
Adaptive Curriculum Reinforcement Learning for Long-form Writing

Anonymous ACL submission

Abstract001

Recent advances in Large Language Models002
(LLMs) have enabled strong performance in003
long-form writing, yet existing supervised fine-004
tuning (SFT) approaches suffer from limita-005
tions such as data saturation and restricted006
learning capacity bounded by teacher signals.007
In this work, we present an Adaptive Curricu-008
lum Reinforcement Learning (ACRL) frame-009
work to advance long-form writing capabili-010
ties beyond SFT. The framework consists of011
three key components: Margin-aware Data Se-012
lection strategy that prioritizes samples with013
high learning potential, Pairwise Comparison014
Reward mechanism that enhances reward dis-015
criminability, and Dynamic Reference Schedul-016
ing approach, which plays a particularly criti-017
cal role by adaptively adjusting task difficulty018
based on evolving model performance. Exper-019
iments on 7B-scale writer models show that020
our RL framework largely improves long-form021
writing performance over strong SFT baselines.022
Furthermore, we observe that models trained023
with long-output RL generalize surprisingly024
well to long-input reasoning tasks, potentially025
offering a promising perspective for rethinking026
long-context training.027

1 Introduction028

Recent years have witnessed the remarkable ad-029

vance of Large Language Models (LLMs) (Ope-030

nAI, 2023; DeepSeek-AI et al., 2025; Zhao et al.,031

2023) to follow instructions and provide helpful032

responses. Among their impressive capabilities,033

long-form writing, which aims to generate long and034

high-quality articles, has drawn increasing atten-035

tion (Wu et al., 2025a; Bai et al., 2024b; Wu et al.,036

2025b) due to its broad practical applications.037

However, generating articles of both fulfilled038

long length and satisfactory quality is non-trivial039

for current LLMs. Previous research has identified040

several challenges to employ LLMs for long-form041

generation, including inherently limited output ceil-042

ing (Bai et al., 2024b; Tu et al., 2025) and perfor- 043

mance degradation as output length grows (Wu 044

et al., 2025b; Tu et al., 2025). To address these 045

issues, recent efforts perform targeted Supervised 046

Fine-Tuning (SFT) on LLMs to extend their output 047

lengths, with long-generation datasets constructed 048

by iterative agent pipelines (Bai et al., 2024b; Quan 049

et al., 2024; Wu et al., 2025b) or instruction back- 050

translation (Pham et al., 2024; Wang et al., 2024). 051

Though effective, these approaches introduce heavy 052

burdens of dataset construction due to the broad 053

coverage of writing tasks and potential copyright 054

issues (Maini et al., 2024) when incorporating 055

human-written texts. Furthermore, training LLMs 056

to imitate the collected long-generation responses 057

inherently imposes a capability upper bound deter- 058

mined by teacher models or human experts, which 059

may cause data saturation and sample inefficiency. 060

Meanwhile, the recent success of outcome-based 061

Reinforcement Learning (RL) method (DeepSeek- 062

AI et al., 2025; Team et al., 2025; Yuan et al., 2025) 063

in reasoning-intensive areas reveals a promising di- 064

rection to advance model capabilities beyond super- 065

vised fine-tuning. Despite its potential, the practice 066

of online outcome-based RL on long-form writing 067

is relatively underexplored and therefore poses the 068

following challenges: 069

• Data Selection: Data quality and difficulty play 070

a critical role in eliciting model potential. How- 071

ever, the optimal approach for selecting data for 072

RL in long-form writing tasks remains unclear. 073

• Reward Design: Rule-based outcome re- 074

wards (DeepSeek-AI et al., 2025) cannot be di- 075

rectly applied to generative writing tasks. With- 076

out ground-truth labels, constructing an effec- 077

tive reward mechanism for long-form writing 078

poses a significant challenge. 079

• Curriculum Scheduling: Curriculum Learn- 080

ing (Bengio et al., 2009) is widely used to 081

progressively improve model performance, but 082
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Figure 1: Overall framework of Adaptive Curriculum Reinforcement Learning (ACRL). 1) Margin-aware
Data Selection: prioritizes samples with high learning potential; 2) Pairwise Comparison Reward: provides more
discriminative reward signals; 3) Dynamic Reference Scheduling: adaptively incentivizes the model to surpass
progressively stronger references.

static scheduling fails to adapt to the model’s083

evolving competence, thereby reducing train-084

ing effectiveness.085

To tackle these challenges, our work proposes an086

Adaptive Curriculum Reinforcement Learning087

(ACRL) framework tailored for long-form writing,088

as illustrated in Figure 1. Our framework begins089

with Margin-aware Data Selection strategy which090

leverages the quality differential between the pol-091

icy model response and the highest-quality refer-092

ence as a measure of learning potential, diverging093

from the conventional difficulty-prioritized selec-094

tion approach. Considering the limited discrimina-095

tive capacity of pointwise scoring, we construct a096

Pairwise Comparison Reward mechanism which097

challenges the policy model to generate responses098

of better quality than provided references to earn099

positive rewards. To facilitate progressive model100

enhancement, we propose a Dynamic Reference101

Scheduling approach that assigns each query a set102

of references with progressively increasing qual-103

ity. The scheduling approach dynamically updates104

the references per sample when the evolving pol-105

icy model surpasses the current reference during106

training. In this way, the dynamic curriculum ad-107

justs sample-level task difficulty based on the cur-108

rent model performance, encouraging the model109

to consistently outperform a marginally superior110

reference. The motivation behind is also aligned111

with the insights from R1-like RL practices (Shi112

et al., 2025; Bae et al., 2025) that samples neither113

too easy nor too difficult help to achieve the best 114

learning efficiency. 115

To evaluate our ACRL framework, we conduct 116

continuous reinforcement training on top of super- 117

vised fine-tuned writer models. The results indi- 118

cate that our RL framework effectively boosts the 119

long-form writing capability, advancing the SOTA 120

performances of 7B-level writer models. Besides 121

the improvement in long-form generation, we also 122

observe an interesting generalization phenomenon: 123

our RL-trained writer model (average input length 124

< 1k) shows a surprising improvement in long-text 125

reasoning tasks (input length: 8k–2M), in contrast 126

to the performance degradation of the SFT-trained 127

model. The results may suggest a novel perspec- 128

tive on long-context training that training on long- 129

output tasks may also enhance their reasoning abil- 130

ities on long inputs, thereby offering training in- 131

sights into the relationship between long-context 132

understanding and generation. 133

In summary, the contributions of our work are: 134

• We propose an Adaptive Curriculum Rein- 135

forcement Learning framework for long-form 136

writing, which integrates three key compo- 137

nents: Margin-aware Data Selection, Pairwise 138

Comparison Reward, and Dynamic Reference 139

Scheduling. 140

• Particularly, we propose Dynamic Reference 141

Scheduling, which adaptively adjusts sample- 142

level task difficulty based on the model’s evolv- 143

ing performance. This dynamic curriculum en- 144
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courages the model to continually outperform145

progressively stronger references.146

• Our RL-trained 7B-scale writer model achieves147

state-of-the-art performance, demonstrating the148

effectiveness of our framework. Furthermore,149

we observe inspiring generalization from long-150

output generation to long-input reasoning, re-151

vealing a novel benefit of long-form RL train-152

ing for long-context understanding.153

2 Related Work154

Training Methods for Long-form Writing. Re-155

cent efforts to advance long-form writing capabili-156

ties (Bai et al., 2024b; Wu et al., 2025b) mainly fo-157

cuses on constructing long-generation post-training158

datasets for fine-tuning. Main approaches include159

teacher model distillation (Wu et al., 2025b), it-160

erative agent pipelines for extended output (Bai161

et al., 2024b; Tu et al., 2025; Quan et al., 2024)162

and instruction back-translation (Pham et al., 2024;163

Wang et al., 2024). However, the application of164

online reinforcement learning methods (Schulman165

et al., 2017; Shao et al., 2024) are relatively under-166

explored, hindering further improvement.167

Long-form Writing Evaluation. Long-form writ-168

ing (Wu et al., 2025a) requires LLMs to write long-169

form articles, posing challenges for evaluation due170

to the lack of ground-truths. Researchers estab-171

lish writing benchmarks (Wu et al., 2025b; Que172

et al., 2024), with proprietary models (Bai et al.,173

2024b; Paech, 2023; Liu et al., 2024) or fine-tuned174

LLMs (Wu et al., 2025b; Ke et al., 2024) to serve as175

judges. However, there exists several bias of includ-176

ing position bias and self-enhancement bias (Zheng177

et al., 2023), challenging the reliability of LLM-as-178

Judge evaluation methods.179

Curriculum Learning. Reinforcement Learning180

methods (Schulman et al., 2017; Shao et al., 2024;181

DeepSeek-AI et al., 2025) have become a critical182

step to elicit LLM capabilities. To boost efficiency,183

Curriculum Learning (Bengio et al., 2009) has been184

widely adopted in RL practices (Team et al., 2025;185

Xie et al., 2025; Wen et al., 2025), including static186

difficulty-based scheduling (Luo et al., 2025; Song187

et al., 2025) and dynamic data selection (Bae et al.,188

2025; Shi et al., 2025). However, these methods use189

rule-based correctness as a measure for difficulty190

and perform sample selection, which increases roll-191

outs and may cause imbalanced learning across192

samples.193

3 Adaptive Curriculum RL 194

In this work, we propose ACRL (Adaptive Cur- 195

riculum Reinforcement Learning), an adaptive re- 196

inforcement learning framework aimed at further 197

improving long-form writing capabilities after in- 198

struction fine-tuning. The framework comprises 199

three key components: Margin-aware Data Selec- 200

tion strategy, Pairwise Comparison Reward mecha- 201

nism and Dynamic Reference Scheduling approach. 202

By integrating outcome-based RL into long-form 203

writing tasks, our approach improves model writing 204

capabilities through more effective sample selec- 205

tion, reward design, and learning scheduling. We 206

will describe the components in detail respectively. 207

3.1 Margin-aware Data Selection 208

Previous data selection approaches typically take 209

question difficulty as a key criteria, measured by 210

the accuracy of the policy model (Shi et al., 2025; 211

Bae et al., 2025), simplistic indicators (Cheng 212

et al., 2021; Yang et al., 2025) like solution step 213

counts or simple heuristics grounded in human intu- 214

ition (Hendrycks et al., 2021). However, we argue 215

that questions favored by difficulty-prioritized data 216

selection algorithm may not be the most suitable 217

for effective reinforcement learning. 218

To validate this assumption, we propose Margin- 219

aware Data Selection, which uses the performance 220

gap between the policy model and the highest- 221

quality reference as a measure of learning poten- 222

tial. Our intuition is simple: a question suitable for 223

learning is a question with sufficient room for per- 224

formance improvement. Specifically, the procedure 225

is detailed as follows. 226

Generation with Multiple LLMs. Instead of 227

relying on a single model as the difficulty estima- 228

tor (Shi et al., 2025; Bae et al., 2025), we leverage 229

a set of competitive LLMs C = {π,M1,M2, . . . }, 230

including the policy model, to generate diverse can- 231

didate responses for each writing instruction. 232

Multi-dimensional Grading. Each generated re- 233

sponse rj from model Mj ∈ C is graded using a 234

multi-dimensional pointwise LLM-as-a-Judge ap- 235

proach (Liu et al., 2024; Wu et al., 2025b), with 236

averaged quality score denoted as sj per response. 237

Data Selection on Learning Potential. To pri- 238

oritize samples from which the policy model can 239

benefit most, we define the model-grounded learn- 240

ing potential p as the quality gap between the best 241

competitor and the policy model: 242

p = max
j∈C, j ̸=π

(sj − sπ) 243
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where sπ is the score of the policy model’s re-244

sponse. A higher p indicates greater headroom245

for improvement. To filter out noisy instructions,246

we first discard samples where all the competitors247

produce under-performing responses, as such in-248

structions are often overly difficult or suffer from249

quality issues themselves. After filtering, we rank250

the remaining samples by their learning potential251

p, and retain the top-k examples to construct the252

training set.253

3.2 Pairwise Comparison Reward Mechanism254

Reward function is a critical component to guide255

policy optimization in RL practice. While rule-256

based outcome reward (DeepSeek-AI et al., 2025;257

Team et al., 2025) has been proven to be remarkably258

effective in eliciting long-CoT (Wei et al., 2022)259

reasoning in reasoning-intensive tasks, it can not be260

directly applied to long-form writing tasks due to261

the lack of ground-truths and its subjective nature,262

posing challenges to reward design.263

Recent efforts utilize LLM-as-a-Judge (Zheng264

et al., 2023; Wu et al., 2025b) to measure the qual-265

ity of model-generated responses, achieving high266

agreement with human judges. There exists two267

evaluation approaches including pointwise grading268

and pairwise comparison. Though widely adopted269

in writing evaluation due to its simplicity, point-270

wise grading exhibits limited discriminative capa-271

bilities and relatively high variance. On the con-272

trary, pairwise comparison compares the response273

with a high-quality reference, capturing the subtle274

differences and potential direction of improvement.275

By providing more discriminative reward signals,276

pairwise grading incentivizes the policy model to277

generate better response and defeat high-quality278

references for positive rewards. Therefore, our re-279

ward design is as follows:280

rquality(x) =


1 if Judge(ref ,x) = x ≻ ref

0.5 if Judge(ref ,x) = x ≡ ref

0 if Judge(ref ,x) = x ≺ ref

281

where rquality(x) denotes the reward for a generated282

response x; ref represents the high-quality refer-283

ence response; and Judge(ref ,x) is the evaluation284

function performed by the LLM-based judge to285

compare x with ref .286

Furthermore, LLM judges are known to exhibit287

position bias (Zheng et al., 2023) in pairwise com-288

parisons, systematically favoring the first response.289

To impose additional learning pressure, we delib-290

erately place the model-generated response in the291

For less challenging writing queries,
Quickly proceed to better references.

For more challenging writing queries,
Gradually progress as model evolves.

Figure 2: Sample-wise asynchronous learning schedule
during training enabled by ACRL. Each line represents a
sample, where an upward step indicates LLM surpassing
its current reference and advancing to a better one.

second position, thereby introducing positional dis- 292

advantage in training. This avoids the need for 293

position-swapped comparisons and halves the eval- 294

uation cost, while encouraging the model to gener- 295

ate stronger outputs from a less favorable position. 296

3.3 Dynamic Reference Scheduling 297

Curriculum Learning (Bengio et al., 2009) sched- 298

ules progressive task difficulty for better learn- 299

ing efficiency. Previous efforts utilize offline- 300

calculated difficulty for scheduling (Shi et al., 2025; 301

Song et al., 2025) or introducing additional rollouts 302

during training for adaptive sample selection (Bae 303

et al., 2025; Yu et al., 2025). Though effective in 304

reasoning-centered RL, these methods suffer from 305

either non-adaptive difficulty estimates or increased 306

inference overhead. 307

Faced with the disadvantages of insufficient 308

adaptivity of current curriculum scheduling, we 309

propose a Dynamic Reference Scheduling approach 310

that encourages the policy model to sequentially 311

outperform references of ascending quality. With 312

the algorithm detailed in Algorithm 1, our frame- 313

work introduces a more competitive reference as 314

the policy model beats the current one, enabling 315

asynchronous per-sample difficulty updates and 316

dynamic adaptivity with the evolving model capa- 317

bility. 318

Pre-training: Data Preparation. Given a set of 319

writing instructions W , we first apply the Margin- 320

aware Data Selection strategy as elaborated in 321

Sec 3.1, obtaining multiple competitive references 322

R = {rπ, r1, r2, . . . } and their corresponding 323

LLM-judged quality scores S = {sπ, s1, s2, . . . } 324

for each instruction. The references are then sorted 325

in ascending order of quality to produce a stage- 326
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Algorithm 1 Dynamic Reference Scheduling for Long-form Writing
1: Pre-processing: For each instruction w ∈W , apply Margin-aware Data Selection (Section 3.1) to obtain a stage-wise

reference listR(w) = {r(w)
π , r

(w)
1 , r

(w)
2 , . . . } ordered by ascending quality.

2: Input: Instruction set W ; reference lists {R(w)}w∈W ; policy model πθ; RL updater A (e.g., PPO); batch size B.
3: Initialize reference pointer tw ← 1 for all w ∈W ▷ current reference index
4: while training not finished do
5: Sample batch B = {wk}Bk=1 from W
6: for all wk ∈ B do
7: rk ←R(wk)[twk ] ▷ current reference
8: Generate response gk ← πθ(wk)
9: Compute reward Rk ← Judge(rk, gk) ▷ 1 (win), 0.5 (tie), 0 (loss)

10: end for
11: Update policy πθ ← A

(
πθ, {(wk, gk, Rk)}Bk=1

)
12: for all wk ∈ B such that Rk = 1 do ▷ reference surpassed
13: if twk < |R(wk)| then
14: twk ← twk + 1 ▷ promote to next stronger reference
15: end if
16: end for
17: end while

wise reference list Rs = {rq1, rq2, . . . }. To main-327

tain sufficient positive feedback early in training,328

we deliberately include the response from the ini-329

tial policy model π in the reference set, as the other330

reference-generation LLMs are generally larger in331

size and more competent.332

In-training: Dynamic Scheduling. At the start333

of training, each instruction is initialized with the334

lowest-quality reference rq1, which is comparable335

to the initial policy model’s response. As the model336

evolves during training, the model gradually gener-337

ates higher-quality responses during rollouts and re-338

ceives positive rewards in some of the LLM-judged339

pairwise comparisons. Subsequently, the defeated340

references rt are replaced with marginally stronger341

ones rt+1 while the undefeated references are re-342

tained, progressively increasing the challenge with-343

out overwhelming the model, in alignment with344

the model’s evolving capability. This dynamic and345

adaptive reference update mechanism establishes346

an asynchronous learning schedule for each writing347

instruction and effectively incentivize the model to348

consistently perform better. As shown in Figure 2,349

our approach enables sample-wise asynchronous350

scheduling to dynamically adapt task difficulty to351

model capability.352

4 Experiments353

To demonstrate the effectiveness of ACRL, we con-354

duct experiments on writing-oriented fine-tuned355

LLMs to see whether ACRL can further advance356

long-form writing capabilities beyond supervised357

fine-tuning.358

4.1 Datasets 359

We use two carefully-constructed generative writ- 360

ing datasets primarily designed for supervised fine- 361

tuning, including LongWriter training set (Bai 362

et al., 2024b) and WritingBench training set (Wu 363

et al., 2025b). As detailed in Section 3.1, we per- 364

form the Margin-aware Data Selection procedure 365

on these two datasets respectively. Specifically, 366

we first generate references for each writing in- 367

struction with the initial policy model and four 368

competent larger-size LLMs to construct competi- 369

tive references, including Qwen-Plus (Yang et al., 370

2024), GPT-4o (Hurst et al., 2024), Claude-3.7 (An- 371

thropic Team, 2025) and Deepseek R1 (DeepSeek- 372

AI et al., 2025). Then, we utilize a fine-tuned judge 373

model (Wu et al., 2025b), which is optimized for 374

evaluating long-form writing responses and reaches 375

high agreement with human judges, to grade the 376

responses in multiple dimensions. Finally, after 377

the selection process, we obtain 1.5k chosen sam- 378

ples each dataset for further reinforcement learning. 379

Each sample contains a writing instruction and ref- 380

erences ordered by ascending quality. 381

4.2 Training Setup 382

To fully realize the effectiveness of reinforcement 383

learning, we use two writing-expert LLMs as the 384

base models for RL, which are primarily fine-tuned 385

with the full WritingBench training set, denoted as 386

Qwen2.5-7B-WritingBench-SFT and Llama3.1-8B- 387

WritingBench-SFT respectively. 388

With the proposed ACRL, we use the PPO al- 389

gorithm (Schulman et al., 2017) to optimize the 390

two selected based models for long-form writing. 391

During the training process, we adopt Qwen-Plus 392
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Model
Writing-Oriented Training Long-form Writing Evaluation

SFT RL WritingBench EQ-Bench LongBench-Write Average

Qwen-Plus – – 77.62 76.78 95.42 83.27
GPT-4o – – 83.42 80.45 92.92 85.60

Suri-7B ✓ ✗ 49.70 18.44 33.44 33.86
Longwriter-9B ✓ DPO 79.10 44.15 80.83 68.03

Qwen2.5-7B-Instruct ✗ ✗ 73.26 49.59 85.03 69.29
Qwen2.5-7B-WritingBench-SFT (12k) ✓ ✗ 83.71 70.02 92.22 81.98
Qwen2.5-7B-WritingBench-SFT (24k) ✓ ✗ 83.71 69.55 92.57 81.94

Qwen2.5-7B-Writing-RL (Ours) ✓ PPO 87.23 73.19 93.06 84.49

Llama3.1-8B-Instruct ✗ ✗ 66.40 48.40 73.89 62.89
Llama3.1-8B-WritingBench-SFT ✓ ✗ 83.98 78.11 90.66 84.25
Llama3.1-8B-Writing-RL (Ours) ✓ PPO 87.10 82.73 92.36 87.40

Table 1: Evaluation results of the models trained with ACRL, with the highest score in each model family bold.
Notably, ACRL-trained models perform the best within their model family, on par with the proprietary models.

to serve as pairwise-comparison judge, providing393

rewards for policy optimization. The resulting mod-394

els are denoted as Qwen2.5-7B-Writing-RL and395

Llama3.1-8B-Writing-RL respectively. More im-396

plementation details and training parameters can397

be found in Appendix A.398

4.3 Benchmarks and Baselines399

To comprehensively evaluate long-form writing400

capabilities of LLMs, we use three established401

benchmarks including WritingBench (Wu et al.,402

2025b), LongBench-Write (Bai et al., 2024b), and403

EQ-Bench creative writing split (Paech, 2023). The404

benchmarks are of broad coverage and use strong405

judge LLMs to evaluate the quality of generated406

responses. Note that the judge LLMs adopted for407

evaluation are diverse and different from the re-408

warding judge LLM used in training, mitigating409

the risk of overfitting particular judge preferences410

to ensure a fair evaluation.411

Our selected baselines include strong proprietary412

models (Yang et al., 2024; Hurst et al., 2024),413

instruction fine-tuned LLMs (Yang et al., 2024;414

Dubey et al., 2024), and writing-oriented fine-tuned415

LLMs (Wu et al., 2025b; Bai et al., 2024b; Pham416

et al., 2024). More evaluation details can be found417

in Appendix B.418

4.4 Results419

As detailed in Table 1, the evaluation results420

demonstrate that models trained with ACRL out-421

perform other models across all the three bench-422

marks. Specifically, Llama3.1-8B-Writing-RL423

(Ours) achieves the highest average score of 87.14,424

with Qwen2.5-7B-Writing-RL (Ours) follows with425

an average of 84.49, both showing strong perfor-426

mance in 10B-level. Notably, our trained models427

exhibit long-form writing capabilities that match 428

or even surpass those of proprietary models, posi- 429

tioning them as strong open-source alternatives for 430

long-form generation tasks. 431

Meanwhile, we observe distinct performance 432

trends when applying RL and SFT to relatively 433

strong models. Despite utilizing identically con- 434

structed datasets from the same expert model and 435

agent pipeline, the fine-tuned model on 24k sam- 436

ples exhibits performance equivalent to, or slightly 437

below, that of the variant trained with 12k sam- 438

ples. This observation potentially underscores the 439

phenomenon of data saturation, where beyond a 440

certain capability threshold, simply increasing data 441

volume fails to enhance model performance. In 442

contrast, models continuously trained by reinforce- 443

ment learning, such as Llama3.1-8B-Writing-RL 444

(Ours) compared to Llama3.1-8B-WritingBench- 445

SFT within the same model family, demonstrate 446

consistent performance improvements and thereby 447

indicates the promising potential of RL to further 448

advance model capabilities where SFT encounters 449

limitations. 450

5 Generalization from Output to Input 451

To understand the influence on long-context capa- 452

bilities of long-output RL, we adopt the challeng- 453

ing long-context reasoning benchmark LongBench 454

v2 (Bai et al., 2024a) to evaluate long-input rea- 455

soning. Notably, as shown in Figure 3, the input 456

lengths in LongBench v2 are substantially longer 457

than those in our training set, mostly exceeding 458

not only the input lengths but also the total in- 459

put–output lengths. 460

As detailed in Table 2, our findings are inspir- 461

ing. Beyond improved performance in long-form 462
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Model
Writing-Oriented Training Evaluation

SFT RL Easy Hard Short Medium Long Overall

Qwen2.5-7B-Instruct ✗ ✗ 31.8 28.3 38.9 26.0 21.3 29.6
Qwen2.5-7B-WritingBench-SFT ✓ ✗ 27.6 27.7 35.0 25.1 20.4 27.6
Qwen2.5-7B-Writing-RL (Ours) ✓ PPO 35.8 29.3 42.1 25.7 26.5 31.8

Llama3.1-8B-Instruct ✗ ✗ 32.3 28.9 35.6 27.4 26.9 30.2
Llama3.1-8B-WritingBench-SFT ✓ ✗ 29.7 27.7 36.7 23.7 24.1 28.4
Llama3.1-8B-Writing-RL (Ours) ✓ PPO 31.2 33.8 42.2 29.3 24.1 32.8

Table 2: Evaluation results of the models trained with ACRL on LongBench v2, demonstrating the generalization
potential from long-output generation to long-input reasoning.
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Figure 3: Length distribution of our long-output RL
training dataset and long-input evaluation dataset.

generation, the writer models fine-tuned with our463

RL recipe also exhibit surprising generalization464

to long-context reasoning tasks with substantially465

longer inputs, while the SFT-trained counterparts466

show slight performance degradation in this regime.467

To further understand and utilize this interesting468

phenomenon, we give an intuitive explanation to469

the following research questions.470

Why does long-output training generalize to long-471

input reasoning? Generating high-quality long-472

form text inherently requires a deep and holistic473

understanding of the preceding context. Therefore,474

long-generation RL encourages LLMs to develop475

long-input understanding capabilities as a prerequi-476

site for producing coherent long-form outputs.477

Why does long-output RL generalize better than478

SFT? SFT forces the model to imitate and memo-479

rize the behaviors of the training samples, while RL480

aligns model behavior with outcome-based objec-481

tives via reward signals. Therefore, by empowering482

the model to enhance its underlying capabilities,483

RL generalizes better. This observation is also con-484

sistent with recent findings in other domains (Chu485

et al., 2025; Shen et al., 2025).486

How might these findings inform long-context487

training? The generalization from long-output gen-488

eration to long-input reasoning may suggest a mutu-489

Data Selection
Strategy

Sample
Num

Policy Model
Initial Score

Learning
Potential

WritingBench
Score

Baseline (w/o RL) – – – 83.71
Full (w/o Selection) 5k 84.20 3.64 85.64
Difficulty-prioritized 1.5k 77.61 8.18 86.40
Margin-aware (Ours) 1.5k 78.84 9.16 87.02

Table 3: Comparison of different data selection strate-
gies.

ally beneficial relationship between long-input and 490

long-output training. Integrating both perspectives 491

may lead to more effective long-context training 492

strategies, and we leave the systematic exploration 493

of this promising approach to future work. 494

6 Discussion 495

6.1 Analysis on Data Selection Strategy 496

Our Margin-aware Data Selection strategy aims 497

to prioritize training samples with greater room 498

for improvement. Unlike prior work that employs 499

single-model difficulty estimates (Shi et al., 2025; 500

Bae et al., 2025), our method measures the learning 501

potential of each sample using the performance 502

gap between the policy model and other competent 503

LLMs, thereby amplifying sample-wise learning 504

potential. 505

To validate this approach, we conduct data se- 506

lection experiments on WritingBench (Wu et al., 507

2025b) Hard training dataset, training Qwen2.5-7B- 508

WritingBench-SFT model with high-quality refer- 509

ences generated by Qwen-plus (Yang et al., 2024). 510

We adopt WritingBench (Wu et al., 2025b) to 511

benchmark writing capabilities due to its broad 512

coverage and evaluation efficiency. As shown 513

in Table 3, the results indicate that our strategy 514

can boost learning efficiency by choosing sam- 515

ples with higher learning potential. Compared 516

to difficulty-prioritized approaches, our selected 517

samples are slightly less difficult—as reflected 518

by higher initial score measured with the policy 519

model—highlighting the effectiveness of using 520

7



learning potential rather than absolute difficulty521

for data selection.522

6.2 Analysis on Reward Design523

To provide effective rewards, we construct a reward524

mechanism based on pairwise comparison with525

high-quality references. To validate our reward de-526

sign, we compare our reward mechanism with the527

widely-adopted pointwise grading method (Zheng528

et al., 2023; Liu et al., 2025), which utilizes Judge529

LLM to provide a scalar rating representing re-530

sponse quality. We follow the experiment set-531

ting in Section 6.1. The results shown in Table 4532

demonstrate the superiority of our approach to pro-533

vide more discriminative rewards, incentivizing the534

model to further advance writing capabilities.535

6.3 Analysis on Reference Quality536

Under the Pairwise Comparison Reward Mecha-537

nism, the quality of references directly influences538

the difficulty for the policy model to obtain posi-539

tive rewards, thereby impacting training stability540

and final performance. To examine the effect of541

reference quality, we conduct training experiments542

using multiple static reference sets, each gener-543

ated by a different LLM, as well as a combined544

set consisting of the highest-quality references se-545

lected from all candidates. Specifically, we also546

include a reference set generated by the initial pol-547

icy model itself to serve as a baseline, denoted as548

Self-Generated.549

Reward Strategy Score

Baseline (w/o RL) 83.71
Pointwise 84.59

Pairwise (Ours) 87.02

Table 4: Comparison of
different reward designs.

Reference Quality Score

Self-Generated 86.80
Qwen-Plus 87.02

Deepseek R1 86.15
Best Reference 82.51

Table 5: Comparison of
different reference quality.

As shown in Table 5, the results demonstrate that550

reference quality plays a critical role in effective551

training. Specifically, when statically using rela-552

tively low-quality references (e.g., Self-Generated),553

the policy model initially receives sufficient pos-554

itive rewards to improve but quickly saturates,555

achieving near-perfect win rates without further556

progress. In contrast, overly high-quality refer-557

ences (e.g., Best Reference) suffer from the sparsity558

of positive rewards early in training, thereby reduc-559

ing learning efficiency and destabilizing optimiza-560

tion. These observations highlight a key limitation561

of static reference scheduling: it requires careful562

Curriculum WritingBench EQ-Bench LongBench-Write Average

Baseline (w/o RL) 83.71 70.02 92.22 81.98
None 86.82 71.78 90.83 83.15
Static 87.32 72.73 91.56 83.87

Dynamic (Ours) 87.23 73.19 93.06 84.49

Table 6: Comparison of different curriculum scheduling
approaches.

reference selection and fails to adapt to the evolv- 563

ing capability of the policy model during training. 564

6.4 Ablation on Curriculum Scheduling 565

Considering the importance of reference quality 566

and the disadvantages of fixed references as dis- 567

cussed in Section 6.3, we propose Dynamic Ref- 568

erence Scheduling which encourages the model 569

to surpass increasingly higher-quality references 570

as the model evolves. To demonstrate the effec- 571

tiveness of this scheduling approach, we ablate 572

the scheduling methods in RL training, including 573

mixed training without scheduling, static schedul- 574

ing and our proposed dynamic scheduling. As 575

shown in Table 3.3, the results demonstrate the 576

effectiveness of our approach. 577

Given the importance of reference quality and 578

the limitations of fixed references discussed in Sec- 579

tion 6.3, we propose Dynamic Reference Schedul- 580

ing, which encourages the model to progressively 581

surpass higher-quality references as it evolves. To 582

evaluate the effectiveness of this scheduling strat- 583

egy, we conduct an ablation study comparing three 584

RL training setups: mixed training without schedul- 585

ing (None), static scheduling which partitions the 586

training set into two subsets with references of dif- 587

ferent quality, and our proposed dynamic schedul- 588

ing. As shown in Table 3.3, the results confirm 589

the superiority of our approach. Furthermore, both 590

static and dynamic scheduling outperform the no- 591

curriculum baseline, demonstrating the effective- 592

ness of incorporating curriculum into the RL train- 593

ing process. 594

7 Conclusion 595

In this work, we propose an Adaptive Curricu- 596

lum Reinforcement Learning (ACRL) frame- 597

work, which consists of Margin-aware Data Selec- 598

tion, Pairwise Comparison Reward and Dynamic 599

Reference Scheduling. Our experiments demon- 600

strate its effectiveness on enhancing long-form writ- 601

ing capabilities and the performance gain success- 602

fully generalizes from long-output generation to 603

long-input reasoning, indicating a promising per- 604

spective for long-context training. 605
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Limitations606

Here we discuss several limitations of this work.607

To scale up model size. While the performance608

gain by training 7B-scale writer models with ACRL609

is relatively large, there remains considerable room610

for exploration at larger model scales. Prior re-611

search has shown that the underlying capability of612

the base model plays a crucial role in the effec-613

tiveness of RL (Gandhi et al., 2025). Therefore,614

applying ACRL to stronger models may lead to615

even greater performance improvements, as well616

as more pronounced generalization effects from617

long-output generation to long-input reasoning.618

To explore the zero phenomenon of RL. This619

work demonstrates that reinforcement learning,620

when applied to long-form generation, can elicit621

strong performance gains and even induce general-622

ization to long-input reasoning. While an intriguing623

research direction is to investigate this phenomenon624

from a more fundamental perspective by directly625

applying RL to base models without prior super-626

vised fine-tuning. Such a setup may offer clearer627

insight into whether RL alone is sufficient to induce628

strong long-form generation capabilities.629
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A Implementation and Training Settings 890

A.1 Implementation Details 891

In this section, we introduce the implementation 892

details of our proposed RL framework. 893

Margin-aware Data Selection. We use sev- 894

eral close-sourced LLMs to generate high-quality 895

references for further training, including Qwen- 896

plus (Yang et al., 2024), GPT-4o (Hurst et al., 897

2024), Claude 3.7 (Anthropic Team, 2025) and 898

Deepseek R1 (DeepSeek-AI et al., 2025). We set 899

the inference temperature to 0.1 for balanced diver- 900

sity and quality, and we remain other parameters to 901

the default setting. 902

In our pointwise grading process, we utilize the 903

state-of-the-art evaluation procedure proposed by 904

WritingBench (Wu et al., 2025b), which includes 905

generating sample-dependent evaluation criteria, 906

then uses a fine-tuned LLM to grade the answers 907

from multiple dimensions, finally averages the di- 908

mensional scores to give a scalar rating. We use 909

Qwen-Plus (Yang et al., 2024) to generate the eval- 910

uation dimensions and we use the same evaluation 911

prompt as WritingBench (Wu et al., 2025b) for the 912

Judge Model. 913

Evaluation Prompt Template

Evaluate the Response based on the Query
and criteria provided.

** Criteria **
“‘{criteria}“‘

** Query **
“‘{query}“‘

** Response **
“‘{response}“‘

Provide your evaluation based on the
criteria:

“‘{criteria}“‘

Provide reasons for each score, indi-
cating where and why any strengths or
deficiencies occur within the Response.

914
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Reference specific passages or elements
from the text to support your justification.
Ensure that each reason is concrete, with
explicit references to the text that aligns
with the criteria requirements.

Scoring Range: Assign an integer
score between 1 to 10

** Output format **
Return the results in the following JSON
format, Only output this JSON format and
nothing else:
“‘json
{{
"score": an integer score between 1 to 10,
"reason": "Specific and detailed justifica-
tion for the score using text elements."
}} “‘

915

Pairwise Comparison Reward Mechanism.916

We use the Qwen-Plus (Yang et al., 2024) model917

to judge the quality of the generated responses. The918

pairwise comparison prompts used in our experi-919

ment are adapted from (Zheng et al., 2023) and920

(Wu et al., 2025b).921

For the training samples in LongWriter (Bai922

et al., 2024b) dataset, we use the original evalu-923

ation dimensions and the prompt is as follows.924

Default Pairwise Comparison Prompt

Please act as an impartial judge and eval-
uate the quality of the responses provided
by two AI assistants to the user question
displayed below. You should choose the
assistant that follows the user’s instructions
and answers the user’s question better. Your
evaluation should consider factors such
as the helpfulness, relevance, accuracy,
depth, creativity, and level of detail of
their responses. Begin your evaluation by
comparing the two responses and provide
a short explanation. Avoid any position
biases and ensure that the order in which
the responses were presented does not
influence your decision. Do not allow the
length of the responses to influence your
evaluation. Do not favor certain names of
the assistants. Be as objective as possible.
After providing your explanation, output

925

your final verdict by strictly following this
format: "[[A]]" if assistant A is better,
"[[B]]" if assistant B is better, and "[[C]]"
for a tie. NOTE: If the response contains
severe repetition or redundancy, it should
be viewed as low quality score, losing the
comparison.

User Question
{question}

The Start of Assistant A’s Answer
{answer_a}
The End of Assistant A’s Answer

The Start of Assistant B’s Answer
{answer_b}
The End of Assistant B’s Answer

926

For the training samples in WritingBench (Wu 927

et al., 2025b) training dataset, we use the generated 928

criteria as the original paper recommends and the 929

prompt is as follows. 930

Criteria Pairwise Comparison Prompt

Please act as an impartial judge and evaluate
the quality of the responses provided by two
AI assistants to the user question displayed
below. You should choose the assistant that
follows the user’s instructions and answers
the user’s question better. Your evaluation
should consider the following dimensions.
criteria
Begin your evaluation by comparing
the two responses and provide a short
explanation. Avoid any position biases and
ensure that the order in which the responses
were presented does not influence your
decision. Do not allow the length of the
responses to influence your evaluation. Do
not favor certain names of the assistants.
Be as objective as possible. After providing
your explanation, output your final verdict
by strictly following this format: "[[A]]"
if assistant A is better, "[[B]]" if assistant
B is better, and "[[C]]" for a tie. NOTE:
If the response contains severe repetition
or redundancy, it should be viewed as low
quality score, losing the comparison.

931
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User Question
{question}

The Start of Assistant A’s Answer
{answer_a}
The End of Assistant A’s Answer

The Start of Assistant B’s Answer
{answer_b}
The End of Assistant B’s Answer

932

A.2 Training Parameters933

We display the key training parameters used in our934

training experiments. We adopt the effective rein-935

forcement training framework VeRL (Sheng et al.,936

2024) to train our models. In our experiment, we937

use the proximal policy optimization (PPO) (Schul-938

man et al., 2017) algorithm with generalized advan-939

tage estimation (GAE) as the advantage estimator.940

The training process is conducted using a batch941

size of 32 for training, with a maximum prompt942

length of 4096 tokens and response length capped943

at 10,000 tokens to accommodate long-form gen-944

eration tasks. We enable the parameter/optimizer945

offloading via Fully Sharded Data Parallel (FSDP)946

to support efficient multi-GPU training and the947

training is conducted on 8x A100 GPUs. we use948

dynamic batch sizing and a low learning rate (1e-949

6) with a warm-up ratio of 0.4 to train the actor950

model, while the critic adopts a higher learning951

rate (1e-5) with a warm-up ratio of 0.05. We utilize952

a rollout strategy based on the vLLM engine with a953

tensor model parallel size of 2. The KL divergence954

penalty is set to a modest coefficient of 0.001. We955

train each model for about 400 steps and evaluate956

the checkpoints on the validation set each 50 steps.957

B Benchmarks and Evaluation Methods958

In this section, we introduce the benchmarks and959

evaluation prompt templates used in our experi-960

ments.961

LongBench-Write LongBench-Write (Bai et al.,962

2024b) is designed to evaluate the LLM long-form963

generation abilities, which focuses on generating964

coherent outputs exceeding 10000 words, address-965

ing challenges in maintaining consistency and qual-966

ity over extended text. Key evaluation metrics in-967

clude coherence, fluency and topic relevance. The968

evaluation prompt template used is as follows:969

Evaluation Prompt Template

You are an expert in evaluating text quality.
Please evaluate the quality of an AI assis-
tant’s response to a user’s writing request.
Be as strict as possible.
You need to evaluate across the following
six dimensions, with scores ranging from
1 to 5. The scoring criteria from 5 to 1 for
each dimension are as follows:
1. Relevance: From content highly relevant
and fully applicable to the user’s request to
completely irrelevant or inapplicable.
2. Accuracy: From content completely ac-
curate with no factual errors or misleading
information to content with numerous errors
and highly misleading.
3. Coherence: From clear structure with
smooth logical connections to disorganized
structure with no coherence.
4. Clarity: From clear language, rich in
detail, and easy to understand to confusing
expression with minimal details.
5. Breadth and Depth: From both broad
and deep content with a lot of information
to seriously lacking breadth and depth with
minimal information.
6. Reading Experience: From excellent
reading experience, engaging and easy to
understand content to very poor reading ex-
perience, boring and hard to understand con-
tent.
Please evaluate the quality of the following
response to a user’s request according to the
above requirements.
<User Request>
$INST$
</User Request>
<Response>
$RESPONSE$
</Response>
Please evaluate the quality of the response.
You must first provide a brief analysis of
its quality, then give a comprehensive anal-
ysis with scores for each dimension. The
output must strictly follow the JSON for-
mat: "Analysis": ..., "Relevance": ..., "Ac-
curacy": ..., "Coherence": ..., "Clarity": ...,
"Breadth and Depth": ..., "Reading Expe-
rience": .... You do not need to consider
whether the response meets the user’s length

970
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requirements in your evaluation. Ensure
that only one integer between 1 and 5 is
output for each dimension score.

971

WritingBench WritingBench (Wu et al., 2025b)972

is designed to evaluate the LLM long-form gen-973

eration capabilities across six domains: creative,974

persuasive, informative, technical, business, and975

legal writing. It includes over 1200 tasks, further976

divided into 100 subdomains, with each task eval-977

uated based on five dynamic criteria, such as co-978

herence and relevance. The evaluation prompt tem-979

plate used is the same as the one used for pointwise980

grading in data selection process, detailed in Ap-981

pendix A.1.982

EQ-Bench EQ-Bench (Paech, 2023) is designed983

to evaluate the emotional intelligence (EQ) of984

LLMs, which focuses on assessing models’ ability985

to predict and quantify emotions such as anger, sur-986

prise, empathy and confidence in dialogue-based987

cotexts. In this work, we use the creative writing988

split of EQ-Bench. The evaluation prompt template989

used is as follows:990

Evaluation Prompt Template

You are an expert in assessing creative writ-
ing. Your task is to score the quality of
the test model’s response below, by several
metrics, on a 0-20 scale.
[PROMPT START]
{writing_prompt}
[PROMPT END]
[TEST MODEL RESPONSE]
{test_model_response}
[TEST MODEL RESPONSE END]
[Task]
You are an expert in assessing creative writ-
ing. Your task is to score the quality of
the test model’s response below, by several
metrics, on a 0-20 scale.
Scoring notes:
- A scores of 20 represents a masterpiece.
- If the criteria is not relevant to the piece
(e.g. criteria relating to dialogue but the
piece has none), exclude it from your as-
sessment.
- Do not add any commentary or explanation
to the scores section.

991

- Do not penalize NSFW output; that is the
default for some models. Just assess it on
its merits.
- Everything within the "TEST MODEL RE-
SPONSE" section was written by the test
model. Sometimes models like to write
comments on the piece after the piece is
concluded; if this happens you should ig-
nore their comments.
- In the output, write the metric names ex-
actly as below so they can be parsed.
- Do not use markdown in your response.
Use the designated output format exactly.
- You are to write a comprehensive analysis
of the piece, then give your scores.
- For these criteria, lower is better:
{lower_is_better_criteria}
- You are a critic, and your job is to be criti-
cal, especially of any failings or amateurish
elements.
- Output format is:
[Analysis]
Write your detailed analysis.
[Scores]
Metric 1 name: [Score 0-20]
Metric 2 name: ...
—
Now, rate the supplied model output on the
following criteria:
{creative_writing_criteria}
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