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Abstract

The ability to quickly understand scenes from visual observations via structured
representations, known as Scene Graph Generation (SGG), is a crucial component
of perception models. Despite recent advancements, most existing models assume
perfect observations, an often-unrealistic condition in real-world scenarios. Such
models can struggle with visual inputs affected by natural corruptions such as
sunlight glare, extreme weather conditions, and smoke. Drawing inspiration from
human hierarchical reasoning skills (i.e., from higher to lower levels) as a defense
against corruption, we propose a new framework called Hierarchical Knowledge
Enhanced Robust Scene Graph Generation (HiKER-SGG). First, we create a hi-
erarchical knowledge graph, facilitating machine comprehension of this structured
knowledge. Then we bridge between the constructed graph and the initial scene
graph and perform message passing for hierarchical graph reasoning. Finally, we
propose a hierarchical inference process to enable the model to predict from a
higher to lower level, thus enhancing robustness against corruptions that frequently
impact only fine-grained details. Experiments on various settings confirm the supe-
rior performance of the proposed framework with both clean and corrupted images.

1 Introduction

Scene Graph Generation (SGG) [1, 2, 3] is a key step in understanding visual scenes, focusing on
finding object instances and their visual relations. Typically, a scene graph is a visual representation
where each node stands for an object and each edge represents the relation between them [1]. SGG
aims at the generation of scene graphs, which has attracted a lot of interest for its practical significance
in understanding the visual world [4, 5, 6, 7]. However, most existing studies assume the images used
are perfect. This contrasts with real-world situations where images often have natural corruptions
like sun glare, smoke, and water drops [8, 9]. To address this, our study focuses on improving SGG
in situations with natural corruptions. More specifically, given the impracticality of enumerating all
possible corruptions in the real world, our goal is to develop a robust SGG model that is agnostic to
the corruption types. In other words, these corruptions are not specified during the training phase,
and the model is designed to yield robust results across a diverse range of corruption types.

Arguably, human perception [10, 11] has its specific strategies to stay robust against corruptions, such
as reasoning from the higher to the lower levels. Consider an image of a cat as an example. Humans
might first identify it as an animal, and subsequently as a cat. Though this hierarchical reasoning
typically occurs instantaneously, it significantly enhances the robustness of our perception. For
instance, if the cat’s head is obscured by sun glare, accurate identification may be compromised, but
it’s highly probable that we can still successfully classify it as an animal based on other discernible
features. This form of hierarchical reasoning aids in furnishing the maximum amount of information,
even in situations where accurate results are unattainable due to observational interference.

However, it is challenging for SGG to benefit from hierarchical reasoning. It is worth noting that, the
hierarchical knowledge, such as the relationship between superclasses and subclasses (e.g., animals
and cats) is not given in the scene graphs. Humans may acquire this understanding through daily
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Figure 1: HiKER-SGG Overview. Hierarchical knowledge graphs are constructed from an external
knowledge base. Given an image, we first initialize the scene graph using an off-the-shelf detector,
Faster-RCNN. We then create bridging connections between the hierarchical knowledge graph and the
initial scene graph and perform message passing for hierarchical graph reasoning. Finally, we design
a hierarchical inference process to guide the model in making step-by-step predictions explicitly.

interactions with the world over many years, but it is almost intractable for machines to do so [12, 13].
Furthermore, even with access to hierarchical knowledge, determining how to effectively utilize this
additional information is far from straightforward.

To this end, we propose a novel framework, Hierarchical Knowledge Enhanced Robust Scene Graph
Generation (HiKER-SGG). HiKER-SGG utilizes hierarchical knowledge sourced from external
knowledge bases to refine the initial scene graph produced by the off-the-shelf detector. More
specifically, we enforce hierarchical information by adding relations between superclasses and
subclasses. Then we connect each entity in the scene graph to the corresponding entities in the
knowledge graph, matching the label predicted by the off-the-shelf detector. Subsequently, message
passing is performed on the bridged graph to facilitate information flow and reasoning. Furthermore,
we integrate a hierarchical algorithm prior within the prediction head of HiKER-SGG. This enables
HiKER-SGG to initially make predictions for the superclass and then delve into the details to predict
the subclass, conditioned on the superclass.

We conducted comprehensive experiments on the Visual Genome dataset and established that HiKER-
SGG outperforms state-of-the-art models in handling both clean and corrupted images. It’s important
to note that all models were trained on clean images and directly tested on corrupted ones without
further training. Additionally, we conducted an ablation study to discern the distinct impacts
of HiKER-SGG components. Our findings reveal that both the hierarchical knowledge and the
hierarchical inference process are crucial for the enhanced performance of HiKER-SGG, with the
removal of hierarchical knowledge leading to a more pronounced degradation in performance. We
conjecture that the hierarchical structure is essential for hierarchical inference to fully leverage its
benefits. In summary, our contributions to the field are threefold:

1. We pioneer the exploration of Scene Graph Generation (SGG) in the presence of natural corrup-
tions, a perspective not previously undertaken in existing works.

2. We introduce a novel framework, HiKER-SGG, that strategically leverages hierarchical knowl-
edge and hierarchical inference to fortify SGG against the challenges posed by natural corruptions,
ensuring more robust and reliable representations.

3. Through comprehensive empirical evaluation on both clean and corrupted images, we demonstrate
HiKER-SGG’s prevalent performance in robust scene graph generation.

2 Related Work

Scene Graph Generation. Scene graph generation has emerged as a key area of focus in computer
vision research, with the goal of offering a structured depiction of an image through the identification
of objects and their intricate relations [1, 2]. Furthermore, numerous studies illustrate that scene
graphs can serve as a valuable source of auxiliary information, thereby enhancing image understanding
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for applications such as image retrieval [14, 15, 16], image captioning [17, 18, 19, 20], and visual
question answering [21, 22]. In recent years, a multitude of research efforts have been dedicated to
enhancing the performance of SGG on the well-known Visual Genome [23] dataset. The seminal
work in this domain was conducted by Xu et al. [4], who employs iterative message passing to
generate visually grounded scene graphs. Subsequent to this pioneering work, several researchers
have adopted the message passing mechanism to better comprehend visual context [5, 24, 25, 26, 27].

While traditional SGG techniques have shown promising results, they often suffer from the long-tailed
distribution of relation predicates [28, 29, 30, 31]. Predicates in visual relations are often unevenly
distributed, with head predicates (e.g., on, have) dominating the relation expressions [32, 33, 34, 35].
Such general relation expressions, however, offer limited utility for in-depth visual relation analysis
[36, 37, 38]. To address this challenge, He et al. [39] introduces a knowledge transfer mechanism
to leverage insights from head relations to enhance the representation of tail relations. TDE [32]
employs causal inference to discern and rectify harmful biases by extracting counterfactual causality
from training graphs. EBM [7] introduces an energy-based learning framework that incorporates
structural information into the loss function. Guo et al. [37] refines biased predicate predictions
based on the confusion matrix generated by training data. Our work differs from conventional SGG
in that we don’t assume that observations are perfect. We allow for natural corruptions in images,
which are typical in real-world situations.

Knowledge Based SGG. Recently, several approaches have been proposed to integrate external
knowledge, referred to as commonsense, to refine predicate and object prediction and enhance the
generalizability of the SGG model [24, 40, 41, 42]. Specifically, GB-Net [41] suggests that a scene
graph can be perceived as an instantiation of a commonsense knowledge graph conditioned by the
content of the image, and employs GGNN [43] to iteratively propagate messages between these
two graphs for SGG task. Furthermore, EOA [42] advances this by enriching the knowledge graph
for SGG with off-scene entities, thereby offering a more comprehensive and context-aware scene
graph representation. In this work, we extend this by introducing superclass nodes and incorporating
hierarchical edges into the knowledge graph, thereby facilitating hierarchical predicate prediction for
SGG models. This is particularly advantageous when observations are corrupted, where features for
specific classes are not easily detectable. In such cases, the hierarchical knowledge guides the model
to first detect the superclass features. By adopting this approach, we can streamline the search space
and facilitate more accurate predictions for finer classes.

Corrupted Observation Perception. In many computer vision tasks, it is a common assumption
among researchers that the input image is invariably flawless and clear. However, this is often not the
case in practical scenarios. To address this important issue, several benchmarks have been introduced
to assess the robustness of the neural network models to real-world corruptions [8, 44, 45]. Within
the context of corruption robustness, recent advancements can be broadly categorized into transfer
learning [46, 47, 48], adversarial training [49, 50, 51], and data augmentation [52, 53]. Recently,
LogicDef [54] proposes a logic rules based defense method for adversarial patch attacks on images
with multiple objects, utilizing logic rules learned from object relations to identify the attacked
object. However, their approach assumes that the attack patch is on one single object, known to
be under attack, and thus it is labeled as "unknown." Additionally, they assume that the relations
between objects remain unaffected by the attack. In contrast, our work allows for corruption to
occur at any location, potentially impacting an unknown number of objects and relations, which is
more challenging as well as more realistic. To the best of our knowledge, ours is the first work to
introduce natural corruptions into scene graph generation and to propose the integration of hierarchical
knowledge to ensure robust SGG in the presence of such corruptions.

3 Hierarchical Knowledge Enhanced Robust Scene Graph Generation

We introduce a novel framework Hierarchical Knowledge Enhanced Robust Scene Graph Generation
(HiKER-SGG), as illustrated in Figure 1, to enhance scene understanding for observations with
potential natural corruptions. Hierarchical knowledge graphs are constructed from an external
knowledge base. Unlike conventional knowledge graphs, our hierarchical knowledge graph explicitly
incorporates superclass and subclass relations. Given an image, we first initialize a scene graph
using an off-the-shelf detector, Faster-RCNN [55]. Next, we establish bridging connections by
linking each scene graph entity to the knowledge graph entities according to the labels predicted
by Faster R-CNN [55]. We employ a Graph Neural Network (GNN)-based [43] model to facilitate
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information flow within the interconnected graph and utilize the updated node representations to
make predictions. Subsequently, we design a hierarchical inference process to guide the model
explicitly, first predicting the superclass, followed by further categorization into specific subclasses.
The final prediction probability is calculated as the product of the superclass probability and the
subclass probability conditioned on the superclass. This hierarchical approach proves particularly
beneficial when observations are corrupted, making direct detection of subclasses challenging.

3.1 Problem Definition

Given an image I in a dataset I , the SGG model aims to generate a directed scene graph G = {N , E},
where each node Ni ∈ N in the scene graph represents a localized object with bounding box bi
and object class CEi , and each edge Ei ∈ E denotes a predicate class CPi between two objects. A
well-constructed scene graph G contains a collection of visual relation triplets (⟨subject-predicate-
object⟩), which can be utilized to comprehensively describe the image I.

Our proposed HiKER-SGG follows a two-stage paradigm. We first generate a set of entity proposals
with corresponding features using an off-the-shelf object detector (e.g. Faster-RCNN [55]) with a
feature extraction network (e.g. VGG [56] or ResNet [57]). The features extracted from the union
box between two entities are used to represent their associated predicates. Leveraging these features,
we jointly make predictions for both the entity and predicate classes.

3.2 Hierarchical Knowledge Construction

Commonsense Knowledge Graph. Similar to GB-Net [41], we leverage a commonsense knowledge
graph which contains the possible relations between objects derived from extensive datasets like
ConceptNet [58], WordNet [59], etc. Its edges serve as repositories of information regarding the
affordances and general knowledge associated with objects, exemplified by connections such as
man-wears-shirt and cat-is-animal. For simplicity, we define our commonsense graph as
comprising a set of commonsense entity (CE) nodes NCE and commonsense predicate (CP) nodes
NCP that are present in our SGG task. Note that the commonsense graph also contains a special
entity node representing “background/no entity” and a predicate node representing “background/no
predicate.” The edges in the commonsense graph EC store the relations between each pair of nodes in
both sets, which can be denoted as

EC = {ECE→CP
relation } ∪ {ECP→CE

relation } ∪ {ECE→CE
relation } ∪ {ECP→CP

relation }. (1)

We initialize the CE and CP nodes features with a linear projection of their word embeddings [60] eEi
and ePi :

xCE
i = LinearProj(eEi ) , xCP

i = LinearProj(ePi ). (2)

Hierarchical Commonsense Knowledge Graph. To enable hierarchical predicate prediction, we
introduce three specialized predicate nodes within the commonsense knowledge graph, referred to
as commonsense superclass (CS) nodes. These nodes are denoted as NCS and correspond to three
overarching predicate categories, namely geometric, possessive, and semantic. Below are some
example subclasses associated with each of these superclasses:

• geometric: above, behind, on, over, in, near, under ... (15 subclasses in total)
• possessive: belonging to, has, of, part of, to ... (11 subclasses in total)
• semantic: carrying, covering, eating, growing on, riding ... (24 subclasses in total)

The initial representations of these superclass nodes are established by averaging the representations
of Nk subclass nodes associated with each superclass, as follows:

xCS
k =

∑
i x

CP
i

Nk
=

∑
i LinearProj(e

P
i )

Nk
. (3)

Following the incorporation of these superclass predicate nodes, we establish dense binary connections
ECS→CP
hierarchical and ECP→CS

hierarchical between NCS and NCP to encode hierarchical information. These
edges also facilitate message passing, enabling the updating of superclass node representations, which
are subsequently employed in computing superclass similarities. The final edges in the commonsense
graph EC can be represented by
EC = {ECE→CP

relation }∪{ECP→CE
relation }∪{ECE→CE

relation }∪{ECP→CP
relation }∪{ECS→CP

hierarchical}∪{ECP→CS
hierarchical}. (4)

4



3.3 Scene Graph Initialization

A scene graph is different from a commonsense graph in that: (1) each scene entity (SE) nodeNSE is
associated with a bounding box, i.e. NSE ⊆ [0, 1]4 ×NCE; (2) each scene predicate (SP) node NSP

is associated with a pair of SE nodes, i.e. NSP ⊆ NSE ×NSE ×NCP. The directed edges ES in the
scene graph can be similarly defined as

ES = {ESE→SP
subjectOf} ∪ {ESE→SP

objectOf} ∪ {ESP→SE
hasSubject} ∪ {ESP→SE

hasObject}. (5)

In our SGG settings, the true classes for the SE/SP nodes might not be provided, and as such,
we are tasked with predicting them. Therefore, we modify the scene graph entity nodes needed
to be classified as N unk

SE ⊆ [0, 1]4, and scene graph predicate nodes needed to be classified as
N unk

SP ⊆ NSE ×NSE, where N unk
SE/SP means the classes of the SE/SP nodes are unknown.

To initialize the scene graph for each sample, we first utilize the object detector to find potential
objects. We then create a SE node for each object and a SP node for each pair of objects. The SE
node is initialized by RoI-aligned [55] feature vector vE

i , and the SP node is initialized by RoI feature
vP
i of the union bounding box:

xSE
i = FCNet(vE

i ) , xSP
i = FCNet(vP

i ), (6)

where FCNet denotes a fully connected network. It should be noted that the weights for these two
fully-connected networks are distinct and not shared. In the following equations, we denote xSE

i and
xSP
i as the node representations of the the unknown nodes N unk

SE and N unk
SP , respectively.

3.4 Bridging Hierarchical Knowledge and SGG

To bridge the knowledge graph and scene graph, we create bridge edges EB to facilitate the mutual
information flow during training. Specifically, these bi-directional bridge edges link an entity or
predicate from the scene graph to its corresponding labels in the commonsense graph. Given the
symmetric nature of the relation, the bridge edges are implemented as bi-directional directed edges
with shared weights. The bridge edges EB can be defined as

EB = {ESE→CE
classifiedTo} ∪ {ESP→CP

classifiedTo} ∪ {ECE→SE
hasInstance} ∪ {ECP→SP

hasInstance}. (7)

Initially, we link each SE node to multiple CE nodes and assign weights based on the semantic labels
predicted by Faster R-CNN [55]. The edges between SP and CP nodes start as an empty set and will
be updated during the message propagation iterations.

Enforcing the information flow between knowledge graph and scene graph, we adopt a variant of
GGNN [43], used in GB-Net [41], to update node representations and propagate messages among
nodes using a Gated Recurrent Unit (GRU) [61] updating rule:

xϕ
i ← GRU Update(xϕ

i ), ϕ ∈ {SE,SP,CE,CP,CS}, (8)

After each iteration of message propagation, we compute the similarities of each SE and SP node to
all CE and CP nodes by

sim
(
x
SE/SP
i ,x

CE/CP
j

)
=

(
FCNet

(
x
SE/SP
i

))⊤ (
FCNet

(
x
CE/CP
j

))
. (9)

The pairwise similarities, which quantify the connections between scene nodes and commonsense
nodes, are used to update the weights of the bridge edges after each iteration. Explicitly, the weights
of the bridge edges EB are updated by:

wSE↔CE
ij ←

exp
(
sim

(
xSE
i ,xCE

j

))
∑

j′ exp
(
sim

(
xSE
i ,xCE

j′

)) , wSP↔CP
ij ←

exp
(
sim

(
xSP
i ,xCP

j

))
∑

j′ exp
(
sim

(
xSP
i ,xCP

j′

)) , (10)

where wSE↔CE
ij represents the weight of a bi-directional edge connecting a specific pair of SE and

CE nodes, and wSP↔CP
ij denotes the edge weight between a pair of SP and CP nodes, respectively.

5



3.5 Hierarchical Inference

After t steps of message propagation, we can leverage the node representations from both graphs
to infer the unknown class of SE/SP nodes. Specifically, we first compute the similarities between
the node representations of each SP node and the three CS nodes within the hierarchical knowledge
graph to determine the superclass probabilities, which can be written as

p
(
CSP |N unk

SP

)
= Softmax

(
sim

(
xSP
i ,xCS

k

))
. (11)

Here, k denotes the superclass predicate indices, CSP ∈ {geo,pos, sem} represents the superclass
categories, and sim(·, ·) is defined according to Equation (9).

Once we have classified the superclass for each unknown predicate node in the scene graph, we then
examine the conditional probability p

(
CP|N unk

SP , CSP
)
, i.e., the probability of subclass predicates

given the superclass. This probability can be computed as follows:

p
(
CP|N unk

SP , CSP
)
= Softmax

(
sim

(
xSP
i ,xCP

j

))
, (12)

where j denotes the subclass predicate indices in the given superclass CSP.

In general, given an unknown predicate node, the predicted probability of each predicate category can
be computed by the superclass probability p

(
CSP |N unk

SP

)
multiplying by the conditional subclass

probability p
(
CP|N unk

SP , CSP
)
:

p
(
CP|N unk

SP

)
= p

(
CSP |N unk

SP

)
· p

(
CP|N unk

SP , CSP
)
. (13)

3.6 Hierarchical Semantic Adjustment

Due to the inherent bias in the Visual Genome [23] dataset, most existing SGG models tend to favor
commonly occurring predicate classes. In this work, we integrate a hierarchical semantic adjustment
mechanism into our model to mitigate biases in predicate classes. This enhancement aims to predict
more specific and informative predicates (e.g., riding on, standing on), as opposed to general
ones (e.g., on). Essentially, our goal is to find transitioning probabilities P(CPs |CPg ) that can convert a
general prediction into a more specific one for the predicate classes.

Specifically, we introduce 4 transitioning probability matrices for superclass and subclass classifica-
tion, denoted as Tsc, Tgeo, Tpos, and Tsem. We adopt the predicate confusion matrix generated by the
MotifNet [3] baseline as initialization forRsc ,Rgeo,Rpos, andRsem. We then create transitioning
probability matrices by row-normalizing the diagonal-augmented confusion matrix:

Tγ = RowNormalize(Rγ + I), γ ∈ {sc, geo,pos, sem}, (14)

where I represents an identity matrix of the same size as the confusion matrixRγ . These transition
probability matrices can be utilized in the computation of both the superclass probability and the
conditional subclass probabilities as expressed by the following equations:

p
(
CSP |N unk

SP

)
= Softmax

(
sim

(
xSP
i ,xCS

k

)
· Tsc

)
=

exp
(
sim

(
xSP
i ,xCS

k

)
· Tsc

)∑
k′ exp

(
sim

(
xSP
i ,xCS

k′

)
· Tsc

) , (15)

p
(
CP|N unk

SP , CSP
)
=Softmax

(
sim

(
xSP
i ,xCP

j

)
·TCSP

)
=

exp
(
sim

(
xSP
i ,xCP

j

)
·TCSP

)
∑

j′ exp
(
sim

(
xSP
i ,xCP

j′

)
·TCSP

) . (16)

Combining this adjustment with our hierarchical inference process, we can rewrite Equation (13) as

p
(
CP|N unk

SP

)
= Softmax

(
sim

(
xSP
i ,xCS

k

)
· Tsc

)
· Softmax

(
sim

(
xSP
i ,xCP

j

)
·TCSP

)
. (17)

During the training stage, we update our parameters using the following two loss terms to supervise
both the superclass and subclass predictions:

LSP = NLL Loss
(
p
(
CSP |N unk

SP

)
, OneHot

(
CSPGT

))
, (18)

LP = NLL Loss
(
p
(
CP |N unk

SP

)
, OneHot(CPGT)

)
, (19)

where CSPGT and CPGT represent labels for the superclass and subclass predicates, respectively.
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4 Experiments

Following the literature, we use the large-scale Visual Genome benchmark [23] to evaluate our
method. Our results indicate that HiKER-SGG excels beyond state-of-the-art models with superior
performance on both clean and corrupted images. Additionally, we conduct an ablation study to
quantitatively delineate the contributions of the hierarchical knowledge and hierarchical prediction
head to our model’s efficacy.

4.1 Experimental Settings

Dataset. We conduct extensive experiments using the widely recognized Visual Genome [23] dataset,
which encompasses a total of 108,077 images, each annotated with objects and relations. Following
previous work [4], we filter the dataset to use the most frequent 150 object classes and 50 predicate
classes for experiments. Zellers et al. [3] further categorized these 50 predicate classes into 3
superclasses, namely geometric, possessive, and semantic, comprising 228k, 188k, and 39k
images, respectively. We use the 3 predicate superclasses to build our hierarchical knowledge graph.

Natural Corruptions. We introduce four types of corruptions, sunlight glare, waterdrop, smoke,
and dust to simulate realistic corruptions that may occur in real-world scenarios, thereby providing
insights into the models’ robustness under various corruption conditions. Note that all the models
tested are only trained on clean images and employed directly on the corrupted images.

Tasks. Following previous work [41, 42], we assess the effectiveness of our proposed approach in the
context of two standard SGG tasks: Predicate Classification (PredCls) and Scene Graph Classification
(SGCls). In the PredCls scenario, our model is provided with ground-truth bounding boxes and
their associated object classes, with the sole task of predicting the predicate class. In the SGCls
scenario, the model is only provided with known bounding boxes while the object classes are treated
as unknown, and our SGG model is required to predict both the object and predicate classes.

Evaluation Metrics. We evaluate the performance of the SGG models by top-k mean triplet recall
(mR@k) metric on both the PredCls and SGCls tasks. In specific, mR is the average recall score
between the top-k predicted triplets and ground-truth ones across all 50 predicate categories, which
promotes unbiased prediction for less frequently occurring predicate classes. A subject-predicate-
object triplet is considered a match when all three components are correctly classified, and the subject
and object bounding boxes align with an IoU (Intersection over Union) score of at least 0.5. In
our experiments, we report the mean recall on k = 20, 50, 100 to comprehensively evaluate the
effectiveness of our method. We also report the constrained (C) and unconstrained (UC) performance
results, depending on the presence or absence of the graph constraint. This constraint restricts our
SGG model to predict only a single relation between each pair of objects.

Implementation Details. We use the Faster-RCNN [55] as the object detector, which is based on
VGG-16 [56] backbone provided by Zellers et al. [3]. Regarding FCNet in Equations (6) and (9), we
follow GB-Net [41] to use 3-layer fully connected networks with ReLU activation. We set the message
propagation steps t = 3 and use a 1024-dimensional vector to represent each node. The transitioning
probability matrices are frozen during the training and inference stages. We also adopt the BPL [37]
method to train our SGG model with unbiased data. In our experiments, we train our model for 30
epochs, initializing the learning rate at 1× 10−4. This learning rate will decrease to 1/10 of its value
after every 10 epochs. A single NVIDIA Quadro RTX 6000 GPU is used for training the SGG model.

Baselines. We compare our performance with the following state-of-the-art SGG methods: IMP+
[4], Neural Motifs [3], VCTree [62], PCPL [34], G2S [37], HierMotifs [63], MotifNet + DLFE [64],
CogTree [65], SQUAT [66]. Additionally, we compare our approach with SGG methods that are
knowledge graph-based, which are closely related to our work: GB-Net [41] and EB-Net + EOA [42].
For a fair comparison, we present the performance results of these baseline methods directly from
their respective original papers.

4.2 Results and Discussions

Quantitative Results. In Table 1, we report our performance results for the PredCls task and SGCls
tasks on clean images in the Visual Genome [23] dataset. With the hierarchical predicate prediction
paradigm, our method consistently outperforms the knowledge graph-based GB-Net [41] and EB-Net

7



Table 1: Performance comparison with the state-of-the-art SGG methods on the Visual Genome [23]
dataset. The best results for each metric are in bold, while the second-best results are underlined.

Model PredCls SGCls

mR@20: UC/C mR@50: UC/C mR@100: UC/C mR@20: UC/C mR@50: UC/C mR@100: UC/C

IMP+ [4] - / - 20.3 / 9.8 28.9 / 10.5 - / - 12.1 / 9.8 16.9 / 10.5
Neural Motifs [3] - / 10.8 24.8 / 14.0 37.3 / 15.3 - / 6.3 13.5 / 7.7 19.6 / 8.2
VCTree [62] - / 14.0 - / 17.9 - / 19.4 - / 8.2 - / 10.1 - / 10.8
PCPL [34] - / - 50.6 / 35.2 62.6 / 37.8 - / - 26.8 / 18.6 32.8 / 19.6
G2S: Transformer [37] - / 26.7 - / 31.9 - / 34.2 - / 15.7 - / 18.5 - / 19.4
G2S: MotifNet [37] - / 24.8 - / 29.7 - / 31.7 - / 14.0 - / 16.5 - / 17.5
G2S: VCTree [37] - / 26.2 - / 30.6 - / 32.6 - / 17.2 - / 20.1 - / 21.2
HierMotifs [63] - / 21.5 - / 25.5 - / 26.8 - / 12.6 - / 14.9 - / 15.9
MotifNet + DLFE [64] - / 22.1 - / 26.9 - / 28.8 - / 12.8 - / 15.2 - / 15.9
CogTree [65] - / 22.9 - / 28.4 - / 31.0 - / 13.0 - / 15.7 - / 16.7
SQUAT [66] - / 25.6 - / 30.9 - / 33.4 - / 14.4 - / 17.5 - / 18.8

GB-Net [41] 23.8 / 15.3 41.1 / 19.3 55.4 / 20.9 13.1 / 7.9 21.4 / 9.6 29.1 / 10.2
EB-Net + EOA [42] 39.8 / 30.8 54.9 / 36.7 66.3 / 39.2 19.6 / 14.9 26.7 / 17.3 32.5 / 18.3
HiKER-SGG (Ours) 41.6 / 32.9 57.3 / 37.5 68.1 / 38.6 20.8 / 15.3 27.7 / 19.0 33.7 / 19.5

Table 2: Performance comparison with the state-of-the-art SGG methods on the Visual Genome [23]
dataset with 4 different corruptions. The best results for each metric are in bold.

Model PredCls SGCls

mR@20: UC/C mR@50: UC/C mR@100: UC/C mR@20: UC/C mR@50: UC/C mR@100: UC/C

Corruption: Sunlight glare
GB-Net [41] 16.7 / 11.1 29.5 / 14.5 42.5 / 16.1 6.7 / 4.2 11.7 / 5.0 17.3 / 5.5
EB-Net + EOA [42] 30.6 / 24.0 45.4 / 29.2 56.4 / 31.4 10.3 / 6.7 14.6 / 10.2 19.1 / 10.4
HiKER-SGG (Ours) 33.5 / 26.3 48.4 / 32.1 59.5 / 33.8 12.2 / 7.5 16.1 / 12.5 21.7 / 12.9
Corruption: Waterdrop
GB-Net [41] 17.8 / 11.2 32.3 / 14.6 46.1 / 16.1 7.3 / 4.7 11.9 / 5.3 16.5 / 5.5
EB-Net + EOA [42] 30.7 / 23.4 45.5 / 28.6 57.6 / 31.0 10.7 / 6.8 14.8 / 9.8 20.3 / 10.8
HiKER-SGG (Ours) 33.7 / 26.5 49.1 / 31.3 60.9 / 32.7 12.3 / 7.8 16.0 / 11.6 21.9 / 12.4
Corruption: Smoke
GB-Net [41] 16.0 / 10.5 28.7 / 13.6 41.2 / 15.0 6.3 / 3.9 11.1 / 4.5 15.9 / 4.9
EB-Net + EOA [42] 33.7 / 25.6 48.4 / 30.8 59.0 / 31.8 10.2 / 7.4 15.3 / 10.2 20.6 / 11.3
HiKER-SGG (Ours) 36.8 / 28.3 52.1 / 31.5 60.7 / 32.7 13.3 / 8.9 16.9 / 12.1 22.1 / 13.5
Corruption: Dust
GB-Net [41] 18.5 / 12.1 32.8 / 15.4 45.9 / 17.0 6.8 / 4.9 11.5 / 5.5 17.2 / 5.6
EB-Net + EOA [42] 30.1 / 22.9 44.6 / 27.2 54.8 / 29.6 9.8 / 6.4 14.2 / 9.5 19.6 / 10.7
HiKER-SGG (Ours) 32.2 / 24.4 46.5 / 28.7 57.4 / 30.1 12.3 / 8.1 16.7 / 10.9 21.1 / 13.6

+ EOA [42] methods. When compared with other state-of-the-art SGG methods, our HiKER-SGG
still achieves competitive performance in terms of mean recall. These convicining results demonstrate
the effectiveness of our hierarchical predicate prediction method.

We also show our results on 4 corrupted scenarios introduced in Section 4.1 in Table 2 to demonstrate
our method also generalizes well to unseen real-world corruptions. Table 2 illustrates that our
method achieves an average improvement of around 3% for the PredCls task and 2% for the SGCls
task, across all six metrics for all 4 types of corruption. Moreover, relative to the clean image
benchmark, our method exhibits a lower percentage of performance degradation, showcasing our
model’s resilience in handling such corrupted scenarios. For instance, in the presence of smoke
corruption, our mR@100, when considering graph constraints, experiences an 5.9% reduction,
dropping from 38.6% to 32.7%. In comparison, the EB-Net [42] method shows a greater 7.4%
degradation, decreasing from 39.2% to 31.8%.

Qualitative Results. To provide further insights into the effectiveness of our method, we visualize
some scene graphs generated by our method and the baseline GB-Net [41] method in Figure 2. In
the top row of the image, we can observe the scene graphs generated by both methods alongside
the ground-truth labels. Notably, while GB-Net tends to predict more general predicate classes (e.g.,
on), our method accurately predicts the ⟨train-has-engine⟩ and ⟨logo-in-train⟩ triplets. In the
bottom row, we illustrate the SGG results under sunlight glare corruption obtained by both methods.
In this challenging scenario, our proposed approach employs a hierarchical paradigm: it first
identifies the superclass to minimize interference from unrelated superclasses before concentrating on
the subclass classification. For instance, when classifying the predicate between engine and track,
non-hierarchical approaches such as GB-Net [41], struggles to detect the relation since the region
feature is corrupted. In comparison, our method firstly determines that the relation is geometric
rather than directly proceeding to subclass classification. This strategy enhances the robustness of
our proposed method, enabling it to consistently generate the same scene graph as in clean images.

8



Figure 2: Qualitative comparisons of our proposed HiKER-SGG method with GB-Net [41] baseline
method on the PredCls task. Only detected boxes overlapped with GT are shown. The visualized
predicted predicates are picked from the top 50 predicted triplets of SGG models.

Table 3: Ablation studies on the PredCls and SGCls tasks on the Visual Genome [23] dataset.

Setting PredCls SGCls

mR@20: UC/C mR@50: UC/C mR@20: UC/C mR@50: UC/C

Clean images
HiKER-SGG (Ours) 41.6 / 32.9 57.3 / 37.5 20.8 / 15.3 27.7 / 19.0

w/o superclass transition Tsc 41.3 / 32.4 56.9 / 37.2 20.3 / 15.2 27.6 / 18.7
w/o superclass loss LSP 40.5 / 31.7 55.8 / 36.7 20.1 / 15.2 27.3 / 17.9
w/o superclass nodes NCS 39.8 / 30.8 54.9 / 36.7 19.6 / 14.9 26.7 / 17.3

Corrupted images
HiKER-SGG (Ours) 34.1 / 26.4 49.0 / 30.9 12.5 / 8.1 16.4 / 11.8

w/o superclass transition Tsc 33.5 / 25.8 48.3 / 30.6 12.1 / 7.8 15.7 / 11.5
w/o superclass loss LSP 32.6 / 24.7 47.0 / 29.7 11.6 / 7.3 14.9 / 10.8
w/o superclass nodes NCS 31.9 / 23.8 46.3 / 29.0 10.7 / 6.9 14.4 / 10.0

4.3 Ablation Studies

To systematically evaluate the effectiveness of our proposed HiKER-SGG, we conduct an ablation
study on the Visual Genome [23] dataset to analyze the impacts of different components on both
clean and corrupted images. For corrupted images, the results are averaged across the four distinct
corruptions discussed in Section 4.1. We systematically exclude each component one by one and
present the corresponding performance results in Table 3. The superclass transitioning probability
matrices, Tsc, are designed to counteract category bias inherent in the training data. Excluding this
component would hinder the ability of our SGG model to make accurate predictions towards specific
predicates that occur less frequently. The superclass loss, LSP supervises the superclass classification.
Removing it could result in imprecise probability estimations for the superclass, thereby affecting the
efficacy of our hierarchical approach. Both the superclass transition and superclass loss contribute to
the hierarchical prediction head. Moreover, the superclass nodes, NCS, account for the hierarchical
component in the external knowledge. In all, both the hierarchical knowledge and the hierarchical
prediction head contribute to the effectiveness of HiKER-SGG.

5 Conclusion

To comprehend visual scenes that may contain common natural corruptions in the real world, we
propose a novel framework, Hierarchical Knowledge Enhanced Robust Scene Graph Generation
(HiKER-SGG). This framework is designed to be agnostic to the corruption types and is capable of
robustly generating scene graphs under various conditions of corruption. HiKER-SGG utilizes hierar-
chical knowledge derived from external sources and employs a hierarchical inference process, serving
as an algorithmic prior during decision-making, to reason and correct potential inaccuracies introduced
by off-the-shelf detectors. Through extensive experiments, we have demonstrated that HiKER-SGG
outperforms the state-of-the-art models in performance on both clean and corrupted images.
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