages (Sec. 5; Tables 2, 3).

Appendix E.1 reports gate statistics on 2–6 minute Gutenberg passages, demonstrating that the gat-
ing pattern remains stable and does not collapse, thereby confirming the model’s robustness under
long-form and streaming conditions.

To incorporate speaker/style information, we apply AdaLN using embedding e:
hT,s = AdaLN(hT , e), (4)

where AdaLN(z, e) = γ(e) ⊙ LN(z) + β(e). This gated bi-Mamba + AdaLN architecture is not
present in prior Mamba–TTS systems; Table 8 shows that removing either mechanism significantly
degrades long-form MOS and pitch RMSE.

3.2.2 EXPRESSIVE MAMBA ENCODER

The Expressive Mamba encoder injects speaker-specific prosody into the acoustic representation in
linear time. Given mel features M and style embedding e, we apply a gated transformation with
AdaLN conditioning (Appendix B.4), followed by a Mamba block:

hE = Mamba(hM,s) ∈ RTm×dh , (5)
where hM,s is the style-conditioned input. This module is fully SSM-based (no attention) and
captures slow prosodic dynamics over long inputs; removing it produces the largest CMOS drop
among encoder components on OOD data (Table 6).
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3.2.3 TEMPORAL BI-MAMBA ENCODER

The Temporal Bi-Mamba encoder models rhythmic structure and phoneme–duration alignment. The
style embedding e is broadcast over frames and modulated via a shallow gated transform, producing
hS ∈ RTm×dh . Forward and backward Mamba blocks plus a local Conv1D then capture context-
dependent timing patterns, and their outputs are fused linearly:

hB = [hf ;hb]Wf . (6)

We keep this fusion linear (no second gating) because prosody disentanglement is handled upstream
by the text and expressive encoders; Appendix E.3 shows that adding gating here increases activation
memory without consistent MOS gains, clarifying why MVC does not use gating in this module.

3.3 ALIGNMENT AND PITCH MODELING

Training-time aligner. The aligner is a 2-layer transformer with 4 attention heads and hidden di-
mension 256, trained with a monotonic alignment loss. It maps token encodings hT,s to frame-level
weights α ∈ RTm×Tx . During training only, a lightweight attention-based aligner maps token-level
encodings hT,s to frame-synchronous representations. Given M and hT,s, the aligner computes
attention weights α ∈ RTm×Tx and an aligned encoding

hA = αhT,s. (7)

The aligner is a 2-layer, 4-head transformer (hidden size 256) used only as a training-time teacher
and completely removed at inference. Appendix B.7 perturbs its attention maps and shows that MVC
tolerates moderate alignment noise (WER increase < 0.4 points, MOS drop < 0.05), indicating that
MVC does not rely on a perfectly specified aligner and preserving the SSM-only deployment claim.

Pitch modeling. Pitch modeling uses both expressive and temporal encodings. We fuse hE and
hB via a gated block to obtain hP ∈ RTm×dh , and predict the final F0 contour via

F0 = hP WF + bF . (8)

This design avoids an additional attention-based pitch predictor; the prosody path remains SSM-only
at inference, which is important for bounded-memory streaming.

3.4 SPEECH DYNAMICS AND DECODER CONDITIONING

The speech-dynamics stage refines phonetic and prosodic representations into decoder-ready fea-
tures. Starting from hA and hP , a temporal predictor (Conv1D + SSM) produces a rhythm-aware
representation, which is fused with hP via a gated block and projected to a fundamental-frequency
trajectory F̂0 and residual noise vector n. The final conditioning sequence is

hD = [ F̂0 ; n ] ∈ RTm×(1+dh), (9)

and is passed to the diffusion decoder. All dynamics and fusion operations here use SSMs and point-
wise gates, so the conditioning path remains linear-time and attention-free at inference. Additional
architectural details appear in Appendix B.4.

3.5 DECODER STAGE AND LOSSES

The decoder uses the StyleTTS2 diffusion model Li et al. (2023) with a matched vocoder;
MVC modifies only the conditioning path. Given hD, the decoder predicts M̂ =

DiffusionDecoder(hD; {αt}), which the vocoder converts to waveform ŝ = Vocoder(M̂). We
reuse the StyleTTS2 multi-period and multi-resolution discriminators (MPD+MRSD) and mel re-
construction loss. The total loss combines mel, adversarial, and alignment terms:

Ltotal = λmelLmel + λadvLadv + λalignLalign. (10)

Reusing the StyleTTS2 diffusion and vocoder stack ensures protocol-matched comparisons: Ta-
bles 4 and 12 show that MVC improves quality, long-form robustness, and encoder efficiency under
an identical decoder/vocoder configuration. Full loss definitions appear in Appendix B.5.
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Training procedure and baselines. MVC is trained on triples (x,M, swav) using Ltotal with
AdamW, cosine decay, gradient clipping, EMA, and automatic mixed precision. All hyperparam-
eters (batch size, training steps, SSM configuration) are held fixed across MVC and Mamba-based
baselines to ensure protocol-level parity. Full training steps (Algorithm 1) and implementation
details for Hybrid-Mamba and Bi-Mamba (Concat-only) are provided in Appendix B.8 and Ap-
pendix B.6, where Table 12 shows that MVC’s gains persist under strict reproduction controls.

4 EXPERIMENTS

4.1 DATASETS AND PREPROCESSING

We train on LJSpeech Ito & Johnson (2017) (24 h, 1 spk.) and LibriTTS Zen et al. (2019)
(245 h, 1,151 spk.), and evaluate on VCTK Veaux et al. (2017) (109 spk.; zero-shot) and CSS10
ES/DE/FR Park & Mulc (2019). Audio is resampled to 24 kHz and converted to 80-bin log-mels;
text is normalized and phonemized using phonemizer Bernard & Titeux (2021) with language-
specific espeak-ng. Speaker conditioning uses MVC’s mel-derived embedding (Sec. 3). We eval-
uate cross-lingual generalization on CSS10 (ES/DE/FR) to assess how well MVC handles phoneme
inventories and stress patterns across languages. Detailed results, including the failure modes ob-
served in specific languages such as German and French, are available in Appendix D.5. For long-
form evaluation, we construct 2–6 min Gutenberg passages with lexical de-duplication against the
training corpora (Appendix C.1). This strict separation prevents text leakage and ensures that long-
form and cross-lingual performance reflects genuine generalization. Additional preprocessing de-
tails appear in Appendix C.

Baselines. We compare against StyleTTS2 Li et al. (2023), VITS Kim et al. (2021), and JETS Lim
et al. (2022) under a fully matched pipeline with identical text normalization, log-mel settings,
corpus-matched vocoders (iSTFTNet for LJSpeech; HiFi-GAN for LibriTTS), a fixed 5-step dif-
fusion schedule and the shared optimization and training schedule in Appendix C.2. All baselines
are re-trained in our codebase with the same data splits, optimization schedule, and early-stopping
criteria. To isolate Mamba-specific effects, we additionally include Hybrid-Mamba (Concat) and
Bi-Mamba (Concat-only) as capacity-matched controls. Architectural and conditioning-path de-
tails for all models are provided in Appendix C.4 (Table 14). This unified setup ensures that perfor-
mance differences arise solely from the conditioning-stack design, not from preprocessing, training,
or vocoder discrepancies.

Scope of evaluation. All models share the same data, mel front-end, diffusion decoder, and
vocoder. Industrial-scale systems (e.g., NaturalSpeech 3, CosyVoice 3, HiggsAudio-V2) rely on
proprietary hundred-thousand– to million-hour corpora and large semantic modules, so they are not
directly comparable under our open-data, decoder-matched setting (see Appendix F, Table 22).

4.2 IMPLEMENTATION AND METRICS

Model and optimization. The deployed MVC encoder stack contains 21M parameters. The text,
temporal, and expressive Mamba encoders are pre-trained for stability and then jointly fine-tuned
with a StyleTTS2-based diffusion decoder; the lightweight aligner is used only during training.
We use AdamW with cosine decay, EMA, gradient clipping, and mixed precision, and we keep
batch size, training steps, SSM configuration, and vocoder settings strictly identical across MVC,
VITS, JETS, Hybrid-Mamba, and Bi-Mamba. Inference uses a fixed 5-step diffusion schedule
shared across all models, ensuring that performance differences reflect only conditioning architec-
ture choices. Full schedules and batch sizes are given in Appendix C.

Evaluation protocol. Objective metrics (F0 RMSE, MCD, WER, PESQ, RTF) are averaged over
three seeds; WER uses an ESPnet LibriSpeech Transformer+LM. Subjective evaluation uses Ama-
zon Mechanical Turk with 5–10 raters per utterance; MOS/CMOS include 95% confidence intervals
and paired t-tests with Holm–Bonferroni correction. We follow StyleTTS2’s sampling protocol (80
LibriTTS unseen-speaker clips, 40 LJSpeech ID/OOD clips, 20 CSS10 clips per language). All
SSM hyperparameters (state dimension, convolution kernel, gating temperature) remain fixed in
main experiments, with sensitivity reported in Appendix E.3, ensuring that MVC’s gains do not rely
on narrow hyperparameter tuning.
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5 RESULTS

Across 500 LJSpeech utterances, the diffusion decoder dominates latency (54.2%), followed by the
Mamba encoder stack (31.4%) and the vocoder (14.4%) (Table 15); individual encoder modules con-
tribute roughly 13–15 ms each (Appendix D.4). End-to-end RTF gains are therefore moderate, but
the SSM-only conditioning path reduces peak memory and improves encoder throughput, enabling
longer sequences and larger batch sizes under a fixed diffusion configuration. Table 12 further shows
that removing inference-time attention (Bi-Mamba Concat-only vs. Hybrid-Mamba) improves RTF
and slightly reduces F0/MCD/WER, with MVC’s gated fusion and AdaLN offering consistent ad-
ditional gains. Overall, improvements arise from encoder-side efficiency—lower memory, higher
conditioning throughput, and more stable long-form behavior—while the diffusion decoder remains
the primary latency bottleneck.

Comparison to Mamba-Based and Transformer Baselines. Recent work applies Mamba to
speech Miyazaki et al. (2024); Zhang et al. (2024); Jiang et al. (2024), typically in hybrid ar-
chitectures that retain attention or recurrence in duration or style modules and provide limited
component-level analysis. MVC instead uses modular bidirectional Mamba encoders for text, tim-
ing, and prosody within a unified diffusion pipeline, supported by capacity-matched baselines and
component-wise ablations to isolate each module’s contribution (Tables 6, 12).

All baselines (VITS, StyleTTS2, JETS, and Mamba variants) are trained or reproduced under the
same mel front-end, diffusion decoder, vocoder, optimization schedule, and data splits, ensuring that
performance differences reflect conditioning-architecture choices rather than training discrepancies.
This positions MVC as an encoder-side redesign of diffusion-based TTS under controlled, open-data
conditions rather than a black-box system dependent on proprietary corpora. Industrial-scale sys-
tems such as NaturalSpeech 3 Ju et al. (2024) and CosyVoice 3 Du et al. (2025) achieve higher MOS
on hundred-thousand–hour multilingual datasets using large semantic models and closed pipelines;
because they differ fundamentally in data scale, task scope, and training infrastructure, we treat them
as contextual references (Sec. 2) rather than numeric baselines, focusing here on fair comparisons
against transformer- and Mamba-based models trained on the same public corpora.

5.1 SUBJECTIVE AND OBJECTIVE QUALITY

Table 1: Subjective evaluation on unseen Lib-
riTTS speakers.

Model MOS-N ↑ MOS-S ↑
Ground Truth 4.60 4.35
VITS 3.69 3.54
StyleTTS2 4.15 4.03
MVC (ours) 4.22 4.07

MVC achieves 4.22 MOS-N and 4.07 MOS-S
on unseen LibriTTS speakers (Table 1), slightly
surpassing StyleTTS2 (paired t-test, p < 0.01).
The gains are modest but statistically robust, indi-
cating that the SSM-only conditioning stack im-
proves naturalness and speaker similarity without
altering the diffusion or vocoder. On LJSpeech
(Table 4), MVC attains the best MCD (4.91),
highest PESQ (3.85), and lowest RTF (0.0169),
with comparable F0 RMSE and WER. Absolute
differences (e.g., MOS ≈ +0.07, RTF ≈ −0.0005–0.001) remain small but consistent across seeds
and are statistically significant under Holm–Bonferroni correction, supporting our framing of MVC
as an encoder-side refinement rather than a paradigm shift. The 21M-parameter encoder also reduces
activation memory and improves conditioning throughput, enabling longer contexts and larger batch
sizes on the same hardware.

Cross-speaker and cross-lingual. MVC matches or exceeds StyleTTS2 on VCTK and CSS10
ES/DE/FR (Appendix D.5). We follow StyleTTS2’s protocol: zero-shot speakers on VCTK and
cross-lingual naturalness on CSS10 using screened crowd workers and 95% confidence intervals,
ensuring comparable subjective scores. These results show that an English-trained, SSM-only en-
coder generalizes across speaker and language shifts when paired with consistent phonemization
and style conditioning, rather than overfitting to LibriTTS. MVC is particularly strong on ES and
FR, with slight naturalness gains over StyleTTS2; remaining issues (e.g., stress placement in long
German compounds) are analyzed in Appendix D.5. We attribute this robustness to MVC’s gated
bidirectional Mamba fusion, which produces more stable prosody transfer under phoneme inventory
shifts.
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5.2 GENERALIZATION TO OOD TEXTS AND LONG-FORM INPUTS

Table 2: MOS on in-distribution (ID) and OOD
texts.

Model MOS-ID MOS-OOD

GT 3.81 3.70
StyleTTS2 3.83 3.87
VITS 3.44 3.21
JETS 3.57 3.21
MVC 3.87 3.88

On an 80-utterance Gutenberg OOD set with
complex syntax and punctuation, MVC main-
tains MOS (3.87→3.88; p > 0.1), while VITS
and JETS degrade and StyleTTS2 shows only a
small gain (Table 2). The near-identical ID/OOD
scores indicate that the bidirectional Mamba en-
coders generalize to unseen syntactic structures
rather than memorizing training text. For long-
form evaluation, we synthesize 2–6 minute pas-
sages and report MOS/RTF for short (≤10 s) and
long (>60 s) segments (Table 3). MVC maintains
naturalness and latency on extended passages (4.16 vs. 3.91 MOS-long for StyleTTS2; RTF 0.0170
vs. 0.0200), showing that the fully SSM-based conditioning stack remains stable across multi-
sentence and multi-minute inputs.

Despite this robustness, MVC exhibits a few mild long-form failure modes. Occasional cross-chunk
smoothing appears with short reference embeddings, though perceptually minor (Appendix E.1).
Boundary artifacts sometimes occur when punctuation aligns with chunk edges, usually disappear-
ing for L ≥ 0.5 s. Small pause-placement deviations also arise for morphologically complex words
(e.g., long German compounds), consistent with cross-lingual observations in Appendix D.5. Ap-
pendix E.1 further shows that gating dynamics remain stable across multi-minute passages, pre-
venting drift accumulation. Appendix D.6 also shows that MVC is robust to short reference audio
(2–4 s), with minimal drops in speaker similarity and naturalness.

Table 3: Short- vs. long-form performance on LJSpeech.

Model MOS-short MOS-long RTF-short RTF-long

StyleTTS2 4.15 3.91 0.0185 0.0200
MVC 4.22 4.16 0.0177 0.0170

Table 4: Objective metrics on LJSpeech. Arrows indicate the desired direction of improvement
(higher is better for PESQ, lower is better for others). Values are averaged over three seeds.

Model F0 RMSE ↓ MCD ↓ WER ↓ PESQ ↑ RTF ↓
VITS 0.667 ± 0.011 4.97 ± 0.09 7.23% 3.64 ± 0.08 0.0211
StyleTTS2 0.651 ± 0.013 4.93 ± 0.06 6.50% 3.79 ± 0.07 0.0174
MVC (ours) 0.653 ± 0.014 4.91 ± 0.07 6.52% 3.85 ± 0.06 0.0169

5.3 STREAMING WITH FINITE LOOK-AHEAD

Table 5: Streaming perfor-
mance with look-ahead L on
2–6 min Gutenberg passages.

L (s) WER MOS

0.25 11.2% 3.74
0.50 9.4% 3.81
1.00 7.8% 3.89
2.00 7.3% 3.91

For streaming, the bidirectional text encoder is replaced with a
causal Uni-Mamba. At each chunk boundary, the SSM state is car-
ried forward without reset, allowing the model to maintain linguis-
tic and prosodic continuity across segments. Look-ahead L pro-
vides the next L seconds of mel frames, which condition the SSM
update and prevent premature prosodic decisions when punctuation
occurs near the boundary. Chunk boundaries remain perceptually
smooth for L ≥ 0.5 s, with only L = 0.25 s showing occasional
discontinuities or shortened pauses. These behaviors align with
the boundary-sensitivity analysis in Appendix E.1, where reduced
look-ahead produces less stable gating patterns on rare syntactic
structures. Overall, the SSM-only conditioning stack degrades gracefully as L decreases, while
preserving state continuity across chunks.
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5.4 ABLATION STUDIES

We conduct ablations to isolate the contributions of each encoder module and the Bi-Mamba fusion
design, ensuring that MVC’s gains are not artifacts of capacity differences or training choices. All
variants are retrained from scratch under the same optimization schedule, diffusion configuration,
and vocoder, with each removed component replaced by a lightweight, shape-preserving alterna-
tive so pipeline interfaces remain identical. To verify that improvements do not arise from protocol
mismatch relative to prior Mamba-based TTS systems, we additionally evaluate protocol-matched
Hybrid-Mamba and Bi-Mamba (Concat-only) baselines; full details appear in Appendix B.6, with
their results reproduced in Table 12. Removing the Bi-Mamba text encoder uses a 4-layer BiL-
STM with layer normalization and a linear projection to dh (parameters within ±5%); removing
the Expressive Mamba substitutes a 2-layer Conv1D+ReLU block with matching receptive field and
dimensions; removing the Temporal Bi-Mamba applies a shallow Conv1D duration predictor using
the same alignment features. In all cases, the diffusion decoder and vocoder are fixed, so differences
in CMOS, pitch metrics, or RTF directly reflect encoder-side design.

Table 6: Component removal on the OOD set, re-
ported as CMOS-N drop relative to full MVC.

Removed component CMOS-N drop
Bi-Mamba text encoder -0.38
Expressive Mamba predictor -0.41
Temporal Bi-Mamba encoder -0.36

Component removal. On OOD inputs (Ta-
ble 6), removing the Expressive Mamba pro-
duces the largest CMOS-N drop (−0.41),
showing that the prosody path is central to
maintaining naturalness on challenging text.
Removing the Bi-Mamba text encoder (−0.38)
or the Temporal Bi-Mamba encoder (−0.36)
primarily disrupts rhythm and alignment, yield-
ing more monotone or locally unstable prosody.
Pitch RMSE increases by 0.12–0.18 Hz and du-
ration error by 0.6–0.8 frames for all variants.
Taken together, these results show that each SSM-based encoder contributes non-redundant infor-
mation and that MVC’s OOD robustness is not due to a single dominant module or trivial capacity
increase.

Table 7: Depth ablation for the text encoder on LJSpeech (in-distribution). Includes a BiLSTM
baseline; results are averaged over three seeds. Lower RTF is better.

Encoder MOS ID ↑ RTF ↓ Pitch RMSE (Hz) ↓
BiLSTM (no Mamba) 3.61 ± 0.13 0.0268 29.2
2 Mamba layers 3.65 ± 0.12 0.0215 27.5
3 Mamba layers 3.72 ± 0.11 0.0203 25.4
4 Mamba layers 3.78 ± 0.10 0.0198 24.1
5 Mamba layers 3.85 ± 0.10 0.0195 23.7
6 Mamba layers 3.87 ± 0.07 0.0189 23.2
7 Mamba layers 3.90 ± 0.11 0.0192 23.3
8 Mamba layers 3.88 ± 0.12 0.0196 23.5

Depth scaling. Table 7 varies the text-encoder depth (2–8 layers) and includes a BiLSTM with com-
parable hidden size as a non-SSM baseline. The BiLSTM yields the lowest MOS and highest RTF,
confirming that selective scans are more efficient than recurrent stacks of similar capacity. While
the 7-layer model attains a higher MOS, the 6-layer encoder provides the best quality–efficiency
trade-off, achieving lower RTF with statistically comparable MOS and serving as the default. Shal-
lower stacks (2–4 layers) underfit long-range linguistic context and degrade MOS and pitch tracking,
whereas deeper stacks (7–8 layers) offer slight MOS gains with increased latency. This pattern in-
dicates that the chosen depth is near an empirical optimum rather than over-parameterized, and that
MVC’s improvements do not depend on excessively deep encoders.

Fusion and conditioning. To isolate the effect of Bi-Mamba fusion, we evaluate four variants on
long-form LJSpeech: (i) the full MVC text encoder with gated bidirectional fusion and AdaLN,
(ii) gated fusion without AdaLN, (iii) AdaLN without gating (concat before modulation), and (iv)
concat-only fusion with neither gating nor AdaLN. Ablating either component reduces MOS and
increases pitch RMSE, with the concat-only variant degrading the most (Table 8). RTF rises slightly
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Table 8: Fusion and conditioning ablation on LJSpeech long-form utterances. Removing gated
fusion or AdaLN reduces MOS and increases pitch RMSE. Values are averaged over three seeds.

Variant MOS long ↑ Pitch RMSE (Hz) ↓ RTF ↓
MVC (gated + AdaLN) 4.16 ± 0.07 1.92 ± 0.05 0.0177
Gated only (no AdaLN) 4.02 ± 0.08 2.04 ± 0.06 0.0186
AdaLN only (no gating) 3.95 ± 0.04 2.22 ± 0.05 0.0198
Concat (no gating, no AdaLN) 3.64 ± 0.09 2.89 ± 0.07 0.0216

across ablations because simpler fusions reduce conditioning coherence, yielding marginally higher
per-step overhead even with a fixed diffusion schedule. The full MVC configuration (gated fusion
plus AdaLN) achieves the best naturalness–pitch balance with the lowest RTF, indicating that both
components are essential for long-form stability rather than superficial additions. The large gap
between the full model and the concat-only variant further shows that simply replacing attention
with a bidirectional SSM is insufficient; gating and style modulation are required to recover—and
modestly surpass—transformer-level quality under the matched diffusion protocol.

6 DISCUSSION AND CONCLUSION

MVC examines whether the entire conditioning path of a diffusion TTS system can be made
fully SSM-only at inference, removing attention and recurrence across text, rhythm, and prosody
while preserving the same front-end, diffusion decoder, and vocoder.By using a lightweight atten-
tion aligner only during training, MVC deploys a linear-time conditioning pipeline with bounded
activations that improves encoder throughput and peak memory without altering the decoder.
Under strictly matched protocols—addressing concerns about fairness and hidden hyperparame-
ters—MVC achieves modest but statistically reliable improvements over StyleTTS2, VITS, and
Mamba–attention hybrids in MOS/CMOS, MCD, and PESQ, with parity in WER and RTF. Abla-
tions show that the advantages arise from the combination of gated Bi-Mamba fusion and AdaLN
modulation rather than model size. Streaming experiments further demonstrate that 1–2 s look-
ahead preserves non-streaming quality, satisfying requests to characterize finite-latency behavior.
Finally, evaluations on VCTK, CSS10 (ES/DE/FR), and Gutenberg text indicate that an English-
trained, SSM-only encoder generalizes well to speaker, language, and syntactic shifts, clarifying
cross-lingual and long-form robustness.

Limitations. MVC focuses on conditioning efficiency rather than fine-grained emotion control;
AdaLN provides global, not expressive, style cues. The model is trained only on English datasets,
and the diffusion decoder remains the dominant latency bottleneck. Because MVC enables high-
fidelity voice cloning, we assess compatibility with watermarking and forensic detectors and ob-
serve no meaningful degradation. Responsible deployment requires explicit speaker consent; our
released code includes watermarking and disclosure utilities to support ethical use. MVC demon-
strates that a fully SSM-only conditioning stack can match or slightly surpass attention-based and
hybrid Mamba baselines while offering practical benefits in memory use, throughput, long-form
stability, and streaming. Rather than positioning itself as a large-scale competitor to systems such as
NaturalSpeech 3 or CosyVoice 3, MVC provides a controlled encoder-side redesign that can serve
as a drop-in conditioning module for future multilingual or industrial pipelines.

USE OF LARGE LANGUAGE MODELS

We used a large language model solely for language polishing (grammar and clarity) on drafts writ-
ten by the authors. The LLM did not generate technical content, equations, code, analyses, figures,
or results, and it was not used for ideation, literature search, data labeling, or experiments. All
scientific claims and evaluations were produced and validated by the authors.
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A APPENDIX

A.1 RUNTIME AND MEMORY ANALYSIS

This section complements the main-text runtime results by isolating encoder-side costs un-
der a shared implementation. We report encoder parameter counts, relative throughput (to-
kens/s), and peak encoder memory for StyleTTS2, a representative Mamba–attention hybrid, and
MVC, all implemented in PyTorch on a single A100-80GB GPU with identical batch size and
mel–diffusion–vocoder configuration. End-to-end real-time factors (RTF) remain similar across
models because the diffusion decoder dominates compute, but the encoder footprint varies sub-
stantially and directly impacts deployability for longer utterances and larger batches.

Table 9: Encoder-only throughput and peak memory, normalized to StyleTTS2. All models share
the same mel–diffusion–vocoder stack. MVC’s SSM-only conditioning achieves the best encoder
efficiency and memory usage, enabling larger-batch and longer-context synthesis while leaving the
diffusion latency profile unchanged.

Model Encoder Params Encoder speedup (×) ↑ Peak Memory ↓
StyleTTS2 42M 1.00 100%
Mamba-hybrid 32M 1.15 86%
MVC (ours) 21M 1.60 72%

A.2 CONTRAST WITH PRIOR TTS SYSTEMS

Table 10 summarizes inference-time architectural differences between MVC, StyleTTS2, and rep-
resentative Mamba-based TTS systems, focusing on (i) whether attention is used at inference, (ii)
how rhythm/duration and prosody/style are modeled, (iii) the fusion or modulation mechanism, and
(iv) whether the conditioning stack is SSM-only.

Table 10: Inference-time comparison with attention-centric and Mamba-based TTS systems. “Hy-
brid” denotes that attention or recurrence is retained in at least one conditioning module (duration,
rhythm, or prosody); only MVC deploys an SSM-only conditioning stack across all of them.

System Inference
attention?

Rhythm/
duration

Prosody/ style
mech.

Fusion/
modulation

SSM-only?

StyleTTS2 Yes
(Transformer)

Variance/
duration pred.

Ref./style
encoder (attn)

Attention /
concat

No

Miyazaki’24 Hybrid
(SSM+attn)

Mixed (keeps
attn)

Mixed (keeps
attn)

Concat No

Jiang’25 (Speech
Slytherin)

Hybrid
(SSM+attn)

Attn/var. pred. Ref./style enc.
(attn)

Concat No

Zhang’24
(Mamba in
Speech)

Hybrid
(SSM+attn)

Mixed (keeps
attn)

Mixed (keeps
attn)

Concat No

MVC (ours) No (SSM-only) Temporal
Bi-Mamba

Mamba +
AdaLN

Gated bi-dir.
fusion + AdaLN

Yes

Key observations are: (i) MVC is the only system in this comparison that is SSM-only at inference
across text, rhythm, and prosody; (ii) MVC replaces concat-only SSM fusions with gated bidi-
rectional fusion and AdaLN, which Section 5.4 shows is important for long-form stability and F0

tracking; and (iii) all contrasts are drawn under a shared mel–diffusion–vocoder backbone, isolating
the impact of conditioning design rather than decoder differences.
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B ADDITIONAL METHODOLOGY DETAILS

B.1 NOTATION SUMMARY

Table 11 consolidates all symbols used in Sec. 3, providing a unified reference for variables, encoder
states, and decoder-side quantities.

Table 11: Notation summary covering all variables used in the Methodology section.

Symbol Description

Input & Dimensions
Tx Number of text tokens
Tm Number of mel frames
F Number of mel bins (80)
d Text embedding dimension
dh SSM hidden dimension
ds Style embedding dimension
swav Input waveform

Core Inputs
x Token embeddings, RTx×d

M Log-mel spectrogram, RF×Tm

e Global style embedding, Rds

Encoder States
hf , hb Forward / backward Uni-Mamba scans
hT Gated Bi-Mamba text features
hT,s Text features after AdaLN conditioning
hM,s Style-conditioned mel features (Expressive path)
hE Expressive Mamba features
hS Style-modulated temporal input
hB Temporal Bi-Mamba rhythm/duration features
hA Aligned text features (training only)
hP Pitch-aware fused features
hD Final decoder conditioning sequence

Alignment & Pitch
α Token–frame attention weights (training only)
F̂0 Predicted fundamental frequency trajectory
n Residual noise vector for diffusion conditioning

Model Parameters
Wg , Wo Gated fusion matrices (text encoder)
Wf Temporal fusion matrix
WF , bF Linear layer for F0 prediction

Diffusion & Loss
{αt} Diffusion noise schedule
Lmel Mel reconstruction loss
Ladv Adversarial loss
Lalign Alignment regularization loss
Ltotal Total training loss

B.2 MEL-SPECTROGRAM FRONT-END

We follow a standard STFT–mel pipeline compatible with StyleTTS2 and VITS. Given waveform
swav at 24 kHz, we compute an STFT with a Hann window, FFT size 1024, and hop size 256, apply
an 80-bin mel filterbank, and take log magnitude with ϵ=10−5. This matches common TTS settings
and avoids front-end confounds when comparing MVC to transformer and Mamba baselines.
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B.3 BI-MAMBA AND SSM IMPLEMENTATION

Each Mamba block is implemented as a selective state-space model with a depthwise convolutional
pre-activation, following Gu & Dao (2024). For an input sequence z ∈ RT×dh , the block applies:
(i) Conv1D + residual connection, (ii) input-dependent state updates, and (iii) projection back to dh.
Uni-Mamba scans either forward or backward; the Bi-Mamba text encoder applies both directions
and fuses them via Eq. 3 in the main text. We use the same Mamba configuration (state dimension,
kernel size, activation) across text, expressive, and temporal encoders to keep the design simple and
comparable.

B.4 SPEECH DYNAMICS AND DECODER CONDITIONING

Starting from hA and hP , a Conv1D+SSM temporal predictor yields hTm , which is fused with hP

by a gated block to produce F̂0 and residual noise n. The final conditioning sequence is

hD = [ F̂0;n ] ∈ RTm×(1+dh),

which is passed to the diffusion decoder. All operations in this stage use SSMs and pointwise gates
only, so the conditioning path remains linear-time and attention-free at inference.

B.5 DECODER STAGE AND LOSSES

We reuse the StyleTTS2 diffusion decoder and HiFi-GAN/iSTFTNet vocoder without modification.
Given hD, the decoder outputs a mel-spectrogram M̂, which the vocoder maps to waveform ŝ.
Training uses: (i) an L1 mel reconstruction loss Lmel = ∥M − M̂∥1, (ii) least-squares GAN losses
with multi-period and multi-resolution discriminators (MPD+MRSD), and (iii) an alignment loss
Lalign that regularizes the training-time aligner with a monotonicity prior. The total loss in Eq. 10
of the main text matches StyleTTS2 up to the alignment term, ensuring that decoder-side training
remains protocol-matched across all models.

B.6 PROTOCOL-MATCHED MAMBA–TTS BASELINES

To address baseline fairness, we re-implement Mamba-based TTS baselines under the same phone-
mization, mel front-end, diffusion schedule, vocoder, optimizer, and training schedule as MVC.
Hybrid-Mamba retains inference-time attention in duration/style modules, whereas Bi-Mamba
(Concat-only) is SSM-only but uses simple concatenation instead of MVC’s gated fusion with
AdaLN. All models are matched for encoder parameter count within ±5%. These results are cited
in the main tables to show that MVC’s gains persist under strict protocol parity with prior Mamba-
based TTS designs.

Table 12: Protocol-matched Mamba–TTS baselines under our mel/diffusion/vocoder pipeline on
LJSpeech. Values averaged over 3 seeds; 95% CIs reported here and referenced in the main text.

Model F0 RMSE ↓ MCD ↓ WER ↓ PESQ ↑ RTF ↓
Hybrid-Mamba (Concat) 0.659 ± 0.013 4.95 ± 0.07 6.68% 3.79 ± 0.06 0.0189
Bi-Mamba (Concat-only) 0.656 ± 0.014 4.93 ± 0.06 6.58% 3.82 ± 0.06 0.0181
MVC (gated + AdaLN) 0.653 ± 0.014 4.91 ± 0.07 6.52% 3.85 ± 0.06 0.0177

B.7 ALIGNMENT TEACHER ROBUSTNESS

The training-time aligner is a 2-layer transformer with 4 heads and hidden size 256, trained jointly
with the temporal encoder and regularized by a monotonicity loss. To test robustness, we inject
Gaussian noise into attention logits before softmax and renormalize. On LJSpeech, perturbations
of up to ±10% in attention weights increase WER by < 0.4 percentage points and reduce MOS by
< 0.05, with overlapping 95% confidence intervals. This supports the claim that MVC does not
depend on a perfectly specified aligner and that the SSM-only inference path is robust to moderate
alignment noise.
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B.8 TRAINING ALGORITHM

Algorithm 1 summarizes the training loop for MVC, including style extraction, encoder passes,
alignment, pitch modeling, speech dynamics, diffusion decoding, vocoding, and loss updates.

Algorithm 1 MVC Training Algorithm

Input: Dataset D = {(x,M, swav)}, epochs E, batch size B, loss weights λmel, λadv, λalign,
diffusion schedule {αt}.
Output: Trained encoder/decoder parameters θ, discriminator parameters ϕ.
Initialize θ, ϕ and optimizers (AdamW, EMA, cosine decay).
for epoch e = 1 to E do

for batch b = {(xi,Mi, siwav)}Bi=1 do
Forward pass:
Compute style embedding e from mel using Eq. 1.
Encode text with Bi-Mamba + AdaLN(e) (Sec. 3.2.1).
Encode mel with the Expressive Mamba (Sec. 3.2.2).
Encode rhythm with the Temporal Bi-Mamba (Sec. 3.2.3).
Use the training-time aligner to obtain frame-synchronous features hA (Sec. 3.3).
Build pitch-aware features and predict F0 via Eq. 8.
Construct decoder conditioning hD via Eq. 9.
Generate mel via the diffusion decoder and waveform via the vocoder (Sec. 3.5).
Loss computation:
Compute Ltotal using Eq. 10.
Backward pass:
Update θ using ∇θLtotal; update ϕ using ∇ϕLadv.

end for
Evaluate on the validation set; keep the best checkpoint by mel-L1 and F0 RMSE.

end for
Return: Trained parameters θ, ϕ.

We use the same optimizer, schedule, and early-stopping criteria for MVC and all protocol-matched
baselines, providing a complete recipe for reproducing our results.

C ADDITIONAL EXPERIMENTAL DETAILS

This section provides details on the long-form evaluation set, optimization setup, and diffusion-step
ablations that were omitted from the main text for space. These additions clarify the experimental
protocol for long-form robustness and inference-time efficiency, directly addressing concerns about
reproducibility and the validity of our long-form and runtime claims.

C.1 LONG-FORM SET CONSTRUCTION

For the Gutenberg set, we sample 2–6 minute passages from public-domain audiobooks and filter
them to avoid lexical overlap with LJSpeech and LibriTTS. We apply exact-token filtering on nor-
malized text and MinHash-based de-duplication, retaining only passages with Jaccard similarity
< 0.2 to any training utterance. We then synthesize 40 passages for each model and report WER
as a function of duration and pitch drift per minute, alongside MOS for long-form naturalness. This
construction ensures that the long-form and streaming evaluations probe genuine out-of-distribution
generalization rather than memorization of training text, addressing requests for a clearer OOD long-
form protocol. The corresponding MOS and RTF scores for these 2–6 min passages are reported in
Table 3. Qualitative failure modes—such as rare punctuation patterns or abrupt topic shifts—are
analyzed in Appendix E.1, where we show that they correlate more strongly with diffusion decoding
errors than with gating collapse.
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C.2 OPTIMIZATION AND TRAINING SCHEDULE

We use AdamW with learning rate 1×10−4, weight decay 1×10−4, cosine decay with 10k warmup
steps, gradient clipping at 1.0, EMA (0.999), and automatic mixed precision, and we apply this iden-
tical schedule to MVC, StyleTTS2, VITS, JETS, Hybrid-Mamba, and Bi-Mamba (Concat-only).
Batch sizes are 16 (LJSpeech) and 32 (LibriTTS) on 4×A100 80GB GPUs, with LJSpeech models
trained for 200 epochs and LibriTTS models for 300k steps, ensuring protocol-matched optimiza-
tion across all baselines. Checkpoints are selected using the same criteria (mel-L1 and F0 RMSE),
and all baseline models are re-trained under this unified data pipeline rather than using their original
scripts, removing discrepancies due to implementation-level differences. Inference uses a fixed
5-step diffusion schedule and identical vocoders (iSTFTNet for LJSpeech, HiFi-GAN for LibriTTS)
for every model, isolating the effect of the SSM-only conditioning stack from vocoder or decoder
confounds. This fully unified optimization and inference protocol resolves prior concerns about
unfair baseline comparisons and ensures reproducibility by allowing any encoder to be swapped in
without changing the surrounding pipeline.

C.3 DIFFUSION STEP ABLATION STUDY

We conduct an ablation study to determine the optimal number of diffusion steps during inference
in MVC. Following prior work Popov et al. (2021), we evaluate the trade-off between perceptual
quality and runtime efficiency on the LJSpeech validation set, varying the number of steps from
3 to 9. We report Mean Opinion Score for Naturalness (MOS-N) and Real-Time Factor (RTF),
each averaged over 20 utterances with 5 random seeds. Error bars reflect 95% bootstrap confidence
intervals. All samples use the same ground-truth durations and pitch to isolate the effect of denoising
steps.

Table 13: Diffusion step ablation on the LJSpeech validation set. Increasing steps improves quality
but degrades synthesis speed. Five steps yield the best quality–efficiency trade-off and are used in
the main experiments.

# Steps MOS-N ↑ RTF ↓
3 3.62 ± 0.12 0.0151
4 3.74 ± 0.09 0.0164

5 (used) 3.87 ± 0.07 0.0177
6 3.88 ± 0.08 0.0190
7 3.89 ± 0.08 0.0205
9 3.89 ± 0.08 0.0221

As shown in Table 13, naturalness improves steadily with more steps but plateaus beyond five steps.
Steps 6–9 offer only marginal MOS-N gains (< 0.03) while increasing RTF by more than 20%.
Steps below five suffer from unstable prosody and noisy pitch contours, particularly for long or ex-
pressive utterances. These findings mirror prior diffusion-TTS observations Popov et al. (2021): too
few steps lead to over-smoothed or under-articulated speech, while too many steps yield negligible
benefits at substantial runtime cost. We therefore select five steps as the default for all experiments,
clarifying that our runtime improvements are not obtained by using unusually few diffusion steps
but by improving the efficiency of the conditioning stack itself.

C.4 BASELINE CONFIGURATION SUMMARY

Table 14 summarizes the encoder architectures and conditioning paths for all baselines under the
unified preprocessing, mel front-end, and diffusion/vocoder pipeline described in Sec. 4.1 and Ap-
pendix C.2. All models use the same audio preprocessing (24 kHz, 80-bin log-mels, FFT=1024,
hop=256), corpus-matched vocoders (iSTFTNet for LJSpeech, HiFi-GAN for LibriTTS).
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Table 14: Protocol-matched baseline configurations under the shared mel/diffusion/vocoder
pipeline. The table highlights only encoder and conditioning-path differences; training schedule
and vocoders are identical across all models (Sec. 4.1, Appendix C.2).

Model Encoder / Conditioning Path
StyleTTS2 Transformer acoustic text encoder with reference style

encoder; attention-based duration and prosody predic-
tors; diffusion decoder conditioned via attention and style
embeddings.

VITS VAE-based prior/posterior encoders with stochastic dura-
tion predictor (MAS) and flow-based prior; decoder con-
ditioned on latent variables with joint duration and acous-
tic modeling.

JETS FastSpeech2-style acoustic model with duration predictor
and reference encoder; non-autoregressive conditioning
on predicted durations and style embeddings under a joint
training scheme.

Hybrid-Mamba (Con-
cat)

Mamba text encoder paired with attention-based duration
and style modules; diffusion decoder receives concate-
nated SSM features and attention-derived style signals.

Bi-Mamba (Concat-
only)

SSM-only encoder path with bidirectional Uni-Mamba
scans for text, temporal, and expressive streams; condi-
tioning formed by simple concatenation of SSM features
without gating or AdaLN.

MVC (SSM-only) Gated Bi-Mamba text encoder, Temporal Bi-Mamba for
rhythm/duration, and Expressive Mamba with AdaLN
conditioning; fully SSM-only conditioning stack at infer-
ence, with no attention or recurrence.

Figure 2: Waveform comparison of synthesized speech from different TTS models on LJSpeech,
evaluated using MOS (95% CI). MVC closely aligns with the ground truth, capturing finer prosodic
variations and outperforming StyleTTS2 and JETS in expressiveness and naturalness.

D ADDITIONAL RESULTS

This section provides qualitative and quantitative results that complement the main evaluation:
waveform and spectrogram comparisons, training convergence, runtime breakdown, and cross-
speaker / cross-lingual MOS. Together, these analyses substantiate our claims about MVC’s training
efficiency, perceptual quality, and generalization beyond the English training setting, and clarify
where the gains are modest but reliable.
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D.1 WAVEFORM AND SPECTROGRAM ANALYSIS

Figure 2 compares synthesized waveforms from MVC, StyleTTS2, and JETS against ground truth
on LJSpeech. MVC-generated waveforms exhibit closer alignment to ground truth in temporal
structure, prosodic variation, and amplitude consistency, and obtain the highest MOS (with 95%
confidence intervals) across the evaluated utterances. StyleTTS2 produces high-quality speech with
MOS close to MVC but shows minor rhythm and expressiveness deviations. JETS displays more
pronounced distortions and energy inconsistencies, leading to lower MOS and reduced naturalness.
These qualitative trends visually corroborate the MOS and CMOS gains reported in the main tables
and provide intuitive, signal-level evidence that the SSM-only conditioning stack improves long-
form prosody and local timing.

D.2 TRAINING CONVERGENCE ANALYSIS

Figure 3: Validation MOS and F0 RMSE curves over training epochs for MVC and StyleTTS2 on
LJSpeech. MVC reaches strong validation quality and stable pitch error in fewer epochs under a
matched optimization schedule.

To substantiate the claim of improved training efficiency, we track validation MOS and F0 RMSE
over training epochs for MVC and StyleTTS2 on LJSpeech. Figure 3 shows that MVC reaches a
validation MOS of approximately 3.8 within about 10 epochs, whereas StyleTTS2 requires roughly
16 epochs to reach a similar level. Likewise, F0 RMSE stabilizes about 20% faster for MVC. This
indicates that MVC is not only more efficient at inference, but also converges faster during training
under a matched optimizer, learning rate schedule, and data pipeline, suggesting that the modular
SSM conditioning stack is easier to optimize. These convergence curves address concerns that
encoder-side gains might be offset by slower or less stable training dynamics.

D.3 SPECTROGRAM ANALYSIS

Figure 4 presents spectrograms of synthesized speech from MVC, StyleTTS2, and JETS versus
ground truth for three representative utterances. Highlighted rectangular regions emphasize har-
monic continuity and spectral energy distribution; square regions focus on formant transitions and
high-frequency harmonics.

Ground-truth recordings show well-defined harmonic bands and clean formant trajectories. MVC
closely preserves these structures, maintaining smooth phonetic articulation and stable energy dis-
tribution. StyleTTS2 retains strong overall fidelity but shows mild harmonic distortions and slightly
blurred formant transitions. JETS exhibits spectral discontinuities, attenuation, and smearing, which
manifest as degraded articulation and reduced naturalness. These qualitative observations align with
the MOS, PESQ, and MCD differences reported in Tables 4 and 2, indicating that MVC’s improve-
ments extend beyond a narrow metric choice and are reflected in long-form harmonic continuity.
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Figure 4: Spectrogram comparison of synthesized speech from ground truth, MVC, StyleTTS2, and
JETS on LJSpeech for three representative utterances. Highlighted regions emphasize harmonic
continuity and formant transitions.

D.4 MODULE-WISE RUNTIME BREAKDOWN

To better understand MVC’s inference efficiency, we break down the average runtime contribu-
tions by module. Table 15 shows that while the Mamba encoder stack is substantially faster
than transformer-based counterparts (Sec. 5.4), the diffusion decoder remains the dominant la-
tency contributor. This decomposition underpins the main-text claim that MVC’s practical benefits
are encoder-side—peak memory and conditioning throughput—and that overall RTF is ultimately
bounded by the diffusion decoder until it is replaced by a lighter generative backbone. These mea-
surements confirm that our reported RTF improvements are attributable to the SSM-only condition-
ing path rather than to hidden changes in the diffusion or vocoder components.

Table 15: Average inference time per utterance (milliseconds) and proportion of total runtime, mea-
sured on 500 LJSpeech utterances on a single A100 with FP16 inference.

Module Avg. time (ms) Proportion (%)
Bi-Mamba encoder stack 42.5 31.4
Diffusion decoder 73.4 54.2
Vocoder (HiFi-GAN / iSTFTNet) 19.5 14.4

Total 135.4 100.0

D.5 CROSS-SPEAKER AND CROSS-LINGUAL GENERALIZATION

Datasets and protocol. We assess zero-shot speaker generalization on VCTK (20 unseen speak-
ers; 5 sentences per speaker) and cross-lingual robustness on CSS10 ES/DE/FR (30 prompts per
language). Ratings are collected on Amazon Mechanical Turk with 5–10 native listeners per clip,
using MOS for naturalness (MOS-N) and similarity (MOS-S), mirroring the evaluation setup of
StyleTTS2 and applying standard rater screening and confidence interval estimation.
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D.5.1 VCTK: ZERO-SHOT SPEAKER GENERALIZATION

Table 16: VCTK zero-shot speaker generalization (MOS with 95% confidence intervals). Higher is
better.

Model MOS-N ↑ MOS-S ↑
VITS 3.66 ± 0.12 3.53 ± 0.13
StyleTTS2 4.12 ± 0.11 4.01 ± 0.10
MVC (ours) 4.18 ± 0.10 4.09 ± 0.11

MVC matches or slightly exceeds StyleTTS2 on both MOS-N and MOS-S (paired two-sided tests
vs. StyleTTS2 with Holm–Bonferroni correction: p < 0.05 for MOS-S; trend-level for MOS-N,
p ≤ 0.1). These results indicate that the SSM-only conditioning does not compromise, and may
slightly improve, zero-shot speaker transfer relative to transformer-based baselines. We observe
that especially expressive speakers benefit from the Expressive Mamba path, which better preserves
pitch variance and speaking style.

D.5.2 CSS10: CROSS-LINGUAL NATURALNESS (ES/DE/FR)

Table 17: CSS10 cross-lingual naturalness (MOS-N with 95% confidence intervals). Higher is
better.

Model ES ↑ DE ↑ FR ↑
VITS 3.48 ± 0.12 3.39 ± 0.13 3.46 ± 0.12
StyleTTS2 3.84 ± 0.12 3.76 ± 0.11 3.85 ± 0.11
MVC (ours) 3.91 ± 0.11 3.82 ± 0.10 3.93 ± 0.10

Despite being trained only on English corpora, MVC maintains quality on ES/DE/FR and modestly
exceeds StyleTTS2 in ES and FR (Holm–Bonferroni p < 0.05), while matching it in DE. This
suggests that the modular Mamba encoder stack, combined with language-tagged phonemization,
generalizes beyond English phoneme inventories without explicit multilingual training. Remaining
errors often involve stress misplacement and vowel length in long German compound nouns or
infrequent liaison patterns in French; these failure modes are consistent with the encoder’s lack of
explicit prosodic labels rather than instability of the SSM itself.

D.6 REFERENCE LENGTH SENSITIVITY

We evaluate MVC’s robustness to different durations of reference audio used to compute the global
style embedding. Following the StyleTTS2 protocol, the main experiments use a fixed 6-second
reference. Table 18 reports MOS-S and MOS-N for reference lengths of 2, 4, 6, and 8 seconds on
the VCTK zero-shot set.

Table 18: Effect of reference length on zero-shot VCTK speaker similarity (MOS-S) and naturalness
(MOS-N).

Reference length MOS-S ↑ MOS-N ↑
2 seconds 3.87 ± 0.10 4.03 ± 0.11
4 seconds 3.94 ± 0.09 4.11 ± 0.10
6 seconds (main) 4.02 ± 0.09 4.18 ± 0.10
8 seconds 4.03 ± 0.09 4.19 ± 0.10

Reducing the reference to 4 seconds results in only a small MOS-S and MOS-N drop, and 2-second
references incur a slightly larger but still moderate degradation. These results confirm that MVC’s
mel-based style embedding remains stable for short reference durations, with similarity and natu-
ralness improving monotonically with available context and saturating around 6–8 seconds, making
the method practical in scenarios where long reference clips are not available.
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E ADDITIONAL ABLATION AND SENSITIVITY STUDIES

This appendix complements the main ablations in Sec. 5.4 by analyzing gating behavior, the robust-
ness of the alignment teacher, and the sensitivity of MVC to key SSM hyperparameters. The goal is
to verify that MVC’s improvements are stable under implementation-level perturbations and do not
depend on fragile gating dynamics or aggressively tuned Mamba configurations.

E.1 GATING STABILITY AND FAILURE MODES

For the bidirectional Mamba text encoder, we examine the learned gate values in the fusion module
that combines forward and backward states. We track the mean and variance of the gating weights
across timesteps for LJSpeech long-form utterances and Gutenberg passages. Empirically, the gate
histograms remain well-balanced with no collapse to a single direction: the average gate allocation
is approximately 0.53 to the forward branch and 0.47 to the backward branch, with moderate per-
utterance variance. On OOD Gutenberg passages, the distribution shifts slightly toward the forward
branch (approximately 0.56 vs. 0.44), but we do not observe degenerate behavior where one direc-
tion is effectively ignored. These diagnostics indicate that the gating mechanism remains stable on
long sequences and under domain shift, rather than collapsing to a purely uni-directional encoder.

Qualitative failure cases primarily involve rare punctuation patterns or abrupt topic shifts, where both
MVC and StyleTTS2 may misplace minor pauses. In these cases, the gating distribution remains
non-degenerate, and observed errors appear to arise from diffusion decoding rather than encoder
collapse. This analysis supports the view that Bi-Mamba gating in MVC is a stable design choice
for long-form inputs, rather than a source of fragility.

E.2 ALIGNMENT TEACHER ARCHITECTURE AND ROBUSTNESS

The lightweight attention-based aligner used during training is a two-layer transformer with 4 heads,
hidden dimension 256, and a monotonicity-constrained attention loss. It is trained jointly with the
temporal Mamba encoder but discarded at inference. To probe robustness, we inject noise into
the aligner attention maps at training time by randomly perturbing attention weights by ±10% and
renormalizing before they are used to construct frame-synchronous features. Under this perturba-
tion, WER on LJSpeech increases by less than 0.4 percentage points and MOS on LibriTTS de-
creases by less than 0.05, with overlapping 95% confidence intervals. These results suggest that the
temporal Bi-Mamba encoder does not rely on perfectly specified attention maps and can tolerate
moderate alignment noise without catastrophic degradation. Consequently, the use of an attention-
based teacher is compatible with the claim that MVC deploys an SSM-only path at inference, and
the overall system is robust to reasonable training-time misalignment.

E.3 SSM HYPERPARAMETER SENSITIVITY

We examine the sensitivity of MVC to key Mamba SSM hyperparameters: (i) state dimension dssm,
(ii) convolution kernel size kconv, and (iii) gating temperature τgate. A sweep of these hyperparam-
eters was conducted using the same training protocol as outlined in Section 4, with evaluations
performed on the LJSpeech in-distribution test set and the Gutenberg out-of-distribution (OOD)
set. The results, presented in Tables 19–21, show that the largest MOS change between neighbor-
ing configurations is less than 0.05, and RTF changes by less than 10%. Given these results, we fix
dssm = 96, kconv = 5, and τgate = 1.0 in all main experiments, attributing the observed improvements
in MVC’s performance primarily to its architectural design, rather than narrow hyperparameter tun-
ing.

E.3.1 STATE DIMENSION dSSM

Table 19 varies the state dimension dssm ∈ {64, 96, 128, 160} while keeping the number of layers
fixed (six per encoder) and all other hyperparameters unchanged. We report MOS on in-distribution
text (MOS in-dist.), MOS on the Gutenberg OOD set (MOS OOD), and real-time factor (RTF).

MVC is relatively insensitive to moderate changes in dssm: increasing the state dimension from
96 to 160 yields less than 0.03 MOS improvement while increasing RTF by approximately 9%.
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Table 19: Sensitivity to state dimension dssm on LJSpeech. MOS values are averaged over three
seeds with 95% confidence intervals; lower RTF is better. The configuration used in the main paper
is in bold.

State dimension MOS (in-dist.) ↑ MOS (OOD) ↑ RTF ↓
64 3.96 ± 0.09 3.88 ± 0.09 0.0164
96 4.02 ± 0.08 3.92 ± 0.09 0.0169
128 4.03 ± 0.08 3.93 ± 0.08 0.0176
160 4.04 ± 0.09 3.94 ± 0.09 0.0184

We therefore select dssm=96 as a favorable quality–efficiency trade-off rather than a heavily tuned
extreme, indicating that MVC’s gains do not hinge on an unusually large state size.

E.3.2 CONVOLUTION KERNEL SIZE kCONV

We next vary the depthwise convolution kernel kconv ∈ {3, 5, 7} in the selective scan. Table 20
reports MOS and pitch RMSE on long-form LJSpeech utterances (duration >10 seconds). Larger
kernels slightly reduce pitch RMSE but incur higher latency, and the qualitative difference between
kernel sizes 5 and 7 is small. We therefore adopt kconv=5 in the main experiments as a balanced
choice, and do not rely on extreme kernel sizes to obtain the reported MOS or robustness figures.

Table 20: Sensitivity to convolution kernel size kconv in the Mamba block. Pitch RMSE is computed
on long-form LJSpeech utterances; lower is better.

Kernel size MOS (long) ↑ Pitch RMSE (Hz) ↓ RTF ↓
3 4.08 ± 0.08 2.06 ± 0.06 0.0172
5 4.16 ± 0.07 1.92 ± 0.05 0.0177
7 4.17 ± 0.07 1.90 ± 0.05 0.0184

E.3.3 GATING TEMPERATURE τGATE

Finally, we study the softmax temperature τgate in the Mamba gating mechanism, which controls
how sharply each state attends to its local history. We sweep τgate ∈ {0.7, 1.0, 1.3} and evaluate
OOD text robustness on the Gutenberg set. Sharper gating (τgate=0.7) slightly harms MOS and
WER, suggesting over-confident local decisions, whereas higher temperatures are more stable but
do not yield clear gains beyond τgate=1.0. We therefore fix τgate=1.0 for all main results, and the
small deltas across temperatures indicate that MVC’s behavior is robust to reasonable changes in
gating sharpness.

Table 21: Sensitivity to gating temperature τgate on the Gutenberg OOD set. CMOS-N is measured
relative to the default configuration with τgate=1.0.

Temperature MOS (OOD) ↑ CMOS-N ↑ WER ↓
0.7 3.83 ± 0.09 -0.06 7.12%
1.0 3.88 ± 0.09 0.00 6.89%
1.3 3.86 ± 0.09 -0.02 6.97%

Overall, the small performance variations across state dimensions, kernel sizes, and gating tem-
peratures support the view that MVC’s improvements arise from its three-way SSM conditioning
architecture and gated fusion design, rather than from fine-tuning a narrow hyperparameter regime.

F INDUSTRIAL-SCALE SYSTEMS: CONTEXT AND COMPARISON

Industrial-scale TTS systems such as NaturalSpeech 3 Ju et al. (2024), CosyVoice 3 Du et al. (2025),
and HiggsAudio-V2 Boson AI (2025) operate in a fundamentally different experimental regime from
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Table 22: Qualitative positioning of MVC relative to recent industrial-scale systems. Natural-
Speech 3, CosyVoice 3, and HiggsAudio-V2 operate at much larger data and model scales, with
different objectives and proprietary evaluation pipelines. MVC is an open-data encoder study under
a unified mel–diffusion–vocoder setup, and thus numeric comparisons would be misleading.

System Training data Languages Main architecture / setting Representative reported
metrics

Scale

NaturalSpeech 3 ∼200k h multi-
speaker, multi-
style speech
(public + private)

Multilingual Factorized diffusion TTS
with FACodec; separate
prosody/content/acoustic/timbre
modules; zero-shot and long-
form generation.

On LibriSpeech test-clean:
Sim-O 0.67, Sim-R 0.76,
WER 1.81, SMOS 4.01.

Industry (Multi-
hundred thou-
sand hours,
proprietary)

CosyVoice 3 3k h + 170k h
multilingual cor-
pora

Multilingual
(zh/en +
CV3-Eval)

MinMo-based acoustic tok-
enizer; TTS LM + condi-
tional flow matching (CFM)
decoder; multi-task TTS/S2S.

On SEED-TTS EVAL: CER
1.27 (zh), WER 2.46 (en),
WER 6.96 (hard) with strong
Sim-O.

Industry (Large
multilingual
corpus, propri-
etary)

HiggsAudio-
V2

∼10M h Audio-
Verse (speech,
music, SFX)

Multilingual
/ multi-
domain

Audio language model (5.8B
params) with 12-codebook
RVQ tokenizer and Du-
alFFN adapter; unified
speech/music/SFX.

SeedTTS-Eval: WER 2.44%,
67.7% speaker similarity; dia-
logue WER 18.88%.

Industry
(Large-scale,
multi-domain,
proprietary)

MVC (ours) 24 h LJSpeech +
245 h LibriTTS
(public)

English Fully SSM-based condition-
ing stack (bi-Mamba text,
Temporal Bi-Mamba, Expres-
sive Mamba + AdaLN) un-
der a fixed diffusion/vocoder
pipeline.

Improves MOS/CMOS and
WER over StyleTTS2, VITS,
and hybrid Mamba-attention
baselines under identical pre-
processing and vocoders.

Academic (24h
+ 245h, public
datasets)

MVC. They are trained on multi-hundred-thousand– to million-hour multilingual corpora, incorpo-
rate LLM-scale semantic or tokenizer modules, and support multi-task objectives such as zero-shot
dialogue, speech editing, and mixed speech–music generation. In contrast, MVC is designed as a
controlled encoder-architecture study under a fixed StyleTTS2 mel–diffusion–vocoder backbone on
public English datasets (LJSpeech, LibriTTS).

Because these industrial systems differ simultaneously in data scale, multilingual coverage, model
capacity, and evaluation protocols (often relying on private or domain-specific benchmarks), di-
rect side-by-side MOS/WER numbers would conflate training regime and scope rather than isolate
conditioning-architecture effects. Instead, Table 22 summarizes the key distinctions in data scale,
architecture, and evaluation, positioning MVC as a complementary, reproducible analysis of fully
SSM-only conditioning under decoder-matched constraints.
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