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Abstract

Recent advances in Large Language Models
(LLMs) have enabled strong performance in
long-form writing, yet existing supervised fine-
tuning (SFT) approaches suffer from limita-
tions such as data saturation and restricted
learning capacity bounded by teacher signals.
In this work, we present an Adaptive Curricu-
lum Reinforcement Learning (ACRL) frame-
work to advance long-form writing capabili-
ties beyond SFT. The framework consists of
three key components: Margin-aware Data Se-
lection strategy that prioritizes samples with
high learning potential, Pairwise Comparison
Reward mechanism that enhances reward dis-
criminability, and Dynamic Reference Schedul-
ing approach, which plays a particularly criti-
cal role by adaptively adjusting task difficulty
based on evolving model performance. Exper-
iments on 7B-scale writer models show that
our RL framework largely improves long-form
writing performance over strong SFT baselines.
Furthermore, we observe that models trained
with long-output RL generalize surprisingly
well to long-input reasoning tasks, potentially
offering a promising perspective for rethinking
long-context training.

1 Introduction

Recent years have witnessed the remarkable ad-
vance of Large Language Models (LLMs) (Ope-
nAl, 2023; DeepSeek-Al et al., 2025; Zhao et al.,
2023) to follow instructions and provide helpful
responses. Among their impressive capabilities,
long-form writing, which aims to generate long and
high-quality articles, has drawn increasing atten-
tion (Wu et al., 2025a; Bai et al., 2024b; Wu et al.,
2025b) due to its broad practical applications.
However, generating articles of both fulfilled
long length and satisfactory quality is non-trivial
for current LLMs. Previous research has identified
several challenges to employ LL.Ms for long-form
generation, including inherently limited output ceil-

ing (Bai et al., 2024b; Tu et al., 2025) and perfor-
mance degradation as output length grows (Wu
et al., 2025b; Tu et al., 2025). To address these
issues, recent efforts perform targeted Supervised
Fine-Tuning (SFT) on LLMs to extend their output
lengths, with long-generation datasets constructed
by iterative agent pipelines (Bai et al., 2024b; Quan
et al., 2024; Wu et al., 2025b) or instruction back-
translation (Pham et al., 2024; Wang et al., 2024).
Though effective, these approaches introduce heavy
burdens of dataset construction due to the broad
coverage of writing tasks and potential copyright
issues (Maini et al., 2024) when incorporating
human-written texts. Furthermore, training LLMs
to imitate the collected long-generation responses
inherently imposes a capability upper bound deter-
mined by teacher models or human experts, which
may cause data saturation and sample inefficiency.

Meanwhile, the recent success of outcome-based
Reinforcement Learning (RL) method (DeepSeek-
Aletal., 2025; Team et al., 2025; Yuan et al., 2025)
in reasoning-intensive areas reveals a promising di-
rection to advance model capabilities beyond super-
vised fine-tuning. Despite its potential, the practice
of online outcome-based RL on long-form writing
is relatively underexplored and therefore poses the
following challenges:

* Data Selection: Data quality and difficulty play
a critical role in eliciting model potential. How-
ever, the optimal approach for selecting data for
RL in long-form writing tasks remains unclear.

* Reward Design: Rule-based outcome re-
wards (DeepSeek-Al et al., 2025) cannot be di-
rectly applied to generative writing tasks. With-
out ground-truth labels, constructing an effec-
tive reward mechanism for long-form writing
poses a significant challenge.

* Curriculum Scheduling: Curriculum Learn-
ing (Bengio et al., 2009) is widely used to
progressively improve model performance, but
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Figure 1: Overall framework of Adaptive Curriculum Reinforcement Learning (ACRL). 1) Margin-aware
Data Selection: prioritizes samples with high learning potential; 2) Pairwise Comparison Reward: provides more
discriminative reward signals; 3) Dynamic Reference Scheduling: adaptively incentivizes the model to surpass

progressively stronger references.

static scheduling fails to adapt to the model’s
evolving competence, thereby reducing train-
ing effectiveness.

To tackle these challenges, our work proposes an
Adaptive Curriculum Reinforcement Learning
(ACRL) framework tailored for long-form writing,
as illustrated in Figure 1. Our framework begins
with Margin-aware Data Selection strategy which
leverages the quality differential between the pol-
icy model response and the highest-quality refer-
ence as a measure of learning potential, diverging
from the conventional difficulty-prioritized selec-
tion approach. Considering the limited discrimina-
tive capacity of pointwise scoring, we construct a
Pairwise Comparison Reward mechanism which
challenges the policy model to generate responses
of better quality than provided references to earn
positive rewards. To facilitate progressive model
enhancement, we propose a Dynamic Reference
Scheduling approach that assigns each query a set
of references with progressively increasing qual-
ity. The scheduling approach dynamically updates
the references per sample when the evolving pol-
icy model surpasses the current reference during
training. In this way, the dynamic curriculum ad-
justs sample-level task difficulty based on the cur-
rent model performance, encouraging the model
to consistently outperform a marginally superior
reference. The motivation behind is also aligned
with the insights from R1-like RL practices (Shi
et al., 2025; Bae et al., 2025) that samples neither

too easy nor too difficult help to achieve the best
learning efficiency.

To evaluate our ACRL framework, we conduct
continuous reinforcement training on top of super-
vised fine-tuned writer models. The results indi-
cate that our RL framework effectively boosts the
long-form writing capability, advancing the SOTA
performances of 7B-level writer models. Besides
the improvement in long-form generation, we also
observe an interesting generalization phenomenon:
our RL-trained writer model (average input length
< 1k) shows a surprising improvement in long-text
reasoning tasks (input length: 8k—2M), in contrast
to the performance degradation of the SFT-trained
model. The results may suggest a novel perspec-
tive on long-context training that training on /ong-
output tasks may also enhance their reasoning abil-
ities on long inputs, thereby offering training in-
sights into the relationship between long-context
understanding and generation.

In summary, the contributions of our work are:

* We propose an Adaptive Curriculum Rein-
forcement Learning framework for long-form
writing, which integrates three key compo-
nents: Margin-aware Data Selection, Pairwise
Comparison Reward, and Dynamic Reference
Scheduling.

Particularly, we propose Dynamic Reference
Scheduling, which adaptively adjusts sample-
level task difficulty based on the model’s evolv-
ing performance. This dynamic curriculum en-



courages the model to continually outperform
progressively stronger references.

* Our RL-trained 7B-scale writer model achieves
state-of-the-art performance, demonstrating the
effectiveness of our framework. Furthermore,
we observe inspiring generalization from long-
output generation to long-input reasoning, re-
vealing a novel benefit of long-form RL train-
ing for long-context understanding.

2 Related Work

Training Methods for Long-form Writing. Re-
cent efforts to advance long-form writing capabili-
ties (Bai et al., 2024b; Wu et al., 2025b) mainly fo-
cuses on constructing long-generation post-training
datasets for fine-tuning. Main approaches include
teacher model distillation (Wu et al., 2025b), it-
erative agent pipelines for extended output (Bai
et al., 2024b; Tu et al., 2025; Quan et al., 2024)
and instruction back-translation (Pham et al., 2024,
Wang et al., 2024). However, the application of
online reinforcement learning methods (Schulman
et al., 2017; Shao et al., 2024) are relatively under-
explored, hindering further improvement.

Long-form Writing Evaluation. Long-form writ-
ing (Wu et al., 2025a) requires LLMs to write long-
form articles, posing challenges for evaluation due
to the lack of ground-truths. Researchers estab-
lish writing benchmarks (Wu et al., 2025b; Que
et al., 2024), with proprietary models (Bai et al.,
2024b; Paech, 2023; Liu et al., 2024) or fine-tuned
LLMs (Wu et al., 2025b; Ke et al., 2024) to serve as
judges. However, there exists several bias of includ-
ing position bias and self-enhancement bias (Zheng
et al., 2023), challenging the reliability of LLM-as-
Judge evaluation methods.

Curriculum Learning. Reinforcement Learning
methods (Schulman et al., 2017; Shao et al., 2024,
DeepSeek-Al et al., 2025) have become a critical
step to elicit LLM capabilities. To boost efficiency,
Curriculum Learning (Bengio et al., 2009) has been
widely adopted in RL practices (Team et al., 2025;
Xie et al., 2025; Wen et al., 2025), including static
difficulty-based scheduling (Luo et al., 2025; Song
et al., 2025) and dynamic data selection (Bae et al.,
2025; Shi et al., 2025). However, these methods use
rule-based correctness as a measure for difficulty
and perform sample selection, which increases roll-
outs and may cause imbalanced learning across
samples.

3 Adaptive Curriculum RL

In this work, we propose ACRL (Adaptive Cur-
riculum Reinforcement Learning), an adaptive re-
inforcement learning framework aimed at further
improving long-form writing capabilities after in-
struction fine-tuning. The framework comprises
three key components: Margin-aware Data Selec-
tion strategy, Pairwise Comparison Reward mecha-
nism and Dynamic Reference Scheduling approach.
By integrating outcome-based RL into long-form
writing tasks, our approach improves model writing
capabilities through more effective sample selec-
tion, reward design, and learning scheduling. We
will describe the components in detail respectively.

3.1 Margin-aware Data Selection

Previous data selection approaches typically take
question difficulty as a key criteria, measured by
the accuracy of the policy model (Shi et al., 2025;
Bae et al., 2025), simplistic indicators (Cheng
et al., 2021; Yang et al., 2025) like solution step
counts or simple heuristics grounded in human intu-
ition (Hendrycks et al., 2021). However, we argue
that questions favored by difficulty-prioritized data
selection algorithm may not be the most suitable
for effective reinforcement learning.

To validate this assumption, we propose Margin-
aware Data Selection, which uses the performance
gap between the policy model and the highest-
quality reference as a measure of learning poten-
tial. Our intuition is simple: a question suitable for
learning is a question with sufficient room for per-
formance improvement. Specifically, the procedure
is detailed as follows.

Generation with Multiple LLMs. Instead of
relying on a single model as the difficulty estima-
tor (Shi et al., 2025; Bae et al., 2025), we leverage
a set of competitive LLMs C = {m, My, M>, ...},
including the policy model, to generate diverse can-
didate responses for each writing instruction.
Multi-dimensional Grading. Each generated re-
sponse 7; from model M; € C is graded using a
multi-dimensional pointwise LLM-as-a-Judge ap-
proach (Liu et al., 2024; Wu et al., 2025b), with
averaged quality score denoted as s; per response.
Data Selection on Learning Potential. To pri-
oritize samples from which the policy model can
benefit most, we define the model-grounded learn-
ing potential p as the quality gap between the best
competitor and the policy model:

P (o=



where s, is the score of the policy model’s re-
sponse. A higher p indicates greater headroom
for improvement. To filter out noisy instructions,
we first discard samples where all the competitors
produce under-performing responses, as such in-
structions are often overly difficult or suffer from
quality issues themselves. After filtering, we rank
the remaining samples by their learning potential
p, and retain the top-k examples to construct the
training set.

3.2 Pairwise Comparison Reward Mechanism

Reward function is a critical component to guide
policy optimization in RL practice. While rule-
based outcome reward (DeepSeek-Al et al., 2025;
Team et al., 2025) has been proven to be remarkably
effective in eliciting long-CoT (Wei et al., 2022)
reasoning in reasoning-intensive tasks, it can not be
directly applied to long-form writing tasks due to
the lack of ground-truths and its subjective nature,
posing challenges to reward design.

Recent efforts utilize LLM-as-a-Judge (Zheng
et al., 2023; Wu et al., 2025b) to measure the qual-
ity of model-generated responses, achieving high
agreement with human judges. There exists two
evaluation approaches including pointwise grading
and pairwise comparison. Though widely adopted
in writing evaluation due to its simplicity, point-
wise grading exhibits limited discriminative capa-
bilities and relatively high variance. On the con-
trary, pairwise comparison compares the response
with a high-quality reference, capturing the subtle
differences and potential direction of improvement.
By providing more discriminative reward signals,
pairwise grading incentivizes the policy model to
generate better response and defeat high-quality
references for positive rewards. Therefore, our re-
ward design is as follows:

1 if Judge(ref,x) = x > ref
Tquality(x) =405
0  if Judge(ref,x) = x < ref

if Judge(ref,x) = x = ref

where rquality (x) denotes the reward for a generated
response x; ref represents the high-quality refer-
ence response; and Judge(ref, x) is the evaluation
function performed by the LLM-based judge to
compare x with ref.

Furthermore, LLM judges are known to exhibit
position bias (Zheng et al., 2023) in pairwise com-
parisons, systematically favoring the first response.
To impose additional learning pressure, we delib-
erately place the model-generated response in the
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Figure 2: Sample-wise asynchronous learning schedule
during training enabled by ACRL. Each line represents a
sample, where an upward step indicates LLM surpassing
its current reference and advancing to a better one.

second position, thereby introducing positional dis-
advantage in training. This avoids the need for
position-swapped comparisons and halves the eval-
uation cost, while encouraging the model to gener-
ate stronger outputs from a less favorable position.

3.3 Dynamic Reference Scheduling

Curriculum Learning (Bengio et al., 2009) sched-
ules progressive task difficulty for better learn-
ing efficiency. Previous efforts utilize offline-
calculated difficulty for scheduling (Shi et al., 2025;
Song et al., 2025) or introducing additional rollouts
during training for adaptive sample selection (Bae
et al., 2025; Yu et al., 2025). Though effective in
reasoning-centered RL, these methods suffer from
either non-adaptive difficulty estimates or increased
inference overhead.

Faced with the disadvantages of insufficient
adaptivity of current curriculum scheduling, we
propose a Dynamic Reference Scheduling approach
that encourages the policy model to sequentially
outperform references of ascending quality. With
the algorithm detailed in Algorithm 1, our frame-
work introduces a more competitive reference as
the policy model beats the current one, enabling
asynchronous per-sample difficulty updates and
dynamic adaptivity with the evolving model capa-
bility.

Pre-training: Data Preparation. Given a set of
writing instructions W, we first apply the Margin-
aware Data Selection strategy as elaborated in
Sec 3.1, obtaining multiple competitive references
R = {rg,r1,7r2,...} and their corresponding
LLM-judged quality scores S = {sr, s1,82,...}
for each instruction. The references are then sorted
in ascending order of quality to produce a stage-



Algorithm 1 Dynamic Reference Scheduling for Long-form Writing

1: Pre-processing: For each instruction w € W, apply Margin-aware Data Selection (Section 3.1) to obtain a stage-wise

(w)

reference list R™) = {r{") »(*) r{*) _} ordered by ascending quality.

: Initialize reference pointer ¢, <— 1 for allw € W
: while training not finished do
Sample batch B = {wy }£_; from W
for all wy, € Bdo
TR — R(w’“)[twk}
Generate response gi < mg(wg)
Compute reward Ry, < Judge(rk, gk)
10: end for
11:  Update policy g +— A(mo, {(w, g, Ri) }£-1)
12: for all w, € B such that R, = 1 do

R A

13: if t,,, <|R(“)|then
14: twk — twk +1
15: end if

16: end for

17: end while

: Input: Instruction set W; reference lists {R(w> }wew; policy model 7p; RL updater A (e.g., PPO); batch size B.

> current reference index

> current reference

> 1 (win), 0.5 (tie), O (loss)

> reference surpassed

> promote to next stronger reference

wise reference list Ry = {rq1,7¢2, . .. }. To main-
tain sufficient positive feedback early in training,
we deliberately include the response from the ini-
tial policy model 7 in the reference set, as the other
reference-generation LLMs are generally larger in
size and more competent.

In-training: Dynamic Scheduling. At the start
of training, each instruction is initialized with the
lowest-quality reference r41, which is comparable
to the initial policy model’s response. As the model
evolves during training, the model gradually gener-
ates higher-quality responses during rollouts and re-
ceives positive rewards in some of the LLM-judged
pairwise comparisons. Subsequently, the defeated
references r; are replaced with marginally stronger
ones ;41 while the undefeated references are re-
tained, progressively increasing the challenge with-
out overwhelming the model, in alignment with
the model’s evolving capability. This dynamic and
adaptive reference update mechanism establishes
an asynchronous learning schedule for each writing
instruction and effectively incentivize the model to
consistently perform better. As shown in Figure 2,
our approach enables sample-wise asynchronous
scheduling to dynamically adapt task difficulty to
model capability.

4 Experiments

To demonstrate the effectiveness of ACRL, we con-
duct experiments on writing-oriented fine-tuned
LLMs to see whether ACRL can further advance
long-form writing capabilities beyond supervised
fine-tuning.

4.1 Datasets

We use two carefully-constructed generative writ-
ing datasets primarily designed for supervised fine-
tuning, including LongWriter training set (Bai
et al., 2024b) and WritingBench training set (Wu
et al., 2025b). As detailed in Section 3.1, we per-
form the Margin-aware Data Selection procedure
on these two datasets respectively. Specifically,
we first generate references for each writing in-
struction with the initial policy model and four
competent larger-size LLMs to construct competi-
tive references, including Qwen-Plus (Yang et al.,
2024), GPT-40 (Hurst et al., 2024), Claude-3.7 (An-
thropic Team, 2025) and Deepseek R1 (DeepSeek-
Al et al., 2025). Then, we utilize a fine-tuned judge
model (Wu et al., 2025b), which is optimized for
evaluating long-form writing responses and reaches
high agreement with human judges, to grade the
responses in multiple dimensions. Finally, after
the selection process, we obtain 1.5k chosen sam-
ples each dataset for further reinforcement learning.
Each sample contains a writing instruction and ref-
erences ordered by ascending quality.

4.2 Training Setup

To fully realize the effectiveness of reinforcement
learning, we use two writing-expert LLMs as the
base models for RL, which are primarily fine-tuned
with the full WritingBench training set, denoted as
Owen2.5-7B-WritingBench-SFT and Llama3. 1-8B-
WritingBench-SFT respectively.

With the proposed ACRL, we use the PPO al-
gorithm (Schulman et al., 2017) to optimize the
two selected based models for long-form writing.
During the training process, we adopt Qwen-Plus



‘ Writing-Oriented Training ‘

Long-form Writing Evaluation

Model
‘ SFT RL ‘ WritingBench  EQ-Bench  LongBench-Write | Average

Qwen-Plus - - 77.62 76.78 95.42 83.27
GPT-40 - - 83.42 80.45 92.92 85.60
Suri-7B 4 X 49.70 18.44 33.44 33.86
Longwriter-9B 4 DPO 79.10 44.15 80.83 68.03
Qwen2.5-7B-Instruct X X 73.26 49.59 85.03 69.29
Qwen2.5-7B-WritingBench-SFT (12k) | v X 83.71 70.02 92.22 81.98
Qwen2.5-7B-WritingBench-SFT (24k) | v X 83.71 69.55 92.57 81.94
Qwen2.5-7B-Writing-RL (Ours) 4 PPO 87.23 73.19 93.06 84.49
Llama3.1-8B-Instruct X X 66.40 48.40 73.89 62.89
Llama3.1-8B-WritingBench-SFT 4 X 83.98 78.11 90.66 84.25
Llama3.1-8B-Writing-RL (Ours) v PPO 87.10 82.73 92.36 87.40

Table 1: Evaluation results of the models trained with ACRL, with the highest score in each model family bold.
Notably, ACRL-trained models perform the best within their model family, on par with the proprietary models.

to serve as pairwise-comparison judge, providing
rewards for policy optimization. The resulting mod-
els are denoted as Qwen2.5-7B-Writing-RL and
Llama3.1-8B-Writing-RL respectively. More im-
plementation details and training parameters can
be found in Appendix A.

4.3 Benchmarks and Baselines

To comprehensively evaluate long-form writing
capabilities of LLMs, we use three established
benchmarks including WritingBench (Wu et al.,
2025b), LongBench-Write (Bai et al., 2024b), and
EQ-Bench creative writing split (Paech, 2023). The
benchmarks are of broad coverage and use strong
judge LLMs to evaluate the quality of generated
responses. Note that the judge LLMs adopted for
evaluation are diverse and different from the re-
warding judge LLM used in training, mitigating
the risk of overfitting particular judge preferences
to ensure a fair evaluation.

Our selected baselines include strong proprietary
models (Yang et al., 2024; Hurst et al., 2024),
instruction fine-tuned LLMs (Yang et al., 2024;
Dubey et al., 2024), and writing-oriented fine-tuned
LLMs (Wu et al., 2025b; Bai et al., 2024b; Pham
et al., 2024). More evaluation details can be found
in Appendix B.

4.4 Results

As detailed in Table 1, the evaluation results
demonstrate that models trained with ACRL out-
perform other models across all the three bench-
marks.  Specifically, Llama3.1-8B-Writing-RL
(Ours) achieves the highest average score of 87.14,
with Qwen2.5-7B-Writing-RL (Ours) follows with
an average of 84.49, both showing strong perfor-
mance in 10B-level. Notably, our trained models

exhibit long-form writing capabilities that match
or even surpass those of proprietary models, posi-
tioning them as strong open-source alternatives for
long-form generation tasks.

Meanwhile, we observe distinct performance
trends when applying RL and SFT to relatively
strong models. Despite utilizing identically con-
structed datasets from the same expert model and
agent pipeline, the fine-tuned model on 24k sam-
ples exhibits performance equivalent to, or slightly
below, that of the variant trained with 12k sam-
ples. This observation potentially underscores the
phenomenon of data saturation, where beyond a
certain capability threshold, simply increasing data
volume fails to enhance model performance. In
contrast, models continuously trained by reinforce-
ment learning, such as Llama3.1-8B-Writing-RL
(Ours) compared to Llama3.1-8B-WritingBench-
SFT within the same model family, demonstrate
consistent performance improvements and thereby
indicates the promising potential of RL to further
advance model capabilities where SFT encounters
limitations.

5 Generalization from Output to Input

To understand the influence on long-context capa-
bilities of long-output RL, we adopt the challeng-
ing long-context reasoning benchmark LongBench
v2 (Bai et al., 2024a) to evaluate long-input rea-
soning. Notably, as shown in Figure 3, the input
lengths in LongBench v2 are substantially longer
than those in our training set, mostly exceeding
not only the input lengths but also the total in-
put—output lengths.

As detailed in Table 2, our findings are inspir-
ing. Beyond improved performance in long-form



Model ‘ Writing-Oriented Training ‘ Evaluation
‘ SFT RL ‘ Easy Hard | Short Medium Long | Overall
Qwen?2.5-7B-Instruct X X 31.8 283 | 389 26.0 21.3 29.6
Qwen2.5-7B-WritingBench-SFT | v X 276 277 | 350 25.1 20.4 27.6
Qwen2.5-7B-Writing-RL (Ours) | v/ PPO 358 293 | 421 25.7 26.5 31.8
Llama3.1-8B-Instruct X X 323 289 | 35.6 274 26.9 30.2
Llama3.1-8B-WritingBench-SFT | v/ X 29.7  27.7 | 36.7 23.7 24.1 284
Llama3.1-8B-Writing-RL (Ours) | v/ PPO 312 338 | 422 29.3 24.1 32.8

Table 2: Evaluation results of the models trained with ACRL on LongBench v2, demonstrating the generalization
potential from long-output generation to long-input reasoning.
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Figure 3: Length distribution of our long-output RL
training dataset and long-input evaluation dataset.

generation, the writer models fine-tuned with our
RL recipe also exhibit surprising generalization
to long-context reasoning tasks with substantially
longer inputs, while the SFT-trained counterparts
show slight performance degradation in this regime.
To further understand and utilize this interesting
phenomenon, we give an intuitive explanation to
the following research questions.

Why does long-output training generalize to long-
input reasoning? Generating high-quality long-
form text inherently requires a deep and holistic
understanding of the preceding context. Therefore,
long-generation RL encourages LLMs to develop
long-input understanding capabilities as a prerequi-
site for producing coherent long-form outputs.
Why does long-output RL generalize better than
SFT? SFT forces the model to imitate and memo-
rize the behaviors of the training samples, while RL
aligns model behavior with outcome-based objec-
tives via reward signals. Therefore, by empowering
the model to enhance its underlying capabilities,
RL generalizes better. This observation is also con-
sistent with recent findings in other domains (Chu
et al., 2025; Shen et al., 2025).

How might these findings inform long-context
training? The generalization from long-output gen-
eration to long-input reasoning may suggest a mutu-

Data Selection Sample Policy Model Learning | WritingBench

Strategy Num Initial Score  Potential Score
Baseline (w/o RL) - - - 83.71
Full (w/o Selection) Sk 84.20 3.64 85.64
Difficulty-prioritized 1.5k 77.61 8.18 86.40
Margin-aware (Ours) 1.5k 78.84 9.16 87.02

Table 3: Comparison of different data selection strate-
gies.

ally beneficial relationship between long-input and
long-output training. Integrating both perspectives
may lead to more effective long-context training
strategies, and we leave the systematic exploration
of this promising approach to future work.

6 Discussion

6.1 Analysis on Data Selection Strategy

Our Margin-aware Data Selection strategy aims
to prioritize training samples with greater room
for improvement. Unlike prior work that employs
single-model difficulty estimates (Shi et al., 2025;
Bae et al., 2025), our method measures the learning
potential of each sample using the performance
gap between the policy model and other competent
LLMs, thereby amplifying sample-wise learning
potential.

To validate this approach, we conduct data se-
lection experiments on WritingBench (Wu et al.,
2025b) Hard training dataset, training Qwen2.5-7B-
WritingBench-SFT model with high-quality refer-
ences generated by Owen-plus (Yang et al., 2024).
We adopt WritingBench (Wu et al., 2025b) to
benchmark writing capabilities due to its broad
coverage and evaluation efficiency. As shown
in Table 3, the results indicate that our strategy
can boost learning efficiency by choosing sam-
ples with higher learning potential. Compared
to difficulty-prioritized approaches, our selected
samples are slightly less difficult—as reflected
by higher initial score measured with the policy
model—highlighting the effectiveness of using



learning potential rather than absolute difficulty
for data selection.

6.2 Analysis on Reward Design

To provide effective rewards, we construct a reward
mechanism based on pairwise comparison with
high-quality references. To validate our reward de-
sign, we compare our reward mechanism with the
widely-adopted pointwise grading method (Zheng
et al., 2023; Liu et al., 2025), which utilizes Judge
LLM to provide a scalar rating representing re-
sponse quality. We follow the experiment set-
ting in Section 6.1. The results shown in Table 4
demonstrate the superiority of our approach to pro-
vide more discriminative rewards, incentivizing the
model to further advance writing capabilities.

6.3 Analysis on Reference Quality

Under the Pairwise Comparison Reward Mecha-
nism, the quality of references directly influences
the difficulty for the policy model to obtain posi-
tive rewards, thereby impacting training stability
and final performance. To examine the effect of
reference quality, we conduct training experiments
using multiple static reference sets, each gener-
ated by a different LLM, as well as a combined
set consisting of the highest-quality references se-
lected from all candidates. Specifically, we also
include a reference set generated by the initial pol-
icy model itself to serve as a baseline, denoted as
Self-Generated.

Reward Strategy ‘ Score Reference Quality ‘ Score

Baseline (w/o RL) | 83.71 Self-Generated 86.80

. Qwen-Plus 87.02
Pointwise 84.59

Pairwise (Ours) | 87.02 Deepseek RI 1 86.15

. Best Reference | 82.51

Table 4: Comparison of

different reward designs. Table 5: Comparison of

different reference quality.
As shown in Table 5, the results demonstrate that
reference quality plays a critical role in effective
training. Specifically, when statically using rela-
tively low-quality references (e.g., Self-Generated),
the policy model initially receives sufficient pos-
itive rewards to improve but quickly saturates,
achieving near-perfect win rates without further
progress. In contrast, overly high-quality refer-
ences (e.g., Best Reference) suffer from the sparsity
of positive rewards early in training, thereby reduc-
ing learning efficiency and destabilizing optimiza-
tion. These observations highlight a key limitation
of static reference scheduling: it requires careful

Curriculum ‘ WritingBench EQ-Bench  LongBench-Write ‘ Average

Baseline (w/o RL) 83.71 70.02 9222 81.98
None 86.82 71.78 90.83 83.15

Static 87.32 72.73 91.56 83.87
Dynamic (Ours) 87.23 73.19 93.06 84.49

Table 6: Comparison of different curriculum scheduling
approaches.

reference selection and fails to adapt to the evolv-
ing capability of the policy model during training.

6.4 Ablation on Curriculum Scheduling

Considering the importance of reference quality
and the disadvantages of fixed references as dis-
cussed in Section 6.3, we propose Dynamic Ref-
erence Scheduling which encourages the model
to surpass increasingly higher-quality references
as the model evolves. To demonstrate the effec-
tiveness of this scheduling approach, we ablate
the scheduling methods in RL training, including
mixed training without scheduling, static schedul-
ing and our proposed dynamic scheduling. As
shown in Table 3.3, the results demonstrate the
effectiveness of our approach.

Given the importance of reference quality and
the limitations of fixed references discussed in Sec-
tion 6.3, we propose Dynamic Reference Schedul-
ing, which encourages the model to progressively
surpass higher-quality references as it evolves. To
evaluate the effectiveness of this scheduling strat-
egy, we conduct an ablation study comparing three
RL training setups: mixed training without schedul-
ing (None), static scheduling which partitions the
training set into two subsets with references of dif-
ferent quality, and our proposed dynamic schedul-
ing. As shown in Table 3.3, the results confirm
the superiority of our approach. Furthermore, both
static and dynamic scheduling outperform the no-
curriculum baseline, demonstrating the effective-
ness of incorporating curriculum into the RL train-
ing process.

7 Conclusion

In this work, we propose an Adaptive Curricu-
lum Reinforcement Learning (ACRL) frame-
work, which consists of Margin-aware Data Selec-
tion, Pairwise Comparison Reward and Dynamic
Reference Scheduling. Our experiments demon-
strate its effectiveness on enhancing long-form writ-
ing capabilities and the performance gain success-
fully generalizes from long-output generation to
long-input reasoning, indicating a promising per-
spective for long-context training.



Limitations

Here we discuss several limitations of this work.
To scale up model size. While the performance
gain by training 7B-scale writer models with ACRL
is relatively large, there remains considerable room
for exploration at larger model scales. Prior re-
search has shown that the underlying capability of
the base model plays a crucial role in the effec-
tiveness of RL (Gandhi et al., 2025). Therefore,
applying ACRL to stronger models may lead to
even greater performance improvements, as well
as more pronounced generalization effects from
long-output generation to long-input reasoning.
To explore the zero phenomenon of RL. This
work demonstrates that reinforcement learning,
when applied to long-form generation, can elicit
strong performance gains and even induce general-
ization to long-input reasoning. While an intriguing
research direction is to investigate this phenomenon
from a more fundamental perspective by directly
applying RL to base models without prior super-
vised fine-tuning. Such a setup may offer clearer
insight into whether RL alone is sufficient to induce
strong long-form generation capabilities.
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A Implementation and Training Settings

A.1 Implementation Details

In this section, we introduce the implementation
details of our proposed RL framework.
Margin-aware Data Selection. We use sev-
eral close-sourced LLMs to generate high-quality
references for further training, including Qwen-
plus (Yang et al., 2024), GPT-40 (Hurst et al.,
2024), Claude 3.7 (Anthropic Team, 2025) and
Deepseek R1 (DeepSeek-Al et al., 2025). We set
the inference temperature to 0.1 for balanced diver-
sity and quality, and we remain other parameters to
the default setting.

In our pointwise grading process, we utilize the
state-of-the-art evaluation procedure proposed by
WritingBench (Wu et al., 2025b), which includes
generating sample-dependent evaluation criteria,
then uses a fine-tuned LLM to grade the answers
from multiple dimensions, finally averages the di-
mensional scores to give a scalar rating. We use
Qwen-Plus (Yang et al., 2024) to generate the eval-
uation dimensions and we use the same evaluation
prompt as WritingBench (Wu et al., 2025b) for the
Judge Model.

Evaluation Prompt Template

Evaluate the Response based on the Query
and criteria provided.

** Criteria **
““{criteria}“
sksk Query sk

“‘{query}“c

** Response **
““{response }““*

Provide your evaluation based on the
criteria:

313 1313

{criteria}

Provide reasons for each score, indi-
cating where and why any strengths or
deficiencies occur within the Response.

~
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Reference specific passages or elements
from the text to support your justification.
Ensure that each reason is concrete, with
explicit references to the text that aligns
with the criteria requirements.

Scoring Range:  Assign an
score between 1 to 10

integer

*% Output format **

Return the results in the following JSON
format, Only output this JSON format and
nothing else:

“‘json

{{

"score": an integer score between 1 to 10,
"reason": "Specific and detailed justifica-
tion for the score using text elements."

1

\

Pairwise Comparison Reward Mechanism.

We use the Qwen-Plus (Yang et al., 2024) model
to judge the quality of the generated responses. The
pairwise comparison prompts used in our experi-
ment are adapted from (Zheng et al., 2023) and
(Wu et al., 2025b).

For the training samples in LongWriter (Bai
et al., 2024b) dataset, we use the original evalu-
ation dimensions and the prompt is as follows.

Default Pairwise Comparison Prompt

Please act as an impartial judge and eval-
uate the quality of the responses provided
by two Al assistants to the user question
displayed below. You should choose the
assistant that follows the user’s instructions
and answers the user’s question better. Your
evaluation should consider factors such
as the helpfulness, relevance, accuracy,
depth, creativity, and level of detail of
their responses. Begin your evaluation by
comparing the two responses and provide
a short explanation. Avoid any position
biases and ensure that the order in which
the responses were presented does not
influence your decision. Do not allow the
length of the responses to influence your
evaluation. Do not favor certain names of
the assistants. Be as objective as possible.
After providing your explanation, output

your final verdict by strictly following this
format: "[[A]]" if assistant A is better,
"[[B]]" if assistant B is better, and "[[C]]"
for a tie. NOTE: If the response contains
severe repetition or redundancy, it should
be viewed as low quality score, losing the
comparison.

User Question
{question}

The Start of Assistant A’s Answer
{answer_a}
The End of Assistant A’s Answer

The Start of Assistant B’s Answer
{answer_b}
The End of Assistant B’s Answer

For the training samples in WritingBench (Wu
et al., 2025b) training dataset, we use the generated
criteria as the original paper recommends and the
prompt is as follows.

Criteria Pairwise Comparison Prompt

Please act as an impartial judge and evaluate
the quality of the responses provided by two
Al assistants to the user question displayed
below. You should choose the assistant that
follows the user’s instructions and answers
the user’s question better. Your evaluation
should consider the following dimensions.

criteria

Begin your evaluation by comparing
the two responses and provide a short
explanation. Avoid any position biases and
ensure that the order in which the responses
were presented does not influence your
decision. Do not allow the length of the
responses to influence your evaluation. Do
not favor certain names of the assistants.
Be as objective as possible. After providing
your explanation, output your final verdict
by strictly following this format: "[[A]]"
if assistant A is better, "[[B]]" if assistant
B is better, and "[[C]]" for a tie. NOTE:
If the response contains severe repetition
or redundancy, it should be viewed as low
quality score, losing the comparison.
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User Question
{question}

The Start of Assistant A’s Answer
{answer_a}
The End of Assistant A’s Answer

The Start of Assistant B’s Answer
{answer_b}
The End of Assistant B’s Answer

. J

A.2 Training Parameters

We display the key training parameters used in our
training experiments. We adopt the effective rein-
forcement training framework VeRL (Sheng et al.,
2024) to train our models. In our experiment, we
use the proximal policy optimization (PPO) (Schul-
man et al., 2017) algorithm with generalized advan-
tage estimation (GAE) as the advantage estimator.
The training process is conducted using a batch
size of 32 for training, with a maximum prompt
length of 4096 tokens and response length capped
at 10,000 tokens to accommodate long-form gen-
eration tasks. We enable the parameter/optimizer
offloading via Fully Sharded Data Parallel (FSDP)
to support efficient multi-GPU training and the
training is conducted on 8x A100 GPUs. we use
dynamic batch sizing and a low learning rate (le-
6) with a warm-up ratio of 0.4 to train the actor
model, while the critic adopts a higher learning
rate (1e-5) with a warm-up ratio of 0.05. We utilize
a rollout strategy based on the vLLM engine with a
tensor model parallel size of 2. The KL divergence
penalty is set to a modest coefficient of 0.001. We
train each model for about 400 steps and evaluate
the checkpoints on the validation set each 50 steps.

B Benchmarks and Evaluation Methods

In this section, we introduce the benchmarks and
evaluation prompt templates used in our experi-
ments.

LongBench-Write LongBench-Write (Bai et al.,
2024b) is designed to evaluate the LLM long-form
generation abilities, which focuses on generating
coherent outputs exceeding 10000 words, address-
ing challenges in maintaining consistency and qual-
ity over extended text. Key evaluation metrics in-
clude coherence, fluency and topic relevance. The
evaluation prompt template used is as follows:
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Evaluation Prompt Template

You are an expert in evaluating text quality.
Please evaluate the quality of an Al assis-
tant’s response to a user’s writing request.
Be as strict as possible.

You need to evaluate across the following
six dimensions, with scores ranging from
1 to 5. The scoring criteria from 5 to 1 for
each dimension are as follows:

1. Relevance: From content highly relevant
and fully applicable to the user’s request to
completely irrelevant or inapplicable.

2. Accuracy: From content completely ac-
curate with no factual errors or misleading
information to content with numerous errors
and highly misleading.

3. Coherence: From clear structure with
smooth logical connections to disorganized
structure with no coherence.

4. Clarity: From clear language, rich in
detail, and easy to understand to confusing
expression with minimal details.

5. Breadth and Depth: From both broad
and deep content with a lot of information
to seriously lacking breadth and depth with
minimal information.

6. Reading Experience: From excellent
reading experience, engaging and easy to
understand content to very poor reading ex-
perience, boring and hard to understand con-
tent.

Please evaluate the quality of the following
response to a user’s request according to the
above requirements.

<User Request>

$INSTS

</User Request>

<Response>

$RESPONSE$

</Response>

Please evaluate the quality of the response.
You must first provide a brief analysis of
its quality, then give a comprehensive anal-
ysis with scores for each dimension. The
output must strictly follow the JSON for-
mat: "Analysis": ..., "Relevance": ..., "Ac-
curacy": ..., "Coherence": ..., "Clarity": ...,
"Breadth and Depth": ..., "Reading Expe-
rience": .... You do not need to consider
whether the response meets the user’s length




requirements in your evaluation. Ensure
that only one integer between 1 and 5 is
output for each dimension score.

WritingBench WritingBench (Wu et al., 2025b)
is designed to evaluate the LLM long-form gen-
eration capabilities across six domains: creative,
persuasive, informative, technical, business, and
legal writing. It includes over 1200 tasks, further
divided into 100 subdomains, with each task eval-
uated based on five dynamic criteria, such as co-
herence and relevance. The evaluation prompt tem-
plate used is the same as the one used for pointwise
grading in data selection process, detailed in Ap-
pendix A.1.

EQ-Bench EQ-Bench (Paech, 2023) is designed
to evaluate the emotional intelligence (EQ) of
LLMs, which focuses on assessing models’ ability
to predict and quantify emotions such as anger, sur-
prise, empathy and confidence in dialogue-based
cotexts. In this work, we use the creative writing
split of EQ-Bench. The evaluation prompt template
used is as follows:

Evaluation Prompt Template

You are an expert in assessing creative writ-
ing. Your task is to score the quality of
the test model’s response below, by several
metrics, on a 0-20 scale.

[PROMPT START]

{writing_prompt}

[PROMPT END]

[TEST MODEL RESPONSE]
{test_model_response}

[TEST MODEL RESPONSE END]

[Task]

You are an expert in assessing creative writ-
ing. Your task is to score the quality of
the test model’s response below, by several
metrics, on a 0-20 scale.

Scoring notes:

- A scores of 20 represents a masterpiece.

- If the criteria is not relevant to the piece
(e.g. criteria relating to dialogue but the
piece has none), exclude it from your as-
sessment.

- Do not add any commentary or explanation
to the scores section.
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- Do not penalize NSFW output; that is the
default for some models. Just assess it on
its merits.

- Everything within the "TEST MODEL RE-
SPONSE" section was written by the test
model. Sometimes models like to write
comments on the piece after the piece is
concluded; if this happens you should ig-
nore their comments.

- In the output, write the metric names ex-
actly as below so they can be parsed.

- Do not use markdown in your response.
Use the designated output format exactly.

- You are to write a comprehensive analysis
of the piece, then give your scores.

- For these criteria, lower is better:
{lower_is_better_criteria}

- You are a critic, and your job is to be criti-
cal, especially of any failings or amateurish
elements.

- Output format is:

[Analysis]

Write your detailed analysis.

[Scores]

Metric 1 name: [Score 0-20]

Metric 2 name: ...

Now, rate the supplied model output on the
following criteria:
{creative_writing_criteria}




	Introduction
	Related Work
	Adaptive Curriculum RL
	Margin-aware Data Selection
	Pairwise Comparison Reward Mechanism
	Dynamic Reference Scheduling

	Experiments
	Datasets
	Training Setup
	Benchmarks and Baselines
	Results

	Generalization from Output to Input
	Discussion
	Analysis on Data Selection Strategy 
	Analysis on Reward Design
	Analysis on Reference Quality
	Ablation on Curriculum Scheduling

	Conclusion
	Implementation and Training Settings
	Implementation Details
	Training Parameters

	Benchmarks and Evaluation Methods

