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ABSTRACT

The energy-based model provides a unified framework for various learning mod-
els where an energy value is assigned to each configuration of random variables
based on probability. Recently, different methods have been proposed to derive an
energy value out of the logits of a classifier for out-of-distribution (OOD) detec-
tion or OOD generalization. However, these methods mainly focus on the energy
difference between in-distribution and OOD data samples, neglecting the energy
difference among in-distribution data samples. In this paper, we show that the
energy among in-distribution data also requires attention. We propose to investi-
gate the energy difference between in-distribution data samples. Both empirically
and theoretically, we show that previous methods for subpopulation shift (e.g.,
long-tail classification) such as data re-weighting and margin control apply im-
plicit energy regularization and we provide a unified framework from the energy
perspective. With the influence function, we further extend the energy regular-
ization framework to OOD generalization scenarios where the distribution shift is
more implicit compared to the long-tail recognition scenario. We conduct experi-
ments on long-tail datasets, subpopulation shift benchmarks, and OOD generaliza-
tion benchmarks to show the effectiveness of the proposed energy regularization
method. The source code will be made publically available.

1 INTRODUCTION

Energy-based models (EBMs) LeCun et al. (2006); Ranzato et al. (2006; 2007) provide a unified
theoretical framework for various learning models where an energy value is assigned to each config-
uration of random variables regarding its probability. Derived from the logits of a classifier, previous
works show that a discriminative model is also an energy model Xie et al. (2016); Grathwohl et al.
(2020) and use it for generative tasks. Inspired by this, the corresponding energy model is employed
for OOD detection Liu et al. (2020); Bitterwolf et al. (2022); Wu et al. (2023). Out-of-distribution
(OOD) data samples are detected by a higher energy value than in-distribution(IID) data samples
due to the classifier’s low probability of seeing out-of-distribution data samples. Recent work Xie
et al. (2022) also minimizes the distance of energy distribution between the source domain and target
domain to enhance the performance in domain adaptation. However, these previous works mainly
focus on the energy difference between IID data and OOD data, neglecting the energy difference
between in-distribution data samples.

In this paper, we propose to investigate the energy difference between in-distribution data samples
(training data samples) and regularize the energy on training samples to boost the OOD generaliza-
tion performance. From the energy regularization perspective, we both empirically and theoretically
show that long-tail recognition methods Wang et al. (2017); Zhou et al. (2018); Liu et al. (2019);
Zhong et al. (2019); He et al. (2021); Zhong et al. (2021) (a special case of sub-population shift Cai
et al. (2021); Koh et al. (2021)) such as reweighting data Zhang et al. (2018); Zhao et al. (2019); Ye
et al. (2020); Hsieh et al. (2021) or controlling the classification margin Cao et al. (2019) could be
regarded as an implicit regularization on the energy value of training samples. For domain general-
ization, a main branch of works focuses on invariant risk minimization Chang et al. (2020); Creager
et al. (2021); Lin et al. (2021), which regularizes the risk across different training domains to learn
an invariant classifier. While the energy value is unrelated to the risk, we show that regularizing en-
ergy value across training domains could also improve the OOD generalization and is orthogonal to
the methods for invariant risk minimization. We propose an energy regularization method and verify
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Figure 1: Illustration of our proposed
Influence-Aware Energy Regularization
(IAER). We quantify the influence of
energy regularization and apply regular-
ization accordingly.

Previous method Differences between previous
method and our method

Energy-
based
OOD
detection

Previous works using energy to
deal with OOD mainly focus on
the energy difference between
OOD data and in-distribution
data, neglecting the energy dif-
ference between in-distribution
data samples themselves.

Data re-
weighting
and mar-
gin control

These methods implicitly af-
fect the energy value of in-
distribution data. We provide a
unified framework for them.

Invariant
Risk Mini-
mization

These methods propose regular-
izing the risk among training do-
mains. Instead of focusing on
the risk, we propose an orthog-
onal method that regularizes the
energy among training domains.

Table 1: The relationship between previous works
and ours

its effectiveness on tasks in long-tail classification, subpopulation shift, and domain generalization.
Other empirical findings regarding the energy distribution of training data samples are provided. We
summarize the contributions of this paper in the following:

• Besides the extensive research for OOD detection and OOD generalization focusing on the energy
difference between out-of-distribution data and in-distribution data Liu et al. (2020); Bitterwolf
et al. (2022); Wu et al. (2023); Xie et al. (2022), to the best of our knowledge, we are the first to
call for attention to the energy difference between in-distribution data samples.

• We theoretically show that data re-weighting and margin control, the two branches of methods
proposed for long-tail classification (a case for subpopulation shift) could be unified as implicit
energy regularization among in-distribution data samples.

• We propose a method namely influence aware energy regularization to regularize energy among
training domains to boost the model performance on OOD generalization.

2 RELATED WORKS

Energy Based Learning. Energy-based models (EBMs) LeCun et al. (2006); Ranzato et al. (2006;
2007) provide a unified theoretical framework for various learning models. Recent works employ
the energy function defined on discriminative models for other tasks e.g. generative learning or
OOD detection. Xie et al. (2016) shows that a generative random field model can be derived from
a discriminative neural network. While Grathwohl et al. (2020) finds that neural classifiers are also
energy-based models for joint distribution and devises a hybrid model that acts as both discriminative
and generative models. Liu et al. (2020) proposes to use the energy value to detect OOD samples,
which has been theoretically proved Bitterwolf et al. (2022) to be equal to training an additional
binary discriminator. Recent work Xie et al. (2022) minimizes the distance of energy distribution
between the source domain and target domain to enhance the performance in domain adaptation
(see Wang & Deng (2018) and the references therein). However, these previous works focus on
the energy difference between in-distribution data and out-of-distribution data, and we show that
the energy difference between in-distribution data points could influence the generalization of the
classifier.

Long-Tail Recognition. Long-tail recognition has drawn increasing attention Wang et al. (2017);
Zhou et al. (2018); Liu et al. (2019); Zhong et al. (2019); He et al. (2021); Zhong et al. (2021) due
to the pervasiveness of the imbalanced data in real-world scenarios. Most methods could be divided
into three categories: re-sampling the data, re-weighting the loss, and transfer learning. For re-
sampling, various methods have been proposed to re-sample the dataset to achieve a more balanced
data distribution Chawla et al. (2002); Estabrooks et al. (2004); Han et al. (2005); Liu et al. (2009);
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Shen et al. (2016); Liu et al. (2019); Wang et al. (2020); Kang et al. (2020); Zhang & Pfister (2021).
As for re-weighting, re-weighting methods assign different losses to different classes Zhang et al.
(2018); Zhao et al. (2019); Ye et al. (2020); Hsieh et al. (2021) or different data samples Lin et al.
(2017); Ren et al. (2018); Shu et al. (2019) to achieve a more balanced performance on each class.
Specifically, LDAM Cao et al. (2019) proposes a distribution aware loss that enlarges the margin to
less frequent (tail) classes.

Subpopulation Shift. Subpopulation Shift focuses on changing the proportion of some subpop-
ulations Cai et al. (2021); Koh et al. (2021), where subpopulations refer to subsets of a data do-
main divided by certain attributes. A conventional setting defines subpopulations as the product
of attributes and classes Geirhos et al. (2020). In fact, long-tail recognition is a special case of
subpopulation shift. Similar to long-tail classification, models tend to learn spurious features when
minimizing overall loss, resulting in poor performance on minority subpopulations DeGrave et al.
(2021); Joshi et al. (2022). A wide array of methods has been developed, some focusing on scenarios
where attributes are known Gowda et al. (2021); Izmailov et al. (2022); Menon et al. (2020); Nam
et al. (2022); Sagawa et al. (2019); Yao et al. (2022), while others investigate cases where attributes
are unknown Creager et al. (2021); Han et al. (2022); Idrissi et al. (2022); Liu et al. (2021a).

Domain Generalization. Specifically, domain generalization (DG) Blanchard et al. (2011) aims
to train a model using data from a single or multiple source domain that would generalize well to
any out-of-distribution(OOD) target domains. Various methods have been proposed to tackle the
domain generalization problem including learning domain-invariant representations Muandet et al.
(2013); Li et al. (2018b;c), augmenting the data Zhou et al. (2020); Yan et al. (2020) and applying
meta-learning to domain generalization Li et al. (2018a); Balaji et al. (2018). Some of the methods
propose regularization strategies designed based on heuristics that surpass the predictive power of
an auxiliary CNN implemented as a stack of 1 × 1 convolution layers Wang et al. (2019) or mask
out the features with large gradients Huang et al. (2020). See Wang et al. (2021); Zhou et al. (2021)
for a comprehensive survey.

3 ASSOCIATING METHODS IN LONG-TAIL RECOGNITION WITH TRAINING
ENERGY REGULARIZATION

Various methods for long-tail recognition Wang et al. (2017); Zhou et al. (2018); Liu et al. (2019);
Zhong et al. (2019); He et al. (2021); Zhong et al. (2021) (a case of subpopulation shift Cai et al.
(2021); Koh et al. (2021)) have been proposed with different motivations. In this section, we show
that these different long-tail recognition methods implicitly change the training energy and that
energy regularization among training data samples unifies two different branches of long-tail recog-
nition methods (reweighting Zhang et al. (2018); Zhao et al. (2019); Ye et al. (2020); Hsieh et al.
(2021) and margin control Cao et al. (2019)).

3.1 METHODS FOR LONG-TAIL RECOGNITION ARE IMPLICIT ENERGY REGULARIZATION

For a K-class classification problem, a parameterized classifier fθ : RD → RK maps data point
x ∈ RD to K real-valued logits where θ is the trainable parameter. For a data point x and its
corresponding label y, the loss for the parameter θ is defined as L(x, y, θ). Energy-based model Le-
Cun et al. (2006); Grathwohl et al. (2020) E(x) : RD → R maps each data point x to a single,
non-probabilistic scalar called the energy, where the energy value could be turned to a probability
as:

p(x) =
e−E(x)/T∫

x′ e−E(x′)/T
. (1)

For classifier fθ, the logits are typically converted to a normalized probability distribution with the
Softmax function: p̄θ(y|x) = exp(fθ(x)[y])∑

y′ exp(fθ(x)[y′]) , where f(x)[y] represents the logit corresponding to

the y-th class. The joint distribution of data x and label y could be defined as p̄θ(x, y) =
exp(fθ(x)[y])

Z(θ)

where Z(θ) is unknown normalizing constant. By marginalizing out y, the unnormalized density

model for x is p̄θ(x) =
∑

y′ p̄θ(x, y
′) =

∑
y′ exp(fθ(x)[y

′])

Z(θ) . Therefore the energy at data point x

3
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regarding to p̄θ(x) could be defined as:

Eθ(x) = − log
∑
y′

exp (fθ(x)[y
′]) . (2)

The energy defined on classifiers is firstly introduced for generative tasks Xie et al. (2016); Grath-
wohl et al. (2020), where a classifier could be treated as an EBM and used for image generation.
The energy of classifiers is also used for OOD detection Liu et al. (2020); Bitterwolf et al. (2022);
Wu et al. (2023) where unseen data samples (OOD samples) generally have higher energy.

Similar to the OOD detection scenario, the energy is lower on sub-populations with large amounts of
data in the sub-population shift scenarios Cai et al. (2021); Koh et al. (2021) (e.g. the classes having
much more data samples than other classes in long-tail classification). In this section, taking long-
tail recognition as a typical and clear case of sub-population shift, we show that various methods
proposed to tackle the long-tail recognition problem apply implicit energy regularization.

Data resampling or re-weighting Zhang et al. (2018); Zhao et al. (2019); Ye et al. (2020); Hsieh
et al. (2021) is one of the main branches of methods for long-tail recognition. By assigning different
weights to different classes or sampling the data from the minor classes with little data more often,
these methods encourage the model to reduce the loss of training data samples from the minor
classes. Similar to the OOD detection scenario, the energy on more frequently trained data would
be lower, which implicitly regularizes the energy on training data samples. Cao et al. (2019) also
proposes margin control for better long-tail recognition performance. The classification margin is
the difference between the logit of the ground-truth label and the largest logit of non-ground-truth
labels. By controlling the classification margin to be larger for data samples from minor classes, the
method prevents the model from misclassifying minor classes and improves the model performance.
By controlling the margin, the logits are enlarged for the data samples from minor classes, which
also implicitly regularizes the energy and encourages a more uniform energy distribution between
the minor and major classes.

In Fig. 2, we train ResNet-32 on CIFAR10-LT and CIFAR100-LT following Cao et al. (2019) and
report the average energy of each class. Generally, for the models trained with ERM Vapnik (1998),
the energy is lower on the classes with more data samples indicating a larger probability p(x) (Pear-
son Correlation Coefficient is at −0.74 on CIFAR10-LT and −0.60 on CIFAR100-LT). This phe-
nomenon is because the model is trained to give lower energy (corresponding to higher p̄(x)) to the
frequently trained data, which has been utilized to detect OOD samples Liu et al. (2020). On the
other hand, the models trained with LDAM have a more uniform energy distribution among classes
(Pearson Correlation Coefficient is at −0.26 on CIFAR10-LT and 0.16 on CIFAR100-LT. It empiri-
cally shows how the margin control implicitly affects the energy among training samples. In the next
section, we theoretically unify the sample re-weighting and margin control in energy regularization.

As a special case of sub-population shift, the long-tail recognition shows a clear probability shift as
the probability of data samples from some classes is higher. Methods such as re-weighting or margin
control implicitly affect the energy, pushing the p(x) predicted by the model closer to following a
uniform distribution, the ground truth distribution in the test set.

3.2 UNIFYING REWEIGHTING AND MARGIN CONTROL IN ENERGY REGULARIZATION

To deal with the imbalanced distribution among different classes in long-tail recognition, many pre-
vious works resort to assigning different weights to samples from different classes Zhang et al.
(2018); Zhao et al. (2019); Ye et al. (2020); Hsieh et al. (2021), while other works such as
LDAM Cao et al. (2019) adjust the margin to the decision boundary for different classes. In this
section, we show that energy regularization actually unifies both data re-weighting and margin con-
trol. Starting with a cross-entropy loss, for a data sample x and the ground truth label y, we have

Lce(x, y, θ) = − log
exp(fθ(x)[y])∑
y′ exp(fθ(x)[y′])

= −fθ(x)[y]− Eθ(x) (3)

Adding an energy regularization with coefficient β̂x regarding the input x, we have

Lce(x, y, θ) + β̂x · Eθ(x) = −fθ(x)[y])− (1− β̂x) · Eθ(x) (4)

4
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Figure 2: Average energy of each class of ResNet-32 trained on CIFAR10-LT and CIFAR100-LT.
We follow the hyper-parameter setting in Cao et al. (2019) to train models. Each dot corresponds
to a class. The model trained by ERM has a biased energy distribution, where energy is generally
lower for the class with more data. (The Pearson correlation coefficient is −0.74 on CIFAR10-LT
and −0.60 on CIFAR100-LT.) As for the model trained with LDAM Cao et al. (2019), the average
energy of different classes is nearly identical. (The Pearson correlation coefficient is −0.26 on
CIFAR10-LT and 0.16 on CIFAR100-LT.) The results empirically indicate the LDAM is actually an
implicit energy regularization and levels the energy on samples from different classes.

Then the gradient of the loss is:

∂[Lce(x, y, θ) + β̂x · Eθ(x)]

∂θ
=
[
(1− β̂x) · p̄(y|x)− 1

] ∂fθ(x)[y]
∂θ

+(1−β̂x)
∑
y′ ̸=y

p̄(y′|x)·∂fθ(x)[y
′]

∂θ
.

(5)

When β̂x ̸= 1, we could further derive the gradient as:

∂L(x, y, θ)
∂θ

= (1− β̂x) ·
[
p̄(y|x)− 1

1− β̂x

]
∂fθ(x)[y]

∂θ
+(1− β̂x) ·

∑
y′ ̸=y

p̄(y′|x) · ∂fθ(x)[y
′]

∂θ
. (6)

where L(x, y, θ) = Lce(x, y, θ)+ β̂x ·Eθ(x). As shown in Eq. 6, the influence of energy regulariza-
tion is twofold: adjusting the margin and reweighting data points. The weight for each data point is
1− β̂x. As for the margin, the margin is defined as fθ(x)[y]−maxj ̸=yfθ(x)[j] in Cao et al. (2019).
In Eq. 6, the coefficient of the gradient ∂fθ(x)[y]

∂θ is changed from p̄(y|x) − 1 to p̄(y|x) − 1
1−β̂x

.

When 0 < β̂x < 1, the energy regularization enlarges the margin by pushing down the coeffi-
cient of ∂fθ(x)[y]

∂θ and down-weights the data point x with coefficient (1 − β̂x). When β̂x < 0, the
regularizer reduces the margin and up-weights the data x with coefficient (1 − β̂x). Therefore, we
theoretically show that regularizing energy is actually a combination of data reweighting and margin
control unifying two different branches of methods in long-tail recognition.

4 REGULARIZING ENERGY FOR OOD GENERALIZATION

In Sec. 3, we show that long-tail recognition methods such as LDAM Cao et al. (2019) implic-
itly regularize the energy. In this section, we want to extend the energy regularization to a more
general OOD generalization scenario. In the long-tail recognition scenario, the disparity of data
amount between different classes is known, guiding the data re-weighting or margin control. Since
the distribution shift in the OOD generalization scenario is more implicit, it requires a method to
determine the energy regularization coefficient β̂x. Note that energy regularization is orthogonal to
the previous methods regularizing the risk among different domains the reasons are as follows.

Motivation: The energy correlates to the probability of a data sample p(x) predicted by the model.
Similar to the long-tail recognition scenario, we wish the predicted probability to be close to the
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actual probability in the test domain. While we have no way of knowing the test data distribution,
the least we can do is to prevent the model from being over-confident (i.e. expect the unexpected).
Note that the energy does not correspond to the prediction of the classifier (Remark 4.1), which is the
reason most previous works overlook the energy disparity between training data samples and also
make the energy regularization orthogonal to previous works focusing on regularizing the risk Chang
et al. (2020); Creager et al. (2021); Lin et al. (2021).
Remark 4.1. [Arbitrary Energy] Consider ∀(x, y) ∈ Dtrain and a classifier fθ. For ∀E ∈ R, there
exists a classifier gη that satisfy

p̄θ(y|x) = p̄η(y|x),
Eη(x) = E . (7)

where p̄θ(y|x) and p̄η(y|x) is the conditional probability predicted by fθ and gη respectively while
Eη(x) is the energy value of gη on data point x.

4.1 DETERMINING ENERGY REGULARIZATION COEFFICIENT VIA INFLUENCE FUNCTION

The difference between a typical OOD generalization scenario and long-tail recognition is that
the distribution shift is implicit. One of the main challenges in applying energy regularization
is determining the coefficient β in Eq. 5 as we do not know the testing data distribution. In
this paper, we introduce the influence function to determine the coefficient β. Influence func-
tion Cook & Weisberg (1982) was used to determine the influence of training data samples on
the model performance Koh & Liang (2017). Similar to that in Koh & Liang (2017), given a
training set with n data points Dtrain = {(x1, y1), (x2, y2), · · · (xn, yn)}, the optimal parame-

ter for empirical risk is given by θ̂
def
= argminθ

1
n

∑n
i=1 L(xi, yi, θ). When we add an energy

regularization on a training data point (x, y) with a small ϵ, the new optimal parameter becomes
θ̂ϵ,(x,y) = argminθ(

1
n

∑n
i=1 L(xi, yi, θ) + ϵEθ(x)). Assume that the empirical risk is twice-

differentiable and strictly convex w.r.t. θ, the influence function provides the influence of the energy
regularization on (x, y):

Iθ̂(x, y)
def
=

dθ̂ϵ,(x,y)

dϵ
|ϵ=0 = −H−1

θ̂
∇θEθ(x). (8)

where Hθ̂ = 1
n

∑n
i=1 ∇2

θL(xi, yi, θ̂) is the Hessian matrix. Using the chain rule, the influence on
the loss at a validation point (xva, yva) is:

I(xva,yva)(x, y)
def
= ∇θL(xva, yva, θ̂)

⊤ dθ̂ϵ,z
dϵ

|ϵ=0

= −∇θL(ztest, θ̂)⊤H−1

θ̂
∇θEθ(x).

(9)

This definition is similar to that in Koh & Liang (2017). Based on our devised influence function of
energy, we propose a principled method that introduces Influence Aware Energy Regularization (we
refer to it as IAER). It firstly calculates the average influence of energy regularization on a validation
set Dval = {(xval

i , yvali )}mi=1 for each training data point. To fairly compare with previous works,
we take subsets of the training set as the validation set without introducing any additional data. The
average influence of energy regularization on the validation set is

Ival(xi) =
1

m

m∑
j=1

I(xval
j ,yval

j )(xi) (10)

To reduce the loss on the validation set, we increase the energy on the data points with a positive
influence of energy regularization and decrease the energy on those with a negative influence. There-
fore, we finetune the model with energy penalties determined by the corresponding influence value.
The coefficient βxi for data xi is

βxi
= −γ · Ival(xi)/Imax

val . (11)

Here Imax
val is the maximum absolute value of influence value over the train set Dtrain, and we set

the hyperparameter 0 < γ < 1, by which we make sure that the energy regularization does not
interfere the optimization on cross-entropy.

6
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Table 2: Average testing accuracy (%) of our method on Imbalanced CIFAR10/CIFAR100.
Dataset Imbalanced CIFAR10 Imbalanced CIFAR100

Imbalance type long-tailed Cui et al. (2019) step Buda et al. (2018) long-tailed Cui et al. (2019) step Buda et al. (2018)
Imbalance Ratio 100 10 100 10 100 10 100 10

ERM Cao et al. (2019) 70.36 86.61 63.30 84.27 38.32 56.59 38.55 54.70
LDAM-DRW Cao et al. (2019) 77.16 87.62 75.36 87.42 42.04 56.67 45.36 56.84

ERM + IAER 75.83 87.02 71.33 85.62 39.60 57.59 39.12 55.10
LDAM-DRW + IAER 78.37 87.72 75.89 87.70 42.81 56.67 44.61 56.9

4.2 EXPERIMENTS WITH IAER IN DIFFERENT SCENARIO

4.2.1 LONG-TAIL RECOGNITION

We first conduct experiments on the long-tail recognition scenario to test our energy regularization
method. We evaluate IAER on the imbalanced version of CIFAR10, CIFAR100 Cui et al. (2019)
and ImageNet-LT Liu et al. (2019) that are artificially created with class imbalance and iNaturalist
2018 Van Horn et al. (2018), a naturally long-tailed dataset. Experiments are conducted on imbal-
anced CIFAR following Cao et al. (2019) and on ImageNet-LT following Kang et al. (2020). For
a fair comparison, the validation set used to calculate the influence function is sampled from the
training set, and the models are not exposed to testing data during training.

Results on CIFAR. We evaluate IAER with ResNet-32 trained by: 1) Empirical risk minimization
(ERM): with equal weight for each training data, and the model is trained to minimize the cross-
entropy. 2) LDAM-DRW Cao et al. (2019): LDAM introduces a label-distribution aware margin
loss, enlarging the decision while DRW applies re-weighting or re-sampling after the last learning
rate decay. Since ERM is the basic training algorithm and a typical baseline while LDAM-DRW
achieves SOTA on imbalanced CIFAR datasets, we take these two methods as baselines.

CIFAR10 and CIFAR100 both contain 50, 000 images in training and 10, 000 images in testing with
10 and 100 classes, respectively. We construct the imbalanced version of CIFAR10 and CIFAR100
by reducing the number of images for each class. Two types of imbalance are considered: long-
tailed imbalance Cui et al. (2019) and step imbalance Buda et al. (2018). For long-tailed imbalance,
the number of data points follows an exponential decay across different classes. For step imbalance,
data points in half of the classes are reduced to the same number while the number of data points in
the other classes remains the same.

As shown in Table 2, our method could effectively boost the testing performance after only 5 epochs.
The more imbalanced the IAER is, the more effective it is. Notably, IAER could greatly improve
the ERM pre-trained model. For instance, IAER reduces the testing error of the ERM pre-trained
model for 5.47% (from 29.64% to 24.17%) on long-tailed CIFAR10 with the imbalance ratio at 100.
For CIFAR100, IAER also improves the testing performance for the ERM pre-trained model and
improves the LDAM-DRW pre-trained model on long-tailed CIFAR100 with the imbalance ratio at
100 and step-imbalanced CIFAR100 with the imbalance ratio at 10. However, the improvement in
imbalanced CIFAR100 brought by our IAER is much smaller than that of imbalanced CIFAR10.
We conjecture that the calculated influence of energy regularization on our sampled validation set
for CIFAR100 is less accurate since the number of images per class in CIFAR100 is much smaller
than that of CIFAR10 e.g. only 5 images for the least frequent class when imbalance ratio is 100.

Results on ImageNet-LT And iNaturalist 2018. We evaluate IAER with ResNeXt-50 Xie et al.
(2017) pre-trained by the techniques and protocols proposed in Kang et al. (2020) where each model
is divided into two parts: backbone and linear classifier. The protocol includes (1) Classifier Re-
training (cRT): employ the backbone trained with ERM and retrain the linear classifier with the
class balance sampling method. (2) Learnable Weight Scaling (LWS): Rescale the weight of the
classifier for each class by a rescaling factor learned with the class balance sampling method as
in cRT. ImageNet-LT Liu et al. (2019) is artificially truncated from ImageNet Deng et al. (2009),
where the label distribution follows a long-tailed distribution. It has 1000 classes, and the number
of images per class ranges from 1280 to 5. iNaturalist 2018 Van Horn et al. (2018) is a real-world,
long-tailed dataset with 8142 classes. We follow Liu et al. (2019) and report the testing accuracy
on three kinds of class sets: Many-shot (over 100 images), Medium-shot (20 ∼ 100 images) and
Few-shot (less than 20 images). The testing accuracy on all classes is denoted as All.
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Table 3: Experiments on ImageNet-LT and iNaturalist. The validation set for IAER is composed of
images in the train set.

Dataset and model ResNeXt-50 on ImageNet-LT ResNet-152 on iNaturalist
Method Many Median Few All Many Median Few All

cRT Kang et al. (2020) 61.8 46.2 27.4 49.6 75.9 71.9 69.1 71.2
cRT + IAER[Few] 61.0 45.6 29.1 49.3 76.1 71.6 69.5 71.2

cRT + IAER[Median] 58.5 48.7 26.0 49.4 75.8 72.3 68.0 71.0
cRT + IAER[Many] 62.7 44.5 26.9 49.1 77.8 69.9 66.5 69.4

LWS Kang et al. (2020) 60.2 47.2 30.3 49.9 74.3 72.4 71.2 72.1
LWS + IAER[Few] 60.1 47.1 32.1 50.1 74.4 72.4 71.6 72.3

LWS + IAER[Median] 58.1 49.0 30.3 50.0 74.5 72.8 70.9 72.2
LWS + IAER[Many] 61.5 45.5 30.1 49.6 74.9 72.6 71.0 72.2

Table 4: Experiment results for subpopulation shift conducted based on SubpopBench Yang
et al. (2023) on CMNIST Arjovsky et al. (2019), MetaShift cats vs. dogs Liang & Zou (2022),
NICO++ Zhang et al. (2023), Waterbirds Wah et al. (2011) and CivilComments Borkan et al. (2019).

Dataset and Method ERM ERM + IAER
Metric Mean Worst Mean Worst

CMNIST 77.8 4.6 78.1 14.3
MetaShift 90.4 66.2 90.6 67.7
NICO++ 82.0 30.0 82.8 33.3

Note that the minimum number of data points per class in the training set of iNaturalist is 2,
which makes the possible class-balanced subset of the training set extremely small. Therefore,
for ImageNet-LT and iNaturalist, we take images of Many-shot, Medium-shot, and Few-shot classes
in the training set as the validation set, respectively. We employ the backbone provided by Kang
et al. (2020) and finetune or retrain the classifier. For ImageNet-LT, we calculate the influence of
energy regularization on the ResNeXt-50 pre-trained for 90 epochs and retrain the classifiers with
IAER for 10 epochs. For iNaturalist 2018, we calculate the influence of energy regularization of the
ResNet-152 pretrained for 200 epochs. The classifiers on the iNaturalist are retrained for 30 epochs
with energy regularization. More details are in Appendix A.

As shown in Table 3, IAER[Few] means that the validation set used for calculating influence is
composed of images of few-shot classes in the training set while IAER[Median] and IAER[Many]
means the validation set is composed by median-shot classes and many-shot classes respectively.
For ImageNet-LT and iNaturalist 2018, we could observe that the accuracy on the classes used to
calculate the influence function is boosted e.g. IAER[Few] boosts the accuracy of the classifier on
few-shot classes while IAER[Median] boosts the accuracy of the classifier on median-shot classes.
LWS combined with IAER[Few] could improve the accuracy of the whole testing set.

4.2.2 RESULTS FOR SUBPOPULATION SHIFT

We follow SubpopBench Yang et al. (2023) to conduct experiments for subpopulation shift. Sub-
populations are subgroups of a data domain divided based on certain features, and subpopula-
tion shift is a type of distribution shift characterized by changes in the proportion of some sub-
populations. The long-tail dataset could be seen as a special case of subpopulation shift. We con-
duct our experiments on widely used datasets in SubpopBench, including ColoredMNIST Arjovsky
et al. (2019), MetaShift cats vs. dogs Liang & Zou (2022), NICO++ Zhang et al. (2023). For a fair
comparison, we use the training set as the proxy validation set to calculate the influence function.
For the model training, we follow the setting in SubpopBench. As shown in Table 4, both the mean
accuracy and the worst accuracy are improved with our IAER.

4.2.3 RESULTS FOR DOMAIN GENERALIZATION

We follow DomainBed Gulrajani & Lopez-Paz (2021) to conduct experiments for domain gener-
alization. DomainBed is a testbed for domain generalization. As Gulrajani & Lopez-Paz (2021)
shows that ERM outperforms SOTAs by average performance on common benchmarks as evaluated
in a consistent and realistic setting, we combine our method with ERM and take the algorithms
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Table 5: Experiment results for domain generalization conducted on CMNIST Arjovsky et al.
(2019), PACS Li et al. (2017) and VLCS Fang et al. (2013).(* means we use the results from Do-
mainbed Gulrajani & Lopez-Paz (2021))

Method CMNIST PACS VLCS
ERM Vapnik (1998) 51.5 ± 0.1 85.5 ± 0.1 77.4 ± 0.2

IRM Arjovsky et al. (2019)* 52.0 ± 0.1 83.5± 0.8 78.5 ± 0.5
GroupDRO Sagawa et al. (2019)* 52.0 ± 0.0 84.4 ± 0.8 76.7 ± 0.6

MLDG Li et al. (2018a)* 51.5 ± 0.1 84.9 ± 1.0 77.2 ± 0.4
CORAL Sun & Saenko (2016) 51.2 ± 0.1 86.1 ± 0.2 78.8 ± 0.6

SagNet Nam et al. (2021) 51.7 ± 0.0 86.3 ± 0.1 77.8 ± 0.5
ERM + IAER 51.9 ± 0.1 86.6 ± 0.1 78.5 ± 0.2
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Figure 3: The average influence of en-
ergy regularization on CIFAR10-LT. Each
dot represents a class, and the x-axis cor-
responds to the number of data samples in
that class.
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Figure 4: Influence of energy regulariza-
tion and loss of each training data point (a
dot in the plot) in long-tailed CIFAR10 for
ResNet-32 trained with ERM.

implemented in DomainBed as baselines. Experiments are performed on benchmarks ColoredM-
NIST Arjovsky et al. (2019), PACS Li et al. (2017) and VLCS Fang et al. (2013).

As mentioned in Sec. 4.1, we take the training set as the validation set to calculate the influence
function for a fair comparison. We follow the setting in DomainBed Gulrajani & Lopez-Paz (2021)
to train the model. We demonstrate the results using training domain validation as model selec-
tion criteria which use a validation set sampled from the training domain for model selection. For
each algorithm and testing domain, we conduct a random search of 5 trails. For more details, see
Appendix A.

As shown in Table 5, our IAER could improve the accuracy on the test domain without the test
domain information. This implies that regularizing energy on the training domains helps generalize
the training domains to the testing domain. More results are in Appendix B.

5 OTHER EMPIRICAL RESULTS

5.1 AVERAGE INFLUENCE OF ENERGY REGULARIZATION ON CIFAR10-LT

We plot the average influence of energy regularization of each class on CIFAR10-LT. As shown
in Fig. 3, the average influence of energy regularization of different classes is positively correlated
to the number of data points of the corresponding class (The Pearson’s R is 0.70 for long-tailed
CIFAR10 with imbalance ratio at 10). The lower the influence of the energy regularization, the
lower the testing loss of the classifier would be after adding a positive energy regularization. It
indicates that pushing down the energy value of data points of less frequent class and pulling up the
energy value of data points of more frequent class would boost the testing performance i.e. pull up
the predicted p̄(x) for less frequent class and push down the predicted p̄(x) for more frequent class.
Since the probability density p(x) of data points of less frequent class is much lower and the p(x)

9
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Table 6: Time required to approximate the influence function on different datasets.
Model Dataset iteration repeat times time used

ResNet-32 CIFAR10 5000 10 718.20s
ResNeXt-50 ImageNet-LT 1000 10 8492.92s
ResNet-152 iNaturalist 2018 1000 10 9701.74s

of data points of more frequent class is much higher in the imbalanced training set compared to the
testing set, it shows that pushing the predicted p̄(x) closer to the real p(x) of the testing set would
boost the testing performance. According to Sec. 3.2, our regularization method generally enlarges
the margin and down-weights for the less frequent classes. On the other hand, it reduces the margin
and up-weights for the more frequent classes.

5.2 INFLUENCE OF ENERGY REGULARIZATION ON DATA SAMPLES WITH DIFFERENT LOSS

To investigate the relationship between the influence of energy regularization and the loss on each
training data point, we provide a scatter figure as in Fig. 4. Note that the influence of energy regu-
larization on the data points of similar training loss ranges from positive to negative. The influence
of energy regularization is not related to the training loss (Pearson’s R is −0.04). This indicates
that one could not predict the influence of energy regularization on the data point based on train-
ing loss. However, the range of the influence of energy regularization expands as the training loss
decreases. Therefore, data points where energy regularization has a large influence are generally
well-classified data points with low loss. As pointed out in Remark 4.1, the energy value is unstable
during the training, we conjecture that the un-regularized energy value of well-classified data points
is one of the possible reasons for the overfitting of the classifier.

5.3 TIME COMPLEXITY ANALYSIS FOR THE APPROXIMATION OF INFLUENCE FUNCTION

The main overhead of the proposed IAER is calculating the influence function of energy regular-
ization. We calculate the influence function with stochastic estimation Cook & Weisberg (1982)
following Koh & Liang (2017). We implement the calculation of the influence function based on the
Python package for calculating the influence function Lo & Bae (2022). For imbalanced CIFAR10
and imbalanced CIFAR100, the influence function is calculated with stochastic estimation for 5000
iteration and averaged over 10 trails. For ImageNet-LT and iNaturalist, we calculate the influence
function only on the classifier, and the influence function is calculated with stochastic estimation for
1000 iteration and averaged over 10 trails.

Since we approximate the influence function using stochastic approximation, the time used to cal-
culate the influence function is determined by the choice of hyperparameters. We tested the time
cost for calculating the influence function for ResNet-32 on CIFAR10 with Intel(R) Xeon(R) CPU
E5-2678 v3 @ 2.50GHz and one GeForce RTX 2080Ti for 5000 iteration and averaged ten times.
Approximating the influence function for a 5000 iteration takes 718.20s on average. As shown in
Table 6, we report the time used to approximate the influence function on different datasets for
different models with the same hardware settings.

6 CONCLUSION

In this paper, we propose to regularize the energy among training data samples. We first show
that various methods for long-tail recognition implicitly apply energy regularization, which pushes
the energy distribution close to the test distribution. We further propose an influence-aware energy
regularization for various OOD generalization scenarios, such as subpopulation shift and domain
generalization. The main limitation comes from the use of the influence function. First of all, it
requires a validation set. In this paper, we use a subset of the training set as the validation set. Ex-
perimental results show that the choice of the validation set largely affects the performance of IAER.
Secondly, as defined for convex loss functions, the influence function may not reflect the actual in-
fluence for neural networks. The approximation of the influence function is also a bottleneck, which
is hard to converge and requires high computational cost. We hope the idea of regularizing energy
on training data samples will innovate future works.
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A EXPERIMENT DETAILS

A.1 DETAILS FOR THE CALCULATION OF INFLUENCE FUNCTION

The calculation of the influence function requires a validation set. For imbalanced CIFAR10 and
CIFAR100, we sample data points of each class from the class-imbalanced training set to compose
the validation set. The number of data points per class is determined by the minimum number of
data points per class in the training set. For ImageNet-LT, since it has a validation split, we use
the val split to calculate the influence function. For iNaturalist, since the minimum number of data
points per class is APPall (2 images per class), we take the few-shot classes of the training set as the
validation set.

We calculate the influence function with stochastic estimation Cook & Weisberg (1982) following
Koh & Liang (2017). We implement the calculation of the influence function based on the Python
package for calculating the influence function Lo & Bae (2022). For imbalanced CIFAR10 and
imbalanced CIFAR100, the influence function is calculated with stochastic estimation for 5000 it-
eration and averaged over 10 trails. For ImageNet-LT and iNaturalist, we calculate the influence
function only on the classifier, and the influence function is calculated with stochastic estimation for
1000 iteration and averaged over 10 trails.

A.2 DETAILS FOR THE EXPERIMENTS ON IMBALANCED DATASET

We follow the setting in Cao et al. (2019) to train ResNet-32 on the imbalanced CIFAR dataset and
report the performance of the model at the final epoch. The model is trained for 200 epochs with
SGD optimizer where the learning rate is at 0.1, momentum at 0.9, and weight decay at 2e− 4. The
learning rate is decayed with factor 0.01 at 160-th epoch and 180-th epoch. For IAER, we finetune
the model for 5 epochs with batch size at 128 and learning rate at 1e− 4.

For ImageNet-LT and iNaturalist 2018, we employ the pre-trained model provided in Kang et al.
(2020) and follow the setting in it to finetune the ResNeXt-50 Xie et al. (2017) on ImgaeNet-LT and
the ResNet-152 He et al. (2016) on iNaturalist 2018. For ImageNet-LT, the classifier is finetuned for
10 epochs with batch size at 512 and learning rate at 0.2. For iNaturalist, the classifier is finetuned
for 30 epochs with batch size at 512 and learning rate at 0.2.

The γ in Eq. 9 is searched in {0.1, 0.5, 1, 10} for CIFAR-LT and set to be 0.5 for ImageNet-LT and
iNaturalist2018. When the absolute value of energy regularization is bigger than the cross-entropy
loss the γ is set to be ∥ Lce(x

tr
i ,ytr

i ,θ)
Eθ(xtr

i )·Ival(xtr
i ,ytr

i )/Imax
val

∥

A.3 DETAILS FOR THE EXPERIMENTS FOR DOMAIN GENERALIZATION

We follow the setting in Gulrajani & Lopez-Paz (2021) to conduct experiments and use the training
domain validation set to calculate the influence function. The γ in Eq. 9 is set to be 0.1. We employ
the same training settings and hyperparameters implemented in Gulrajani & Lopez-Paz (2021).

A.4 COMPARISON BETWEEN THE INFLUENCE OF THE CROSS-ENTROPY AND THE INFLUENCE
OF THE ENERGY.

The influence function of the cross-entropy has been widely used in data valuation Koh & Liang
(2017) and active learning Liu et al. (2021b). As shown in Fig. 5, the influence of the cross-entropy
and the influence of the energy do not correlate with each other. The influence function of the cross-
entropy as in previous works Koh & Liang (2017); Liu et al. (2021b) evaluates the influence of
reweighting the data points. As for the influence function of the energy, we focus on the influence
of the energy regularization, which acts as reweighting and margin control. Therefore there are
fundamental differences between the influence of the cross-entropy and that of the energy.
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Figure 5: Relation between the influence of the cross-entropy and that of the energy. The influence
is calculated for the ResNet-32 trained on CIFAR10 where each point represents a data sample.
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Figure 6: The positive relation between the calculated influence function and the actual change in
testing loss on pre-trained CNN. We plot the top 20 most influential data points.

B ADDITIONAL EXPERIMENT RESULTS

B.1 ADDITIONAL RESULTS TO VALIDATE THE INFLUENCE FUNCTION OF ENERGY
REGULARIZATION

In addition to Fig. 6, where we calculate the average influence over the whole testing set, we ar-
bitrarily pick a wrongly classified data point and calculate its influence function following Koh &
Liang (2017).

We calculate the influence function for the ResNet-32 trained with ERM on the long-tail CIFAR10
and long-tail CIFAR100, where the imbalance ratio is set to be 100. We plot the influence of energy
regularization and the actual change in testing loss after finetuning the model with energy regular-
ization for 50 epochs on 100 most influential data point. The calculated influence function has a
positive relation to the actual change in loss (Pearson’s R is 0.7875 on long-tail CIFAR10 and is
0.5744 on long-tail CIFAR100)

B.2 ENERGY DISTRIBUTION SHIFTS DURING TRAINING

We plot the energy distribution of the training set during the training of ResNet-32 by ERM on the
long-tailed CIFAR10 with an imbalance ratio of 100. As shown in Fig. 7, the energy distribution
keeps changing during the training even though the training loss is stable e.g. from 100-th epoch
to 150-th epoch. We further plot the distribution at 160, 170, 180, 190, and 200 epochs after the
learning rate has decayed. As shown in Fig. 7(b), the energy distribution of the training set still
changes when the learning rate is decayed and the model is converged.
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Figure 7: The energy distribution of a ResNet-32 trained on the long-tailed CIFAR10. (a): the energy
distribution of the training set on different epochs during the training (b): the energy distribution of
the training set at 160, 170, 180, 190, and 200 epoch.

Model Dataset iteration repeat times time used
ResNet-32 CIFAR10 5000 10 718.20s

ResNeXt-50 ImageNet-LT 1000 10 8492.92s
ResNet-152 iNaturalist 2018 1000 10 9701.74s

Table 7: Time required to approximate the influence function on different datasets for different
models.

Method Testing accuracy on different test domains(%)
Colored MNIST +80% +90% -90%

ERM 72.3 ± 0.0 72.0 ± 0.1 10.1 ± 0.1
ERM +IAER 73.8 ± 0.1 71.5 ± 0.1 10.6 ± 0.1

PACS A C P S
ERM 85.6 ± 0.1 79.7 ± 0.2 98.9 ± 0.1 78.0 ± 0.1

ERM + IAER 84.2 ± 0.1 84.8 ± 0.1 97.3 ± 0.1 80.2 ± 0.1

Table 8: The detailed results for domain generalization where we report the testing accuracy(%) for
different test domains.

B.3 TIME COMPLEXITY ANALYSIS

The main overhead of the proposed IAER is calculating the influence function of energy regulariza-
tion. Since we approximate the influence function using stochastic approximation, the time used to
calculate the influence function is determined by the choice of hyperparameters. We tested the time
cost for calculating the influence function for ResNet-32 on CIFAR10 with Intel(R) Xeon(R) CPU
E5-2678 v3 @ 2.50GHz and one GeForce RTX 2080Ti for 5000 iteration and averaged ten times.
Approximating the influence function for a 5000 iteration takes 718.20s on average. As shown in
Table B.3, we report the time used to approximate the influence function on different datasets for
different models with the same hardware settings.

B.4 DETAILED RESULTS FOR DOMAIN GENERALIZATION

We report the detailed results of our experiments for domain generalization, as shown in Table 8.

B.5 PROOF FOR REMARK 4.1

Proof. For the classifier fθ : RD → RK , assume the energy on data point x ∈ RD is Eθ(x). For
∀E ∈ R, a classifier gη : RD → RK could be defined that satisfies:
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∀i ∈ {1, 2, · · · ,K}, gη(x)[i] = fθ(x)[i])− E + Eθ(x). (12)

By adding a certain value Eθ(x)− E to each logit fθ(x)[i]), the prediction of gη is the same as the
prediction of fθ while the energy value of gη is changed to E .

For the predicted p̄η(y|x) we have:

p̄η(y|x) =
exp [fθ(x)[y])− E + Eθ(x)]∑
i exp [fθ(x)[i])− E + Eθ(x)]

,

=
exp [fθ(x)[y])]∑
i exp [fθ(x)[i])]

,

= p̄θ(y|x).

(13)

For the energy Eη(x) on the gη , we have:

Eη(x) = − log
∑
i

exp [gη(x)[i]]

= − log
∑
i

exp [fθ(x)[i]− E + Eθ(x)]

= − log

(
exp[Eθ(x)− E ] ·

∑
i

exp [fθ(x)[i]]

)
= E − Eθ(x)−− log

∑
i

exp [fθ(x)[i]]

= E − Eθ(x) + Eθ(x)

= E .

(14)
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