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ABSTRACT

To improve meta-generalization, i.e., accommodating out-of-domain meta-testing
tasks beyond meta-training ones, is of significance to extending the success of
meta-learning beyond standard benchmarks. Previous heterogeneous meta-learning
algorithms have shown that tailoring the global meta-knowledge by the learned
clusters during meta-training promotes better meta-generalization to novel meta-
testing tasks. Inspired by this, we propose a novel multi-objective perspective to
sharpen the compositionality of the meta-trained clusters, through which we have
empirically validated that the meta-generalization further improves. Grounded on
the hierarchically structured meta-learning framework, we formulate a hypervol-
ume loss to evaluate the degree of conflict between multiple cluster-conditioned
parameters in the two-dimensional loss space over two randomly chosen tasks
belonging to two clusters and two mixed tasks imitating out-of-domain tasks. Ex-
perimental results on more than 16 few-shot image classification datasets show not
only improved performance on out-of-domain meta-testing datasets but also better
clusters in visualization.

1 INTRODUCTION

Meta-learning (Hospedales et al., 2020) has been a very active and burgeoning area of research,
with an eye toward human-level intelligence that learns from prior experience (i.e., meta-training
tasks) to quickly adapt to novel tasks (i.e., meta-testing tasks) with minimal supervision. Solutions
in literature have pursued three major categories of methods, including metric-based (Cao et al.,
2020; Snell et al., 2017; Vinyals et al., 2016), model-based (Mishra et al., 2018; Ravi & Larochelle,
2017), and optimization-based (Antoniou et al., 2019; Finn et al., 2017; Li et al., 2017; Nichol et al.,
2018; Rusu et al., 2019; Song et al., 2020) , which learn the transferable meta-knowledge of a metric
space, a feed-forward model, and an initialization or optimizer, respectively. The globally shared
meta-knowledge, unfortunately, is far from adequate to accommodate a heterogeneous and growing
assortment of tasks in the wild (Yao et al., 2019; Yu et al., 2020): (1) meta-training tasks themselves
belong to multiple clusters, i.e., being heterogeneous; (2) meta-testing tasks are likely out-of-domain
(OOD) of meta-training tasks, giving rise to novel and growing clusters.

The quest for improving meta-generalization from meta-training to meta-testing tasks under the
two real-world scenarios drives the following three strands of works. The first line tackles task
heterogeneity either by taking an ensemble of multiple base learners (Dvornik et al., 2020) or by
adapting the feature extractor via task-conditioning (Triantafillou et al., 2021; Liu et al., 2021);
unfortunately, they require a priori the cluster a task belongs to, which is often inaccessible beyond
benchmark datasets. The second line avoids the use of such prior knowledge by directly applying
task-specific conditioning onto the base learner (Lee et al., 2020; Lee & Choi, 2018; Oreshkin et al.,
2018; Rusu et al., 2019; Vuorio et al., 2019; Wang et al., 2020; Yoon et al., 2018; 2019), unfavorably
sacrificing the meta-generalization among a cluster of closely related tasks (Yao et al., 2019). Thus,
ours are in line with the third group of works (Yao et al., 2019; 2020) which automatically learns
the underlying clusters of meta-training tasks and performs cluster-specific conditioning instead.
Specifically, the state-of-the-art HSML (Yao et al., 2019) trains a hierarchical clustering network to
obtain a C-dimensional clustering probability score in a C-simplex (e.g., the 3-simplex in Figure 1b),
so that the cluster-conditioned initialization for the base learner achieves minimal losses on query
sets of this cluster of tasks. Notwithstanding outstanding clustering of in-domain (ID) meta-training
tasks as shown in Figure 1a by visualizing the clustering probability scores, HSML struggles to
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a) UMAP. b) Illustration. c) Stackplot for clustering.
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Figure 1: Illustration of the core contribution and idea of our method. a) shows the UMAP
visualization for clustering probability scores of both ID and OOD meta-testing tasks. Although
HSML learns outstanding clustering of ID meta-training tasks, it struggles to differentiate between
OOD tasks, while ours succeeds on both ID and OOD tasks. b) illustrates the objective of our method
to learn disentangled clusters in the clustering probability score space. c) shows the stackplots of 16
clusters of clustering probability scores for 4 groups of sampled tasks by HSML and ours, respectively.
The learned clusters by HSML share overlap within each group, while ours learns more disentangled
clustering. Note that the meta-training tasks in a) and c) are sampled from Aircraft, Birds, Textures
and Fungi. d) and e) show an intuitive comparison of inferior and disentangled clustering in both
feature and loss spaces, where an OOD task of bird recognition is confused/differentiated with the
task of owl recognition under disentangled/inferior clustering.

differentiate between OOD tasks and thereby results in poor meta-generalization performance on
OOD meta-testing tasks. This is largely attributed to the homogeneity of cluster centers that share
considerable overlap, evidenced in almost identical probability scores for 16 clusters across all 4
groups of tasks in Figure 1c, though a subtle difference in clustering probability scores is sufficient
for HSML tell them apart. Figure 1d provides a perspective in the feature and loss space, where the
two largely overlapping cluster centers (i.e., circle shape and triangle shape) suffice to push the losses
of the base learner conditioned by one cluster (i.e., owl) on these two clusters of tasks far away from
those conditioned by the other cluster (i.e., aircraft). Undesirably, a novel cluster of OOD tasks (i.e.,
gull) is likely close to some of the clusters learned during meta-training (i.e., owl).

Taking inspiration from these preliminary experiments (i.e., Figure 1a, c) and also the significance
of compositionality (Russin et al., 2020; 2019) for promoting the generalization, we seek a solution
that maximally disentangles the cluster centers so that clustering probability scores vary significantly
from cluster to cluster (see Figure 1b). This is, however, non-trivial provided that tasks are trained
in a batch-wise manner in meta-learning. Concretely, we for the first time formulate task clustering
enabled meta-learning as a multi-objective optimization problem, theoretically supported by (Jin &
Sendhoff, 2008) which states that empirical losses on different subsets of data can be regarded as a
multi-objective point of view. In this multi-objective formulation, each objective is the loss of the base
learner with respect to a cluster of tasks; for example, the two objectives in the loss space of Figure 1e
are losses on tasks belonging to the clusters of fur material and triangle shape, respectively. The base
learner conditioned by different clusters will obviously lead to a handful of points in the loss space;
disentangling the clusters boils down to enforcing a diverse distribution of these points, opposed to
inferior clustering in Figure 1d. Therefore, we obtain these points by conditioning the base learner
with both (1) tasks affiliated to varying clusters of tasks and (2) OOD clusters mimicked by mixup
of ID tasks, and regularize meta-training with a hypervolume loss maximizing which encourages
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a diversified distribution of these points. Figure 1a) verifies the effectiveness of the proposed loss,
where ours successfully differentiates between OOD tasks with more disentanglement of the cluster
centers (see Figure 1c).

We summarize our main contributions as follows.

• To the best of our knowledge, we are the first to improve meta-generalization from a multi-objective
perspective, through which we propose a novel regularizer and obtain multiple disentangled clusters.

• We evaluate the meta-model empowered by the proposed disentangled task clustering on com-
prehensive OOD datasets including different grains (i.e., fine-grained and coarse-grained) and
styles (e.g., real, draw, infograph). The experimental results show that our model significantly
outperforms other state-of-the-art approaches on both ID and OOD meta-testing accuracy.

2 RELATED WORKS

Meta-learning for task heterogeneity. Prior approaches that deal with task heterogeneity can be
broadly divided into three categories. First, specified with the ground-truth cluster that a task belongs
to, SUR (Dvornik et al., 2020) trains multiple base learners, each of which targets a cluster of
tasks, while the works (Liu et al., 2021; Suo et al., 2020; Triantafillou et al., 2021) learns a feature
extractor comprised of shared universal parameters and task-specific parameters, to achieve single-
network multi-domain representation for tasks. To alleviate the cluster information which is usually
inaccessible, the second line directly modulates a generalized model to be task-specific, via learning
a binary mask (Lee & Choi, 2018), a mapping to meta-training tasks (Wang et al., 2020), and a task
embedding (Lee et al., 2020; Oreshkin et al., 2018; Rusu et al., 2019; Vuorio et al., 2019), respectively.
Although these task-specific conditioning methods are powerful for knowledge customization, it fails
to take the underlying clusters of tasks into consideration, which further boosts the meta-generalization
to OOD tasks (Yao et al., 2019). Thus, the third line resorts to an additional network to learn the
tree-based (Yao et al., 2019) or graph-based cluster (Yao et al., 2019) assignment of a task and
modulate the base learner with the assigned cluster. Another algorithm of TSA-MAML (Zhou et al.,
2021) learns how to cluster tasks via applying k-means on the model parameter space, while it trains
multiple individual models for each cluster, which is very time-consuming and memory-inefficient.
Moreover, as we have illustrated in the Introduction, none of these methods explicitly regularizes the
distribution of cluster centers, which however is crucial to meta-generalization.

Multi-objective optimization for machine learning. Multi-objective optimization has been fre-
quent for tackling multi-task learning, where each task presents one objective (e.g., robustness,
model complexity, mean squared loss, etc. (Jin & Sendhoff, 2008)) to be solved. There have been a
multitude of gradient-based multi-objective optimization methods attempting to improve the diversity
and Pareto optimality of the solutions, including MGDA (Sener & Koltun, 2018), EPO (Mahapatra &
Rajan, 2020), HV Maximization (Deist et al., 2021), ParetoMTL (Lin et al., 2019). A recent study(Ye
et al., 2021) simultaneously optimize the two objectives of meta-training loss and robustness in
meta-learning. However, our focus of improving meta-generalization in meta-learning is significantly
different from prior attempts. To the best of our knowledge, our work is the first to formulate the losses
on different clusters of tasks as multiple objectives, based on which we pursue disentangled clusters
that will contribute to diverse solutions in the objective space and thereby improved generalization.

3 PRELIMINARIES

In this paper, we focus on meta-learning to address the commonly studied K-shot N -way learning
tasks, where we assume a set of N tr meta-training tasks {Ti}N

tr

i=1 sampled from a task distribution
p(T ). Each i-th task Ti = {Dsi ,D

q
i } consists of a support set Dsi = {xij , yij}NKj=1 and a query

set Dqi = {xij , yij}n
q

j=1, with NK support examples and nq query examples, respectively. In the
meta-training phase, the meta-knowledge is learned from the meta-training tasks; afterwards, the meta-
knowledge facilitates the learning of a meta-testing task Tt={Dst ,D

q
t } in the meta-testing phase.

MAML (Finn et al., 2017) as the pioneering optimization-based meta-learning algorithm meta-learns
a well-generalized initialization θ of the base learner as the meta-knowledge, so that θ quickly
solves a task Ti within only a few gradient steps. Concretely, the adaptation in each task follows
φi = θ − α∇θL(θ;Dsi ), where without loss of generality we illustrate with only single gradient
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step. The initialization θ, in turn, is therefore optimized by evaluating the loss of all adapted models
{φi}N

tr

i=1 over all query sets, i.e., θ = θ − β∇θ
∑Ntr

i=1 L(φi;Dqi ). α, β denote the learning rates for
adaptation within a task and optimization of θ, respectively.

In real-world applications, it is frequent to have a heterogeneous task distribution {pc(T )}Cc=1 com-
posed of C diverse domains, e.g., bird classification and dog classification, where pc(T ) denotes the
c-th domain of tasks. MAML with a single initialization θ, unfortunately, struggles to accommodate
various domains of tasks, according to the “no-free-lunch” theory.
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Figure 2: Brief illustration of the
HSML framework.

HSML (Yao et al., 2019), one of the state-of-the-art ap-
proaches to addressing task heterogeneity, learns a clustering
network to perform hierarchical clustering of tasks, besides
the global initialization θ. As shown in Figure 2, the cluster-
ing network conditions on the representation of a task, i.e.,
gi = 1

NK

∑NK
j=1 F(xij , yij), where F(·) is the image-level

embedding function. Besides the mean pooling over em-
beddings of NK support examples, a recurrent autoencoder
aggregator also applies to arrive gi. Upon the representa-
tion gi of the i-th task, the clustering network learns Nk
clustering centers {ak}Nk

k=1 and outputs the probability of the task belonging to the k-th cluster as

pki =
exp (−||(hi−ak)/σ||22/2)∑Nk

k′=1
exp (−||(hi−ak)/σ||22/2)

. Note that pi = [p1
i , · · · , p

Nk
i ] ∈∆Nk

and
∑Nk

k=1 p
k
i = 1 always

holds. The cluster-specific representation hi=
∑Nk

k=1 p
k
i tanh (Wkgi + bk), therefore, modulates

the global initialization θ to be the cluster-specific one, i.e., θi = θ ◦ FCσWg
(hi). FCσWg

denotes a
fully-connected layer parameterized by Wg and activated by σ. Here we illustrate a single level of
clustering, though HSML allows multiple levels by recursively using hi as the input for the next level
of clustering. HSML trains the clustering network, the image-level embedding function F as well as
the initialization θ via the following objective,

Ltr = L(θi − α∇θiL(θi;Dsi );D
q
i ) + ξLr(Dsi ), (1)

where Lr is the reconstruction loss. For more details, please kindly refer to (Yao et al., 2019).

4 PROPOSED FRAMEWORK

The proposed framework as shown in Figure 3 sets out to push ahead with learning as disentangled
clusters as possible from meta-training tasks, so that the initialization modulated by the composition
of them well generalizes to OOD tasks. Grounded on HSML that empowers task clustering, the
proposed framework formulates meta-training as a multi-objective optimization problem which will
be introduced in Section 4.1. Such a formulation lays the foundation for our major proposal, i.e., the
conflict loss that regularizes the clusters to be as distinct as possible. Section 4.2 and Section 4.3 will
introduce the two components of pool construction and task sampling, which prepare for computing
the conflict loss. Section 4.4 concludes with the detailed derivation of the conflict loss as well as the
overall meta-training objective.

4.1 MULTI-OBJECTIVE FORMULATION OF META-LEARNING WITH HETEROGENEOUS TASKS

Multi-objective query losses. The vanilla MAML as stated above assumes N tr meta-training tasks
all sampled from a homogeneous task distribution p(T ), which justifies a naive average of all query
losses on the query sets of all tasks, i.e., L(θ) =

∑Ntr

i=1 L(φi;Dqi ). Provided with a heterogeneous
task distribution {pc(T )}Cc=1, however, the average query loss over all meta-training tasks raises a
major issue that all C domains are treated equally without discrimination; as long as the average
loss keeps decreasing, poor performance on some challenging domains is ignored. To this end, we
propose the multi-objective formulation L(mo)(θ) ∈ RNu which evaluates the losses of θ with respect
to different clusters of tasks, i.e.,

L(mo)(θ) = [L1(θ), . . . ,LNu(θ)]> = [
∑
Ti∈U1

L(φi;Dqi ), · · · ,
∑

Ti∈UNu

L(φi;Dqi )]
>. (2)
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Figure 3: Illustration of the proposed framework that consists of three major components. (a)
Pool construction: in the Nk-dimensional simplex by the clustering network, we perform k-means
clustering (with Nu clusters) on the probabilities of all images, and construct a pool of Nu (4 in the
figure) columns each of which stores images belonging to it. The color represents domains (e.g., blue
for aircraft) and the color degree denotes class labels (e.g., dark blue for Boeing 777-300er). (b) Task
sampling: we randomly sample two columns from the pool in each iteration, and from each column
sample a pure task with only 5-way 1-shot support examples (T 1,T 3 in the figure) and an objective
task with both support and query examples (T 1

o ,T 3
o in the figure). Besides, we generate mixed tasks

that mimic OOD tasks (e.g., the mixed example by CutMix is similar to one real example from the
domain of Infograph). (c) Conflict loss calculation: we obtain four initializations that are specific
to two pure ID columns and two OOD tasks, i.e., θ1, θ3, θ13

1 , θ13
2 , respectively. By evaluating their

losses on the two objective tasks T 1
o and T 3

o , we calculate the conflict loss (namely the hypervolume
loss LHV ) to regularize meta-training with more disentangled clusters.

The reasons why we evaluate on Nu clusters instead of C domains mentioned above are as follows.
First, C remains inaccessible in most of real-world cases, where tasks arrive in sequentially without a
domain label. Secondly, a subjectively defined domain does not necessarily represent a single cluster
of tasks; for example, the domain of Aircraft contains airbuses and helicopters. In Section 4.2, we
will detail how to obtain Nu clusters of tasks, i.e., U1, · · · ,UNu .

Note that this idea of multi-objective formulation is inspired from (Jin & Sendhoff, 2008) which
uses losses on subsets of data in conventional machine learning as multiple objectives. Despite the
difficulty in choosing subsets from a dataset in (Jin & Sendhoff, 2008), it is highly intuitive and
straightforward to approach task heterogeneity in meta-learning by formulating multiple losses on
tasks from different distributions as multiple objectives.

Multi-objective query loss matrix. In fact, our framework established on HSML allows cluster-
specific initializations {θu}Nu

u=1, by modulating the global initialization θ with the representation
of a task belonging to the u-th cluster, i.e., Tu. Assuming the availability of multiple tasks from
Nood OOD domains {Tu}Nu+Nood

u=Nu+1 during meta-training, we similarly obtain their cluster-specific
initialization {θu}Nu+Nood

u=Nu+1 . Consequently, we obtain a multi-objective query loss matrixL(mo)(Θ) =

[L(mo)(θ1), . . . ,L(mo)(θNu+Nood)]> ∈ R(Nu+Nood)×Nu , according to Eqn (2).

The multi-objective query loss matrix serves the cornerstone for calculating the conflict loss in
Section 4.4, where the key insight lies in that more diverse distribution of Nu +Nood losses in the
Nu-dimensional space promotes the separation of Nu clusters (a.k.a. disentangled clusters). In
practice, unfortunately, we do not have access to tasks from OOD domains during meta-training;
therefore, we will introduce how to construct mixed tasks to mimic the tasks from OOD domains in
Section 4.3. Another advantage of such a multi-objective formulation is to make visualization of the
model {θu}Nu

u=1 by the state-of-the-art manifold representing methods (e.g., t-SNE (Van der Maaten
& Hinton, 2008), UMAP (McInnes et al., 2018)) more robust. Rather than using the original θu in a
very high dimensional space, representing θu with Nu query losses greatly reduces the dimension.
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4.2 CLUSTERING POOL CONSTRUCTION

Our method resorts to the multi-objective loss matrix to assist meta-training, which requires some
tasks for generating and evaluating Θ. These tasks should be able to thoroughly represent learned
clusters under the current clustering strategy (i.e., θi achieves smallest/best query losses on tasks in
cluster U i, while having higher/worse query losses on tasks in U j , j 6= i, as illustrated in Figure 4a
and b). On the other hand, the soft-assignment of the task enables the model to cluster this task into
multiple clusters. As a result, it is sometimes difficult to encounter a meta-training task, one hundred
percent belonging to one specific cluster, since tasks usually consist of multiple images with different
labels.

In order to efficiently construct tasks that well-represent one cluster, we propose to store images in the
pool rather than tasks. To counter the effect of the label shift, for an image x, we construct an auxiliary
task Tx, with only the support set DsTx = {(x, ys)}NKs=1 . We obtain the embedded representation hx
and the probability score px for image x. K-means clustering is performed on pxs for historical
images and pool maintains Nu clusters {Uu}Nu

u=1 of historical images, according to the distances
between px to k-means clustering centers. Moreover, we re-obtain px for outdated images in the
pool every a period of epochs to ensure the pool is up-to-date, which is the guarantee of representing
the current clustering strategy.

4.3 TASK SAMPLING FROM POOL

Given the pool, which represents the currently learned clustering, we can sample tasks from the pool
for conflict loss calculation. In order to efficiently enhance pair-wise cluster difference and balance
computational resources, we randomly select m clusters in the pool for each meta-training iteration
(U1,U3 as in Figure 3).

Pure tasks Tus are used to generate θus that represent the corresponding clusters Uu. Specifically
from a selected cluster Uu, we randomly sample N ×K images with N different labels (K images
for each label) to construct task Tu with only the support set. The labels of all selected images are
changed to a relative manner {ys}NKs=1 . Examples of T 1, T 3 are shown in Figure 3.

Mixed tasks Tuvs are used to generate θuvs, that mimic the cluster-specific initializations for OOD
tasks. Firstly, we generate two new tasks T̃u, T̃ v with support sets {(x̃us , ys)}

NK
s=1 , {(x̃vs , ys)}

NK
s=1

sampled from two selected clusters Uu,Uv , respectively. Next, we perform CutMix (Yun et al., 2019)
augmentation on the corresponding images from both support sets, while remaining the labels to be
still relative. In details, T uv consists of {(x̃s, ys)}NKs=1 . The mixed image x̃s = Mx̃us + (1−M)x̃vs ,
where M is a binary mask with fixed bounding box width and height indicating foreground or
background rectangular regions and 1 is an ones matrix with the same shape as images. A random
variable λ ∼ Beta(a, b) determines whether M is the foreground (λ ≥ 0.5) or background (λ < 0.5)
for each image. Examples of T 13

1 , T 13
2 are shown in Figure 3.

Objective tasks Tuo s are used to evaluate pure and mixed tasks. For Tuo s, we use the same strategy
as generating pure tasks, but also sample images for query sets to obtain query losses. Examples of
T 1
o , T

3
o are shown in Figure 3.

4.4 CONFLICT LOSS CALCULATION

Given sampled {T p, Tuv} = {Ti}Ni

i=1 and {Tuo }
Nu
u=1s, we obtain empirical multi-objective query

loss matrix and further calculate hypervolume loss. Note that in Figure 3c, Ni = 4, Nu = 2. The
clustering network does clustering on Tis and modulates global initialization θ to cluster-specific
initialization Θ = {θi}Ni

i=1, respectively. During this process, we detach θ from the computational
graph for gradient, that the conflict loss is only used to update the clustering network but not θ. For
each θi, the empirical multi-objective query losses L(mo)

o (Ti) ∈ RNu evaluated on Tuo s by the base
learner are as follows:

L(mo)
o (Ti) = [L(φ1;DqT 1

o
), . . . ,L(φNu ;Dq

TNu
o

)]>, (3)

where φi is the corresponding adapted parameters forDsT u
o

after the inner loop. The corresponding em-

pirical multi-objective query loss matrix is L(mo)
o (Θ) = [L(mo)

o (T1), . . . ,L(mo)
o (TNi)]

> ∈ RNi×Nu .
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On the one hand, a good diversity of Θ in the multi-objective query loss space shows good clustering.
On the other hand, the losses are expected to be minimized, indicating the demand for convergence.
In order to measure the quality of the current clustering, we propose a conflict indicator, named
hypervolume loss.

Hypervolume loss LHV . Inspired by (Deist et al., 2021), LHV is the negative hypervolume (Zit-
zler & Thiele, 1999) value between L(mo)

o (Θ) and a reference point Z ∈ Rm . Specifically,
LHV (L(mo)

o (Θ),Z) = −Λ
(⋃

p∈L(mo)
o (Θ),p≤Z{q ∈ Rm|p ≤ q ≤ Z}

)
, where Λ(·) denotes the

Lebesgue measure. Minimizing LHV will encourage both convergence (i.e., smaller losses in all
axes) and diversity (i.e., a better distribution on pure and mixed tasks in the multi-objective query loss
space). We derive the total training loss for the whole framework as Ltotal = Ltr + αLHV , where
Ltr is the training loss, consisting of the query losses on batched training tasks and the reconstruction
loss of the task embedding, and α is the weight of LHV to balance the importance of two items.

5 EXPERIMENTS

In this section, we evaluate our proposed method by comprehensive computational experiments
on OOD datasets. we will answer the following questions: (1) Can our method outperform other
state-of-the-art approaches, especially on achieve consistently higher OOD meta-testing accuracy on
a wide range of OOD datasets? (2) Can our method learn more diverse clusters from meta-training
tasks? (3) To what extent does meta-training benefit from multi-objective query loss / conflict loss?

5.1 EXPERIMENT SETTINGS

Datasets. We follow the same few-shot classification datasets as in HSML (Yao et al., 2019) for
meta-training. They are Birds (Wah et al., 2011), Textures (Cimpoi et al., 2014), Aircraft (Maji et al.,
2013), Fungi (Kaggle, 2018), which are now parts of Meta-Dataset (Triantafillou et al., 2019). As for
meta-testing, we investigate a comprehensive range of OOD datasets including other datasets in Meta-
Dataset (except Quickdraw (Jongejan et al., 2016), the one also in DomainNet (Peng et al., 2019)):
Mini (Vinyals et al., 2016) (mini-ImageNet, as a substitution of ILSVRC (Russakovsky et al., 2015)),
Omniglot (Lake et al., 2015), VGG Flower (Nilsback & Zisserman, 2008), Traffic Signs (Houben et al.,
2013), MSCOCO (Lin et al., 2014); DomainNet (Peng et al., 2019): Clipart, Infograph, Painting,
Quickdraw, Real, Sketch; CIFAR-100 (Krizhevsky et al., 2009); Stanford Cars (Krause et al., 2013);
Oxford-IIIT Pets (Parkhi et al., 2012); Stanford Dogs (Khosla et al., 2011). See short descriptions of
all datasets in Appendix. For the sake of uniformity, all images are resized to the same shape (i.e.,
84× 84 resolution with RGB channels). All tasks are organized in the commonly used 5-way 1-shot
episodic fashion with relative labels (i.e., from “1” to “5”), unless stated otherwise.

Implementation Details. We follow the same network structure as described in (Yao et al., 2019)
but increase the number of nodes in hierarchical task clustering structure to 4, 4, 1, to accommodate
larger clustering capacity on OOD meta-testing tasks. The pool consists of 16 clusters, each with
a maximum of 20 classes. For each class, we store 16 images (1 support sample and 15 query
samples) with the closest distances to the corresponding k-means center. The numbers of pure, mixed,
and objective tasks are all set to 2. Random variables λs for generating two mixed tasks are from
Beta(5, 2) and Beta(2, 5), respectively. We normalize multi-objective query loss matrix Lo(Θ) to
[0, 1]4×2, then set the reference point Z to [1.5, 1.5]> The weight of hypervolume loss α is set to 0.1.
See detailed hyper-parameter settings in Appendix.

Compared Algorithms. We compare our method with some state-of-the-art algorithms which
do not utilize prior task clusters, specifically in the following three baselines: 1) Globally shared
models: MAML (Finn et al., 2017); 2) Task-specific conditioned models: Bayesian-TAML (Lee
et al., 2020); 3) clustering-based models: HSML (Yao et al., 2019), ARML (Yao et al., 2020), and
Simple-CNAPs (Bateni et al., 2020).

5.2 COMPARISON RESULTS AND ANALYSIS

The meta-training of a model consists of 20 epochs with 3000 iterations in each epoch. We evaluate
the performance of the model on meta-validation sets after the end of each epoch. Specifically, we
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Table 1: 5-way 1-shot meta-testing accuracy (%) comparison to SOTA algorithms meta-trained with
Aircraft, Birds, Textures, and Fungi. Ours-Aug is a variant ablating the hypervolume loss. Accuracy
(standard deviation) over 10 independent runs are reported.

Test Dataset MAML Bayesian-TAML ARML Simple-CNAPs HSML Ours-Aug Ours

Aircraft 52.40(0.32) 45.86(0.63) 56.77(0.71) 49.60(0.60) 58.26(0.24) 57.34(0.31) 57.12(0.20)
Birds 55.66(0.40) 55.80(0.69) 58.90(0.88) 54.80(0.70) 63.20(0.41) 63.30(0.36) 62.94(0.39)
Textures 31.40(0.27) 30.55(0.49) 33.14(0.52) 31.70(0.50) 35.29(0.13) 34.61(0.30) 34.20(0.26)
Fungi 41.27(0.30) 39.77(0.65) 43.70(0.89) 40.60(0.70) 46.01(0.29) 45.48(0.31) 44.50(0.33)
ID Average 45.18 43.00 48.13 43.98 50.69 50.18 49.69

Mini 34.59(0.39) 35.31(0.55) 34.49(0.42) 31.90(0.50) 36.62(0.27) 36.50(0.30) 38.92(0.32)
Omniglot 67.54(0.27) 74.10(0.68) 68.26(0.56) 58.70(0.70) 74.03(0.32) 71.48(0.38) 80.12(0.28)
VGG Flower 61.72(0.42) 66.12(0.67) 60.15(0.50) 58.70(0.70) 67.14(0.38) 67.53(0.48) 69.74(0.33)
Traffic Signs 47.09(0.35) 50.87(0.70) 45.04(0.71) 44.30(0.70) 47.53(0.26) 45.06(0.36) 48.52(0.33)
MSCOCO 32.16(0.35) 32.99(0.58) 31.23(0.97) 29.50(0.40) 33.37(0.30) 33.34(0.36) 34.72(0.40)
Clipart 34.62(0.25) 37.27(0.60) 33.98(0.85) 31.70(0.50) 36.38(0.27) 36.93(0.21) 39.18(0.34)
Infograph 24.64(0.17) 25.98(0.39) 24.56(0.43) 23.70(0.30) 25.39(0.18) 25.19(0.23) 26.85(0.25)
Painting 30.80(0.18) 32.69(0.55) 30.26(0.70) 28.60(0.40) 32.46(0.28) 32.36(0.24) 34.81(0.33)
Quickdraw 44.42(0.33) 47.08(0.66) 49.24(0.96) 42.70(0.60) 51.81(0.33) 51.57(0.32) 53.32(0.21)
Real 38.94(0.11) 41.37(0.64) 38.44(0.70) 34.70(0.50) 41.28(0.33) 41.50(0.30) 44.51(0.37)
Sketch 28.73(0.25) 29.34(0.45) 29.13(0.60) 27.50(0.40) 30.51(0.23) 29.91(0.27) 31.44(0.30)
CIFAR-100 38.04(0.30) 39.62(0.61) 36.70(0.63) 34.20(0.60) 39.18(0.30) 38.73(0.29) 41.10(0.31)
Cars 30.97(0.26) 31.56(0.52) 31.58(0.56) 30.30(0.50) 33.44(0.22) 33.22(0.19) 34.22(0.29)
Pets 42.47(0.32) 44.15(0.62) 43.52(0.55) 39.30(0.50) 46.70(0.43) 47.31(0.34) 48.07(0.37)
Dogs 34.94(0.28) 36.49(0.54) 35.84(0.46) 31.80(0.50) 39.68(0.35) 39.05(0.34) 40.83(0.27)
OOD Average 39.06 41.07 38.97 36.01 41.75 41.36 43.76

Table 2: 5-way 5-shot OOD meta-testing accuracy (%) comparison with HSML meta-trained with
Aircraft, Birds, Textures, and Fungi. Accuracy (standard deviation) are reported.

MAML Bayesian-TAML Simple-CNAPs HSML Ours

Mini 49.87(0.51) 51.60(0.55) 46.30(0.50) 52.50(0.55) 54.03(0.56)
Omniglot 91.87(0.31) 91.99(0.31) 88.50(0.40) 87.56(0.37) 91.70(0.30)
MSCOCO 44.96(0.60) 45.98(0.64) 40.60(0.50) 45.65(0.61) 46.58(0.61)
Infograph 32.04(0.42) 33.89(0.42) 31.10(0.40) 33.20(0.45) 35.00(0.47)
Quickdraw 66.37(0.57) 68.44(0.60) 69.80(0.60) 67.36(0.57) 67.91(0.60)
Real 58.55(0.58) 61.02(0.56) 55.80(0.60) 60.29(0.60) 61.98(0.60)
Sketch 40.56(0.48) 42.70(0.47) 39.50(0.50) 44.37(0.49) 45.43(0.51)
Cars 44.04(0.55) 46.82(0.59) 44.30(0.60) 46.93(0.58) 48.37(0.59)
Pets 64.28(0.52) 66.68(0.49) 62.50(0.50) 66.54(0.54) 68.48(0.53)
OOD Average 54.73 56.57 53.16 56.04 57.72

construct a pool with the similar strategy described in subsection 4.2, but with image samples in
meta-validation sets. Then, we calculate the hypervolume (with the reference point as [0, 0]>) of the
multi-objective validation accuracy as the evaluation metric. The top-3 models on meta-validation
sets are used to infer the meta-testing sets.

We report the average meta-testing accuracy over 1000 tasks for each dataset in Table 1. Ours
achieves consistently outperforming accuracy on a wide range of OOD datasets (except only on
Traffic Signs, the case Bayesian-TAML wins and Ours is the second best) compared with other
state-of-the-art algorithms, although suffering a small performance drop on ID meta-testing. In the
most successful case (i.e., Omniglot), Ours achieves 6.09% better accuracy than HSML. The above
observation clearly exhibits the superiority of meta-generalization.

Testing on 5-shot 5-way tasks. To study the case when the few-shot task has more supervision, we
increase the number of support samples in one task. The meta-testing accuracy on OOD datasets
are summarized on Table 2. Similarly as the case in Table 1, OOD meta-testing shows consistent
improvement (i.e., 57.72%), compared with the baselines, except for the cases on Omniglot (Bayesian-
TAML wins) and Quickdraw (Simple-CNAPs wins) datasets. Compared with HSML specifically,
Omniglot achieves the highest improvement (i.e., an average of 91.70% vs 87.56%). Unfortunately,
the improvement on OOD average over 5-shot 5-way experiments is less than that over 1-shot 5-way
experiments (i.e., 1.68% compared with 2.01% in Table 1). This is because the base learner can adapt
better to the specific task when more supervision is provided, thus, the gain from meta-knowledge is
less.
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Figure 4: Heatmaps and parallel coordinate plots visualization. a) and b) are multi-objective query
accuracy matrices over the averages of 1000 meta-testing tasks for each dataset by HSML and our
method, respectively. c) shows averaged empirical multi-objective query accuracy matrices over 50
samples on meta-validation pool for the top model of HSML and our method. Take-away: ours
indeed can recognize different patterns for OOD tasks, rather than simply regarding them as one of
the ID clusters as HSML does.

Ablation study: usefulness of hypervolume loss. In order to verify the effect of the proposed
multi-objective query loss matrix and hypervolume loss, we compare Ours with a variant donated
as Ours-Aug, that directly derives meta-training losses for the pure and mixed tasks rather than
evaluating them on the objective tasks as a substitution for hypervolume loss. To this end, we sample
not only support sets but also query sets for the pure tasks and mixed tasks. One can imagine
Ours-Aug as a task augmentation approach. We compare Ours-Aug with HSML and Ours in Table 1
and show that HSML defeats Ours-Aug (i.e., 41.36% accuracy on average compared with HSML’s
41.75% accuracy) on OOD meta-testing, which demonstrates that the improvement on OOD datasets
is an outcome of our proposed hypervolume loss, rather than task augmentation. We also compare
our method with another variant that uses SpectralNet (Yang et al., 2019) as a substitution for the
clustering network to promote disentangled clustering. The computational results are shown in
Appendix due to the page limit. Our method outperforms this variant on most of OOD datasets,
which hints the advanced clustering learned by our method.

Clustering analysis. We show the averaged multi-objective query accuracy matrix over 50 samples
on the meta-validation pool for the top model of HSML and Ours in Figure 4c. The pattern for HSML
(blue points) matches Figure 1d (i.e., points w.r.t. two mixed tasks are close to the corresponding
points w.r.t. two pure tasks on average), which hints the inferior clustering obtained by HSML.
For an OOD task, clustering networks might produce a similar cluster-specific initialization as for
one of the ID tasks. Bewildered by this, the base learner therefore can not achieve optimal OOD
meta-testing accuracy. By contrast, our method (red points) shows not only good convergence (i.e.,
better accuracy on both two axes), but most importantly, good diversity (i.e., uniform-distributed
points w.r.t. pure and mixed tasks) in the multi-objective query accuracy space. OOD tasks are
more likely to have different patterns from ID tasks in the probability score space, thus achieving
better meta-generalization for the corresponding θT . The comparison of HSML and our method on
the multi-objective query accuracy space (as shown in Figure 4a and b) further evidences that our
method indeed can recognize different patterns for OOD tasks, rather than simply regarding them as
one of the ID clusters (as HSML does in Figure 4a). Furthermore from a probability score point of
view, we also show the comparison of UMAP visualization for some tasks in Figure 1a. Our method
successfully recognizes different patterns for tasks in each OOD dataset.

6 CONCLUSION

In this paper, we propose to analyse clustering performance for HSML from a multi-objective point
of view. Based on our observation, we argue that the clustering learned by HSML is inferior. It is
sufficient enough for distinguishing ID tasks but not OOD tasks, which limits the meta-generalization
performance. Further, we propose to use an empirical multi-objective query loss matrix, which repre-
sents the current learned clustering strategy, and the hypervolume loss to regularize the distribution
of diverse tasks on multi-objective query loss space, therefore, achieving disentangled clustering.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 META-TRAINING HYPER-PARAMETERS

We summary the hyper-parameters for meta-training in our experiments in Table 3. In general, we
follow the basic settings in (Yao et al., 2019). The base learner is a standard four-block convolutional
neural network. The number of nodes for the hierarchical task clustering network is set to 4,4,1 to
accommodate larger clustering capacity on OOD meta-testing tasks. The constructed pool has 16
clusters, each of which has a capacity of 320 images (20 classes * 16 images per class). Every 2
epochs, we re-calculate the probability scores for all images in the pool to keep the pool up-to-date.
We adopt a warm-start strategy by sampling tasks from the pool after 3 epochs, since it makes no
sense to regularize with a hypervolume loss on the basis of a random pool. We structurize 4 tasks
(i.e., 2 Tms and 2 Tps) by designing the random variable λ from Beta(5, 2) and Beta(2, 5) for 2
Tms, respectively. In this way, we can ensure that the generated mixed tasks are not too close (or far
away) with each other, so as to better imitate OOD tasks. We meta-train our model on a single RTX
2080-Ti GPU. We summarize the whole framework of our proposed method in Algorithm 1.

A.1.2 DATASET DETAILS

In this section, we briefly introduce the datasets we use in our experiments. All images are converted
into (84× 84) pixels of widths and heights with RGB channels. We randomly sample 16 images for
each dataset as illustrated in Figure 5.

• Meta-Dataset (Triantafillou et al., 2019) is a cross-domain image datasets including 10 sub-datasets
from real to hand-drawn images.

– Fine-Grained Visual Classification of Aircraft (Aircraft) (Maji et al., 2013). We follow
the same setting as in (Yao et al., 2019), that meta-training/meta-validation/meta-testing sets
are split to contain 64/16/20 classes. Each aircraft variant contains 100 images.

– Caltech-UCSD Birds-200-2011 (Birds) (Wah et al., 2011). We follow the same setting as
in (Yao et al., 2019), that meta-training/meta-validation/meta-testing sets are split to contain
64/16/20 classes. Each bird species contains 60 images.

– Describable Textures (Textures) (Cimpoi et al., 2014). We follow the same setting as in (Yao
et al., 2019), that meta-training/meta-validation/meta-testing sets are split to contain 30/7/10
classes. Each texture class contains 120 images.

– FGVCx-Fungi (Fungi) (Kaggle, 2018). We follow the same setting as in (Yao et al., 2019),
that meta-training/meta-validation/meta-testing sets are split to contain 64/16/20 classes. Each
mushroom species contains 150 images.

– ILSVRC-2012 (ImageNet) (Russakovsky et al., 2015) is a well-established comprehensive
dataset for image classification. Here, we do not use the full dataset. In practice, we use the
commonly used subset Mini (Vinyals et al., 2016) as a substitution. We randomly select 20
classes for meta-testing, each containing 600 images.

– Omniglot (Lake et al., 2015) contains 1623 hand-written characters from different alphabets.
We randomly select 659 characters for meta-testing, each containing 20 images.

– VGG Flower (Nilsback & Zisserman, 2008) contains 102 flower categories. We randomly
select 16 classes for meta-testing, each containing around 100 images.
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Algorithm 1: Meta-training of the Proposed Framework
1: Require: termination condition T ; outer learning rate β; meta batch size B; shot K; way N
2: Require: cluster number C; pool update period Tu
3: Require: hypervolume loss weight α; reference point Z
4: Initialize pool C = {Cc}Cc=1 ← {∅}Cc=1
5: Randomly initialize the clustering network and base learner θall = {θcn, θbl}
6: for t = 1 to T do
7: Sample a batch of tasks {Ti}Bi=1
8: Compute Ltrain by HSML
9:

10: /* Clustering Pool Construction */
11: if mod (t, Tu) == 0 then
12: for c = 1 to C do
13: for x̂ in Cc do
14: Update px̂ in Equation (1)
15: end for
16: end for
17: end if
18: P ← C
19: for each Ti do
20: for x in Ti do
21: Construct auxiliary task Tx with D(s)

Tx ← {(x, yj)}
NK
j=1

22: Calculate px in Equation (1)
23: P ← P ∪ px

24: end for
25: end for
26: Apply k-means on P to have {Cc}Cc=1 ← P
27:
28: /* Task Sampling from Pool */
29: Sample Ci, Cj from C
30: Sample Tpi , Tpj , Tmi

, Tmj
, Toi , Toj from Ci, Cj in subsection 4.3

31:
32: /* Conflict Loss Computation */
33: Compute the multi-objective query loss matrix Lmo in Equation (3)
34: Compute LHV (Lmo,Z)
35:
36: /* Meta Training */
37: Compute∇Ltotal = ∇ΘLtrain + α∇θcnLHV
38: Update Θ← Θ− β∇Ltotal
39: end for

– Quickdraw (Jongejan et al., 2016) contains 345 online hand-drawn categories. We use
a subset of 500 images for each class described in DomainNet. We randomly select 100
categories for meta-testing.

– Traffic Signs (Houben et al., 2013) contains 43 classes of German road signs. Images are in
different illumination conditions and blurs. All classes are used for meta-testing.

– MSCOCO (Lin et al., 2014) contains 80 classes of objects localized in bounding boxes of
original images. All classes are used for meta-testing.

• DomainNet (Triantafillou et al., 2019) is a multi-source datasets including 6 distinct domains (i.e.,
Clipart, Infograph, Painting, Quickdraw, Real, Sketch) with similar class labels. We randomly
select 100 classes for each domain, each containing around 500 images.

• CIFAR-100 (Krizhevsky et al., 2009) is a low resolution image dataset containing 100 fine-grained
categories. All classes are used for meta-testing.

• Stanford Cars (Cars) (Krause et al., 2013) contains 196 car classes. Different from the given
default image-level splitting, we randomly select 49 classes for meta-testing, each containing
around 40 images.
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Table 3: Hyper-parameters summary.

Hyper-parameters Values

Meta batch size 4
Inner loop learning rate 0.01
Outer loop learning rate 0.0001

Base learner Inner step 3
Outer step 15
CNN block number 4
CNN filter number 48

Node number (4, 4, 1)
Clustering network Hidden dim 128

Reconstruction loss weight 0.01

Cluster capacity (image number) 320
Pool construction Cluster number C 16

Pool update period (epoch) 2

Start sampling epoch 3
Task sampling Tp, Tm, To numbers (2, 2, 2)

CutMix bounding box size (25, 25)
Beta parameter (a, b) (5, 2) and (2, 5)

Conflict loss calculation Hypervolume loss weight α 0.1
Reference point Z [1.5, 1.5]>

Class number N 5
Dataset Shot number K 1

Query sample number n(q) 75
Image shape (84, 84, 3)

• Oxford-IIIT Pets (Pets) (Parkhi et al., 2012) contains 37 dog and cat categories. Each image has
a ground truth bounding box around the head of the animal. We randomly select 20 classes for
meta-testing, each containing 100 images.

• Stanford Dogs (Dogs) (Khosla et al., 2011) contains 120 breeds of dogs. We randomly select 30
classes for meta-testing, each containing hundreds of images.

A.2 ADDITIONAL RESULTS

A.2.1 ADDITIONAL META-TRAINING SETTINGS

After testing the effectiveness of our proposed framework on the commonly used 1-shot 5-way
meta-training scenario, we further apply it to additional meta-training settings.

Testing on a base learner with less capacity. We report the average meta-testing accuracy in
Table 4, 5 when decreasing the number of filters to 32. Our method achieves similar performance
on ID datasets (i.e., 49.62% accuracy on average comparing with HSML 49.29% accuracy) but also
shows consistently outperforming accuracy (i.e., 42.85% on average comparing with HSML 41.77%
accuracy). Comparing with the results in Table 1, we can observe a smaller improvement on average
(i.e., 1.08% vs 2.01%) between Ours and HSML. We can conclude that a more disentangled clustering
is of benefit to generalize to OOD tasks for a base learner with higher capacity.

A.2.2 HYPER-PARAMETER STUDIES

Effect of different objective numbers. The number of objectives is the number of randomly sampled
columns from the pool in each iteration. A larger number indicates a larger scope considered to
encourage disentanglement simultaneously. We investigate this effect in Figure 6. We do not observe
better OOD performance in the 3-objective case, which supports our claim that it is computationally
efficient to enhance pair-wise cluster difference.
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a) Aircraft. b) Birds. c) Textures. d) Fungi. e) Mini.

f) Omniglot. g) VGG Flower. h) Quickdraw. i) Traffic Signs. j) MSCOCO.

k) Clipart. l) Infograph. m) Painting. n) Real. o) Sketch.

p) CIFAR-10. q) CIFAR-100. r) Cars. s) Pets. t) Dogs.

Figure 5: Image examples from all datasets used in the experiments.
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Figure 6: Meta-testing accuracy for varying number of objectives (blue: 2-objective, red: 3-objective)
on 1-shot 5-way experiments meta-trained with Aircraft, Birds, Textures, and Fungi datasets. The
number of mixed tasks generated in each iteration is set to 2 and 3 for 2-objective and 3-objective
cases, respectively.
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Table 4: ID meta-testing accuracy comparison of our method to HSML meta-trained with Aircraft,
Birds, Textures, and Fungi. Base learners have 32 filters in each layer. Accuracy (standard deviation)
are reported.

Test Dataset Aircraft Birds Textures Fungi ID Average

HSML 55.92%(0.30%) 62.45%(0.39%) 33.71%(0.30%) 45.10%(0.21%) 49.29%
Ours 56.48%(0.37%) 62.12%(0.35%) 34.83%(0.32%) 45.06%(0.18%) 49.62%

Table 5: OOD meta-testing accuracy comparison of our method to HSML meta-trained with Aircraft,
Birds, Textures, and Fungi. Base learners have 32 filters in each layer. Accuracy (standard deviation)
are reported.

Test Dataset Mini Traffic Signs Real CIFAR-100 Pets OOD Average

HSML 37.10%(0.28%) 44.48%(0.36%) 42.08%(0.23%) 39.49%(0.31%) 45.72%(0.31%) 41.77%
Ours 38.40%(0.29%) 45.37%(0.35%) 43.01%(0.31%) 40.93%(0.27%) 46.55%(0.28%) 42.85%

Effect of different mixed task numbers. We study the effectiveness of our framework when varying
the number of mixed tasks generated in each iteration. The meta-testing accuracy is reported in
Figure 7. We do not observe a clear tendency when increasing the number of mixed tasks. Regarding
the computational cost, we use 2 mixed tasks in our main experiments.

Effect of hypervolume loss weights. The weight of hypervolume loss α controls the importance
between the meta-training loss and the hypervolume loss. We investigate the effect of hypervolume
loss weights in Table 6. Note that, the zero weight equals to the standard HSML. For ID datasets,
increasing the weight does not produce a better meta-testing accuracy, which shows that the learned
clustering in HSML is enough for distinguishing ID datasets. However, this can be further promoted
for OOD datasets with our hypervolume loss, since the meta-testing accuracy for OOD datasets
shows a significant increasing trend when increasing the hypervolume loss weight.

Effect of different mixing methods. Mixed tasks are essential components in Task Sampling, which
are generated to mimic OOD tasks from meta-training ID tasks. To this end, our method performs
CutMix (Yun et al., 2019) task augmentation to generate mixed tasks. We investigate the effect of
MixUp (Zhang et al., 2017) task augmentation. For each image-pair (x̃1i, x̃2i), we calculate the
mixed image x̃i = λx̃1i + (1− λ)x̃2i. Note that we sample λ using the same strategy as described in
Task Sampling part. We further develop a variant of MixUp (named MixUp-R), which is to mix the
task representations of each image-pair rather than the images themselves.

Birds Textures FungiAircraft ID Average
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0.5

3 4

Omniglot Traffic Signs Mini Clipart Real CIFAR-100 Pets OOD Average

0.5

0.8
0.7
0.6

0.4

0.4

5 6 7

Figure 7: Meta-testing accuracy for varying number of mixed tasks on 1-shot 5-way experiments
meta-trained with Aircraft, Birds, Textures, and Fungi datasets. The number of objectives is set to 2.
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Table 6: Comparison of different settings of hypervolume loss weights on meta-testing accuracy
over 1000 tasks for each dataset. Models are all meta-trained with Aircraft, Birds, Textures, and
Fungi datasets.

α Aircraft Birds Textures Fungi Mini Traffic Signs VGG Flower Omniglot

0.00 59.54% 64.18% 34.84% 46.82% 36.40% 44.38% 68.06% 77.88%
0.01 57.17% 63.56% 35.32% 46.51% 36.83% 44.65% 67.12% 76.08%
0.05 60.41% 64.25% 35.73% 46.36% 37.71% 45.39% 68.64% 75.06%
0.10 57.75% 63.38% 34.96% 46.40% 38.12% 45.16% 67.15% 78.15%
0.50 46.90% 59.49% 33.63% 42.73% 37.79% 48.45% 68.92% 79.35%
1.00 42.55% 57.36% 31.75% 41.94% 36.81% 47.99% 69.54% 78.31%

Table 7: Comparison of different settings of mixing methods on meta-testing accuracy over 1000
tasks for each dataset. Models are all meta-trained with Aircraft, Birds, Textures, and Fungi datasets.

Method Aircraft Birds Textures Fungi Mini Traffic Signs VGG Flower Omniglot

CutMix 56.48% 62.12% 34.83% 45.06% 38.40% 45.37% 66.62% 76.08%
MixUp 54.94% 62.01% 34.28% 44.93% 37.62% 45.29% 58.14% 75.34%
MixUp-R 54.85% 62.05% 34.28% 44.41% 38.23% 44.19% 68.44% 75.74%

We compare CutMix, MixUp, MixUp-R on meta-testing accuracy over 1000 tasks for each dataset.
The 5-way 1-shot experiment results are shown in Table 7. We can not observe significant difference
among these methods, but CutMix works better in general.

A.2.3 ADDITIONAL EXPERIMENTS ON DIFFERENT CLUSTERING STRUCTURES

Different clustering network architectures. In order to show the benefit of a larger capacity of
the clustering network, we evaluate three different architectures (i.e., (4,2,1), (4,4,1), and (8,4,1)
structures with 8, 16, and 32 clusters in the pool, respectively). The meta-testing accuracy is reported
in Figure 8 with some representative OOD datasets (i.e., Traffic Signs, Mini, Clipart, Real, CIFAR-
100, and Dogs) and the average of all OOD datasets. It is clear that a larger capacity leverages
improvement on OOD meta-testing.

SpectralNet. Recent studies on SpectralNet (Shaham et al., 2018; Yang et al., 2019) show promising
results on promoting disentangled clustering. We compare our method with a HSML variant (named
HSML-SN) that use SpectralNet (Yang et al., 2019) as a substitution of the clustering network. We
use a meta batch size of 256, which is much larger than the meta batch size we use for HSML and
our method (i.e., 4), so as to well capture the structure of the data for each task batch. The dimension
of the network output (i.e., cluster number) is set to the same number w.r.t. hierarchical clustering
network in HSML (i.e., 16).

We compare HSML-SN with HSML as well as our method in terms of the meta-testing accuracy
over 1000 tasks for each OOD dataset. The 5-way 1-shot experiment results are shown in Table 8.

Mini Clipart RealTraffic Signs OOD Average
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CIFAR-100 Dogs

Figure 8: Meta-testing accuracy for different numbers of clusters on 1-shot 5-way experiments
meta-trained with Aircraft, Birds, Textures, and Fungi datasets. The clustering network architecture
for 8, 16, and 32 are (4, 2, 1), (4, 4, 1), and (8, 4, 1), respectively.
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Table 8: Comparison of our method with HSML-SN on meta-testing accuracy over 1000 tasks for
each OOD dataset. Models are all meta-trained with Aircraft, Birds, Textures, and Fungi datasets.

Model Mini Traffic Signs VGG Flower Omniglot

HSML 36.62% 47.53% 67.14% 74.03%
HSML-SN 30.95% 42.98% 64.03% 70.96%
Ours 38.92% 48.52% 69.19% 80.12%

b) Ours.

a) HSML.

Figure 9: Image examples from learned pool.

SpectralNet does not bring better OOD meta-testing performance than hierarchical clustering network
in HSML and our method within limited meta-training iterations. Our method outperforms HSML-SN
on most of OOD datasets, which hints the advanced clustering learned by our method.

A.3 ADDITIONAL DISCUSSION ON THE LEARNED CLUSTERING

We analyse the learned clustering of HSML and our method using the pool described in Clustering
Pool Construction. We visualize images whose probability scores are top-16 closest to 16 clustering
centers in Figure 9. It can be clearly observed that the learned features (clusters) are different for
HSML and our method. HSML has some duplicated clusters (i.e., 2 similar Birds and 2 similar
Texture clusters). Our method tends to learn more implicit features than HSML.
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