
ANYTOD: A Programmable Task-Oriented Dialog System

Anonymous ACL submission

Abstract

We propose ANYTOD, an end-to-end, zero-001
shot task-oriented dialog (TOD) system ca-002
pable of handling unseen tasks without task-003
specific training. We view TOD as a program004
executed by a language model (LM), where005
program logic and ontology is provided by a006
designer as a schema. To enable generalization007
to unseen schemas and programs without prior008
training, ANYTOD adopts a neuro-symbolic009
approach. A neural LM keeps track of events010
occurring during a conversation and a sym-011
bolic program implementing the dialog policy012
is executed to recommend next actions ANY-013
TOD should take. This approach drastically014
reduces data annotation and model training re-015
quirements, addressing the enduring challenge016
of rapidly adapting a TOD system to unseen017
tasks and domains. We demonstrate state-018
of-the-art results on STAR (Mehri and Eske-019
nazi, 2021), ABCD (Chen et al., 2021) and020
SGD (Rastogi et al., 2020) benchmarks. We021
also demonstrate strong zero-shot transfer abil-022
ity in low-resource settings, such as zero-shot023
on MultiWOZ (Budzianowski et al., 2018a).024
In addition, we release STARV2, an updated025
version of the STAR dataset with richer an-026
notations, for benchmarking zero-shot end-to-027
end TOD models.1028

1 Introduction029

An enduring challenge in building and maintaining030

task-oriented dialog (TOD) systems is efficiently031

adapting to a new task or domain. For instance,032

if we were to add the ability to book flight tickets033

to an existing system that can only handle book-034

ing train tickets, this requires new conversations035

about flight booking to be manually collected and036

labelled, as well as retraining of natural language037

understanding (NLU) and policy models. These038

data efficiency and scaling problems compound for039

multi-task TOD systems, as each task may have its040

1The STARV2 dataset will be released soon.

[params] p0=flight id p1=name of airline
p2=flight destination city p3=flight
departure city …
[useracts] u0=user would like to book a
flight u1=user is informing p1 u2=user is
informing p2 u3=user would like to search
for flights …
[sysacts] s0=request p3 from user s1=request
p2 from user s2=query flights api …

[convo] [user] hello, i’d like to book a
flight [system] where would you like to fly?
[user] could you find a flight to dubai on
emirates?

LM

Symbolic program action
recommendations:
 - Flight departure (p3) is
unknown, so we should
request this (s0)
 - User wants to search for
flights (u3), so we should
query flight API (s2)

Dialog
Policy

(Program)

…
[choose] s0
[response] where are you flying from?

… [suggest] s0 s2 …

[states] p1=emirates airlines p2=dubai
[history] u0; s1; u1 u2 u3 …

Figure 1: An overview of the ANYTOD system. A
LM conducts zero-shot state and action tracking with
respect to a provided schema, abstracting it into a se-
quence of symbols. A program that executes the dialog
policy then recommends which actions to take based on
the states sequence, the LM then chooses a single final
action and generating a response.

own bespoke ontology and policy. 041

To tackle this problem, we propose ANYTOD, an 042

end-to-end TOD system that can be programmed 043

to support unseen tasks or domains without prior 044

training, significantly speeding up the TOD design 045

process by easing data collection and training re- 046

quirements. To the best of our knowledge, ANY- 047

1

TOD is the first end-to-end TOD system capable048

of zero-shot transfer. To this end, we view TOD049

as a program that a language model (LM) must050

execute throughout a conversation, and can rely on051

to provide guidance. Any predefined task policy,052

implemented as a program, can be used to control053

ANYTOD, allowing arbitrary business logic to be054

executed for a specific task. To demonstrate the055

efficacy of this paradigm, we experiment with the056

STAR (Mehri and Eskenazi, 2021), ABCD (Chen057

et al., 2021), SGD (Rastogi et al., 2020) and Mul-058

tiWoZ (Eric et al., 2019) benchmarks. Not only059

does ANYTOD achieve state-of-the-art results in060

full-shot settings, it also achieves high accuracy in061

zero-shot setups.062

Overview of ANYTOD To adhere to a given063

program, ANYTOD adopts a neuro-symbolic ap-064

proach (Figure 1). A neural LM is trained for zero-065

shot dialog state tracking (DST) and action state066

tracking (AST), abstracting both states and actions067

into a sequence of symbols. To support zero-shot,068

we follow the schema-guided paradigm advocated069

by Rastogi et al. (2020), and provide a schema to070

the LM as contextual information, describing all071

parameters and actions that should be tracked in072

natural language. By training on a large corpus of073

diverse schemas, the LM generalizes to arbitrary074

and unseen schemas (Lee et al., 2021; Zhao et al.,075

2022). A schema should also provide a symbolic076

program that declares the task logic, which is exe-077

cuted to recommend possible next actions the agent078

can take, conditioned on the current dialog states.079

These recommendations are then reincorporated080

into the LM, which selects a single next action pre-081

diction (NAP), and generates a response. Note that082

the symbolic program forces ANYTOD to consider083

a dialog policy explicitly, driving zero-shot transfer084

onto unseen policies and allowing arbitrarily com-085

plex business logic to be employed. However, the086

program’s recommendations are only considered087

as guidelines, and it is up to the LM to make a final088

decision on the NAP.089

STARV2 We also introduce STARV2, an im-090

proved version of the STAR dataset (Mosig et al.,091

2020). The original STAR dataset is very valuable092

for benchmarking zero-shot dialog policy and NAP093

across a diverse set of tasks or domains, through094

following a provided policy graph that outlines the095

intended flow of a conversation. However, the orig-096

inal dataset made following these policy graphs097

difficult, due to its lack of training data for DST 098

and AST. Moreover, we found that the schema en- 099

tity descriptions provided by the original dataset 100

were not intuitive enough to truly support zero-shot 101

DST and AST. To resolve these limitations, the 102

STARV2 dataset provides new belief state and ac- 103

tion state annotations to the STAR dataset, as well 104

as more intuitive natural language descriptions for 105

many schema elements. In Section 4.2, we show 106

that these changes facilitate stronger zero-shot DST 107

and AST. However, the ground truth NAP on each 108

system turn is left untouched, allowing direct com- 109

parison to results trained on the original STAR 110

dataset. We hope that STARV2 can serve as a 111

new benchmark for TOD systems and drive further 112

research for zero-shot TOD. 113

2 Related Work 114

Zero-shot Task-oriented Dialog Fueled by the 115

difficulty of adapting existing TOD systems to new 116

tasks/domains, zero-shot TOD systems have re- 117

cently seen increasing interest. Much of this work 118

has been on zero-shot DST, with the primary ap- 119

proach being characterizing parameters through 120

names (Wu et al., 2019) or descriptions (Lin et al., 121

2021; Lee et al., 2021; Zhao et al., 2022). Another 122

approach has been through in-context finetuning 123

(Shah et al., 2019; Gupta et al., 2022), in which a 124

labeled exemplar conversation is given as a prompt 125

to a LM. Mi et al. (2021) demonstrated a more com- 126

prehensive approach, including task instructions, 127

constraints, and prompts. In general, these results 128

follow the schema-guided paradigm advocated by 129

Rastogi et al. (2020); Mosig et al. (2020). 130

By contrast, there are fewer results on zero-shot 131

dialog policy (AST and NAP). To the best of our 132

knowledge, the only result is SAM (Mehri and 133

Eskenazi, 2021), which aligns an LM for an un- 134

seen dialog policy by following an explicit policy 135

graph. While similar to the policy graph execution 136

we demonstrate in ANYTOD, there are two dif- 137

ferences. First, SAM lacks supervised training on 138

DST and AST, and relies on ground truth NAP only, 139

forcing user state and action tracking to be inextri- 140

cably linked with the final system action prediction, 141

hurting its ability to generalize to arbitrary policy 142

graphs. Second, SAM is a classification model lim- 143

ited to NAP, and unlike ANYTOD, cannot support 144

DST or natural language generation (NLG). Indeed, 145

we show that ANYTOD is empirically more pow- 146

erful than SAM in Section 4.2. 147

2

To the best of our knowledge, no method has yet to148

combine zero-shot DST, AST, and NAP into an end-149

to-end TOD system. All existing end-to-end TOD150

systems (Hosseini-Asl et al., 2020; He et al., 2021;151

Yang et al., 2020; Peng et al., 2020) are trained152

and evaluated on the popular MultiWOZ dataset153

(Eric et al., 2019). As a result, these systems are154

only aware of the policy for MultiWOZ, and are155

not robust to arbitrary/unseen policies. In contrast,156

AnyTOD can generalize to arbitrary policies, and157

we demonstrate strong performance on MultiWOZ158

without prior training (Section 4.4).159

TOD as Programming Historically, most TOD160

approaches use an explicit plan-based dialog pol-161

icy module (Rich and Sidner, 1998; Ferguson and162

Allen, 1998; Bohus and Rudnicky, 2009). However,163

the NLU models powering these TOD systems are164

tightly coupled to a specific plan, and must be re-165

trained for even slight changes to the plan. In con-166

trast, ANYTOD enables zero-shot dialog policy167

by training NLU models to be robust to arbitrary168

programs as policies. Further, ANYTOD uses the169

program as contextual information to NLU, and170

refines its NAP with respect to the conversation,171

belief state, and action history instead of simply172

accepting the plan’s dictated next action(s).173

Recent work has also focused on discovering struc-174

ture within conversations i.e. a latent schema, pol-175

icy graph, or program (Shi et al., 2019; Yu et al.,176

2022; Xu et al., 2020). Notably, SMCalFlow (Ma-177

chines et al., 2020) constructs “dataflow graphs”178

from a conversation, parsing semantic intents into179

executable programs. Cheng et al. (2020); Shin180

et al. (2021) further explore this setup. However,181

these aim to manipulate an external API/database182

instead of controlling the agent’s behavior.183

Beyond the scope of TOD, there has been some184

work in general neuro-symbolic programming with185

LMs, in which an LM is influenced by the results186

of a symbolic system. Nye et al. (2021) demon-187

strated a symbolic reasnoning module that accepts188

or rejects the logical consistency of generations189

from a neural LM. Lu et al. (2020) explored us-190

ing predicated logic constraints to control lexical191

aspects from the generation of an LM. However,192

ANYTOD is the first application of such an ap-193

proach to a practical TOD setting.194

3 Methodology 195

3.1 The ANYTOD System 196

An overview of the ANYTOD system is presented 197

in Fig. 1. We decompose ANYTOD into three 198

steps, and describe each step in detail below: 199

1. Schema and program construction: A designer 200

constructs a schema for ANYTOD to charac- 201

terize the ontology of a specific task, as well 202

as a policy graph that declares the task logic. 203

2. Zero-shot DST and AST: A LM performs 204

zero-shot DST and AST with reference to the 205

schema, without task-specific training. 206

3. Program execution and NAP: The predicted 207

states and action history are passed to the 208

schema program, which upon execution rec- 209

ommends preferred system actions to the 210

agent. These actions are resent to the LM, 211

which predicts the final system action(s) con- 212

ditioned on these recommendations, conversa- 213

tion history, and belief states. 214

Schema Construction The designer is required 215

to construct a schema defining a task’s ontology, 216

and provide a program describing business logic. 217

This is the only thing ANYTOD requires from 218

the designer. For example suppose the designer 219

is creating a flight booking chatbot, they must de- 220

fine the parameters to be tracked (e.g. “flight id”, 221

“name of the airline”), and enumerate possible ac- 222

tions the user and agent can take (“user saying they 223

would like to search for flights”, “agent should 224

query flight booking api”). Following the schema- 225

guided paradigm advocated in Rastogi et al. (2020), 226

each element in this schema is characterized by a 227

short natural language description, allowing the 228

LM to understand its meaning and facilitate zero- 229

shot transfer. The schema program can be con- 230

sidered as a function that takes in predicted be- 231

lief states and actions, and dictate possible NAPs 232

following explicit symbolic rules. Examples can 233

be seen in Section A.1. In general, this program 234

should infer agent actions in response to user be- 235

havior (e.g. “if user wants to search for flights, 236

query the flight search api”). 237

Zero-shot DST and AST Adaptation to novel 238

tasks without training data critically hinges on an 239

LM performing zero-shot DST and AST. For this 240

purpose, we adopt and extend the D3ST approach 241

(Zhao et al., 2022) due to its flexibility in zero- 242

3

shot state and action tracking. Specifically, D3ST243

conducts zero-shot DST in the following way. Let244

p0, ...pn be the parameters defined in the schema,245

and let desc(pi) denote a parameter’s natural lan-246

guage description. Then, construct a parameter247

context string248

[params] p0=desc(p0) ... pn=desc(pn)249

Note that the strings p0, ..., pn are used as250

indices. Similar context strings are generated for251

actions for AST. These context strings are concate-252

nated with the entire conversation history, forming253

the input to the LM. This input is contextualized by254

the schema information, allowing the LM to refer255

to the schema, and enabling zero-shot transfer. The256

target string contains the conversation belief state257

and history of actions at each turn of the conversa-258

tion, both in a parseable format. Let pi0 , . . . , pim259

be the active parameters in the conversation, with260

corresponding values vi0 , . . . , vim . The belief state261

is represented as262

[state] pi0=vi0;...; pim=vim263

Note that inactive slots do not appear in the belief264

state string. In ANYTOD D3ST is naturally ex-265

tended to perform zero-shot AST. Note that D3ST’s266

original formulation in Zhao et al. (2022) was lim-267

ited to DST, but, in principle, D3ST supports track-268

ing arbitrary events that occur during a conversa-269

tion, as long as their descriptions are provided. For270

AST, we build an target string consisting of a his-271

tory of actions that were active at each turn of the272

conversation. Let uj and sk be the format of D3ST273

indices for user and system actions. Then, an action274

history string may look like275

[history] u0 u9; s2; u1; s3; ...276

This denotes that, on the first turn, the user was277

performing user actions u0 and u9. On the second278

turn, the system was performing system action s2,279

and so on. Note that the active actions for each turn280

are separated by a ; character.281

Program Execution The LM’s predicted belief282

states and action history are then parsed and passed283

to the schema program. This program should ex-284

ecute the dialog policy and control ANYTOD, by285

recommending possible NAPs. Section A.1 show-286

cases some example programs for STARV2 tasks.287

In the example shown in Figure 1, the current288

conversation state (“user would like to search for289

flights to Dubai with Emirates”) satisfies multiple 290

dependency rules (“since the user would like to 291

search for flights, query the flight search api” and 292

“since the user has not provided their flight depar- 293

ture location, ask the user for it”). These system 294

actions are then passed back to the LM as a string 295

of system action indices. 296

[recommend] s0 s2 297

Finally, given the policy graph’s recommended 298

actions as extra conditional information, the LM 299

makes predictions about NAP with respect to the 300

conversation, previously predicted belief states and 301

action history. A response is also generated follow- 302

ing the action prediction. 303

[selected] s2 [response] hello! 304

Note that the selected action need not be one of 305

the actions recommended from the policy graph 306

output, because actual conversations may not rig- 307

orously follow the predefined business logic, and 308

violations are common. This step allows ANYTOD 309

to “softly” execute the policy graph, balancing be- 310

tween the model’s belief before and after receiving 311

recommendations. 312

Zero-shot transfer ANYTOD’s zero-shot transfer 313

ability is enabled by a combination of two design 314

considerations. The first is the LM’s description- 315

driven state and event tracking. Since this schema 316

information is provided as context, if this LM is 317

trained on a corpus of diverse schemas, it learns to 318

make predictions by “reading” and understanding 319

the schema descriptions. This leads to robustness 320

on ANYTOD’s state and event tracking for unseen 321

schemas, as shown in Zhao et al. (2022). Moreover, 322

ANYTOD facilitates zero-shot policy transfer by 323

executing the provided policy graphs as explicit 324

rules, and by similarly training the LM with a large 325

number of policy graphs when selecting a recom- 326

mended system action. 327

3.2 The STARV2 Dataset 328

To train ANYTOD, we construct STARV2, an up- 329

dated version of STAR with new ground truth belief 330

state and action annotations, supporting supervised 331

training on DST and AST. These annotations were 332

generated from few-shot training with D3ST (Zhao 333

et al., 2022). We first train D3ST on the SGD 334

dataset, then continue finetuning on a few hand- 335

labeled conversations from STAR.2 While not the 336
24 conversations were labeled from each task in STAR.

4

focus of this paper, the labeling of STARV2 demon-337

strates the use of few-shot D3ST in labeling unla-338

beled conversations on new tasks/domains.339

Further, STARV2 adds new natural language de-340

scriptions for actions in STAR schemas. Prior341

work on STAR (Mosig et al., 2020; Mehri and342

Eskenazi, 2021) leverages template utterances as343

schema descriptions, which we qualitatively found344

to not fully outline the complexity of actions e.g.,345

the action user_weather_inform_city has346

a template utterance of just [CITY]. STARV2 pro-347

vides user is informing city as a more348

natural action description. We show in Section 4.2349

that these actions improve zero-shot AST.350

4 Experiments351

4.1 Setup352

Datasets We demonstrate ANYTOD’s power in353

zero-shot settings on the following datasets:354

STAR and STARv2: As described in Section 3.2,355

we upgrade the original STAR (Mehri and Eske-356

nazi, 2021) dataset to STARv2. The dataset has 24357

tasks across 13 domains, many tasks requiring the358

model to adhere to a novel policy, providing an im-359

portant zero-shot AST and NAP benchmark.360

ABCD (Chen et al., 2021): The design of the361

ABCD dataset follows a realistic setup, in which an362

agent’s actions must be balanced between the cus-363

tomer’s expressed desires and the constraints set by364

task policies. It is thus a natural fit for the AnyTOD365

framework for both training and evaluation.366

SGD (Rastogi et al., 2020): SGD is another schema-367

guided dataset in which schema elements are pro-368

vided with natural language descriptions to facili-369

tate task transfer. It contains 45 domains and was370

generated via simulation. Thus, the agent actions371

and responses follow pre-defined task logic.372

MultiWOZ (Budzianowski et al., 2018b): Mul-373

tiWOZ is the standard dataset for benchmarking374

TOD models. It contains 7 domains and was gen-375

erated through Wizard-of-Oz (Kelley, 1984) data376

collection, leading to natural conversations.377

Training Our implementation is based upon the378

open-source T5X codebase (Roberts et al., 2022)379

initialized with the public T5 1.1 checkpoints3 as380

3https://github.com/google-research/
text-to-text-transfer-transformer

the LM backend. We update the LM code to ex- 381

ecute a schema program and reincorporate the re- 382

sults before making the final NAP, as described in 383

Section 3.1. We experimented on two T5 sizes: 384

base (250M parameters, trained on 16 TPUv3 385

chips (Jouppi et al., 2017)) and XXL (11B param- 386

eters, trained on 64 TPUv3 chips). We otherwise 387

adopt the default T5X finetuning hyper-parameter 388

settings throughout our experiments. 389

4.2 Results on STAR 390

Table 1 shows ANYTOD results on the STARV2 391

dataset on the full-shot and zero-shot domain trans- 392

fer settings, with both “happy” and “unhappy” con- 393

versations. In full-shot, models train on 80% of 394

conversations across all tasks, and evaluate on the 395

remaining 20%. The zero-shot domain setting is a 396

leave-one-out cross-validation across the STARV2 397

dataset’s 13 domains, evaluating quality on an un- 398

seen schema in a completely novel domain. The 399

following metrics are used in our report: joint goal 400

accuracy (JGA) to measure DST, user action F1 401

(UaF1) to measure AST, system action F1 (SaF1) 402

to measure NAP, and response BLEU.4 403

Each STAR task schema defines the intended di- 404

alog policy by providing a policy graph, where 405

nodes describe conversation actions, and edges con- 406

nect subsequent actions. An ANYTOD program 407

(Figure A.2) is implemented to recommend next 408

actions with respect to this policy graph. 409

Two baselines are used for comparison: BERT+S 410

(Mosig et al., 2020) and SAM (Mehri and Eskenazi, 411

2021), both of which add a policy graph following 412

module for zero-shot transfer to unseen schema. 413

Note that, though these models were trained on the 414

original STAR data, their SaF1 results are directly 415

comparable to ANYTOD trained on STARV2 on 416

NAP (SaF1), as these ground truth labels were 417

left untouched. However, ANYTOD has addi- 418

tional training supervision on AST and DST due to 419

STARV2’s new annotations. For a fair comparison 420

with SAM, we also report results on SAM-User, a 421

modified version of SAM trained on STARV2 that 422

also includes supervised training on user annota- 423

tions.5 Note that both BERT+S and SAM are based 424

on BERT-base (110M parameters), comparable to 425

T5 base (220M parameters). 426

Main Result The primary results for ANYTOD 427

4See Section A.4 for details on calculating these metrics.
5See Section A.5 for implementation details.

5

https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/google-research/text-to-text-transfer-transformer

BASE/XXL are given in Table 1. For conciseness,428

we shorten ANYTOD to AT. As an ablation, we429

also report results with AT-NOREC, which removes430

the policy graph guidance from the ANYTOD431

method by recommending no system actions. In432

the full-shot setting, both ANYTOD and -NOREC,433

along with reported baselines, achieve very high434

SaF1. This is due to direct supervised training435

on NAP removing the need for program guidance.436

However, we see a huge gap between ANYTOD437

and -NOREC in the zero-shot setting; the guidance438

from the program becomes necessary — we see439

60.6 vs. 55.8 SaF1 at BASE, and 68.0 vs. 62.3 SaF1440

at XXL. Moreover, ANYTOD XXL has zero-shot441

performance comparable to that of full-shot, with442

75.4 SaF1 at XXL.443

Effect of Natural Language Descriptions As444

mentioned in Section 3.2, STARV2 provides new445

natural language descriptions that better character-446

ize the actions within STAR. Our main result AT447

BASE/XXL takes advantage of these new descrip-448

tions, but to see the impact of these descriptions,449

we train AT-TMPL on the original template utter-450

ances. On BASE we see little difference between451

descriptions and templates, but a sizeable improve-452

ment in using descriptions appears on XXL, with453

a larger LM that is better at NLU. This evidences454

that more intuitive natural language descriptions455

help ANYTOD understand task semantics better456

and perform zero-shot transfer.457

ANYTOD vs. baselines To compare against avail-458

able results on STARV2, we compare AT-TMPL459

BASE against SAM-User. Both results use tem-460

plate responses provided by STAR, and addition-461

ally trained with the new DST and AST annota-462

tions in STARV2. However, we see far stronger463

performance with ANYTOD than with SAM or464

SAM-User, due to the flexibility provided by the465

program execution ability demonstrated by ANY-466

TOD, and enabled by supervised training on DST467

and AST. SAM is not suited to use these contextual468

signals, likely due to no attention between schema469

elements and conversation and a rigid classification470

architecture unsuitable for multiple losses.471

Multitask Training with SGD To demonstrate472

further robustness for ANYTOD, we also report473

ANYTOD-SGD, which jointly trains with SGD as474

a multitask training dataset. SGD includes a large475

number of tasks, each defined by a schema with476

highly diverse parameters and actions. The -SGD477

Model JGA UaF1 SaF1 BLEU
BERT+S - - 74.9 -
SAM - - 71.5 -
SAM-User - - 71.7 -
AT-NOREC BASE 81.5 83.8 73.3 72.8
AT-TMPL BASE 82.9 84.6 70.6 72.7
AT BASE 82.4 84.1 70.7 72
AT-NOREC XXL 85.6 86.4 75.4 76.4
AT-TMPL XXL 85.1 82.5 71.3 75.8
AT XXL 85.7 84.7 73.3 73.5

(a) Full-shot results on STARV2.

Model JGA UaF1 SaF1 BLEU
BERT+S - - 32.3 -
SAM6 - - 51.2 -
SAM-User - - 44.4 -
AT-NOREC BASE 57.8 71 55.8 32.4
AT-TMPL BASE 62.2 74 61.9 56
AT BASE 61.9 72.1 60.6 34.3
AT-SGD BASE 66.1 74.3 61.3 34.4
AT-PROG BASE 61.9 72.1 61.0 34.4
AT-PROG+SGD BASE 66.1 74.3 61.9 34.6
AT-NOREC XXL 72.7 80 62.3 41.8
AT-TMPL XXL 66.8 72.9 60.8 52.9
AT XXL 74.8 79.2 68.0 44.3
AT-SGD XXL 75.8 80.9 68.5 43.9
AT-PROG XXL 74.4 79.3 68.4 44.9
AT-PROG+SGD XXL 75.7 81.4 70.7 44.2

(b) Zero-shot domain results on STARV2.
Model Bank Trip Trivia
AT XXL 54.3 52.4 73.8
AT-SGD XXL 53.1 51.5 81.1
AT-PROG XXL 61 60.8 73.7
AT-PROG+SGD XXL 65 62.9 86.3

(c) SaF1 on STARV2 programming tasks..

Table 1: Results on STARV2. For compactness we
show just UaF1 and SaF1 here — see Section A.2 for
a complete table. For clarity, we bold SaF1 results for
ANYTOD BASE/XXL, our key result.

results in Table 1 show that at BASE, SGD mul- 478

titask training improves both DST (61.9 → 66.1 479

JGA), AST (72.1 → 74.3 UaF1), and by extension 480

NAP (60.6 → 61.3 SaF1). A similar but smaller 481

improvement is seen on XXL, suggesting that the 482

larger LM may not need more diverse training ow- 483

ing to its better language understanding. 484

Complex Program Logic STARV2 is also a good 485

testbed for complex zero-shot task adaptation, as 486

it includes some tasks which are more complex 487

than simple policy-graph following, specifically the 488

bank, trivia, and trip domains. For instance, 489

the trivia task requires the agent to ask the user 490

a trivia question and extract their answer. Different 491

6Note that this SAM zero-shot domain SaF1 differs from
the original 55.7 from Mehri and Eskenazi (2021). See Section
A.3 for more details.

6

Model JGA JGA SaF1 SaF1
seen unseen seen unseen

AT-NOREC BASE 89.0 58.5 89.8 83.4
AT BASE 89.9 62.4 89.8 86.1
AT-NOREC XXL 94.8 80.2 92.1 87.2
AT XXL 94.8 82.2 91.3 88.9

Table 2: ANYTOD JGA, SaF1 on SGD test set.

system actions must be taken by the agent depend-492

ing on whether or not the user’s answer is correct.493

This logic is not captured by the provided policy494

graph alone, requiring more complex logic. ANY-495

TOD is suitable for this problem, as we need only496

to construct a program implementing this logic.497

These programs are shown in Section A.1.498

We report results with these programs in Table 1499

under the -PROG name. There is a clear win on500

zero-shot domain SaF1 when averaged over all do-501

mains, with a very high 70.7 SaF1 on -PROG+SGD502

XXL, narrowing the gap with the full-shot 75.4503

SaF1. When examining the complex tasks tasks504

individually (Table 1c), the win on NAP is even505

more apparent. The only exception is AT XXL on506

trivia, which has little difference with or with-507

out the program. In general however, the guidance508

provided by this specialized program is necessary509

for higher-level logic in the dialog policy, since the510

policy graph does not specify enough information511

to approach the task in zero-shot.512

4.3 Results on ABCD and SGD513

We conduct similar experiments on Action State514

Tracking (AST) (metric: joint action accuracy or515

JAA) on ABCD (Chen et al., 2021) and DST and516

NAP (metrics: JGA and SaF1 respectively) on517

SGD (Rastogi et al., 2020) datasets.518

ABCD contains 10 flows, each describing the busi-519

ness logic for handling a customer request, which520

are relatively similar to each other. We report full-521

shot results by training and evaluating on all flows,522

and zero-shot results where the model is trained on523

one randomly sampled flow and evaluated on all524

other nine flows. The SGD test set consists of 21525

services, 15 of these not seen during training. The526

dataset is generated via simulation with a general-527

ized policy graph (shared across all services) encod-528

ing dialog act transitions. The per-service policy529

graphs are then constructed by inserting intents and530

slots and, as a result, end up similar.531

Tables 2 and 3 and show ANYTOD results on532

SGD and ABCD respectively. For both datasets533

on both full-shot and zero-shot setups we gener- 534

ally see an improvement on action prediction using 535

policy guidance, achieving state-of-the-art results 536

for ABCD. However, the gain is not as large as 537

STARV2, as the task policies are not as diverse. 538

Even without explicit policy guidance, features 539

from different tasks in ABCD/SGD can transfer to 540

each other. Notably, policy guidance helps more on 541

the one-flow setup for ABCD and unseen services 542

for SGD, further establishing the efficacy of policy 543

guidance on unseen setups, even if related. 544

4.4 Zero-shot Results on MultiWOZ 545

To demonstrate the generalizability of the ANY- 546

TOD system, we demonstrate zero-shot transfer 547

results on the end-to-end MultiWOZ 2.2 (Zang 548

et al., 2020) benchmark, a popular dataset for TOD 549

research. In this case, ANYTOD-XXL is trained 550

on the SGD dataset, and then evaluated on Mul- 551

tiWOZ in zero-shot with a small policy program 552

(Section A.6). Responses from ANYTOD were 553

constructed using the template utterance approach 554

from Kale and Rastogi (2020). We compare against 555

SOLOIST (Peng et al., 2020) and Mars (Sun et al., 556

2022), two end-to-end TOD models directly trained 557

on MultiWOZ with supervision. Results are shown 558

in Table 5, with metrics reported by the MultiWOZ 559

eval script (Nekvinda and Dusek, 2021). Although 560

no training examples from MultiWOZ was used at 561

all, ANYTOD demonstrates strong JGA, Inform, 562

and Success comparable to results that do train on 563

MultiWOZ. Note that since we applied templates 564

for response generation, we do not consider BLEU 565

to be important, as the responses are very different 566

from ground truth labels. 567

5 Analysis 568

5.1 Impact of Policy Guidance 569

To see how impactful the recommendations pro- 570

vided by the policy graph are, we reevaluate al- 571

ready finetuned ANYTOD models on the STARV2 572

zero-shot domain setting, but with changes to the 573

program recommendations during eval. First, to 574

see how dependent ANYTOD is on policy graph 575

guidance, we modify the graph to output no recom- 576

mendations (denoted as 0REC), forcing the model 577

to do NAP only using the conversation, belief state, 578

and action history. Secondly, we modify the graph 579

to output deliberately bad recommendations (de- 580

noted as BADREC), intended to trick the model 581

into choosing an incorrect system action. This was 582

7

Model All Flows One Flow
RoBERTa 65.8 -
AST-T5-Small 87.9 -
AT-NOREC BASE 90.5 47.4
AT BASE 90.5 48.9
AT-NOREC XXL 91.6 64.3
AT XXL 91.9 67

Table 3: JAA on ABCD Action State
Tracking (AST) for full-shot (All
Flows) and zero-shot transfer (One
Flow). The zero-shot JAA is the mean
JAA across three experiments.

Model SaF1
AT BASE 60.6
AT-0REC BASE 31.3
AT-BADREC BASE 25.8
AT XXL 68.0
AT-0REC XXL 39.3
AT-BADREC XXL 35.0

Table 4: STARV2 zero-
shot domain SaF1 with
BADREC and 0REC.

-re
ply

 ba
se

-re
ply

 xx
l
 ba

se xx
l

-SG
D ba

se

-SG
D xx

l

-0r
ec

ba
se

-0r
ec

xxl

-ba
dre

c b
ase

-ba
dre

c x
xl

0

10000

20000

30000

Nu
m

be
r o

f F
ai

le
d

Ex
am

pl
es State Tracking Error

Policy Graph Error
System Action Error

Figure 2: ANYTOD error analysis on
STARV2 zero-shot domain.

Model JGA Inform Success BLEU
SOLOIST 35.9 81.7 67.1 13.6
Mars 35.5 88.9 78.0 19.6
ANYTOD-XXL 30.8 73.9 24.4 3.4

Table 5: Results on MultiWOZ end-to-end benchmark.
ANYTOD-XXL is trained on SGD, and evaluated in
zero-shot over MultiWOZ. Note we applied templates
for response generation, yielding low BLEU in compar-
ison with other models.

Model and Corruption Prob. All Flows One Flow
AT BASE, 0 90.5 48.9
AT BASE, 0.4 90.1 48.4
AT BASE, 0.8 89.5 47.4
AT-NOREC BASE, 0 90.5 47.4
AT XXL, 0 91.9 67
AT XXL, 0.4 91.5 66.7
AT XXL, 0.8 91.5 65.9
AT-NOREC XXL, 0 91.6 64.3

Table 6: JAA on ABCD Action State Tracking (AST)
with policy corruption. For “one flow”, the JAA is av-
eraged across three runs with a randomly selected flow
for training.

done by randomly sampling 1-3 system actions583

other than the ground truth action.584

The major drops in SaF1 for both setups shown585

in Table 4 confirm that the model, while able to586

predict actions without it, does consider the policy587

guidance heavily. Notably, 75% and 83% of cor-588

rect predictions for 0REC and BADREC are actions589

common to all tasks e.g., hello or query.590

We conduct a similar “policy corruption” experi-591

ment on ABCD (Table 6), in which policy graphs592

for evaluation tasks have a 0%, 40%, and 80%593

chance of being replaced by graphs from incorrect594

flows during evaluation. We see a consistent qual-595

ity drop with increasing probability of corruption596

for both BASE and XXL.597

5.2 Error Analysis 598

We also analyze ANYTOD errors on STARV2. We 599

classify all incorrect NAPs into three possible error 600

categories: (1) System action error: the program 601

recommends the correct system action, but this 602

was not chosen by the LM, (2) Policy graph error: 603

the predicted belief state and action history are 604

correct, but the program’s execution of the policy 605

graph does not recommend the expected system 606

action, and (3) State tracking error: the predicted 607

belief states and action history are incorrect, which 608

leads to incorrect recommendations from the policy 609

graph. Results are shown in Figure 2. In general, 610

we see that the benefit to scaling the LM from 611

BASE to XXL comes from improvements to state 612

and action tracking, which aligns with better DST 613

and AST results on XXL as in Table 1. 614

6 Conclusion 615

We proposed ANYTOD, a zero-shot end-to-end 616

TOD system that can be programmed to handle un- 617

seen tasks without domain-specific training. ANY- 618

TOD adopts a neuro-symbolic approach, in which 619

a LM performs zero-shot DST and AST with re- 620

spect to a provided schema, and abstracts both into 621

a sequence of symbols. These symbol sequences 622

are then parsed and passed to a program expressing 623

the task policy, which gets executed to make rec- 624

ommendations for the next agent action(s). Agent 625

designers are free to implement arbitrarily complex 626

business logic within ANYTOD to determine its 627

policy on unseen tasks or domains. To demonstrate 628

the value of this approach, we show state-of-the- 629

art results on zero-shot TOD benchmarks, such as 630

STAR, ABCD, SGD and MultiWoZ. For further 631

training and benchmarking zero-shot end-to-end 632

TOD systems, we also release the STARV2 dataset, 633

an improved version of STAR. 634

8

Limitations635

ANYTOD is a task-oriented dialogue system de-636

signed for efficient building of conversational637

agents with little training data. A large 11B param-638

eter language model (T5) is trained to make gen-639

eralized structured predictions of dialogue states.640

A symbolic policy program takes these dialogue641

states as arguments, and then recommends possi-642

ble actions ANYTOD should take in response to643

user behavior. By training on the STARV2 dataset,644

ANYTOD robustly generalizes to arbitrary and un-645

seen domains for any chatbot policies.646

Conversational agents built with ANYTOD are ex-647

plicitly designed to follow policies predefined by648

the ANYTOD schema and policy program. As649

such, ANYTOD is guaranteed to follow predictable650

and safe behavior when interacting with human651

users, but is not capable of taking actions outside652

of the discrete set of actions defined by the schema.653

As such, we do not intend to use ANYTOD in654

open-domain, free-form conversation generation655

scenarios.656

While we note that generating free-form natural657

language responses is possible due to supervised658

training on ground truth system responses, there659

is no guarantee that these generated responses are660

robust on unseen schema. We instead advocate661

that responses should be built with deterministic662

templates predefined by agent designers.663

Ethics Statement664

Models, codebases, and datasets used in this pa-665

per follow their respective licenses and terms of666

use. Moreover, the task-oriented dialogue datasets667

used in this paper do not contain any personally-668

identifiable information or offensive content. The669

code for ANYTOD and the STARV2 dataset will670

be released upon this paper’s publication.671

One particular risk with language models is the672

possible generation of factually incorrect or biased673

content (Lin et al., 2022; Bender et al., 2021). How-674

ever, we note that this risk does not apply to ANY-675

TOD, as (1) the language model is trained to make676

structured predictions that must be parseable by the677

policy program, and (2) we rely on response tem-678

plates rather than using free form natural language679

generation.680

References 681

Emily M. Bender, Timnit Gebru, Angelina McMillan- 682
Major, and Shmargaret Shmitchell. 2021. On the dan- 683
gers of stochastic parrots: Can language models be too 684
big? . In Proceedings of the 2021 ACM Conference 685
on Fairness, Accountability, and Transparency, FAccT 686
’21, page 610–623, New York, NY, USA. Association 687
for Computing Machinery. 688

Dan Bohus and Alexander I Rudnicky. 2009. The 689
RavenClaw dialog management framework: Architec- 690
ture and systems. Comput. Speech Lang., 23(3):332– 691
361. 692

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang 693
Tseng, Iñigo Casanueva, Ultes Stefan, Ramadan Os- 694
man, and Milica Gašić. 2018a. Multiwoz - a 695
large-scale multi-domain wizard-of-oz dataset for task- 696
oriented dialogue modelling. In Proceedings of the 697
2018 Conference on Empirical Methods in Natural 698
Language Processing (EMNLP). 699

Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang 700
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra- 701
madan, and Milica Gasic. 2018b. Multiwoz - A 702
large-scale multi-domain wizard-of-oz dataset for task- 703
oriented dialogue modelling. CoRR, abs/1810.00278. 704

Derek Chen, Howard Chen, Yi Yang, Alexander Lin, 705
and Zhou Yu. 2021. Action-based conversations 706
dataset: A corpus for building more in-depth task- 707
oriented dialogue systems. In Proceedings of the 2021 708
Conference of the North American Chapter of the As- 709
sociation for Computational Linguistics: Human Lan- 710
guage Technologies, pages 3002–3017, Online. Associ- 711
ation for Computational Linguistics. 712

Jianpeng Cheng, Devang Agrawal, Hector Martinez 713
Alonso, Shruti Bhargava, Joris Driesen, Federico Flego, 714
Shaona Ghosh, Dain Kaplan, Dimitri Kartsaklis, Lin 715
Li, Dhivya Piraviperumal, Jason D Williams, Hong Yu, 716
Diarmuid O Seaghdha, and Anders Johannsen. 2020. 717
Conversational semantic parsing for dialog state track- 718
ing. 719

Mihail Eric, Rahul Goel, Shachi Paul, Adarsh Kumar, 720
Abhishek Sethi, Peter Ku, Anuj Kumar Goyal, San- 721
chit Agarwal, Shuyang Gao, and Dilek Hakkani-Tur. 722
2019. MultiWOZ 2.1: A consolidated Multi-Domain 723
dialogue dataset with state corrections and state track- 724
ing baselines. 725

George Ferguson and James F Allen. 1998. TRIPS: 726
An integrated intelligent problem-solving assistant. 727
https://www.aaai.org/Papers/AAAI/ 728
1998/AAAI98-080.pdf. Accessed: 2022-12-14. 729

Raghav Gupta, Harrison Lee, Jeffrey Zhao, Yuan Cao, 730
Abhinav Rastogi, and Yonghui Wu. 2022. Show, 731
don’t tell: Demonstrations outperform descriptions for 732
schema-guided task-oriented dialogue. In Proceedings 733
of the 2022 Conference of the North American Chapter 734
of the Association for Computational Linguistics: Hu- 735
man Language Technologies, pages 4541–4549, Seat- 736
tle, United States. Association for Computational Lin- 737
guistics. 738

9

https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
http://arxiv.org/abs/1810.00278
http://arxiv.org/abs/1810.00278
http://arxiv.org/abs/1810.00278
http://arxiv.org/abs/1810.00278
http://arxiv.org/abs/1810.00278
https://doi.org/10.18653/v1/2021.naacl-main.239
https://doi.org/10.18653/v1/2021.naacl-main.239
https://doi.org/10.18653/v1/2021.naacl-main.239
https://doi.org/10.18653/v1/2021.naacl-main.239
https://doi.org/10.18653/v1/2021.naacl-main.239
http://arxiv.org/abs/2010.12770
http://arxiv.org/abs/2010.12770
http://arxiv.org/abs/2010.12770
http://arxiv.org/abs/1907.01669
http://arxiv.org/abs/1907.01669
http://arxiv.org/abs/1907.01669
http://arxiv.org/abs/1907.01669
http://arxiv.org/abs/1907.01669
https://www.aaai.org/Papers/AAAI/1998/AAAI98-080.pdf
https://www.aaai.org/Papers/AAAI/1998/AAAI98-080.pdf
https://www.aaai.org/Papers/AAAI/1998/AAAI98-080.pdf
https://doi.org/10.18653/v1/2022.naacl-main.336
https://doi.org/10.18653/v1/2022.naacl-main.336
https://doi.org/10.18653/v1/2022.naacl-main.336
https://doi.org/10.18653/v1/2022.naacl-main.336
https://doi.org/10.18653/v1/2022.naacl-main.336

Wanwei He, Yinpei Dai, Yinhe Zheng, Yuchuan Wu,739
Zheng Cao, Dermot Liu, Peng Jiang, Min Yang, Fei740
Huang, Luo Si, Jian Sun, and Yongbin Li. 2021.741
GALAXY: A generative pre-trained model for Task-742
Oriented dialog with Semi-Supervised learning and ex-743
plicit policy injection.744

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,745
Semih Yavuz, and Richard Socher. 2020. A simple lan-746
guage model for task-oriented dialogue.747

Norman P. Jouppi, Cliff Young, Nishant Patil, David748
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah749
Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick750
Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,751
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,752
Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Got-753
tipati, William Gulland, Robert Hagmann, C. Richard754
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt,755
Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-756
der Kaplan, Harshit Khaitan, Daniel Killebrew, Andy757
Koch, Naveen Kumar, Steve Lacy, James Laudon,758
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu,759
Kyle Lucke, Alan Lundin, Gordon MacKean, Adri-760
ana Maggiore, Maire Mahony, Kieran Miller, Rahul761
Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,762
Thomas Norrie, Mark Omernick, Narayana Penukonda,763
Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek,764
Emad Samadiani, Chris Severn, Gregory Sizikov,765
Matthew Snelham, Jed Souter, Dan Steinberg, Andy766
Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Ho-767
ria Toma, Erick Tuttle, Vijay Vasudevan, Richard Wal-768
ter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon.769
2017. In-datacenter performance analysis of a ten-770
sor processing unit. SIGARCH Comput. Archit. News,771
45(2):1–12.772

Mihir Kale and Abhinav Rastogi. 2020. Few-shot natu-773
ral language generation by rewriting templates. CoRR,774
abs/2004.15006.775

J F Kelley. 1984. An iterative design methodology for776
user-friendly natural language office information appli-777
cations. ACM Trans. Inf. Syst. Secur., 2(1):26–41.778

Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf.779
2021. Dialogue state tracking with a language model780
using Schema-Driven prompting.781

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.782
TruthfulQA: Measuring how models mimic human783
falsehoods. In Proceedings of the 60th Annual Meet-784
ing of the Association for Computational Linguistics785
(Volume 1: Long Papers), pages 3214–3252, Dublin,786
Ireland. Association for Computational Linguistics.787

Zhaojiang Lin, Bing Liu, Seungwhan Moon, Paul788
Crook, Zhenpeng Zhou, Zhiguang Wang, Zhou Yu,789
Andrea Madotto, Eunjoon Cho, and Rajen Subba.790
2021. Leveraging slot descriptions for Zero-Shot791
Cross-Domain dialogue StateTracking. In Proceedings792
of the 2021 Conference of the North American Chap-793
ter of the Association for Computational Linguistics:794
Human Language Technologies, pages 5640–5648, On-795
line. Association for Computational Linguistics.796

Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras, 797
Chandra Bhagavatula, and Yejin Choi. 2020. Neuro- 798
Logic decoding: (un)supervised neural text generation 799
with predicate logic constraints. 800

Semantic Machines, Jacob Andreas, John Bufe, David 801
Burkett, Charles Chen, Josh Clausman, Jean Craw- 802
ford, Kate Crim, Jordan DeLoach, Leah Dorner, Ja- 803
son Eisner, Hao Fang, Alan Guo, David Hall, Kristin 804
Hayes, Kellie Hill, Diana Ho, Wendy Iwaszuk, Smriti 805
Jha, Dan Klein, Jayant Krishnamurthy, Theo Lanman, 806
Percy Liang, Christopher H Lin, Ilya Lintsbakh, Andy 807
McGovern, Aleksandr Nisnevich, Adam Pauls, Dmitrij 808
Petters, Brent Read, Dan Roth, Subhro Roy, Jesse 809
Rusak, Beth Short, Div Slomin, Ben Snyder, Stephon 810
Striplin, Yu Su, Zachary Tellman, Sam Thomson, An- 811
drei Vorobev, Izabela Witoszko, Jason Wolfe, Abby 812
Wray, Yuchen Zhang, and Alexander Zotov. 2020. 813
Task-Oriented dialogue as dataflow synthesis. 814

Shikib Mehri and Maxine Eskenazi. 2021. Schema- 815
guided paradigm for zero-shot dialog. In Proceed- 816
ings of the 22nd Annual Meeting of the Special Inter- 817
est Group on Discourse and Dialogue, pages 499–508, 818
Singapore and Online. Association for Computational 819
Linguistics. 820

Fei Mi, Yitong Li, Yasheng Wang, Xin Jiang, and Qun 821
Liu. 2021. CINS: Comprehensive instruction for few- 822
shot learning in task-oriented dialog systems. 823

Johannes E M Mosig, Shikib Mehri, and Thomas 824
Kober. 2020. STAR: A Schema-Guided dialog dataset 825
for transfer learning. 826

Tomás Nekvinda and Ondrej Dusek. 2021. Shades of 827
bleu, flavours of success: The case of multiwoz. CoRR, 828
abs/2106.05555. 829

Maxwell Nye, Michael Henry Tessler, Joshua B Tenen- 830
baum, and Brenden M Lake. 2021. Improving coher- 831
ence and consistency in neural sequence models with 832
Dual-System, Neuro-Symbolic reasoning. 833

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayan- 834
deh, Lars Liden, and Jianfeng Gao. 2020. SOLOIST: 835
Building task bots at scale with transfer learning and 836
machine teaching. 837

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, 838
Raghav Gupta, and Pranav Khaitan. 2020. To- 839
wards scalable multi-domain conversational agents: 840
The schema-guided dialogue dataset. Proceedings 841
of the AAAI Conference on Artificial Intelligence, 842
34(05):8689–8696. 843

Charles Rich and Candace L Sidner. 1998. COLLA- 844
GEN: A collaboration manager for software interface 845
agents. User Model. User-adapt Interact., 8(3):315– 846
350. 847

Adam Roberts, Hyung Won Chung, Anselm Levskaya, 848
Gaurav Mishra, James Bradbury, Daniel Andor, Sha- 849
ran Narang, Brian Lester, Colin Gaffney, Afroz Mo- 850
hiuddin, Curtis Hawthorne, Aitor Lewkowycz, Alex 851
Salcianu, Marc van Zee, Jacob Austin, Sebastian 852
Goodman, Livio Baldini Soares, Haitang Hu, Sasha 853

10

http://arxiv.org/abs/2111.14592
http://arxiv.org/abs/2111.14592
http://arxiv.org/abs/2111.14592
http://arxiv.org/abs/2111.14592
http://arxiv.org/abs/2111.14592
http://arxiv.org/abs/2005.00796
http://arxiv.org/abs/2005.00796
http://arxiv.org/abs/2005.00796
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3140659.3080246
http://arxiv.org/abs/2004.15006
http://arxiv.org/abs/2004.15006
http://arxiv.org/abs/2004.15006
http://arxiv.org/abs/2109.07506
http://arxiv.org/abs/2109.07506
http://arxiv.org/abs/2109.07506
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
http://arxiv.org/abs/2010.12884
http://arxiv.org/abs/2010.12884
http://arxiv.org/abs/2010.12884
http://arxiv.org/abs/2010.12884
http://arxiv.org/abs/2010.12884
http://arxiv.org/abs/2009.11423
https://aclanthology.org/2021.sigdial-1.52
https://aclanthology.org/2021.sigdial-1.52
https://aclanthology.org/2021.sigdial-1.52
http://arxiv.org/abs/2109.04645
http://arxiv.org/abs/2109.04645
http://arxiv.org/abs/2109.04645
http://arxiv.org/abs/2010.11853
http://arxiv.org/abs/2010.11853
http://arxiv.org/abs/2010.11853
http://arxiv.org/abs/2106.05555
http://arxiv.org/abs/2106.05555
http://arxiv.org/abs/2106.05555
http://arxiv.org/abs/2107.02794
http://arxiv.org/abs/2107.02794
http://arxiv.org/abs/2107.02794
http://arxiv.org/abs/2107.02794
http://arxiv.org/abs/2107.02794
http://arxiv.org/abs/2005.05298
http://arxiv.org/abs/2005.05298
http://arxiv.org/abs/2005.05298
http://arxiv.org/abs/2005.05298
http://arxiv.org/abs/2005.05298
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394

Tsvyashchenko, Aakanksha Chowdhery, Jasmijn Bast-854
ings, Jannis Bulian, Xavier Garcia, Jianmo Ni, Andrew855
Chen, Kathleen Kenealy, Jonathan H. Clark, Stephan856
Lee, Dan Garrette, James Lee-Thorp, Colin Raffel,857
Noam Shazeer, Marvin Ritter, Maarten Bosma, Alexan-858
dre Passos, Jeremy Maitin-Shepard, Noah Fiedel, Mark859
Omernick, Brennan Saeta, Ryan Sepassi, Alexander860
Spiridonov, Joshua Newlan, and Andrea Gesmundo.861
2022. Scaling up models and data with t5x and862
seqio. arXiv preprint arXiv:2203.17189.863

Darsh J Shah, Raghav Gupta, Amir A Fayazi, and Dilek864
Hakkani-Tur. 2019. Robust Zero-Shot Cross-Domain865
slot filling with example values.866

Weiyan Shi, Tiancheng Zhao, and Zhou Yu. 2019.867
Unsupervised dialog structure learning. CoRR,868
abs/1904.03736.869

Richard Shin, Christopher Lin, Sam Thomson, Charles870
Chen, Subhro Roy, Emmanouil Antonios Platanios,871
Adam Pauls, Dan Klein, Jason Eisner, and Benjamin872
Van Durme. 2021. Constrained language models yield873
few-shot semantic parsers. In Proceedings of the 2021874
Conference on Empirical Methods in Natural Lan-875
guage Processing, Stroudsburg, PA, USA. Association876
for Computational Linguistics.877

Haipeng Sun, Junwei Bao, Youzheng Wu, and Xi-878
aodong He. 2022. Mars: Semantic-aware contrastive879
learning for End-to-End Task-Oriented dialog.880

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-881
Asl, Caiming Xiong, Richard Socher, and Pascale Fung.882
2019. Transferable Multi-Domain state generator for883
Task-Oriented dialogue systems.884

Jun Xu, Zeyang Lei, Haifeng Wang, Zheng-Yu Niu,885
Hua Wu, Wanxiang Che, and Ting Liu. 2020. Discov-886
ering dialog structure graph for Open-Domain dialog887
generation.888

Yunyi Yang, Yunhao Li, and Xiaojun Quan. 2020.889
UBAR: Towards fully End-to-End Task-Oriented dia-890
log systems with GPT-2.891

Dian Yu, Mingqiu Wang, Yuan Cao, Izhak Shafran,892
Laurent El Shafey, and Hagen Soltau. 2022. Unsuper-893
vised slot schema induction for task-oriented dialog.894

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara,895
Raghav Gupta, Jianguo Zhang, and Jindong Chen.896
2020. MultiWOZ 2.2 : A dialogue dataset with ad-897
ditional annotation corrections and state tracking base-898
lines. In Proceedings of the 2nd Workshop on Natu-899
ral Language Processing for Conversational AI, pages900
109–117, Online. Association for Computational Lin-901
guistics.902

Jeffrey Zhao, Raghav Gupta, Yuan Cao, Dian Yu,903
Mingqiu Wang, Harrison Lee, Abhinav Rastogi, Izhak904
Shafran, and Yonghui Wu. 2022. Description-driven905
task-oriented dialog modeling.906

A Appendix 907

A.1 ANYTOD Programs 908

Examples of ANYTOD program implementations 909

for STARV2 can be found in Figures A.2 and 910

A.3. 911

A.2 Complete Results on STARV2 912

For compactness, Table 1 showed just UaF1 and 913

SaF1. We also report user action accuracy (UaAcc) 914

and system action accuracy (SaAcc) in Table 915

A.1. 916

A.3 Corrected SAM Results on Zero-shot 917

Domain 918

During the development of ANYTOD, we found 919

that the zero-shot domain results reported on SAM 920

in Mehri and Eskenazi (2021) were incorrect. 921

An annotation issue within the STAR dataset set 922

marked some conversations as having an invalid 923

domain; due to how SAM was implemented, these 924

conversations would always be included in the 925

training dataset, even if they were in the evaluation 926

domain. For instance, dialog ID 102 is marked 927

as a null domain in the original STAR dataset. 928

Retraining SAM with this issue fixed caused a drop 929

in SaF1, from 55.7 to 51.2. We fix these annotation 930

errors in the STARV2 dataset. 931

A.4 Calculating STARV2 Metrics 932

Details in calculating metrics on STARV2 are as 933

follows. For DST, JGA is calculated with an exact 934

match on belief state parameters and values. For 935

AST, we only consider the quality of the most re- 936

cent turn within the action history prediction. This 937

is always a user turn, which may have multiple user 938

actions active. This may be considered a multilabel 939

classification problem. Then, we calculate UaAcc 940

through exact set match on the predicted user ac- 941

tions at the current turn, as well as weighted multil- 942

abel F1 on the predicted user actions. Both SaAcc 943

and SaF1 are calculated as described in Mosig et al. 944

(2020). 945

A.5 Implementation of Sam-User 946

To implement supervised training of AST on SAM, 947

we modify the methodology described in Mehri and 948

Eskenazi (2021), which embeds both conversation 949

and schema elements to produce an attention vector 950

p. Here, pi gives the attention weight between the 951

conversation and the i-th user action of the policy 952

graph. This is then interpreted to be a proxy for 953

11

https://arxiv.org/abs/2203.17189
https://arxiv.org/abs/2203.17189
https://arxiv.org/abs/2203.17189
http://arxiv.org/abs/1906.06870
http://arxiv.org/abs/1906.06870
http://arxiv.org/abs/1906.06870
http://arxiv.org/abs/1904.03736
http://arxiv.org/abs/2210.08917
http://arxiv.org/abs/2210.08917
http://arxiv.org/abs/2210.08917
http://arxiv.org/abs/1905.08743
http://arxiv.org/abs/1905.08743
http://arxiv.org/abs/1905.08743
http://arxiv.org/abs/2012.15543
http://arxiv.org/abs/2012.15543
http://arxiv.org/abs/2012.15543
http://arxiv.org/abs/2012.15543
http://arxiv.org/abs/2012.15543
http://arxiv.org/abs/2012.03539
http://arxiv.org/abs/2012.03539
http://arxiv.org/abs/2012.03539
http://arxiv.org/abs/2205.04515
http://arxiv.org/abs/2205.04515
http://arxiv.org/abs/2205.04515
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.48550/ARXIV.2201.08904
https://doi.org/10.48550/ARXIV.2201.08904
https://doi.org/10.48550/ARXIV.2201.08904

Model JGA UaAcc UaF1 SaAcc SaF1 BLEU
BERT+S - - - 73.8 74.9 -
SAM - - - 70.4 71.5 -
SAM-User - - - 70.4 71.7 -
AT-NOGUIDE BASE 81.5 74.4 83.8 73.7 73.3 72.8
AT-TMPL BASE 82.9 75.6 84.6 71 70.6 72.7
AT BASE 82.4 75.2 84.1 71.6 70.7 72
AT-NOGUIDE XXL 85.6 78.3 86.4 75.7 75.4 76.4
AT-TMPL XXL 85.1 72.6 82.5 70.7 71.3 75.8
AT XXL 85.7 75.9 84.7 73.8 73.3 73.5

(a) Full-shot results on STARV2.

Model JGA UaAcc UaF1 SaAcc SaF1 BLEU
BERT+S - - - 29.7 32.3 -
SAM - - - 49.8 51.2 -
SAM-User - - - 53.9 44.4 -
AT-NOGUIDE BASE 57.8 55.4 71 56.1 55.8 32.4
AT-TMPL BASE 62.2 56 74 62.5 61.9 56
AT BASE 61.9 56.6 72.1 61.6 60.6 34.3
AT-SGD BASE 66.1 59.5 74.3 63.5 61.3 34.4
AT-PROG+REPLY BASE 62.7 55.8 73.9 63.1 62.9 56.3
AT-PROG BASE 61.9 56.6 72.1 61.9 61.0 34.4
AT-PROG+SGD BASE 66.1 59.5 74.3 64.2 61.9 34.6
AT-NOGUIDE XXL 72.7 65.9 80 62.3 62.3 41.8
AT-TMPL XXL 66.8 58.9 72.9 60.9 60.8 52.9
AT XXL 74.8 64.6 79.2 68 68.0 44.3
AT-SGD XXL 75.8 67.8 80.9 69.3 68.5 43.9
AT-PROG+REPLY XXL 73.7 61.6 76.6 65.7 66.3 63.6
AT-PROG XXL 74.4 64.7 79.3 68.5 68.4 44.9
AT-PROG+SGD XXL 75.7 68.5 81.4 70.8 70.7 44.2

(b) Zero-shot domain results on STARV2.

Table A.1: Complete results on STARV2.

probability, and converted to a probability for NAP954

on all system actions a according to the policy955

graph edges:956

g(i, a) =

{
pi, if action(next(ui)) = a

0, otherwise
957

P (a) =
∑
i≤|S|

g(i, a)958

Here, action(next(ui)) gives the next system ac-959

tion of the user action ui according to the policy960

graph. Note that pi is an attention weight that is961

interepted to be the probability of user action ui962

being active at the current turn; however, no su-963

pervised training was done with ground truth user964

action labels. Then, to implement supervised train-965

ing on these user actions, we train pi to be actual966

probabilities, and apply a sigmoid on pi to form 967

a user action prediction head. Note that this is a 968

multilabel binary prediction. We then calculate a 969

binary cross-entropy loss on this head. 970

A.6 MultiWOZ Zero-Shot Policy 971

Program 972

Figure A.1 contains the ANYTOD policy program 973

used when evaluating over MultiWOZ. This policy 974

program was handcrafted, and provides a simplified 975

conversation flow. 976

12

1 def multiwoz_policy(active_domain, belief_state, act_hist):
2 rec = []
3 last_useracts = act_hist[-1]
4

5 # We define a new action within the MultiWOZ schema that tracks whether
6 # the user wants to book a provided entity.
7 # Since this is zero-shot we don’t train on this action at all, just provide
8 # a natural language description "user is saying they wants to book this hotel"
9 user_wants_to_book = any(act == ’user-wants-to-book’ for act, _ in last_useracts)

10

11 if user_wants_to_book:
12 rec.append((’book’, None))
13 # Inform the name of what we’re booking for the user
14 if active_domain in [’restaurant’, ’hotel’, ’attraction’]:
15 rec.append((’inform’, f’{active_domain}-name’))
16 elif active_domain == ’train’:
17 rec.append((’inform’, f’train-trainid’))
18 # Ask the user if they need anything else
19 rec.append((’reqmore’, None))
20 else:
21 # We’re still trying to find an entity for the user
22 # Recommend / select entities
23 if active_domain in [’restaurant’, ’hotel’, ’attraction’]:
24 rec.append((’inform’, f’{active_domain}-name’))
25 elif active_domain == ’train’:
26 rec.append((’inform’, f’train-trainid’))
27 rec.append((’recommend’, None))
28 rec.append((’select’, None))
29 rec.append((’booking-inform’, None))
30

31 for act, slot in last_useracts:
32 if act == ’inform’:
33 # We often repeat back info the user has given us in next turn
34 rec.append((’inform’, slot))
35 # If the user is requesting a slot, provide the value
36 if act == ’request’:
37 rec.append((’inform’, slot))
38 # If the user is thanking us, say you’re welcome / bye / anything else?
39 if act == ’thank’:
40 rec.append((’welcome’, None))
41 rec.append((’bye’, None))
42 rec.append((’reqmore’, None))
43

44 return set(rec)

Figure A.1: The ANYTOD program implementation for the zero-shot policy program.

13

1 USER_CUSTOM_LABEL = ’user_custom’
2 OUT_OF_SCOPE_LABEL = ’out_of_scope’
3

4 def anytod_star_policy_program(
5 belief_state: dict[str, str], act_hist: list[list[str]], api: Json,
6 graph: Json, convo_hist: list[str], primary_item: Json):
7 # a list of next action prdictions to recommend to the lm
8 next_act_recs = []
9 # get the "bye" actions for both user and system

10 user_bye_act = _user_bye_act(graph)
11 sys_bye_act = _sys_bye_act(graph)
12

13 # dict of param -> action user would take to inform this param
14 slot_actions = graph[’slot_actions’]
15 # generate a list of all user informing acts
16 inform_user_acts = set()
17 for _, user_acts in slot_actions.items():
18 inform_user_acts.add(user_acts[0])
19

20 if act_hist:
21 # iterate through last turn’s active user actions, result of AST
22 for last_useract in act_hist[-1]:
23 # some transitions are common to all star graphs, but not explicit
24 # if user is performing something out-of-scope, return out_of_scope
25 if last_useract == USER_CUSTOM_LABEL:
26 next_act_recs.append(OUT_OF_SCOPE_LABEL)
27 # if user is saying bye, agent can say bye
28 if last_useract == user_bye_act:
29 next_act_recs.append(sys_bye_act)
30

31 # if the user is performing an action that isn’t informing a param,
32 # look it up in the policy graph
33 if last_useract not in inform_useracts and last_useract in graph[’graph’]:
34 next_act_recs.append(graph[’graph’][last_useract])
35 # if the agent can do the anything_else action, it can also say bye
36 if ’anything_else’ in next_act_recs:
37 next_act_recs.append(bye_act)
38

39 # if all required params are provided, we can query api
40 query_label = ’query’ if ’query’ in graph[’replies’] else ’query_check’
41 if all(p.name in belief_state for p in api.params if p.required):
42 next_act_recs.append(query_label)
43

44 # param name -> api param json
45 api_params_by_name = {}
46 for param in api[’input’]:
47 if param[’Name’] != ’RequestType’:
48 api_params_by_name[param[’Name’]] = param
49 # if a param is not known, we can request it from the user
50 for slot in graph[’slot_actions’]:
51 p = api_params_by_name[slot]
52 if p.name not in belief_state:
53 ask_sysact = slot_actions[p.name][0]
54 next_act_recs.append(ask_sysact)
55

56 return next_act_recs

Figure A.2: The ANYTOD program implementation for a given STAR policy graph.

14

1 def anytod_star_trivia_policy(
2 belief_state: dict[str, str], act_hist: list[list[str]], api: Json,
3 graph: Json, convo_hist: list[str], primary_item: Json):
4 if act_hist and len(convo_hist) >= 2:
5 for last_useract in act_hist[-1]:
6 # if the user is answering a question
7 if last_useract == ’user_trivia_answer’:
8 # check that the correct trivia answer is in the user’s utterance
9 answer = primary_item.get(’Answer’, None)

10 if answer:
11 last_user_utt = convo_hist[-2]
12 if answer.lower() in last_user_utt.lower():
13 return [’trivia_inform_answer_correct_ask_next’]
14 else:
15 return [’trivia_inform_answer_incorrect_ask_next’]
16 return normal_policy(belief_state, act_hist, api, graph, convo_hist,
17 primary_item)
18

19

20 def anytod_star_bank_policy(
21 belief_state: dict[str, str], act_hist: list[list[str]], api: Json,
22 graph: Json, convo_hist: list[str], primary_item: Json):
23 # next_act_recs should be populated already by graph following
24 # same as normal_policy() ...
25

26 # params required for authenticating first and second way
27 first_auth_slots = [’FullName’, ’AccountNumber’, ’PIN’]
28 second_auth_slots = [
29 ’FullName’, ’DateOfBirth’, ’SecurityAnswer1’, ’SecurityAnswer2’
30]
31 # if either params are satisfied we can query api
32 if (all(slot in bs for slot in first_auth_slots) or
33 all(slot in bs for slot in second_auth_slots)):
34 next_action_recs.append(’query’)
35

36 # get all seen user acts
37 seen_useracts = set()
38 for turn, turn_acts in enumerate(act_hist):
39 if turn % 2 == 0:
40 seen_useracts.update(turn_acts)
41 forgot_acts = [’user_bank_forgot_account_number’, ’user_bank_forgot_pin’]
42 # if the user has forgotten anything from first auth, follow second auth
43 is_second_auth = any(fa in seen_useracts for fa in forgot_acts)
44 slots = second_auth_slots if is_second_auth else first_auth_slots
45 if graph[’task’] == ’bank_fraud_report’:
46 slots.append(’FraudReport’)
47 # request slots depending on 1st/2nd auth if not known
48 for slot in slots:
49 if slot not in belief_state:
50 next_act_recs.append(graph[’slot_actions’][slot][0])
51

52 return next_act_recs

Figure A.3: The ANYTOD program implementation specialized for bank and trivia domains.

15

	Introduction
	Related Work
	Methodology
	The AnyTOD System
	The STARv2 Dataset

	Experiments
	Setup
	Results on STAR
	Results on ABCD and SGD
	Zero-shot Results on MultiWOZ

	Analysis
	Impact of Policy Guidance
	Error Analysis

	Conclusion
	Appendix
	AnyTOD Programs
	Complete Results on STARv2
	Corrected SAM Results on Zero-shot Domain
	Calculating STARv2 Metrics
	Implementation of Sam-User
	MultiWOZ Zero-Shot Policy Program

