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ABSTRACT

The proteins that exist today have been optimized over billions of years of natural
evolution, during which nature creates random mutations and selects them. The
discovery of functionally promising mutations is challenged by the limited evo-
lutionary accessible regions, i.e., only a small region on the fitness landscape is
beneficial. There have been numerous priors used to constrain protein evolution to
regions of landscapes with high-fitness variants, among which the change in bind-
ing free energy (∆∆G) of protein complexes upon mutations is one of the most
commonly used priors. However, the huge mutation space poses two challenges:
(1) how to improve the efficiency of ∆∆G prediction for fast mutation screen-
ing; and (2) how to explain mutation preferences and efficiently explore accessi-
ble evolutionary regions. To address these challenges, we propose a lightweight
∆∆G predictor (Light-DDG), which adopts a structure-aware Transformer as the
backbone and enhances it by knowledge distilled from existing powerful but com-
putationally heavy ∆∆G predictors. Additionally, we augmented, annotated, and
released a large-scale dataset containing millions of mutation data for pre-training
Light-DDG. We find that such a simple yet effective Light-DDG can serve as a
good unsupervised antibody optimizer and explainer. For the target antibody, we
propose a novel Mutation Explainer to learn mutation preferences, which accounts
for the marginal benefit of each mutation per residue. To further explore acces-
sible evolutionary regions, we conduct preference-guided antibody optimization
and evaluate antibody candidates quickly using Light-DDG to identify desirable
mutations. Extensive experiments have demonstrated the effectiveness of Light-
DDG in terms of test generalizability, noise robustness, and inference practicality,
e.g., 89.7× inference acceleration and 15.45% performance gains over previous
state-of-the-art baselines. A case study of SARS-CoV-2 further demonstrates the
crucial role of Light-DDG for mutation explanation and antibody optimization.

1 INTRODUCRTION

Proteins usually interact with other proteins to form protein complexes that perform specific func-
tions in biological processes (Hu et al., 2021; Lu et al., 2020). A representative example is antibody,
a Y -shaped protein that protects the host by binding to a specific antigen, whose binding function
is mainly determined by Complementary Determining Regions (CDRs) in the antibody (Murphy &
Weaver, 2016). In practice, how to mutate the amino acids on the interaction surface and select fa-
vorable mutations are two fundamental aspects of antibody optimization. There have been many an-
tibody design methods proposed, such as MEAN (Kong et al., 2022), RefineGNN (Jin et al., 2021),
and dyMEAN (Kong et al., 2023), which train conditional antibody generators on large amounts of
antibody-antigen complexes and then optimize antibodies by applying Iterative Target Augmenta-
tion (ITA) algorithm (Yang et al., 2020b) to fine-tune the generators. Despite the great success in
conditional generation for mutations, how to build an efficient evolutionary selection sieve (Hayes
et al., 2024) for fast screening of mutations remains under-explored. In this paper, we shift the
research focus from generating to selecting mutations and indirectly explore the underlying fitness
landscape by focusing on regions where ∆∆Gs over mutations are minimized. We demonstrate that
even a simple but effective ∆∆G predictor can serve as a good unsupervised antibody optimizer and
explainer, which doesn’t require any additional functional annotations and deep generative models.

A huge challenge for protein optimization is the enormous combinatorial space of over 20N potential
mutations, where N is the number of mutable sites. Therefore, two aspects need to be considered in
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the design: (1) how to develop a simple but effective ∆∆G predictor for fast screening of candidate
mutations in a relatively short time; (2) how to explain mutation preferences and efficiently search
for accessible evolutionary paths, i.e., promising mutations, from the enormous combinatorial space.

Recently, unsupervised energy-based models (Jin et al., 2023; Luo et al., 2023) have revealed that the
log-likelihood of protein complexes is highly correlated with experimental binding energy, making
∆∆G one of the suitable priors for guiding protein evolution. Early computational approaches for
∆∆G prediction are mainly biophysics-based (Alford et al., 2017; Park et al., 2016; Delgado et al.,
2019) or statistics-based (Geng et al., 2019; Li et al., 2016), which are limited either in efficiency or
effectiveness. Recently, many deep learning-based techniques have been proposed, most of which
tackle the scarcity of annotated experimental data by pre-training on massive unlabeled data using a
variety of pretext tasks, including Masked Inverse Folding, Rotamer Density Estimation (RDE) (Luo
et al., 2023), Side-chain Diffusion (DiffAffinity) (Yang et al., 2022), Multi-level Interaction Mod-
eling (ProMIM) (Mo et al., 2024). Another state-of-the-art ∆∆G predictor is Prompt-DDG (Wu
et al., 2024), which flexibly provides wild-type and mutated complexes with their microenviron-
mental differences around each mutation. Despite the great advances, the architectural complexity
of these methods burdens inference, which is largely due to their reliance on the IPA-style backbone
as in AlphaFold2 (Jumper et al., 2021), which encodes local and global coordinates at each layer.
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Figure 1: Efficiency vs Effectiveness. There are
three variants of Light-DDG with differing num-
bers of attention heads (default to 4 in this paper).

To develop a simple yet effective ∆∆G predic-
tor (Light-DDG), it requires the fulfillment of
both efficiency and effectiveness. For the goal
of high inference efficiency, we simplify the
architecture to a lightweight Transformer and
achieve model compression by knowledge dis-
tillation. From the perspective of effectiveness,
we use data augmentation techniques to com-
pensate for the weakening of modeling capabil-
ity brought by architectural simplification. To
achieve this, we collected, annotated, and re-
leased a large-scale augmented dataset contain-
ing millions of mutation data for pre-training
Light-DDG. A comparison of various ∆∆G
prediction methods on the effectiveness and ef-
ficiency is presented in Fig. 1. It demonstrates
the great advantages of Light-DDG, e.g., 89.7×
inference acceleration and 15.45% performance gains over Prompt-DDG. Furthermore, we compre-
hensively evaluate the advantages of Light-DDG in terms of test generalizability, noise robustness,
architectural applicability, and inference practicality by extensive experiments in Sec. 5.1.

Furthermore, we show that even a simple yet effective Light-DDG has the potential to be a good
explainer and optimizer within a Unified framework for Antibody optimization (Uni-Anti). For the
target antibody, we propose a Mutation Explainer to identify key mutation sites and learn site-wise
mutation preferences. One of the design difficulties is the synergistic effect of mutations, e.g., the
negative effect of a single substitution can only be tolerated in the presence of another enabling
mutation (Ding et al., 2024). To tackle this problem, we develop an iterative Shapley value estima-
tion algorithm that can measure the marginal benefit of each mutation per residue by coarse-to-fine
iteration, while reducing the huge combinatorial space of vanilla Shapley value algorithm (Shapley
et al., 1953). Based on the learned mutation preferences, we explore accessible evolutionary regions
by mutation preference-guided antibody optimization and then evaluate antibody candidates quickly
using Ligh-DDG. Such antibody optimization enjoys the great benefits of diversity and flexibility,
capable of generating diverse antibodies with corresponding ∆∆G scores and rankings, and is well
suited for co-optimization of multiple CDRs. Finally, we demonstrate the advantages of Uni-Anti
for antibody optimization and preference explanation using a case study on SARS-CoV-2.

The contributions of this paper can be summarized in four aspects: (1) We propose a unified ∆∆G-
guided framework for unsupervised directed evolution of antibodies, covering three critical compo-
nents: ∆∆G prediction, mutation explanation, and antibody optimization; (2) We develop a simple
but effective ∆∆G predictor (Light-DDG) through knowledge distillation and data augmentation
from the perspective of efficiency and effectiveness; (3) We propose a Mutation Explainer based on
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iterative Shapley value estimation to learn mutation preferences; (4) A comprehensive evaluation on
∆∆G prediction and a case study on SARS-CoV-2 demonstrate the effectiveness of the design.

2 RELATED WORK

Mutational Effect Prediction. The prediction of mutation effects on single proteins has been well
studied, which mainly mines co-evolutionary information from protein sequences by Multiple Se-
quence Alignments (MSAs) (Frazer et al., 2021; Luo et al., 2021) or Protein Language Models
(PLMs) (Meier et al., 2021; Notin et al., 2022). However, predicting the change in binding free
energy (∆∆G) of protein complexes upon mutations is more challenging because it involves com-
plex interactions between proteins. Computational methods for ∆∆G prediction have undergone
a paradigm shift from biophysics-based and statistics-based techniques (Schymkowitz et al., 2005;
Park et al., 2016) to Deep Learning (DL) techniques, among which pre-training-based approaches
are the most popular solutions. RDE (Luo et al., 2023) pre-trains by using a normalizing flow
model to estimate the density of sidechain conformations (rotamers). Similarly, DiffAffinity (Liu
et al., 2023) also models the side-chain distribution, but with a conditional diffusion model. Be-
sides, Mo et al. (2024) proposes a multi-level pre-training framework, ProMIM, to fully capture all
three levels of protein-protein interactions. Recently, Prompt-DDG (Wu et al., 2024) proposes a
microenvironment-aware hierarchical codebook that generates prompts for better ∆∆G prediction.

Antibody Optimization. Early approaches for antibody design are mostly energy-based (Adolf-
Bryfogle et al., 2018; Lapidoth et al., 2015), and it has recently been extended to deep generative
models, including RefineGNN (Jin et al., 2021), MEAN (Kong et al., 2022), dyMEAN (Kong et al.,
2023), DiffAb (Luo et al., 2022), etc. These models train a conditional antibody generator and screen
out a number of high-quality antibodies using a ∆∆G predictor. These high-quality antibodies will
be used as training data to further fine-tune the antibody generator for directed antibody optimiza-
tion. In this paper, we rethink the role of ∆∆G prediction for antibody optimization, demonstrating
that a simple yet effective ∆∆G predictor can directly serve as a good unsupervised antibody opti-
mizer and explainer, without requiring additional functional annotations or deep generative models.

3 PRELIMINARY

Notations. A protein complex consists of N amino acid residues (v1, v2, · · · , vN ), where each
residue vi is one of the 20 amino acid types. We characterize each residue vi with an E(3)-
invariant node feature xi = {Etype(vi), Eang(vi), Emut(vi)}, where Etype(vi) denotes the embedding
of residue types, Eangle(vi) is the angle encoding of three dihedral angles and four torsion angles,
and Emut(vi) denotes the mutation embedding on whether residue vi is mutated or not. The pairwise
feature between residues vi and vj is ei,j = {Epos(i, j), Edis(Zi,Zj), Q

⊤
i

Zj,ζ−Zi,Cα

∥Zj,ζ−Zi,Cα∥
∣∣ ζ}, where

Zi is the 3D coordinate of residue vi, Epos(i, j) and Edis(Zi,Zj) encode the relative sequential and
spatial distances between residue vi and residue vj , respectively. Epos(i, j) is set as 0 for any two
residues that are not on the same chain. Besides, the last term is the direction encoding of four back-
bone atoms ζ ∈ {Cα, C,N,O} of residue vj in the local coordinate frame Qi of residue vi (Wu
et al., 2024). All these node and pairwise features will be pre-processed once before model training.

Transformer as the student backbone in Knowledge Distillation (KD). To improve the inference
efficiency of a ∆∆G predictor, a lightweight Transformer is used as the backbone to encode each
protein complex P = (X,E). The l-th (1 ≤ l ≤ L) layer of the Transformer is defined as follows

H(l) = LN
(
FFN

(
[head1, · · · ,headK ]W

(l)
O

)
+H(l−1)

)
,where

headk =softmax
( (H(l−1)W

(l,k)
Q )(H(l−1)W

(l,k)
K )⊤

√
dh

+EW
(l,k)
E

)
H(l−1)W

(l,k)
V

(1)

where H(0)=X denote the input node feature, W(l)
O ,W

(k,l)
Q ,W

(k,l)
K ,W

(k,l)
V ,W

(k,l)
E are parameter

matrices, K is the number of attention heads, LN(·) is the layer normalization, FFN(·) is a two-layer
feed-forward neural network with ReLu(·) as activation function, and dh is the hidden dimension.

Prompt-DDG as Teacher and Annotator. Prompt-DDG (Wu et al., 2024) is the state-of-the-art
∆∆G predictor to date. During training, it trains a hierarchical prompt codebook to capture mi-
croenvironmental information at different structural scales. With the learned prompt codebook, it
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encodes the microenvironment around each mutation into multiple hierarchical prompts and com-
bines them to flexibly provide information to wild-type and mutated protein complexes about their
microenvironmental differences. We use Prompt-DDG as a teacher and annotator for distillation and
data augmentation in default in this paper, but also evaluate other ∆∆G predictors as teachers.

Problem Statement. Given a wild-type protein complex PW and a set of mutations M, the task of
mutational effect prediction aims to learn a mapping f(·) : PW ,M → ∆∆G that encodes wild-type
complex PW and mutated complex PM = g(PW ,M) separately with a parameter-shared Trans-
former, and then feeds the difference of their pooled representations hW and hM into a three-layer
MLP to predict the ∆∆G score. The objective of protein (antibody) complex optimization aims to
find a mutation S from the mutation space S that minimizes ∆∆G, that is, argminS∈S f(PW ,S).

4 METHODOLOGY

In this section, we propose a unified framework for directed antibody optimization with a simple but
effective ∆∆G predictor as the core. A high-level overview of the proposed framework is shown
in Fig. 3(b). We first present how to construct a large-scale augmented mutation dataset SKEMPI-
Aug by cross-augmentation in Sec. 4.1. Next, we pre-train a simple but effective Light-DDG on
the large-scale augmented SKEMPI-Aug dataset and then fine-tune it by knowledge distillation on
the SKEMPI v2.0 dataset, as described in Sec. 4.2. Further, we propose a Mutation Explainer to
learn key mutation sites and mutation preferences in Sec. 4.3, and finally introduce how to perform
preference-guided mutation search in Sec. 4.4. From the perspective of the energy landscape in
Fig. 3(a), Light-DDG establishes a mapping from mutations to energy changes (∆∆G), while Mu-
tation Explainer iteratively explores evolutionary accessible regions based on mutation preferences.

4.1 A LARGE-SCALE AUGMENTED MUTATION DATASET FOR SUPERVISED PRE-TRAINING

Table 1: Characteristics of three datasets.

Dataset Size Mutation Pre-training

SKEMPI v2.0 7k ! %

PDB-REDO 143k % unsupervised
SKEMPI-Aug 640k ! supervised

Fold 1 Fold 2 Fold 3 ... Fold K

Fold 1 Fold 2 Fold 3 ... Fold K

Prompt-DDG
Mutation

Data

S1: TrainingS2: Augmentation

S3: Prediction

Figure 2: A schematic diagram of the K-
fold cross-augmentation, where blue and
red boxes indicate the separate folds used
for training and data augmentation.

Considering the scarcity of experimental data in the
SKEMPI v2.0 dataset, pre-training on large amounts
of mutations-irrelevant data has become a popular
practice for training ∆∆G predictors. One of the most
commonly used pre-training datasets is PDB-REDO
(Joosten et al., 2014), in which several unsupervised
pre-training tasks (Luo et al., 2023; Yang et al., 2022;
Mo et al., 2024), have been proposed to learn gener-
alized knowledge. However, in order to improve the
inference efficiency, we use a lightweight transformer
as the backbone in this paper, which has weaker mod-
eling capability than the IPA-style backbone, making
it hard to directly learn useful knowledge patterns for
∆∆G prediction from massive unlabeled data in an
unsupervised manner. Therefore, we here consider su-
pervised pre-training, but the upcoming challenge is
how to construct a large-scale dataset that covers a suf-
ficiently wide range of mutation possibilities and their
corresponding ∆∆G scores. In this subsection, we
take data augmentation as an effective means of com-
pensating for the simplification of the architecture. To
augment data, we use Prompt-DDG, the current state-of-the-art ∆∆G predictor, as an annotator.
Specifically, we perform arbitrary mutations on several randomly selected mutation sites of com-
plexes from the SKEMPI v2.0 dataset, feed the mutated complexes into Prompt-DDG to predict
∆∆G scores, and then package the mutations and predicted ∆∆Gs into one piece of augmentation
data. To prevent data leakage, we propose K-fold cross-augmentation as shown in Fig. 2, where the
SKEMPI v2.0 dataset is divided into K equal-sized folds according to the complex structure. For
each round of augmentation, we first train a new Prompt-DDG from scratch with K-1 folds, then
augment the remaining 1 fold by random sampling and random mutation, and finally annotate it by
Prompt-DDG. As a result, the data used to train Prompt-DDG is separate from the data annotated by
Prompt-DDG to avoid any possible data leakage. Moreover, we set a threshold during augmentation
to ensure that the augmented samples are sufficiently different from the original samples to further

4
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(b) A High-level Overview of Uni-Anti with Light-DDG as the core.

Figure 3: (a) A binding energy landscape reflecting the mapping from mutations to ∆∆G scores. (b)
Pre-training a Light-DDG with augmentation and distillation, and then using it as the core, together
with mutation explainer and search, to construct a unified framework for antibody optimization.

avoid data leakage. In such a way, we have augmented, annotated, and released a large-scale dataset
called SKEMPI-Aug, which contains millions of mutation data that can be used for supervised pre-
training of ∆∆G predictors. We compare in Table. 1 the data sizes of three datasets, whether they
include labeled mutation data, and whether/how they are used for pre-training.

4.2 A SIMPLE BUT EFFECTIVE ∆∆G PREDICTOR BY AUGMENTATION AND DISTILLATION

Knowledge Distillation (KD) is an effective means of achieving model compression (Hinton et al.,
2015), and the distilled student models can even exhibit better performance than the corresponding
teacher models. In this paper, we combine knowledge distillation techniques with supervised pre-
training to build a simple but effective ∆∆G predictor (Light-DDG). Specifically, we first perform
supervised pre-training on the large-scale SKEMPI-Aug dataset DAug, and then fine-tune the model
on the SKEMPI v2.0 dataset DSkem under the joint supervision of ground-truth labels and distillation
losses. Since cross-validation on SKEMPI v2.0 is performed in this paper to validate the method,
the distillation objective of Light-DDG on the training data Dtrain ⊆ DSkem can be defined as:

f∗
S = argmin

f ′
S

1

|Dtrain|
∑

(ai,yi)∈Dtrain

(∥∥f ′
S(ai)− yi

∥∥2︸ ︷︷ ︸
L∆∆G

+β
∥∥f ′

S(ai)− f∗
T (ai)

∥∥2︸ ︷︷ ︸
LKD

)
, (2)

where β is a trade-off hyperparameter, ai = (Pi,Mi) is the input to ∆∆G predictor f(·), yi is the
ground-truth ∆∆G. In this paper, we default to Prompt-DDG as the teacher f∗

T (·), but we also ob-
served significant improvements when using other ∆∆G predictors as teachers in the experiments.
The student model f ′

S(·) is initialized by pre-training on the SKEMPI-Aug dataset DAug, as follows

f ′
S = argmin

fS

1

|DAug|
∑

(ai,yi)∈DAug

∥∥fS(ai)− yi
∥∥2︸ ︷︷ ︸

L∆∆G

. (3)

4.3 MUTATION EXPLAINER: LEARNING MUTATION SITES AND MUTATION PREFERENCES

A key challenge in antibody optimization is how multiple mutations combine to influence function
and future mutation trajectories (Ding et al., 2024). With a simple but effective Light-DDG available,
we propose a novel Mutation Explainer that can identify key mutation sites and learn mutation
preferences for each residue site. This is achieved by calculating the Shapley value (Shapley et al.,
1953) for each mutation at each site as its marginal benefit, which explains very well the “average”
marginal contribution of each mutation across all mutation combinations. The exact Shapley value
φ(i, j) of the i-th (1 ≤ i ≤ N ) site mutated to j-th (1 ≤ j ≤ 20) amino acids is defined as follows

φ(i, j) =
∑

M⊆S\(i,j)

|S|!(|M| − |S| − 1)!

|M|!

(
f∗
S

(
P,M∪ {(i, j)}

)
− f∗

S

(
P,M

))
(4)

The exact Shapley value φ(i, j) is calculated by considering the effects on ∆∆G scores when each
mutation (i, j) is added or removed from the mutation set M. However, it is impractical to enumer-
ate all mutation possibilities in the huge mutation space S to calculate an exact Shapley value φ(i, j).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

For the task of antibody optimization, what we are really concerned about are those promising mu-
tations rather than those unimportant or even harmful ones. Therefore, we propose a more efficient
Iterative Shapley Value Estimation algorithm, which estimates the Shapley value of each mutation in
a coarse-to-fine iterative manner, and progressively pays more attention to those promising residue
sites and mutations. Specifically, the Shapley value φ̃(t)(i, j) at t-th iteration is estimated as follows

φ̃(t)(i, j) =

D
(t)
i∑

n=1

1

D
(t)
i

(
f∗
S

(
P,Mn ∪ {(i, j)}

)
− f∗

S

(
P,Mn

))
, 1 ≤ t ≤ T (5)

where {D(t)
i }Ni=1 are the numbers of sampling for each residue site, proportional to the site proba-

bility p
(t)
site ∈ RN . Mn is one mutation set that randomly selects multiple residue sites except for the

i-th residue and mutates them according to the mutation preference p
(t)
pre ∈ RN×20. Specifically, the

site probability p
(t+1)
site and mutation preference for the i-th site p

(t+1)
pre (i) is updated as follows

p
(t+1)
site = α · σ

(∑
j

φ̃(t)(i, j)
)
+ (1− α) · p(t)site , p(t+1)

pre (i) = α · σ
(
φ̃(t)(i, :)

)
+ (1− α) · p(t)pre (i) (6)

where p(1)site and {p(1)pre (i)}Ni=1 are initialized to be uniform distributions, α is the momentum updating
rate, and σ(·)=Softmax(·) is the activation function. Such an iterative approximation will treat ev-
ery site and mutation equally at first, but gradually focus on those more potential sites and mutations
to approximate the exact Shapley values as closely as possible in a limited number of samples.

4.4 PREFERENCE-GUIDED MUTATION SEARCH FOR ANTIBODY OPTIMIZATION

Mutation and selection are two fundamental aspects of antibody optimization. The previous popular
methods usually train a deep generative model on large amounts of data, and then apply Iterative
Target Augmentation (ITA) to guide directed optimization, i.e., generating favorable mutations. In
contrast, this paper focuses on selection rather than generation. Given a lightweight Light-DDG
and a Mutation Explainer, we can directly search for favorable mutations, requiring no additional
deep generative models. For the target antibody to be optimized, we randomized 10,000 mutated an-
tibodies by sampling mutation sites and determining mutation residues based on the site importance
p
(T )
site and site-wise preferences {p(T )

pre (i)}Ni=1. These mutation candidates are then quickly evaluated
using a lightweight Light-DDG to get the most desirable mutations based on the rankings of their
∆∆G scores. We have provided pseudo-code in Appendix A about how Light-DDG, Mutation
Explainer, and Mutation Search are constructed into a unified framework for antibody optimization.

5 EXPERIMENTS

Datasets. The effectiveness of Light-DDG for ∆∆G prediction is evaluated on the SKEMPI
v2.0 (Jankauskaitė et al., 2019) dataset, which contains 348 complexes, 7,085 mutation combina-
tions, and corresponding changes in binding free energy, but not any mutated complex structures.
We randomly split the SKEMPI v2.0 dataset into 3 folds by complexes and perform 3-fold cross-
validation for all methods. For pre-training, different pre-training-based methods use different pre-
text tasks and datasets. For example, the PDB-REDO (Joosten et al., 2014) dataset contains 143k
unannotated data and has been widely used for unsupervised pre-training by previous methods. In
contrast, Light-DDG is supervised pre-trained on the SKEMPI-Aug datasets that consist of 670k an-
notated mutation data. Moreover, the AFDB dataset (Varadi et al., 2022) that contains the sequences
and their corresponding structures predicted by AlphaFold2 can also be used as pre-training data.

Evaluation Metrics. There are seven metrics used to evaluate ∆∆G prediction, including five
overall metrics: (1) Pearson correlation coefficient; (2) Spearman correlation coefficient; (3) Root
Mean Squared Error (RMSE); (4) Mean Absolute Error (MAE); (5) AUROC. Additionally, (Luo
et al., 2023) groups the mutations by structure, calculating the Pearson and Spearman correlation
coefficients for each structure separately, and reporting the average as two per-structure metrics. For
antibody optimization, we take the minimal ∆∆G score of the optimized antibodies as the metric.

Baselines. We compare Light-DDG with several state-of-the-art ∆∆G prediction methods, includ-
ing ESM-1F (Hsu et al., 2022), two variants of MIF (MIF-∆logits and MIF-Network) (Yang et al.,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Mean results of 3-fold cross-validation for ∆∆G prediction on the SKEMPI v2.0 dataset.

Category Pre-training
Dataset (Szie) Method Per-Structure Overall

Pearson ↑ Spear. ↑ Pearson ↑ Spear. ↑ RMSE ↓ MAE ↓ AUROC ↑

Sequence-based

- ESM-1v 0.0073 -0.0118 0.1921 0.1572 1.9609 1.3683 0.5414
- PSSM 0.0826 0.0822 0.0159 0.0666 1.9978 1.3895 0.5260
- MSA Trans. 0.1031 0.0868 0.1173 0.1313 1.9835 1.3816 0.5768
- Tranception 0.1348 0.1236 0.1141 0.1402 2.0382 1.3883 0.5885

Energy Function % Rosetta 0.3284 0.2988 0.3113 0.3468 1.6173 1.1311 0.6562
% FoldX 0.3789 0.3693 0.3120 0.4071 1.9080 1.3089 0.6582

Supervised % DDGPred 0.3750 0.3407 0.6580 0.4687 1.4998 1.0821 0.6992
% End-to-End 0.3873 0.3587 0.6373 0.4882 1.6198 1.1761 0.7172

Pre-training

AFDB ESM-1F 0.2241 0.2019 0.3194 0.2806 1.8860 1.2857 0.5899

PDB-REDO

B-factor 0.2042 0.1686 0.2390 0.2625 2.0411 1.4402 0.6044
MIF-∆logit 0.1585 0.1166 0.2918 0.2192 1.9092 1.3301 0.5749
MIF-Network 0.3965 0.3509 0.6523 0.5134 1.5932 1.1469 0.7329
RDE-Linear 0.2903 0.2632 0.4185 0.3514 1.7832 1.2159 0.6059
RDE-Network 0.4448 0.4010 0.6447 0.5584 1.5799 1.1123 0.7454
DiffAffinity 0.4220 0.3970 0.6690 0.5560 1.5350 1.0930 0.7440
ProMIN 0.4640 0.4310 0.6720 0.5730 1.5160 1.0890 0.7600

SKEMPI v2.0 Prompt-DDG 0.4712 0.4257 0.6772 0.5910 1.5207 1.0770 0.7568

Ours SKEMPI Aug. Light-DDG 0.5440 0.5004 0.7429 0.6767 1.3837 0.9697 0.7935
∆Prompt-DDG +15.45% +17.55% +9.70% +14.50% +9.01% +9.96% +4.85%
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Figure 4: (a) Correlations between experimental and predicted ∆∆Gs. (b) Distributions of per-
structure Pearson scores. (c) Per-structure Pearson correlation scores for eight complex examples.

2020a), two variants of RDE (RDE-Linear and RDE-Network) (Luo et al., 2023), DiffAffinity (Liu
et al., 2023), ProMIM (Mo et al., 2024), Prompt-DDG (Wu et al., 2024), and a model that is pre-
trained to predict the B-factor of residues and use predicted B-factors to predict ∆∆G. Moreover,
we compare the performance of Uni-Anti for directed antibody optimization with RefineGNN (Jin
et al., 2021), MEAN (Kong et al., 2022), DiffAb (Luo et al., 2022), and dyMEAN (Kong et al.,
2023). The detailed hyperparameter and implementation details can be found in Appendix B.

5.1 EVALUATION ON ∆∆G PREDICTION

Performance Comparison. Table. 2 reports 7 evaluation metrics for 18 methods on the SKEMPI
v2.0 dataset, from which we observe that Light-DDG significantly outperforms all baselines on
all 7 metrics, especially on the two critical per-structure metrics. For example, Light-DDG improves
over Prompt-DDG on per-structure Pearson and Spearman by 15.45% and 17.55%, respectively.

Visualizations. The scatter plots of experimental ∆∆G and predicted ∆∆G for Light-DDG, pre-
sented in Fig. 4(a), demonstrate the strong correlation between experimental and predicted re-
sults. Besides, we provide the distribution of per-structure Pearson scores in Fig. 4(b), as well as
the average results across all structures. Not only does Light-DDG achieve the best average per-
formance, but its distribution is mostly centered on high correlation, with fewer low-correlation
structures. Further, we randomly select 8 complexes and present their per-structure Pearson scores
in Fig. 4(c), where Light-DDG achieves the best performance on 6 of 8 complexes.

Single and Multiple Mutations. We further compare Light-DDG with 7 superior methods from
Table. 2 under single- and multi-point mutations, respectively. The results in Table. 3 show that two
state-of-the-art methods, Prompt-DDG and ProMIM, each have strengths in different metrics and
mutation settings. However, Light-DDG significantly outperforms all baselines by a large margin
on 14 metrics in both mutation settings, especially more challenging multi-point mutations.
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Table 3: Performance comparison of ∆∆G prediction under single-point and multi-point mutation.

Method Pre-training
Dataset (Szie) Mutations Per-Structure Overall

Pearson ↑ Spear. ↑ Pearson ↑ Spear. ↑ RMSE ↓ MAE ↓ AUROC ↑

DDGPred %
single 0.3711 0.3427 0.6515 0.4390 1.3285 0.9618 0.6858
multiple 0.3912 0.3896 0.5938 0.5150 2.1813 1.6699 0.7590

End-to-End %
single 0.3818 0.3426 0.6605 0.4594 1.3148 0.9569 0.7019
multiple 0.4178 0.4034 0.5858 0.4942 2.1971 1.7087 0.7532

MIF-Network PDB-REDO
(143k)

single 0.3952 0.3479 0.6667 0.4802 1.3052 0.9411 0.7175
multiple 0.3968 0.3789 0.6139 0.5370 2.1399 1.6422 0.7735

RDE-Network PDB-REDO
(143k)

single 0.4687 0.4333 0.6421 0.5271 1.3333 0.9392 0.7367
multiple 0.4233 0.3926 0.6288 0.5900 2.0980 1.5747 0.7749

DiffAffinity PDB-REDO
(143k)

single 0.4290 0.4090 0.6720 0.5230 1.2880 0.9230 0.7330
multiple 0.4140 0.3870 0.6500 0.6020 2.0510 1.5400 0.7840

ProMIM PDB-REDO
(143k)

single 0.4660 0.4390 0.6680 0.5340 1.2790 0.9240 0.7380
multiple 0.4580 0.4250 0.6660 0.6140 1.9630 1.4910 0.8250

Prompt-DDG SKEMPI v2.0
(7k)

single 0.4736 0.4392 0.6596 0.5450 1.3072 0.9191 0.7355
multiple 0.4448 0.3961 0.6780 0.6433 1.9831 1.4837 0.8187

Light-DDG SKEMPI Aug.
(670k)

single 0.5505 0.5114 0.7328 0.6384 1.1835 0.8245 0.7777
multiple 0.5146 0.4764 0.7467 0.7343 1.7948 1.3431 0.8504

Table 4: Ablation study on knowledge distillation, data augmentation, and different input contexts.

Method Component Per-Structure Overall
KD Augment. Wild Str. Mutant Str. Pearson ↑ Spear. ↑ Pearson ↑ Spear. ↑ RMSE ↓ MAE ↓ AUROC ↑

Prompt-DDG % % ! % 0.4712 0.4257 0.6772 0.5910 1.5207 1.0770 0.7568

Light-DDG

% % ! % 0.3888 0.3576 0.6142 0.5244 1.6310 1.1622 0.7209
! % ! % 0.4809 0.4315 0.7071 0.6297 1.4614 1.0177 0.7701
% ! ! % 0.4516 0.4087 0.6754 0.5796 1.5242 1.0894 0.7531
! ! ! % 0.5440 0.5004 0.7429 0.6767 1.3837 0.9697 0.7935

! ! % % 0.4154 0.3749 0.6542 0.5590 1.5631 1.1166 0.7345
! ! ! ! 0.5496 0.5052 0.7482 0.6824 1.3807 0.9621 0.7968
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Figure 5: (a) Applicability of using different ∆∆G predictors as teachers. (b) Sensitivity to the sizes
of augmentation data. (c) Robustness of different ∆∆G predictors to 3D structure Gaussian noise.

Ablation Study. We conduct an ablation study to evaluate the roles played by KD and augmen-
tation. It can be observed from Table. 4 that (1) both KD and augmentation help to improve
performance alone, even over Prompt-DDG (as teacher for KD and annotator for augmentation);
and (2) combining the two further brings performance gains on top of each other. Furthermore,
we consider two alternative input contexts, including (i) only wild-type and mutated sequences are
available, and (ii) both wild-type and mutated structures are provided, where we predict mutated
structures from mutated sequences by ESMFold (Lin et al., 2022). It can be found that (1) even
sequence-only design performs better than energy-based and supervised baselines in Table. 2, but
poorer than structure-based design, which demonstrates the importance of structural informa-
tion for ∆∆G prediction. (2) Mutated structures only slightly improve the performance, as
Prompt-DDG (teacher model) has already been implicitly pre-trained to be mutated structure-aware.

Applicability, Sensitivity, and Robustness. We evaluate the applicability of Light-DDG to differ-
ent teachers in Fig. 5(a), where the distilled students perform better than corresponding teachers
across various architectures. More importantly, it significantly improves performance regardless
of whether teachers or students are pre-trained on the SKEMPI-Aug dataset. Moreover, we evaluate
how the sizes of augmentation data influence Light-DDG under w/ and w/o KD settings, respec-
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tively. The curves in Fig. 5(b) exhibit consistent improvements from more augmented data;
however, the performance gain becomes gradually limited as the data becomes more extensive. Fur-
thermore, we evaluate the robustness of Light-DDG to 3D structural noise by adding Gaussian noise
with different variances to the wild-type structures in the inference phase. It can be found from
Fig. 5(c) that the performance gets poorer with larger noise, even poorer than that of sequence-only
Light-DDG. Considering that the errors of existing structure prediction are mostly around 1Å, in this
case only structure-based Light-DDG achieves better performance than sequence-only Light-DDG.

Table 5: Rankings of the five favorable mutations on
the antibody screening against SARS-CoV-2.

Method TH31W AH53F NH57L RH103M LH104F Avg. Rank

Rosetta 10.73% 76.72% 93.93% 11.34% 27.94% 6.60
FoldX 13.56% 6.88% 5.67% 16.60% 66.19% 5.80
DDGPred 68.22% 2.63% 12.35% 8.30% 8.50% 4.60

MIF-Net. 24.49% 4.05% 6.48% 80.36% 36.23% 6.60
RDE-Net. 1.62% 2.02% 20.65% 61.54% 5.47% 3.40
DiffAffinity 7.28% 3.64% 18.82% 81.78% 10.93% 6.00
ProMIM 5.33% 4.79% 19.43% 75.78% 8.37% 5.60
Prompt-DDG 2.02% 6.88% 3.24% 34.81% 6.48% 4.00

Uni-Anti (ours) 1.21% 2.23% 2.63% 74.90% 6.28% 2.40

Table 6: Average ∆∆G (kcal/mol) after anti-
body optimization targeted at SARS-CoV-2.

Method CDR-H1 CDR-H2 CDR-H3 CDR-H1/2/3 Best
7 Sites 6 Sites 13 Sites 26 Sites

RefineGNN -0.473 -1.310 -0.086 - -1.310
MEAN -0.644 -1.653 -0.642 - -1.653
DiffAb -0.925 -1.826 -0.826 - -1.828
dyMEAN -0.869 -1.942 -0.735 - -1.942

Random -1.063 -1.865 -0.534 -1.325 -1.865
CMA-ES -0.972 -1.910 -0.683 -1.975 -1.975
gg-dWJS -1.124 -1.957 -0.770 -2.259 -2.259
Directed -1.241 -2.192 -0.946 -2.872 -2.872

5.2 ANTIBODY SCREENING AND OPTIMIZATION AGAINST SARS-COV-2

Candidate Antibody Screening. The inference-efficient property of Light-DDG makes it well-
suited for candidate antibody screening, i.e., identifying desirable mutations from a pool of potential
mutations. We take the computational screening of 494 candidate human antibodies against SARS-
CoV-2 as a case study, where all mutations are located at 26 sites within three CDRs of the heavy
chain. We predict ∆∆Gs for all candidate antibodies, rank them in ascending order (lowest ∆∆G
in the top), and report in Table. 5 the ranking of five favorable mutations that have been previously
proven effective (Shan et al., 2022; Wu et al., 2024). It can be seen that (1) Uni-Anti ranks first on
two antibodies and second on the other two; (2) only Uni-Anti successfully identifies three mutations
with rankings smaller than 5%; (3) Unit-Anti has the best average ranking of 2.4 among 9 methods.

Antibody Optimization against SARS-CoV-2. We show the effectiveness of Uni-Anti in opti-
mizing a human anti-SARS-CoV-2 antibody to produce variants with lower binding energy. We
first compare directed mutations (based on explainable mutation preferences) with random muta-
tions in Table. 6, where we evaluate the ∆∆Gs of 10,000 sampled candidate antibodies (done with
Light-DDG in less than 5 minutes) and filter out the best one. It is evident that directed muta-
tions perform better than random mutations, especially on multi-site mutations. For example, joint
random mutation of three CDRs is surprisingly inferior to mutating only CDR-H2, but directed
mutation benefits remarkably from a wider range of mutation sites. Further, we compare several
generative antibody optimization methods, including RefineGNN (Jin et al., 2021), MEAN (Kong
et al., 2022), DiffAb (Luo et al., 2022), and dyMean (Kong et al., 2023). We input their generated
antibodies together with wild-type complex structures into Light-DDG to predict ∆∆Gs. Note that
these methods are conditional generative models focusing on the generation of a single CDR region,
and cannot handle the joint optimization of multiple CDRs with official pre-trained models. It can
be seen that regardless of which CDR region is optimized, Uni-Anti has a significant advantage over
other baselines. Besides, joint optimization of three CDR regions leads to larger performance gains.

Furthe, we take Light-DDG as the fitness function and further consider two additional search strate-
gies, gradient-guided dWJS (gg-dWJS) (Ikram et al.) and CMA-ES-based (Claussen et al., 2022).
It can be observed that (1) CMA-ES-based approach has an advantage over random mutation only
when the mutation space is relatively large, probably because the multivariate normal distribution in
CMA-ES is not a reasonable prior for antibody mutations. (2) When optimizing a single CDR with a
small mutation space, gg-dWJS slightly outperforms the current SOTA generative model, dyMEAN.
However, gg-dWJS cannot benefit from such a large mutation space as Uni-Anti when jointly opti-
mizing multiple CDRs. Last but not least, the implementation of these two approaches relies on the
efficiency of Light-DDG. More results on antibody optimization can be found in Appendix C.

5.3 VISUALIZATIONS ON EXPLAINABLE MUTATION PREFERENCES

Single and Pairwise Mutations. We demonstrate how Mutation Explainer can explain and guide
antibody optimization, with the anti-SARS-CoV-2 antibody as an example. We present ∆∆Gs of
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Figure 6: Visualizations on the optimization of the three CDR regions in the heavy chain for an anti-
SARS-CoV-2 antibody. (a) ∆∆Gs for a single mutation. (b) Average ∆∆Gs for pairwise mutations.
(c) Explainable mutation preferences based on the estimated Shapley values. (d) An example of the
mutation evolutionary tree (only part of the mutations are presented for clear visualizations).

single mutation and average ∆∆Gs of paired mutations in the three CDRs of the heavy chain,
respectively. It can be seen that Mutation Explainer well identifies five valid mutations (marked in
black box) that have been proven effective by previous literature (Shan et al., 2022). Besides, it is
clear that mutating CDR-H2 can usually lead to smaller ∆∆Gs than mutating CDR-H3 in Fig. 6(a).
Moreover, pairwise mutations in Fig. 6(b) reveal important synergistic effects of mutations, i.e., a
single mutation that works well may fail when occurring with other mutations (Ding et al., 2024).

Mutation Preferences. Considering that multiple mutations are a common application scenario,
Shapley values of ∆∆G scores are used to estimate the marginal benefits of individual mutations,
as shown in Fig. 6(c). For example, the 55-th residue on the heavy chain usually results in a negative
gain when mutated alone in Fig. 6(a), but it has a small Shapley value in Fig. 6(c), suggesting its
important role for multiple mutations, i.e., that it may need to work together with other mutations.

Mutation Evolutionary Tree. Using a lightweight ∆∆G predictor, along with the learned mutation
preferences, we can draw a mutation evolutionary tree for the target antibody, as shown in Fig. 6(d),
which is expected to provide some insights, explanations, and guidance for antibody optimization.

6 CONCLUSION AND DISCUSSION

This paper shifts the research focus from generating mutations to evaluating mutational effects and
indirectly explores the underlying fitness landscape by focusing on regions where ∆∆Gs are min-
imized. To this end, we train a simple but effective ∆∆G predictor (Light-DDG) by data augmen-
tation and distillation. Furthermore, we show that Light-DDG can serve as a good optimizer and
explainer within a Unified framework for Antibody optimization (Uni-Anti). Extensive experiments
show the superiority of Uni-Anti in mutational effect prediction, optimization, and explanation.

Broader Impact. The huge combinatorial space of potential mutations and the scarcity of mutation
annotations have long been considered two obstacles straddling the path to unsupervised protein
evolution. On the data side, the released augmented mutation dataset expands the original data
by two orders of magnitude and is expected to be a solid data ground for follow-up works. On
the methodology side, a lightweight ∆∆G predictor is expected to facilitate high-throughput fast
mutation screening. In addition, the mutation preference explanations learned by Mutation Explainer
can reveal the potential evolutionary paths, providing a powerful guideline for the understanding of
protein functions and the discovery of high-fitness variants. Last but not least, mutation and selection
are the two pillars of natural evolution. This paper provides a new perspective to achieve a novel,
explainable, and unsupervised framework for directed optimization with selection at its core.

Limitations. Despite the great progress, several limitations still remain. Firstly, ∆∆G is only one
common prior that constrains the evolution of proteins; combining other priors can still be built on
top of our framework. Secondly, distillation is only one of the strategies to achieve lightweight in-
ference, and other architectural choices, quantization, sparsification, and parallelization are also op-
tional from an engineering perspective. Thirdly, the design of this paper is expected to be combined
with deep generative models. We believe that (1) constructing preference pairs using Light-DDG
for preference alignment and (2) taking Light-DDG as guidance in diffusion models for controllable
generation are two promising solutions. Finally, more case studies on other proteins (in addition to
antibodies) and wet experimental assays of the optimized antibodies will be left for future work.
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Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Xiangzhe Kong, Wenbing Huang, and Yang Liu. Conditional antibody design as 3d equivariant
graph translation. arXiv preprint arXiv:2208.06073, 2022.

Xiangzhe Kong, Wenbing Huang, and Yang Liu. End-to-end full-atom antibody design. arXiv
preprint arXiv:2302.00203, 2023.

Gideon D Lapidoth, Dror Baran, Gabriele M Pszolla, Christoffer Norn, Assaf Alon, Michael D
Tyka, and Sarel J Fleishman. Abdesign: A n algorithm for combinatorial backbone design guided
by natural conformations and sequences. Proteins: Structure, Function, and Bioinformatics, 83
(8):1385–1406, 2015.

Minghui Li, Franco L Simonetti, Alexander Goncearenco, and Anna R Panchenko. Mutabind es-
timates and interprets the effects of sequence variants on protein–protein interactions. Nucleic
acids research, 44(W1):W494–W501, 2016.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Allan
dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of
protein sequences at the scale of evolution enable accurate structure prediction. bioRxiv, 2022.

Shiwei Liu, Tian Zhu, Milong Ren, Chungong Yu, Dongbo Bu, and Haicang Zhang. Predicting
mutational effects on protein-protein binding via a side-chain diffusion probabilistic model. arXiv
preprint arXiv:2310.19849, 2023.

Haiying Lu, Qiaodan Zhou, Jun He, Zhongliang Jiang, Cheng Peng, Rongsheng Tong, and Jianyou
Shi. Recent advances in the development of protein–protein interactions modulators: mechanisms
and clinical trials. Signal transduction and targeted therapy, 5(1):213, 2020.

Shitong Luo, Yufeng Su, Xingang Peng, Sheng Wang, Jian Peng, and Jianzhu Ma. Antigen-specific
antibody design and optimization with diffusion-based generative models for protein structures.
Advances in Neural Information Processing Systems, 35:9754–9767, 2022.

Shitong Luo, Yufeng Su, Zuofan Wu, Chenpeng Su, Jian Peng, and Jianzhu Ma. Rotamer density
estimator is an unsupervised learner of the effect of mutations on protein-protein interaction.
bioRxiv, pp. 2023–02, 2023.

Yunan Luo, Guangde Jiang, Tianhao Yu, Yang Liu, Lam Vo, Hantian Ding, Yufeng Su, Wesley Wei
Qian, Huimin Zhao, and Jian Peng. Ecnet is an evolutionary context-integrated deep learning
framework for protein engineering. Nature communications, 12(1):5743, 2021.

Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and Alex Rives. Language
models enable zero-shot prediction of the effects of mutations on protein function. Advances in
Neural Information Processing Systems, 34:29287–29303, 2021.

Yuanle Mo, Xin Hong, Bowen Gao, Yinjun Jia, and Yanyan Lan. Multi-level interaction modeling
for protein mutational effect prediction. arXiv preprint arXiv:2405.17802, 2024.

Kenneth Murphy and Casey Weaver. Janeway’s immunobiology. Garland science, 2016.

Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena Hurtado, Aidan N Gomez, Debora
Marks, and Yarin Gal. Tranception: protein fitness prediction with autoregressive transform-
ers and inference-time retrieval. In International Conference on Machine Learning, pp. 16990–
17017. PMLR, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hahnbeom Park, Philip Bradley, Per Greisen Jr, Yuan Liu, Vikram Khipple Mulligan, David E Kim,
David Baker, and Frank DiMaio. Simultaneous optimization of biomolecular energy functions on
features from small molecules and macromolecules. Journal of chemical theory and computation,
12(12):6201–6212, 2016.

Joost Schymkowitz, Jesper Borg, Francois Stricher, Robby Nys, Frederic Rousseau, and Luis Ser-
rano. The foldx web server: an online force field. Nucleic acids research, 33(suppl 2):W382–
W388, 2005.

Sisi Shan, Shitong Luo, Ziqing Yang, Junxian Hong, Yufeng Su, Fan Ding, Lili Fu, Chenyu Li, Peng
Chen, Jianzhu Ma, et al. Deep learning guided optimization of human antibody against sars-cov-2
variants with broad neutralization. Proceedings of the National Academy of Sciences, 119(11):
e2122954119, 2022.

Lloyd S Shapley et al. A value for n-person games. 1953.

Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina
Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, et al. Alphafold protein
structure database: massively expanding the structural coverage of protein-sequence space with
high-accuracy models. Nucleic acids research, 50(D1):D439–D444, 2022.

Lirong Wu, Yijun Tian, Haitao Lin, Yufei Huang, Siyuan Li, Nitesh V Chawla, and Stan Z Li.
Learning to predict mutation effects of protein-protein interactions by microenvironment-aware
hierarchical prompt learning. arXiv preprint arXiv:2405.10348, 2024.

Fang Yang, Kunjie Fan, Dandan Song, and Huakang Lin. Graph-based prediction of protein-protein
interactions with attributed signed graph embedding. BMC bioinformatics, 21(1):1–16, 2020a.

Kevin Yang, Wengong Jin, Kyle Swanson, Regina Barzilay, and Tommi Jaakkola. Improving molec-
ular design by stochastic iterative target augmentation. In International Conference on Machine
Learning, pp. 10716–10726. PMLR, 2020b.
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A. PSEUDO CODE

The pseudo-code of the proposed Uni-Anti framework is summarized in Algorithm 1.

Algorithm 1 A Unified Framework for Antibody Optimization (Uni-Anti)
Input: M Wild-type Complexes and Mutations {(Pi,Mi)}Mi=1.

1: Randomly initializing the parameters of the student model fS(·).
2: # Augmentation Pre-training
3: Pre-training the student model fS(·) on the augmented SKEMPT-Aug dataset by Eq. (3).

4: # Training ∆∆G Predictor (Light-DDG)
5: Encoding the input data with the teacher f∗

T (·) and the pre-trained student fS(·) separately;
6: Calculating the knowledge distillation (KD) loss;
7: Fine-tuning the student fS(·) by joint optimization of downstream and KD losses by Eq. (2).

8: # Mutation Explainer
9: Initializing p

(1)
site and {p(1)pre (i)}Ni=1 as uniform distributions.

10: for t ∈ {1, 2, · · · , T} do
11: Calculating the shape value of each mutation at each site by Eq. (5);
12: Updating the site importance p

(t+1)
site and mutation preferences {p(t+1)

pre (i)}Ni=1 by Eq. (6).
13: end for

14: # Directed Mutation Search
15: Randomly sampling 10,000 mutation candidates based on p

(T )
site and {p(T )

pre (i)}Ni=1;
16: Predicting and ranking ∆∆G scores of sampled mutations using the trained Light-DDG;
17: Screening out the most desirable mutations based on the rankings of their ∆∆G scores.

18: return Trained ∆∆G predictor (Light-DDG) and optimized antibodies.

B. HYPERPARAMETERS AND IMPLEMENTATION DETAILS

Experiments are conducted based on Pytorch 1.8.0 on a hardware platform with Intel(R) Xeon(R)
Gold 6240R @ 2.40GHz CPU and NVIDIA A100 GPU. The hyperparameters are as follows: learn-
ing rate lr = 0.0003, batch size B = 32, pre-training iterations EAug = 5, 000, ∆∆G iterations
E∆∆G = 15, 000, hidden dimension F = 128, number of Transformer layers L = 4, number of
attention heads K = 4 (by default), loss weight β = 0.1, and momentum rate α = 0.9. Besides,
we crop sequences or structures into patches containing 32 residues by first choosing a seed residue,
and then selecting its 31 nearest neighbors based on the sequential distances or the Cβ-Cβ distances.

C. ANTIBODY OPTIMIZATION ON SABDAB

To further demonstrate Uni-Anti’s effectiveness in antibody optimization in addition to anti-SARS-
CoV-2 antibody, we further optimize CDR-H3 of 500 antigen-antibody complexes from the SAbDab
dataset (Dunbar et al., 2014) and report the average (optimal) ∆∆G scores of various baselines
in Table. A1. For RefineGNN, MEAN, dyMEAN, we incorporate Iterative Target Augmentation
(ITA) (Yang et al., 2020b) into the optimization process to fine-tune the generators. For DiffAb, we
directly generated 10,000 candidate samples and then selected the best one. For all baselines, we
feed their optimized sequence together with wild-type complex structures into Light-DDG to predict
∆∆Gs. The results in Table. A1 show that Uni-Anti achieves superior results with a notably lower
average ∆∆G score, demonstrating its potential advantages in terms of antibody optimization.

Table A1: Average ∆∆Gs after optimizing CDR-H3 of 500 antibodies from the SAbDab dataset.

Method Refine-GNN MEAN DiffAb dyMEAN Uni-Anti (ours)

∆∆G ↓ -2.16 -2.73 -2.84 -3.05 -3.87
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