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Abstract

Information retrieval models that aim to search001
for documents relevant to a query have shown002
multiple successes, which have been applied to003
diverse tasks. Yet, the query from the user is of-004
tentimes short, which challenges the retrievers005
to correctly fetch relevant documents. To tackle006
this, previous studies have proposed expand-007
ing the query with a couple of additional (user-008
related) features related to it. However, they009
may be suboptimal to effectively augment the010
query, and there is plenty of other information011
available to augment it in a relational database.012
Motivated by this fact, we present a novel re-013
trieval framework called Database-Augmented014
Query representation (DAQu), which augments015
the original query with various (query-related)016
metadata across multiple tables. In addition, as017
the number of features in the metadata can be018
very large and there is no order among them, we019
encode them with the graph-based set encoding020
strategy, which considers hierarchies of fea-021
tures in the database without order. We validate022
our DAQu in diverse retrieval scenarios, demon-023
strating that it significantly enhances overall024
retrieval performance over relevant baselines.025

1 Introduction026

Information Retrieval (IR) is the task of fetch-027

ing query-relevant documents from a large corpus.028

Traditional approaches have focused on sparse re-029

trieval, which searches for documents that yield the030

highest lexical match with the query (Robertson031

et al., 1994). Recently, neural language models032

have led to the introduction of dense retrieval mod-033

els, which represent both the query and the docu-034

ment in a learnable latent space and then calculate035

their similarity on it (Karpukhin et al., 2020; Izac-036

ard et al., 2022; Chen et al., 2024a). Notably, these037

IR methods have gained much attention in the era038

of Large Language Models (LLMs), due to their039

ability to assist LLMs help generating accurate an-040

swers with evolving knowledge from an external041

source (Cho et al., 2023; Jeong et al., 2024). 042

Despite such a huge advantage of IR in NLP, it 043

faces a critical challenge that information captured 044

in a query itself is oftentimes not sufficient to re- 045

trieve its relevant documents, due to the scarcity of 046

information within its (shorter) text. To tackle this 047

challenge, previous work has focused on enriching 048

representations of queries or documents by expand- 049

ing them with additional texts or augmenting their 050

representation spaces (Jeong et al., 2022; Jagerman 051

et al., 2023; Lin et al., 2023a). Yet, despite their im- 052

provement, those approaches are still limited in that 053

they rely on the capability of models themselves 054

(e.g., LLMs) used during augmentation, though 055

there can be external knowledge sources (for aug- 056

mentation) associated with the user query (such as 057

the user’s purchase history for shopping). While 058

some other work has considered these additional 059

sources, enhancing the representation of queries 060

with them, they leverage only a single source of 061

information stores, especially the one specific to 062

the user (who issues the query) (Gupta et al., 2019; 063

Zhang et al., 2020; Deng et al., 2021; Buss et al., 064

2023). However, in the real world, data (includ- 065

ing queries) is usually mapped into the database 066

and linked to other data within it, which means 067

that plenty of information that can be potentially 068

used for query enrichment is available on the rela- 069

tional database (Fey et al., 2023). For example, on- 070

line platforms like e-commerce often use relational 071

databases to store and link structured information 072

such as user profiles, purchase histories, and prior 073

interactions. Similarly, healthcare databases con- 074

nect patient queries to records like medical histo- 075

ries and lab results, while travel databases associate 076

queries with itineraries and customer profiles. 077

Therefore, in this work, we introduce a novel IR 078

paradigm, Database-Augmented Query representa- 079

tion (DAQu), which augments representations of 080

queries by searching for and connecting their as- 081

sociated information across multiple tables within 082
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Figure 1: A conceptual illustration of our proposed DAQu, which shows a link among multiple tables for the given query (Left)
and visualizes a graph-based set-encoding strategy that encodes metadata hierarchically for query augmentation (Right).

the relational database. As shown in Figure 1, con-083

sider the task of identifying the answer post that084

the user would most likely to vote as the best. In085

this scenario, we can not only represent the query086

with its own information but also with its relevant087

information within and across the multiple tables.088

Specifically, we can use metadata in the same table,089

such as its tags, but also metadata spread over other090

multiple tables, which include user-specific infor-091

mation, such as previous posts, answers (that they092

voted for), bios, and badges (that they earned). For093

example, given the question from the user, “Can a094

Transformer model be used like a recurrent autoen-095

coder?”, user tags like “Transformer” and “Autoen-096

coder” can emphasize the focus on these specific097

concepts. Further, the user’s past questions about098

“RNNs” and “Autoencoders” reveal an existing fa-099

miliarity with these topics, while the Vote table100

highlights which answers the user has previously101

favored, offering further insight into their prefer-102

ences. However, the volume of these metadata can103

be extremely large, and simply expanding the query104

with additional terms in the metadata (as done in105

existing query expansion work (Gupta et al., 2019;106

Deng et al., 2021)) is not feasible due to the limited107

context length of LMs. Moreover, since there is no108

inherent order for the elements in the metadata, the109

query augmentation approach should ensure order110

invariance when incorporating this information.111

To this end, we further propose to encode vari-112

ous query-related metadata within and across mul-113

tiple tables over the relational database, based on a114

graph set encoding scheme. Specifically, this strat-115

egy models metadata for query expansion as a two-116

layer hierarchical graph structure, and, within this117

structure, the first layer aggregates query-related118

elements (cells) within each column into a column-119

level representation, and next the second layer ag-120

gregates these column-level representations into a121

query-level representation. For example, consider a122

query from the Stack Exchange dataset in Figure 1,123

which is linked to metadata such as the user’s pro- 124

file, previous posts, and associated tags. Then, each 125

individual attribute (e.g., a tag, a user bio, and a 126

body of the previous post) is first encoded indepen- 127

dently. After that, within each column (e.g., tags), 128

these encoded attributes are aggregated to create 129

the column-level representation (e.g., all tags com- 130

bined into a single vector). Lastly, all column-level 131

representations (for tags, user bios, and previous 132

post content) are aggregated into the final query- 133

level metadata representation that is used to enrich 134

the original query representation. It is worth not- 135

ing that those two layer structures (aggregation 136

on column- and query-level) can be viewed as a 137

two-layer graph neural network (Kipf and Welling, 138

2017; Gilmer et al., 2017) since the first layer mod- 139

els interactions within columns (i.e., intra-column 140

relationships) and the second layer models interac- 141

tions across columns (inter-column relationships). 142

We then validate our DAQu on retrieval tasks 143

designed with the Stack Exchange and the Amazon 144

Product Catalog databases from Fey et al. (2023). 145

The experimental results show significant improve- 146

ments of our DAQu in retrieval performance com- 147

pared to other query augmentation baselines across 148

diverse scenarios. Moreover, we demonstrate that 149

the graph set encoding technique operationalized 150

in our DAQu effectively represents metadata, en- 151

hancing the representations of queries for retrieval. 152

2 Related Work 153

Retrieval In response to a query from a user, the 154

retrieval task is to search for the most relevant docu- 155

ments from a large corpus (such as Wikipedia) (Zhu 156

et al., 2021). Typically, it can be performed with 157

two types of models: sparse and dense retrievers. 158

Specifically, sparse retrievers such as TF-IDF or 159

BM25 (Robertson et al., 1994) represent the query 160

and document based on their terms and frequencies 161

in a sparse vector space, whereas dense retrievers 162

use a trainable dense vector space to embed the 163
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query and document usually with language mod-164

els (Karpukhin et al., 2020; Izacard et al., 2022;165

Chen et al., 2024a). Recently, due to the limitation166

of sparse retrievers that are vulnerable to the vocab-167

ulary mismatch problem, dense retrieval is widely168

selected as a default choice and many advance-169

ments have been made on it (Ding et al., 2024).170

For example, DPR (Karpukhin et al., 2020) is a171

supervised dense retriever with a dual-encoder ar-172

chitecture that is trained discriminatively on the la-173

beled pair of a query and its relevant documents to174

achieve higher similarity scores than the pair of the175

query-irrelevant documents. Also, Contriever (Izac-176

ard et al., 2022) utilizes a self-supervised learning177

strategy, which generates its training samples by178

creating positive pairs from query-related contexts179

within and across documents, rather than relying180

on explicitly annotated data. Yet, using only the181

information within a query for retrieval can be sub-182

optimal, due to the scarcity of information on it.183

Query Augmentation for Retrieval Some stud-184

ies have proposed augmenting the original query185

with additional information to enhance the retrieval186

performance (Carpineto and Romano, 2012; Azad187

and Deepak, 2019). Specifically, traditional aug-188

mentation methods have focused on utilizing a lex-189

ical knowledge base such as the WordNet (Miller,190

1992) to expand the original queries (Bhogal et al.,191

2007; Zhang et al., 2009). In addition, some other192

work has implemented statistical models such as193

RM3 (Jaleel et al., 2004a), which add new terms to194

the query extracted from the top documents in the195

initial search results and then adjust their weights196

based on their importance (Lavrenko and Croft,197

2001; Jaleel et al., 2004b; Lv and Zhai, 2009).198

However, they have been shown to be not very199

effective and, in some cases, even degraded the per-200

formance (Nogueira et al., 2019; Jeong et al., 2021).201

Therefore, recent work has turned to leveraging202

neural models to extract or generate query-relevant203

terms and then append such terms to the original204

query (Esposito et al., 2020; Zheng et al., 2020;205

Mao et al., 2021). Moreover, further advances have206

been made by incorporating recent LLMs to uti-207

lize their remarkable capabilities in generating such208

terms (Wang et al., 2023b; Shao et al., 2023; Buss209

et al., 2023; Jagerman et al., 2023; Feng et al.,210

2024; Dhole and Agichtein, 2024; Xia et al., 2024).211

However, despite the fact that the query is repre-212

sented and leveraged on the latent space with the213

recent dense retrievers, existing work focuses on ex-214

plicitly expanding its text (instead of manipulating 215

this query representation for augmentation). This 216

approach may be problematic if there is a signifi- 217

cant amount of data available to augment the query 218

across multiple relational tables over the database. 219

Retrieval with Database A natural way to store 220

a collection of data is to use a relational database, 221

that is designed to effectively manage, retrieve, and 222

manipulate (up-to-date) data for various applica- 223

tions (Johnson et al., 2016; Fey et al., 2023). Re- 224

cently, to utilize the data in the database, the task of 225

retrieving the tabular structures and the information 226

in them has increasingly gained much attention. To 227

be specific, some studies have developed the ap- 228

proach to retrieve the tables themselves (relevant to 229

the given query) from a large table corpus (Herzig 230

et al., 2021; Wang et al., 2022). In addition, some 231

other work extends this approach, extracting or gen- 232

erating the answer for the query from the retrieved 233

tables (Pan et al., 2021, 2022; Lin et al., 2023b). 234

However, since some real-world questions require 235

multiple tables, more recent studies have made fur- 236

ther progress, proposing to incorporate multiple 237

tables during retrieval (Kweon et al., 2023; Chen 238

et al., 2024b) or reading the tables (Pal et al., 2023). 239

However, unlike all the aforementioned work that 240

has focused on retrieving the tables themselves and 241

finding relevant cells within them, our work is com- 242

pletely different, which aims to effectively handle 243

the query for document retrieval by using the query- 244

related information spread across multiple tables, 245

to augment the representation of the query. 246

3 Method 247

3.1 Preliminaries 248

We begin with preliminaries, providing formal de- 249

scriptions of the retrieval and query augmentation. 250

Dense Retrieval Let us define the query as q and 251

its relevant document as d ∈ D, where D is a cor- 252

pus. To operationalize retrieval, we should be able 253

to calculate the similarity between q and d: f(q, d), 254

where f is a scoring function. Following the bi- 255

encoder architecture for dense retrieval, we obtain 256

the similarity by representing the query and docu- 257

ment with encoders Encq and Encd parameterized 258

by θq and θd, respectively, formalized as follows: 259

f(q, d) = sim(q,d),

q = Encq(q; θq) and d = Encd(d; θd),
(1) 260

where q and d are the query and document repre- 261

sentations, respectively. In addition, sim is a sim- 262
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ilarity metric (e.g., cosine similarity). It is worth263

noting that the objective of the dense retrieval func-264

tion f is to rank the pair of query q and its relevant265

document d+ highest among all the other pairs with266

irrelevant documents {d−i }Ni=1. To reflect this, we267

formalize the training objective, as follows:268

l = − log
ef(q,d

+)

ef(q,d+) +
∑N

i=1 e
f(q,di

−)
. (2)269

Query Augmentation for Retrieval To improve270

the effectiveness of the dense retrieval (while tack-271

ling the limited contextual information within the272

query q), the textual query itself or its represen-273

tation q can be enriched by augmenting it with274

the information that is not present in the original275

q. In this work, to effectively incorporate diverse276

pieces of information into the query without their277

order variance, we turn to augmenting the query278

representation q over the latent space, as follows:279

q̃ = λq + (1− λ)q′, (3)280

where q̃ is the reformulated query representation,281

q′ is the representation of the additional informa-282

tion helpful to enrich the original query representa-283

tion q, and λ ∈ [0, 1] is for giving weight to it.284

3.2 Database-Augmented285

Query Representation286

We now introduce our Database-Augmented Query287

representation (DAQu) framework for IR.288

Relational Database As a vast amount of infor-289

mation is typically stored in a relational database,290

we aim to augment the representations of queries291

with the relevant information within this database.292

The relational database can be defined as a set of293

tables: T = {Ti}Ni=1, and each table is comprised294

of a collection of rows T = {rj}Kj=1, where N is295

the number of tables and K is the number of rows.296

Note that one of the valuable characteristics of297

the relational database is that some rows in tables298

are connected with others in other tables, which299

facilitates relational linkages and ease of data re-300

trieval. Formally, each row ri in the table consists301

of a primary key column that uniquely identifies302

each row within the table, (potentially) some for-303

eign key columns that link to primary keys in other304

tables, and other non-key attribute columns provid-305

ing additional information about the row. In other306

words, the relationships between primary and for-307

eign keys connect rows across different tables, and308

other attribute columns store descriptive informa- 309

tion. Formally, if a foreign key column f in table 310

Ti references a primary key column p in Tj , we can 311

represent their relationship as (fi, pj). Also, all 312

such relationships between tables can be denoted 313

as L = {(fi, pj)}(i,j) where L ⊆ T × T . 314

For example, analogous to the Amazon database, 315

let’s assume that the table Treview includes the 316

primary key column REVIEWID, the foreign key 317

column PRODUCTID, and the attribute column 318

TEXT. Also, the table Tproduct has the primary 319

key column PRODUCTID and the attribute col- 320

umn DESCRIPTION. Lastly, the foreign key col- 321

umn PRODUCTID in Treview points to the pri- 322

mary key column in Tproduct. Then, the rela- 323

tionships between those two tables can be repre- 324

sented with a pair of primary and foreign keys: 325

(PRODUCTIDreview, PRODUCTIDproduct). 326

Query Augmentation with Relational Database 327

Recall the equation to augment the representation 328

of the given query (Equation 3). In this work, q′ is 329

the representation that we obtain from the query- 330

related information within the relational database, 331

and we now turn to explain how to get this q′. 332

Formally, each query that the user requests can 333

be considered as one row rj in a certain table Ti. 334

For example, in the Stack Exchange dataset, the 335

query that the user posts is stored in the table as 336

one row: r ∈ Tpost, where this row (query) r 337

consists of the primary key (POSTID), the foreign 338

key (USERID), and the multiple attributes (such as 339

BODY, TAGS, and TIMESTAMP). Then, based on 340

the following relational structure of this database: 341

L = {(USERIDuser, USERIDpost),

(USERIDvote, USERIDpost),

(POSTIDpost, POSTIDcomment), ...},
(4) 342

the row for the query in the post table can be linked 343

to other rows in different tables, for example, the 344

user table, vote table, and comment table connected 345

with USERID and POSTID columns (Figure 1). 346

This relational structure of the database allows 347

us to utilize diverse pieces of information when en- 348

riching the query representation q. Specifically, we 349

can not only use the attributes within the columns 350

of the row for the query (such as BODY and TAGS 351

of the post table Tpost) but also the attributes of 352

associated rows (to the query) from different tables 353

(such as ABOUTME of the user table Tuser associ- 354

ated with the column USERID). Formally, all the 355
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attributes of rows associated with and used to aug-356

ment the query (q) can be represented as follows:357

A ={ri,j | ri = q} ∪
{ri,j | q ∈ T and ri ∈ T ′ and (T, T ′) ∈ L} ∪
{ri,j | ri ∈ T and q ∈ T ′ and (T, T ′) ∈ L},

(5)358

where ri,j is the value of the jth attribute column359

of the ith row. Then, based on these attributes (the360

metadata), we derive their representation q′ with361

the encoder: q′ = Enca(A; θa), described below.362

Graph-Structured Set Encoding We now turn363

to explain how to operationalize the encoding func-364

tion Enca(·), which should effectively represent the365

diverse attributes A (over the relational database)366

into q′, to enrich the original query representation367

q (as in Equation 3). To accomplish this objective,368

one possible strategy is to concatenate all the at-369

tribute values, and encode the concatenated value370

with the encoder or append it to the original query371

(before encoding), following the existing query ex-372

pansion work (Zheng et al., 2020; Deng et al., 2021;373

Dhole and Agichtein, 2024). However, these ap-374

proaches have a couple of limitations. First, due to375

the large volume of data in the database, the num-376

ber of attributes related to the query could be quite377

large, and it might be infeasible to encode their con-378

catenated text with the encoder (due to its limited379

context length). In addition, the attributes do not380

have an inherent order (i.e., permutation invariant),381

making it arbitrary to determine the sequence in382

which they should be concatenated for encoding.383

To tackle these challenges, we propose to encode384

attributes (A) with the graph-structured set encod-385

ing strategy, which differs from and indeed extends386

the previous set encoding approach (Zaheer et al.,387

2017). Specifically, we first encode every attribute388

value ri,j in A into ri,j with an attribute encoder:389

ri,j = Encr(ri,j ; θr), and then aggregate a group390

of encoded attributes according to each column391

into the single representation with mean pooling392

as Rj = MEAN({ri,j}i=1), which then captures the393

representation of each category (or column) of the394

metadata. After that, we aggregate all these cate-395

gorical (column-wise) representations into another396

representation, which represents the overall meta-397

data for the given query as q′ = MEAN({Rj}j=1).398

Note that this dual-layer structure — aggregating399

at both the column and query levels — resembles a400

two-layer graph neural network (Kipf and Welling,401

2017; Gilmer et al., 2017), where each layer func-402

tionally captures the interactions between the at-403

tributes in the same column first and the columns 404

over different tables next in a hierarchical manner. 405

For example, consider the scenario in Figure 1, 406

where the goal is to retrieve the answer post most 407

likely to be selected as the best by the user. Based 408

on Equation 3, the query description is encoded 409

into q, and we aim to enrich its representation with 410

the metadata representation q′ obtained via the pro- 411

posed graph-structured set encoding, as follows: 412

this metadata (A) includes attributes such as user 413

comments (COMMENT), tags (TAGS), and the user 414

profile (ABOUTME); each attribute is encoded into 415

a column-level representation, e.g., RCOMMENT = 416

MEAN({Encr(ri,COMMENT)}i=1) (and similarly for 417

others); all column-level representations are aggre- 418

gated into a single query-level representation: q′ = 419

MEAN({RCOMMENT,RTAGS,RABOUTME}), which is 420

used to augment the original query representation. 421

Efficient Training Strategy with Metadata It 422

should be noted that the number of attributes col- 423

lected from the relational database is sometimes 424

very large for certain queries, and it may be largely 425

inefficient to consider all of them during training. 426

To address this, we introduce a two-stage sample 427

selection strategy to efficiently train the metadata 428

encoder Encr and to efficiently obtain the metadata 429

representation q′. Specifically, during training, as it 430

may not be possible to use all the attributes in A for 431

parameter updates, we randomly sample three at- 432

tributes for each column and use only them to train 433

the metadata encoder. In addition, while we can 434

use all the remaining attributes (without gradients) 435

to obtain the metadata representation along with 436

the representations of three specific attributes for 437

each column (with gradients), using all the remain- 438

ing attributes may still be time-consuming and may 439

yield the over-fitting issue; therefore, we randomly 440

sample some of them and use only them to obtain 441

the representation q′. Meanwhile, in the inference 442

step, we utilize all the metadata attributes available. 443

4 Experimental Setups 444

In this section, we describe the main experimental 445

setups. We provide further details in Appendix A. 446

4.1 Datasets 447

Since this is the first work on retrieval that utilizes 448

the relational database for augmenting query repre- 449

sentations, we design the tasks: two based on the 450

Stack Exchange database and one on the Amazon 451

Product Catalog database from Fey et al. (2023). 452
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Stack Exchange This dataset is collected from453

discussions in Stack Exchange1, an online website454

for question-answering, and organized into the re-455

lational database, which consists of seven tables456

(such as posts, users, and votes). For this dataset,457

we design two retrieval tasks, as follows: 1) An-458

swer Retrieval (Any Answer) involves retrieving459

any answer posts made by any users in response to460

a question post. 2) Best Answer Retrieval (Best461

Answer) is a more challenging task that aims to462

retrieve a single answer post that has been selected463

by the owner of the question post. Also, we further464

consider two different scenarios by dividing the en-465

tire dataset by users (SplitByUser) or timestamps466

(SplitByTime). For the first setting, training, vali-467

dation, and test sets are divided by users, i.e., there468

are no overlapping users across them. Similarly,469

the later setting splits the dataset according to the470

timestamp that the post was made. Note that, for471

each retrieval instance, the information before the472

post timestamp is used to augment the query.473

Amazon Product Catalog This dataset is col-474

lected from book reviews on the Amazon Product475

Catalog, which consists of three tables (users, prod-476

ucts, and reviews) over the relational database. For477

this dataset, we introduce 3) Future Purchase Re-478

trieval (Future Purchase) as the task, which aims479

to predict any future book purchases of customers480

based on their current reviews as well as their pre-481

vious purchases and reviews. Also, we construct482

two different settings, namely ReviewToProduct483

and ProductToProduct, where the first one uses484

the review text as a query while the latter one uses485

the product description as a query for retrieval.486

4.2 Models487

We explain the backbone retrieval models and the488

query augmentation baselines that we compare.489

Retrieval Models We use three dense retrievers:490

DPR is a dense retrieval model trained with a pair491

of a query and its relevant document (Karpukhin492

et al., 2020); Contriever is another dense retriever,493

but is trained in an unsupervised fashion (Izacard494

et al., 2022); BGE-M3 is a recent dense retriever495

designed to enhance generalization across diverse496

retrieval tasks (Chen et al., 2024a). In addition,497

as an indicator, we report the performance of the498

sparse retriever (BM25).499

Augmentation Models We compare our DAQu500

against relevant query augmentation models that501

1https://stackexchange.com/

use the capability of models themselves or the sin- 502

gle source (table) of query-relevant information: 1) 503

No Expansion (No Expan.): This model uses the 504

query for retrieval without expansion. 2) Query Ex- 505

pansion w/ LLM (Expan. w/ LLM): This model 506

utilizes the capability of LLMs, prompting them to 507

generate query-related pseudo-documents that are 508

expanded to queries (Wang et al., 2023b). 3) Query 509

Expansion w/ Query associated Table (Expan. 510

w/ Query): This model expands queries with the 511

information sourced from the query-related single 512

data store (table), following Zhang et al. (2020). 513

4) Query Expansion w/ User associated Table 514

(Expan. w/ User): Similarly, this model expands 515

queries with the user-related table, following Buss 516

et al. (2023). 5) Full Metadata Expansion (Ex- 517

pan. w/ Full): This model concatenates queries 518

with all the textual terms of the associated metadata 519

from the database (with multiple tables). 6) Query 520

Expansion w/ BM25 (Expan. w/ BM25): Similar 521

to Deng et al. (2021), this model also appends the 522

metadata terms to the queries. Yet, before expan- 523

sion, it employs BM25 to select terms that are most 524

relevant to the query, and only these selected terms 525

are appended. 7) DAQu (Ours): This is our model 526

that augments the query representation by incorpo- 527

rating the metadata representation on a latent space, 528

obtained by the graph-structured set encoding. 529

4.3 Evaluation Metrics 530

We use the following metrics: 1) Accuracy@K 531

(Acc@K) determines the fraction of queries for 532

which the top-k results include at least one relevant 533

document. 2) Recall@K calculates the percentage 534

of all relevant documents that are present within the 535

top-k results. 3) Mean Reciprocal Rank (MRR) 536

computes the average of the inverse of the ranks at 537

which the first relevant document is found across 538

queries. 4) Mean Average Precision (MAP) mea- 539

sures the mean precision score calculated after each 540

relevant document is retrieved, across all queries. 541

4.4 Implementation Details 542

We train all retrieval models with a learning rate 543

of 2e-5, and an AdamW (Loshchilov and Hutter, 544

2019). Also, we set λ as 0.7 chosen based on 545

a search within the range of {0.1, 0.3, 0.5, 0.7, 546

0.9}, and randomly sample 30 features for the no- 547

gradient metadata features in our efficient train- 548

ing strategy (with 3 features for gradient updates). 549

Regarding the evaluation metric, for the answer 550

post retrieval task on Stack Exchange, which aligns 551

more closely with conventional document retrieval 552
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Table 1: Results on three retrieval tasks with two settings, using either Stack Exchange or Amazon Product Catalog databases.
StackExchange (Any Answer) StackExchange (Best Answer) Amazon (Future Purchase)

SplitByUser SplitByTime SplitByUser SplitByTime ReviewToProduct ProductToProduct
Method Recall@10 Acc@100 Recall@10 Acc@100 MRR Acc@100 MRR Acc@100 Acc@500 Recall@1000 Acc@500 Recall@1000

BM25-Anserini 11.45 28.33 15.79 32.64 9.64 29.49 11.68 34.79 5.71 3.51 15.09 7.48

D
PR

No Expan. 36.15 ± 0.05 68.09 ± 0.14 35.46 ± 0.55 64.48 ± 0.30 20.87 ± 0.29 56.11 ± 0.09 22.87 ± 0.33 58.25 ± 0.15 6.37 ± 0.49 2.74 ± 0.20 15.54 ± 0.94 7.77 ± 0.24
Expan. w/ LLM 32.48 ± 0.26 63.79 ± 0.19 31.66 ± 0.36 60.45 ± 0.43 18.37 ± 0.54 51.60 ± 0.42 20.28 ± 0.32 53.61 ± 0.22 6.37 ± 0.29 2.68 ± 0.10 14.32 ± 0.36 7.67 ± 0.26
Expan. w/ Query 36.70 ± 0.30 69.15 ± 0.22 36.53 ± 0.51 66.60 ± 0.38 20.48 ± 0.38 57.01 ± 0.72 22.57 ± 0.23 58.94 ± 0.41 5.98 ± 0.39 2.58 ± 0.11 16.61 ± 0.29 8.48 ± 0.12
Expan. w/ User 36.53 ± 0.06 68.26 ± 0.17 35.65 ± 0.28 65.07 ± 0.15 21.66 ± 0.15 56.74 ± 0.14 23.18 ± 0.06 58.81 ± 0.21 3.48 ± 0.22 2.03 ± 0.10 8.75 ± 0.57 4.68 ± 0.25
Expan. w/ Full 38.76 ± 0.21 70.67 ± 0.21 38.75 ± 0.48 67.37 ± 0.45 20.03 ± 0.38 55.00 ± 0.31 21.88 ± 0.14 56.66 ± 0.33 11.04 ± 0.34 6.10 ± 0.24 14.67 ± 1.21 7.66 ± 0.27
Expan. w/ BM25 38.47 ± 0.34 70.37 ± 0.25 37.83 ± 0.26 66.70 ± 0.15 19.54 ± 0.18 54.08 ± 0.12 21.47 ± 0.26 56.14 ± 0.21 12.56 ± 0.36 5.89 ± 0.25 17.29 ± 0.42 8.42 ± 0.34

DAQu (Ours) 41.80 ± 0.27 74.11 ± 0.24 41.67 ± 0.39 71.72 ± 0.33 22.05 ± 0.24 57.81 ± 0.80 23.70 ± 0.18 59.24 ± 0.46 13.07 ± 0.19 5.97 ± 0.27 17.86 ± 0.39 9.15 ± 0.10

C
on

tr
ie

ve
r

No Expan. 42.08 ± 0.28 73.21 ± 0.15 41.93 ± 0.07 70.08 ± 0.45 25.85 ± 0.15 64.16 ± 0.34 28.37 ± 0.08 64.95 ± 0.15 8.21 ± 0.32 4.63 ± 0.20 17.80 ± 0.45 9.27 ± 0.06
Expan. w/ LLM 38.35 ± 0.63 69.35 ± 0.59 38.66 ± 0.29 66.39 ± 0.20 23.27 ± 0.06 59.03 ± 0.12 25.05 ± 0.33 60.32 ± 0.22 8.60 ± 0.31 4.58 ± 0.20 16.82 ± 0.74 9.18 ± 0.24
Expan. w/ Query 41.84 ± 0.31 73.96 ± 0.11 42.92 ± 0.13 71.54 ± 0.45 24.11 ± 0.53 63.39 ± 0.35 27.67 ± 0.11 65.03 ± 0.40 8.93 ± 0.36 4.68 ± 0.17 18.13 ± 0.58 9.31 ± 0.07
Expan. w/ User 42.21 ± 0.36 73.45 ± 0.21 42.26 ± 0.41 70.22 ± 0.20 25.93 ± 0.15 62.87 ± 0.25 28.20 ± 0.12 64.67 ± 0.26 6.34 ± 0.26 2.55 ± 0.15 7.23 ± 0.54 4.35 ± 0.44
Expan. w/ Full 45.25 ± 0.24 76.20 ± 0.17 44.43 ± 0.13 72.50 ± 0.18 26.01 ± 0.27 63.59 ± 0.23 28.21 ± 0.10 64.06 ± 0.36 17.23 ± 0.46 8.86 ± 0.22 17.02 ± 0.89 9.37 ± 0.53
Expan. w/ BM25 44.69 ± 0.25 75.52 ± 0.23 44.66 ± 0.27 72.24 ± 0.39 24.71 ± 0.18 62.15 ± 0.24 27.28 ± 0.25 63.52 ± 0.55 17.71 ± 0.22 7.18 ± 0.55 17.71 ± 0.22 9.40 ± 0.21

DAQu (Ours) 49.74 ± 0.26 80.27 ± 0.23 50.28 ± 0.49 78.06 ± 0.38 26.47 ± 0.26 65.16 ± 0.33 28.82 ± 0.07 65.47 ± 0.58 18.75 ± 0.91 9.86 ± 0.46 19.87 ± 0.44 10.42 ± 0.67

B
G

E
-M

3

No Expan. 39.83 ± 0.33 71.08 ± 0.06 39.54 ± 0.44 68.02 ± 0.27 22.37± 0.23 58.41 ± 0.39 22.96 ± 0.20 57.24 ± 0.73 7.59 ± 0.15 3.87 ± 0.03 16.10 ± 0.05 8.29 ± 0.18
Expan. w/ LLM 37.57 ± 0.20 67.24 ± 0.47 37.52 ± 0.37 64.29 ± 0.20 19.21 ± 0.13 51.52 ± 0.66 19.95± 0.18 51.72 ± 0.28 8.27 ± 1.60 3.75 ± 0.40 15.98 ± 0.31 8.00 ± 0.09
Expan. w/ Query 39.90 ± 1.16 72.15 ± 0.31 40.64 ± 0.68 70.09 ± 0.26 22.96 ± 0.57 60.32 ± 0.79 23.07 ± 0.50 58.95 ± 0.84 7.41 ± 0.46 3.75 ± 0.36 16.16 ± 0.31 8.25 ± 0.07
Expan. w/ User 42.10 ± 0.46 73.13 ± 0.18 41.60 ± 0.23 69.82 ± 0.04 22.84 ± 0.80 59.74 ± 0.93 23.43 ± 0.19 58.47 ± 0.07 4.49 ± 1.19 1.91 ± 0.05 11.79 ± 0.31 5.01 ± 0.27
Expan. w/ Full 41.47 ± 0.19 73.00 ± 0.10 41.63 ± 0.90 70.06 ± 0.60 23.42 ± 0.17 58.11 ± 1.06 23.17 ± 0.09 57.29 ± 0.08 13.1 ± 0.05 7.36 ± 0.47 15.03 ± 1.60 8.12 ± 1.87
Expan. w/ BM25 41.77 ± 0.46 72.76 ± 0.24 41.79 ± 0.23 70.00 ± 0.23 22.84 ± 0.21 58.36 ± 0.36 22.44 ± 0.42 56.25 ± 0.67 12.92 ± 0.26 6.13 ± 0.15 17.56 ± 0.57 8.56 ± 0.17

DAQu (Ours) 44.92 ± 0.22 75.67 ± 0.05 45.26 ± 0.39 73.61 ± 0.07 24.47 ± 0.45 61.55 ± 0.18 24.20 ± 0.01 59.26 ± 0.24 14.67 ± 0.88 6.93 ± 0.85 18.21 ± 0.15 9.03 ± 0.33
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Figure 2: Analysis of the effectiveness of the set encoding
strategy used in DAQu compared to a naïve encoding strategy,
which simply aggregates all representations.

tasks, we use a diverse range of K values, including553

10, 20, 50, and 100. In contrast, for the product554

retrieval task with Amazon Product Catalog, where555

the goal is not only to identify items of interest556

but specifically those the user will purchase, con-557

sidering the long-tail nature of product recommen-558

dations, we use larger K values of 500 and 1000,559

following prior work on product retrieval tasks (Li560

et al., 2021; Wang et al., 2023a; Li et al., 2024).561

Lastly, we report the average of three different runs.562

5 Experimental Results and Analyses563

We now present the results and detailed analyses.564

Main Results We report the overall results across565

three different tasks with two different settings in566

Table 1. From this, we find that DAQu outperforms567

all baselines substantially, demonstrating the effec-568

tiveness of our approach that augments queries with569

their corresponding metadata representations (ob-570

tained from graph-based set encoding). We provide571

the results with additional metrics in Appendix B.1.572

To be specific, our findings reveal that expand-573

ing queries with LLMs themselves is suboptimal574

as their parametric knowledge lacks information575

specific to each user and its query, which relies576

instead on general patterns stored within them. In577

contrast, expanding queries with information from578

a single source of external data stores (Expan. w/579
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31
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Figure 3: An investigation of our hyperparameters by varying
the lambda value (Left) and the number of metadata features
within each category when training DAQu (Right).

Query and Expan. w/ User) achieves decent perfor- 580

mance improvements over the no-expansion base- 581

line, highlighting the importance of incorporating 582

query-specific and user-specific information during 583

query augmentation. Furthermore, leveraging mul- 584

tiple relational tables from the database, such as 585

Expan. w/ Full and Expan. w/ BM25, further en- 586

hances retrieval performances, which underscores 587

the value of considering interrelated information 588

over the relational database for query expansion. 589

Notably, the proposed DAQu demonstrates sub- 590

stantial improvements across all tasks over all base- 591

lines, highlighting the effectiveness of our proposed 592

set-encoding strategy for incorporating metadata 593

into query representations. For example, in the An- 594

swer Retrieval task with Stack Exchange, DAQu 595

achieves performance improvements of 18.73% 596

and 16.91% on SplitByUser and SplitByTime set- 597

tings, respectively, in Recall@10. Also, DAQu con- 598

sistently shows superior performance on the Best 599

Answer Retrieval task, which is more complicated 600

(since the model should retrieve the single post that 601

the user would select as the best one, requiring both 602

the query-specific and user-specific information), 603

where diverse expansion models even degrade the 604

performance over the baseline without expansion. 605

Finally, the superior performance of DAQu on the 606

Future Purchase Retrieval task further confirms that 607
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Table 2: Ablation studies involving the removal or addition of
each metadata category on Any Answer (SplitByTime), where
Q. and A. refer to question and answer posts, respectively.

Recall Accuracy
Metadata Category R@20 Increase. Acc@20 Increase.

DAQu (Ours) 49.93 54.44

w/o Comments in Q. 46.75 -6.38% 51.14 -6.06%
w/o Comments in A. 46.06 -7.74% 50.57 -7.11%
w/o Tags in Q. 49.61 -0.63% 54.29 -0.28%

No Expan. 42.22 46.39

w/ Comments in Q. 45.24 +7.14% 49.69 +7.10%
w/ Comments in A. 47.89 +13.41% 52.31 +12.76%
w/ Tags in Q. 43.60 +3.27% 47.93 +3.31%

it can be applicable to diverse retrieval tasks.608

Effectiveness of Set Encoding To see the effec-609

tiveness of the graph-based set encoding strategy610

when incorporating the metadata information into611

the query, we compare it with two types of base-612

lines: appending their textual terms into the query613

or encoding them without considering the graph614

structure. As Figure 2 shows, simply appending the615

query with additional terms or taking the average616

of all representations in the metadata without graph617

structure is not as effective as ours. This demon-618

strates the efficacy of our two-stage (column- and619

query-levels) set-based metadata encoding strategy.620

Analyses on Metadata Category To investigate621

how each category of the metadata contributes to622

overall performance, we conduct ablation studies,623

reporting the rate of performance increase when624

excluding or adding each category, with DPR. As625

Table 2 shows, each category plays a crucial role626

in performance gains. Also, while each category627

contributes to improved performance compared to628

the baseline without expansion, their performances629

are still not as high as when all categories are used,630

which implies that the information from each cate-631

gory is complementary to each other. Interestingly,632

using the ‘tags’ category (the information within633

the same table as the query) provides a small im-634

provement, compared to using the ‘comments’ cat-635

egory from another table, which corroborates our636

hypothesis that it is important to use knowledge637

from multiple tables over the relational database.638

Analyses on Hyperparameters We explore how639

varying the lambda value (λ) in Equation 3 (that640

balances the query representation with the metadata641

representation) impacts the overall performance in642

Figure 3. Specifically, when the lambda value is too643

low (λ = 0.1), the model fails to capture the origi-644

nal query’s intent. Conversely, a high lambda value645

(λ = 0.9) leads to the model overemphasizing the646

original query over the metadata, thereby under-647

utilizing the meaningful metadata representation,648

Table 3: Results on efficiency, based on elapsed and relative
time per query, by varying the number of metadata features
for category during inference on Any Answer (SplitByTime).

Efficiency Effectiveness

# of Metadata Elpased Relative MAP Acc@100

No Expan. 0.062 1 22.94 64.15
Expan. w/ Full 0.062 1.002 25.09 67.31

1 per Category 0.073 1.182 24.06 67.99
2 per Category 0.074 1.20 26.69 70.64
3 per Category 0.074 1.205 27.30 71.57
All per Category 0.075 1.218 27.53 71.98

which degrades the performance. Thus, selecting 649

an optimal lambda value is crucial for balancing 650

these aspects to enhance overall performance. 651

We further investigate the impact of varying the 652

number of no-gradient metadata features for each 653

category on overall performance, when training the 654

DAQu model. Figure 3 shows that a low count of 655

metadata features per category results in reduced 656

performance, indicating the importance of suffi- 657

cient features for enhanced results. However, using 658

all metadata features is not only inefficient but also 659

degrades performance. Therefore, it is essential to 660

select the appropriate number of metadata features 661

to optimize model efficiency and effectiveness. 662

Analyses on Inference Efficiency We extend our 663

investigation to the efficiency in inference, by vary- 664

ing the number of metadata features used for query 665

augmentation. As Table 3 shows, although using 666

all the metadata features during inference is effec- 667

tive, it requires more time compared to the model 668

without expansion. By contrast, employing a small 669

number of metadata features enhances efficiency 670

while sacrificing performance. The results indicate 671

that, at a certain point (e.g., 3 features per category), 672

there is a region where we can achieve reasonable 673

performance alongside improved efficiency. 674

Case Study Lastly, we provide qualitative case 675

studies of our DAQu in Table 10 of the Appendix. 676

6 Conclusion 677

In this work, we presented a novel query augmen- 678

tation framework, DAQu, which enhances the rep- 679

resentation of the query with its relevant informa- 680

tion within multiple tables over the database. To 681

utilize the metadata features at scale with order in- 682

variance, we proposed graph-based set encoding, 683

which hierarchically aggregates column-level and 684

query-level information. We validated our DAQu 685

on three retrieval tasks with two settings designed 686

with two databases, showcasing the effectiveness 687

of our database-augmented query representation. 688
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Limitations689

While our DAQu framework effectively represents690

the diverse pieces of query-related metadata in-691

formation (over the relational database) through a692

graph-structured set encoding strategy, the process693

of encoding and aggregating metadata representa-694

tions at both the column and query levels may pose695

efficiency challenges in real-world applications. To696

address these concerns, we conducted a detailed697

analysis of the trade-off between the effectiveness698

and efficiency of DAQu in Table 3, and showcased699

that our approach can significantly enhance the ef-700

fectiveness only with a marginal compensation of701

the efficiency. On the other hand, this finding still702

suggests that investigating more advanced methods703

to further increase run-time efficiency (such as data704

pruning) would be a valuable direction for future705

work. Furthermore, the database-augmented re-706

trieval tasks that we designed seem to be quite chal-707

lenging for the retrieval models. While DAQu gen-708

erally shows significantly improved performance,709

there is still a large room for further improving re-710

trieval performance. Lastly, we wanted to make711

sure that our framework is validated in realistic712

retrieval scenarios with real-world large-scale rela-713

tional databases; however, many such databases are714

commonly used in enterprise settings and are rarely715

made publicly available, making it challenging to716

establish such experimental benchmarking setups.717

While we validated ours on recently released, real-718

world relational databases from Stack Exchange719

and Amazon from the RelBench (Fey et al., 2023),720

developing and releasing more databases would be721

of great interest to the research community.722

Ethics Statement723

A retrieval system can enhance the factual ground-724

ing of recent LLMs when it is integrated with them,725

which helps prevent the generation of plausible but726

incorrect answers. We believe that, following this727

line of directions, our DAQu can play a crucial role728

in diverse retrieval-augmented generation applica-729

tions. Yet, it is important to note that as relational730

databases contain substantial amounts of knowl-731

edge, including personal information, some poten-732

tial privacy concerns must be carefully managed733

when utilizing this information. In other words, fur-734

ther development of filtering strategies that tag and735

mask personal information across multiple tables736

before delivery to users or integration with LLMs737

would be required for real-world applications.738
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Table 4: Data statistics for each task designed with StackEx-
change and Amazon Product Catalog databases.

Task Setting Training Valid Test

StackExchange

Any Answer SplitByUser 128,981 17,132 15,583
SplitByTime 130,398 15,861 15,437

Best Answer SplitByUser 43,889 6,106 5,252
SplitByTime 42,900 6,018 6,329

Amazon Product Catalog

Future Purchase ReviewToProduct 65,797 4,561 5,956ProductToProduct

A Implementation Details1066

A.1 Datasets1067

In this subsection, we provide the additional details1068

for three tasks (that we design) based on the Stack-1069

Exchange and Amazon Product Catalog datasets.1070

We first report the detailed statistics of the overall1071

datasets in Table 4. In addition to this, in Table 9,1072

we present more fine-grained statistics of each cate-1073

gory (column) of the metadata, used for each query.1074

Notably, in this table, we breakdown the metadata1075

features into two categories: ‘total query’ (that in-1076

cludes all the queries in the task) and ‘non-empty1077

query’ (that contains queries with at least one item1078

for each specific metadata category).1079

Stack Exchange Recall that, for this database,1080

we design two tasks: 1) Answer Retrieval (Any1081

Answer) and 2) Best Answer Retrieval (Best An-1082

swer). In this paragraph, we describe which spe-1083

cific metadata categories used for query augmen-1084

tation. At first, for the Answer Retrieval task, we1085

utilize metadata from the post and comment tables.1086

Specifically, we focus on the tags associated with1087

the current question post and the comments on both1088

the current question and the answer posts. For the1089

Best Answer Retrieval task, we utilize metadata1090

from the post, comment, vote, and user tables. The1091

reason why we utilize more categories for this task1092

is because this task is closely related to the person-1093

alized retrieval task (for the user who issues the1094

question post); therefore, we focus on constructing1095

the user-specific metadata. Specifically, we use the1096

total comments made by the user, the ‘aboutme’1097

information of the user, written question and an-1098

swer posts, and the voted answer posts by the user.1099

Additionally, we include tags from both the current1100

question post and previously asked question posts.1101

For both tasks, we split the queries with their cor-1102

responding metadata into training, validation, and1103

test sets, using a corpus of 3,281,834 documents1104

that contain all posts, according to two different1105

settings. In the SplitByUser setting, we randomly 1106

sample users in an 8:1:1 ratio from those who have 1107

posted questions with answers provided by others. 1108

On the other hand, for the SplitByTime setting, 1109

we split the datasets based on the creation times- 1110

tamp of the question posts. Specifically, we create 1111

a training set with question posts written before 1112

2019-01-01, a validation set with posts written af- 1113

ter 2019-01-01 but before 2020-01-01, and a test 1114

set with posts written after 2020-01-01. 1115

Amazon Product Catalog For this database, we 1116

design the 3) Future Purchase Retrieval (Future 1117

Purchase) task, where we utilize all the user, prod- 1118

uct, and review tables. Furthermore, we consider 1119

the book reviews written from 2013-01-01 to 2016- 1120

01-01 (due to the size of the entire corpus), con- 1121

structing a document corpus using each product’s 1122

description, Specifically, we use reviews written 1123

in 2013 for the training set, reviews in 2014 for 1124

the validation set, and reviews in 2015 for the test 1125

set. We then group the reviews written by each cus- 1126

tomer and randomly sample the customers (since 1127

the data before sampling is still very large), select- 1128

ing 5,000 for the training set, 500 for the validation 1129

set, and 500 for the test set. Among two different 1130

settings for this task, in the ReviewToProduct set- 1131

ting, each review text (input) is paired with future 1132

products (target) that the customer will purchase. 1133

For this setting, we incorporate metadata from the 1134

previous review text from the review table, and the 1135

category, title, and description of both the current 1136

and previous products from the product table. In 1137

the ProductToProduct setting, we pair the product 1138

description of the current review with future prod- 1139

ucts that the customer will buy. We utilize metadata 1140

from both the current and previous review texts 1141

from the user’s review table, along with the cate- 1142

gory and title of both current and previous products, 1143

and the description of the previous products. 1144

A.2 Models 1145

For DPR (Karpukhin et al., 2020), we follow the 1146

implementation by Thakur et al. (2021). For Con- 1147

triever (Izacard et al., 2022), we further train it from 1148

its available checkpoint while using the same archi- 1149

tecture as DPR. For a fair comparison, we fix the 1150

number of epochs across the same retrieval models 1151

for each task and report the average of the three 1152

different runs for every model. We use A100 GPU 1153

clusters for conducting experiments. 1154
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Table 5: Additional Results on three retrieval tasks with two settings on Stack Exchange and Amazon Product Catalog databases.
StackExchange (Any Answer) StackExchange (Best Answer) Amazon (Future Purchase)

SplitByUser SplitByTime SplitByUser SplitByTime ReviewToProduct ProductToProduct

Method MAP MRR MAP MRR Acc@10 Acc@50 Acc@10 Acc@50 Acc@1000 Recall@500 Acc@1000 Recall@500

BM25-Anserini 7.10 8.61 9.99 11.01 15.50 24.58 18.55 29.14 7.77 2.78 18.39 6.53

D
PR

No Expan. 23.56 ± 0.03 27.86± 0.08 22.72 ± 0.22 25.22 ± 0.24 32.75 ± 0.23 48.63 ± 0.20 35.11 ± 0.60 50.96 ± 0.55 9.23 ± 0.19 1.78 ± 0.27 19.73 ± 0.85 5.98 ± 0.44
Expan. w/ LLM 20.97 ± 0.25 24.88 ± 0.30 20.12 ± 0.45 22.45 ± 0.51 28.94 ± 0.85 44.05 ± 0.70 31.31 ± 0.51 46.44 ± 0.30 9.35 ± 0.44 1.67 ± 0.24 19.05 ± 0.22 6.05 ± 0.20
Expan. w/ Query 23.76 ± 0.07 28.14 ± 0.09 23.67 ± 0.50 26.21 ± 0.51 32.39 ± 0.47 48.74 ± 0.57 35.31 ± 0.24 51.65 ± 0.37 8.57 ± 0.50 1.83 ± 0.29 21.79 ± 0.21 6.59 ± 0.07
Expan. w/ User 23.95 ± 0.20 28.14 ± 0.21 22.98 ± 0.10 25.53 ± 0.12 33.57 ± 0.14 49.22 ± 0.20 35.50 ± 0.35 51.68 ± 0.25 5.18 ± 0.71 1.14 ± 0.11 11.25 ± 0.79 3.36 ± 0.25
Expan. w/ Full 25.63 ± 0.03 30.15 ± 0.07 25.16 ± 0.11 27.85 ± 0.14 31.44 ± 0.47 47.13 ± 0.41 33.81 ± 0.33 49.27 ± 0.27 16.10 ± 0.92 4.55 ± 0.24 20.74 ± 1.13 5.54 ± 0.37
Expan. w/ BM25 25.31 ± 0.04 29.79 ± 0.05 24.55 ± 0.05 27.19 ± 0.09 30.98 ± 0.07 46.60 ± 0.31 33.27 ± 0.15 48.72 ± 0.17 17.77 ± 0.36 4.13 ± 0.21 22.65 ± 0.74 6.50 ± 0.13

DAQu (Ours) 27.96 ± 0.23 32.86 ± 0.10 27.58 ± 0.31 30.37 ± 0.35 33.99 ± 0.25 50.05 ± 0.33 36.14 ± 0.42 52.20 ± 0.47 18.01 ± 0.29 4.23 ± 0.21 22.68 ± 1.08 7.06 ± 0.15

C
on

tr
ie

ve
r

No Expan. 28.46 ± 0.23 33.23 ± 0.19 28.38 ± 0.28 31.22 ± 0.31 39.71 ± 0.42 56.13 ± 0.33 42.07 ± 0.43 57.90 ± 0.20 12.62 ± 0.73 3.14 ± 0.26 21.76 ± 0.37 7.65 ± 0.19
Expan. w/ LLM 25.75 ± 0.70 30.27 ± 0.69 25.83 ± 0.16 28.49 ± 0.15 36.10 ± 0.66 51.42 ± 0.29 37.42 ± 0.61 53.00 ± 0.34 12.68 ± 0.18 3.25 ± 0.23 21.61 ± 0.59 7.17 ± 0.36
Expan. w/ Query 28.15 ± 0.34 32.99 ± 0.41 28.58 ± 0.13 31.43 ± 0.11 37.43 ± 0.26 54.99 ± 0.47 41.11 ± 0.24 57.72 ± 0.14 13.39 ± 0.92 3.29 ± 0.12 22.86 ± 0.29 7.74 ± 0.28
Expan. w/ User 28.88 ± 0.21 33.63 ± 0.21 28.07 ± 0.32 30.94 ± 0.29 39.32 ± 0.17 55.92 ± 0.28 42.30 ± 0.42 57.64 ± 0.56 8.57 ± 0.52 1.57 ± 0.23 11.43 ± 0.67 3.16 ± 0.31
Expan. w/ Full 31.06 ± 0.16 36.12 ± 0.12 30.12 ± 0.08 33.14 ± 0.08 39.28 ± 0.35 56.04 ± 0.43 41.32 ± 0.15 57.33 ± 0.53 22.65 ± 0.67 7.07 ± 0.14 23.60 ± 0.88 7.14 ± 0.36
Expan. w/ BM25 30.82 ± 0.19 35.76 ± 0.22 30.30 ± 0.32 33.24 ± 0.35 38.09 ± 0.50 54.56 ± 0.25 40.79 ± 0.45 56.42 ± 0.41 22.62 ± 0.22 5.42 ± 0.44 22.62 ± 0.22 7.44 ± 0.04

DAQu (Ours) 35.00 ± 0.33 40.55 ± 0.41 34.96 ± 0.53 38.07 ± 0.57 40.50 ± 0.16 57.59 ± 0.58 42.53 ± 0.06 58.48 ± 0.51 25.65 ± 0.44 7.10 ± 0.29 25.36 ± 0.50 8.31 ± 0.23

B
G

E
-M

3

No Expan. 26.23 ± 0.49 30.73 ± 0.62 25.72 ± 0.30 28.32 ± 0.29 35.14 ± 0.78 51.30 ± 0.12 35.44 ± 0.22 50.36 ± 0.53 11.52 ± 0.15 2.62 ± 0.06 21.34 ± 0.15 6.61 ± 0.01
Expan. w/ LLM 25.14 ± 0.21 29.65 ± 0.19 25.20 ± 0.13 27.89 ± 0.09 30.03 ± 0.30 44.76 ± 0.78 31.18 ± 0.20 45.08 ± 0.36 11.67 ± 1.29 2.50 ± 0.47 20.60 ± 0.36 6.35 ± 0.06
Expan. w/ Query 25.86 ± 0.57 30.25 ± 0.73 26.48 ± 0.41 29.15 ± 0.43 36.39 ± 0.31 52.76 ± 0.89 35.90 ± 0.74 51.93 ± 0.73 11.16 ± 0.46 2.41 ± 0.18 20.60 ± 0.05 6.55 ± 0.15
Expan. w/ User 27.41 ± 0.36 31.98 ± 0.38 27.66 ± 0.11 30.41 ± 0.11 36.29 ± 0.96 52.02 ± 1.19 35.91 ± 0.55 51.38 ± 0.54 6.34 ± 1.86 1.33 ± 0.19 15.33 ± 0.10 3.77 ± 0.30
Expan. w/ Full 27.35 ± 0.17 32.03 ± 0.16 27.06 ± 0.83 29.78 ± 0.92 35.94 ± 0.27 51.27 ± 1.04 35.46 ± 0.05 50.31 ± 0.30 17.89 ± 0.82 5.39 ± 0.31 20.98 ± 2.78 5.76 ± 0.61
Expan. w/ BM25 27.91 ± 0.49 32.59 ± 0.44 27.43 ± 0.16 30.14 ± 0.20 35.84 ± 0.02 51.02 ± 0.32 34.22 ± 0.55 49.31 ± 0.89 17.53 ± 0.05 4.29 ± 0.11 23.27 ± 0.36 6.34 ± 0.40

DAQu (Ours) 30.26 ± 0.30 35.05 ± 0.30 30.17 ± 0.38 33.00 ± 0.43 38.26 ± 1.03 54.09 ± 0.54 36.56 ± 0.22 52.05 ± 0.01 20.30 ± 1.34 4.78 ± 0.51 23.36 ± 0.21 6.86 ± 0.15

Table 6: Metadata statistics (Best Answer, SplitByUser).
Metadata Category Train (Avg Words per Query) Test (Avg Words per Query)

Question Posts 2,459.08 1,849.05
Answer Posts 3,690.50 2,934.33
Accepted Answers 1,717.59 1,493.52
Comments 2,844.51 3,169.55
About Me 9.04 10.33
Current Tags 3.06 3.08
Previous Tags 48.36 41.59

Total Words 10,772.14 9,501.45
Longest Metadata 307,016 439,969

B Experimental Results1155

B.1 Results with Other Metrics1156

In addition to our main results in Table 1, we pro-1157

vide the results with other retrieval metrics in Ta-1158

ble 5. From this, similar to the results in Table 1,1159

we also observe that our DAQu shows remarkable1160

performance improvements in diverse scenarios.1161

B.2 Metadata Length Challenges1162

Our graph-based set-encoding strategy is particu-1163

larly beneficial when dealing with concatenated1164

textual metadata that may be very long for the en-1165

coder to handle. As shown in the metadata statistics1166

in Table 6, the concatenated metadata often results1167

in substantial word counts, with some cases exceed-1168

ing the token limits of commonly used LLMs, mak-1169

ing them impractical for direct processing. More-1170

over, even when token limits are not exceeded, pro-1171

cessing such long contexts can lead to significant1172

computational overhead. These challenges further1173

emphasize the advantages of our graph-based set-1174

encoding approach, which efficiently encodes meta-1175

data while preserving its structure and hierarchy.1176

B.3 Metadata Expansion with Special Token1177

To evaluate the impact of using special tokens for1178

differentiating metadata categories on retrieval per-1179

Table 7: Results for Expan. w/ Full with a special token for
each metadata category (DPR, Any Answer, SplitByTime).

Method Recall@10 Acc@100

No Expan. 35.46 64.48
Expan. w/ Full 38.75 67.37
Expan. w/ Full (w/ Special Tokens) 38.31 67.35

DAQu (Ours) 41.67 71.72

formance for the Full Metadata Expansion base- 1180

line (which concatenates a given query with all 1181

metadata terms), we extend it by including special 1182

tokens for metadata differentiation. As shown in 1183

Table 7, the inclusion of special tokens has min- 1184

imal effect on performance, with Full Metadata 1185

Expansion achieving comparable retrieval results 1186

regardless of their use. 1187

B.4 Results with Consistent Metrics 1188

In addition to reporting results with diverse metrics 1189

to demonstrate the effectiveness of the proposed 1190

method across various evaluation criteria, we also 1191

provide the results in Table 8 using the same metric 1192

as in Table 2. As shown in Table 8, these results 1193

are consistent with our previous findings, further 1194

confirming that our DAQu framework significantly 1195

outperforms the baseline methods. 1196

B.5 Case Study 1197

We conduct a case study to qualitatively compare 1198

the effectiveness of our DAQu against the baseline 1199

query augmentation methods, provided in Table 10. 1200

The first example from the Any Answer retrieval 1201

task with the SplitByTime setting presents retrieval 1202

results for a user query: selecting optimal activation 1203

and loss functions when training an autoencoder 1204

on the MNIST dataset. Notably, the challenge here 1205
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Table 8: Results with Recall@20 and Acc@20. for Table 2.

Method Recall@20 Acc@20

BM25-Anserini 14.43 17.43

D
PR

No Expan. 43.09 ± 0.21 50.35 ± 0.29
Expan. w/ LLM 39.12 ± 0.33 45.97 ± 0.33
Expan. w/ Query 44.04 ± 0.33 51.28 ± 0.30
Expan. w/ User 43.31 ± 0.07 50.49 ± 0.13
Expan. w/ Full 46.20 ± 0.07 53.66 ± 0.09
Expan. w/ BM25 45.70 ± 0.03 53.05 ± 0.05

DAQu (Ours) 49.54 ± 0.23 57.13 ± 0.12

C
on

tr
ie

ve
r

No Expan. 49.20 ± 0.26 56.79 ± 0.28
Expan. w/ LLM 45.24 ± 0.67 52.64 ± 0.71
Expan. w/ Query 49.73 ± 0.38 57.49 ± 0.48
Expan. w/ User 50.00 ± 0.31 57.45 ± 0.46
Expan. w/ Full 52.57 ± 0.12 60.26 ± 0.10
Expan. w/ BM25 52.23 ± 0.24 59.78 ± 0.25

DAQu (Ours) 57.33 ± 0.07 65.05 ± 0.09

B
G

E
-M

3

No Expan. 47.02 ± 0.44 54.38 ± 0.47
Expan. w/ LLM 44.08 ± 0.20 51.43 ± 0.24
Expan. w/ Query 47.34 ± 1.03 54.83 ± 1.19
Expan. w/ User 48.68 ± 0.15 56.08 ± 0.12
Expan. w/ Full 48.83 ± 0.02 56.24 ± 0.02
Expan. w/ BM25 49.07 ± 0.49 56.47 ± 0.67

DAQu (Ours) 52.33 ± 0.04 60.00 ± 0.19

is several important keywords with query-relevant1206

information, such as BCE and MSE, are missing1207

from the original user query. While the baseline ex-1208

pansion models can include such keywords, which1209

can lead to a higher rank of the relevant document1210

(Full Metadata Expansion), Expansion with BM251211

results in a lower rank than even No Expansion, due1212

to the exclusion of another essential term, ‘Keras’.1213

In contrast, our DAQu achieves the highest rank1214

among all baselines, indicating that our method1215

effectively augments all essential information with1216

the metadata representation, by utilizing diverse1217

helpful information sources in a relational database.1218

Similarly, for the Best Answer retrieval task with1219

the SplitByTime setting, given a query such as1220

when normalization or standardization is appro-1221

priate, the best answer post explains such cases1222

in terms of ‘transformation methods.’ Here, our1223

DAQu, which can incorporate the relevant term ‘log1224

transformation’ from the metadata into the query1225

representation, achieves the highest rank. Finally,1226

for the Future Product retrieval task, a user pur-1227

chased the book ‘Kindergarten-Grade 3’ for their1228

children. In addition, this user’s metadata includes1229

information on several previous purchases tagged1230

‘Children’s Books.’ In this example, while the No1231

Expansion baseline effectively retrieves the future1232

product with a higher rank, Full Metadata Expan-1233

sion and Expansion with BM25 do not perform1234

well, suggesting that augmenting metadata with 1235

text level adds noise to the retrieval process. Mean- 1236

while, our proposed method effectively exploits 1237

only the valuable information on the latent space, 1238

achieving the highest rank among all models. 1239
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Table 9: Distribution of the metadata features per query for each metadata category for three retrieval tasks.

Total Query Non Empty Query

Setting Metadata Category Training Valid Test Training Valid Test

StackExchange - Any Answer

SplitByUser
comments_in_question 1.96 1.95 1.94 3.35 3.37 3.31
comments_in_answers 2.31 2.45 2.31 3.96 4.14 3.99
tags 3.00 3.04 3.01 3.00 3.04 3.01

SplitByTime
comments_in_question 2.03 1.69 1.63 3.38 3.19 3.26
comments_in_answers 2.43 1.89 2.08 4.09 3.46 3.71
tags 2.97 3.06 3.23 2.97 3.06 3.23

StackExchange - Best Answer

SplitByUser

question_posts 14.52 22.15 12.42 18.18 27.07 15.77
answer_posts 19.77 24.25 13.47 44.79 55.18 30.74
accepted_answers 7.41 13.41 6.25 10.91 18.68 9.41
comments 81.28 122.02 84.92 92.86 137.92 97.46
aboutme 0.33 0.31 0.33 1.00 1.00 1.00
current_tags 3.06 2.99 3.08 3.06 2.99 3.08
previous_tags 48.36 66.99 41.59 48.36 66.99 41.59

SplitByTime

question_posts 6.52 7.04 9.96 10.46 11.25 14.94
answer_posts 7.82 9.35 11.15 27.47 38.98 42.83
accepted_answers 3.82 3.67 5.36 7.29 7.21 9.77
comments 31.09 38.59 49.44 54.32 67.36 81.55
aboutme 0.34 0.29 0.28 1 1 1
current_tags 3.02 3.10 3.25 3.02 3.10 3.25
previous_tags 19.52 21.71 32.33 31.31 34.70 48.52

Amazon Product Catalog

ReviewToProduct

previous_review_text 8.22 6.97 15.05 11.22 8.94 17.52
current_product_category 2.90 2.91 2.86 2.99 3.00 2.99
current_product_title 1.00 1.00 1.00 1.00 1.00 1.00
current_product_description 1.00 1.00 1.00 1.00 1.00 1.00
previous_product_category 23.96 20.34 44.16 33.01 26.39 52.68
previous_product_category 8.22 6.97 15.05 11.22 8.94 17.52
previous_product_description 8.22 6.97 15.05 11.22 8.94 17.52

ProductToProduct

previous_review_text 8.22 6.97 15.05 11.22 8.94 17.52
current_product_category 2.90 2.91 2.86 2.99 3.00 2.99
current_product_title 1.00 1.00 1.00 1.00 1.00 1.00
current_product_description 1.00 1.00 1.00 1.00 1.00 1.00
previous_product_category 23.96 20.34 44.16 33.01 26.39 52.68
previous_product_category 8.22 6.97 15.05 11.22 8.94 17.52
previous_product_description 8.22 6.97 15.05 11.22 8.94 17.52
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Table 10: Case study on three retrieval tasks. In response to the query from the user, notable terms in the Metadata and Answer
Post are highlighted in red, which are not in the query but exist only in the metadata and answer posts. Additionally, among
those notable terms, some terms that are not covered by the query expansion approach are further highlighted in bold.

StackExchange-Any Answer w/ SplitByTime

Query [Title] Choosing activation and loss functions in autoencoder
[Text] I am following this keras tutorial to create an autoencoder using the MNIST dataset. Here is the tutorial: <URL>. However, I am confused
with the choice of activation and loss for the simple one-layer autoencoder (which is the first example in the link). Is there a specific reason sigmoid
activation was used for the decoder part as opposed to something such as relu? I am trying to understand whether this is a choice I can play around
with, or if it should indeed be sigmoid, and if so why? Similarily, I understand the loss is taken by comparing each of the original and predicted
digits on a pixel-by-pixel level, but I am unsure why the loss is binary crossentropy as opposed to something like mean squared error. I would love
clarification on this to help me move forward! Thank you!

MetaData [comments in answers by pid]: ["I wrote about it here, but it was ages ago so I cannot find it now; BCE’s properties as a function means
it’s not the best choice for image data, even in greyscale. Unlike MSE, it is asymmetrically biased against overconfidence, so it systematically
underestimates the values, needlessly dimming the output intensities. And, as this question shows, causes unnecessary confusion on top.",
"Hmm. I think you may be correct in general, but for this particular use case (an autoencoder), it’s been empirically and mathematically shown that
training on the BCE and MSE objective both yield the same optimal reconstruction function: <URL> — but that’s just a minor detail.",
"I cannot load the pdf for some reason, but I’m not surprised - the minima of both losses are the same if your goal is to autoencode a 1:1 match of
intensities. It’s just not always an optimal loss if your goal is to have a nice-looking image; e.g. MNIST would probably look best with most pixels
being either 1 or 0 (in/not in the set of pixels for the character, basically learning a topology)."],
[tags by pid]: [‘neural-networks’, ‘loss-functions’, ‘keras’, ‘autoencoders’]

Answer Post You are correct that MSE is often used as a loss in these situations. However, the Keras tutorial (and actually many guides that work with MNIST
datasets) normalizes all image inputs to the range [0, 1]. This occurs on the following two lines: x_train = x_train.astype(float32) / 255,
x_test = x_test.astype(float32) / 255. Note: as grayscale images, each pixel takes on an intensity between 0 and 255 inclusive. Therefore,
BCE loss is an appropriate function to use in this case. Similarly, a sigmoid activation, which squishes the inputs to values between 0 and 1, is also
appropriate. You’ll notice that under these conditions, when the decoded image is "close" to the encoded image, BCE loss will be small. I found
more information about this <URL>.

Retrieval Rank No Expan. : 26 Expan. w/ Full : 15 Expan. w/ BM25 : 38 DAQu (Ours) : 6

StackExchange-Best Answer w/ SplitByTime

Query [Title] When to Normalization and Standardization?
[Text] I see pro-processing with Normalization, which aligns data between 0 and 1, and standardization makes zero mean and unit variance. And
multiple standardization techniques follow on.. Any clear definition at what cases what should be used? Thanks in Advance!!

MetaData [comments]: [‘hi @onestop, is it ok to take log transformation only to skewed columns?’]
[current tags]:[‘normalization’, ‘feature-scaling’]

Answer Post In unsupervised learning, the scaling of the features has a great influence on the result. If a feature has a variance that is many times greater, it can
dominate the target function of the algorithm. Therefore, it is of great importance to scale the input data in a way that their variability matches or at
least does not contradict the semantics. There are several transformation methods to put the features into a comparable form. These use different
forms of normalization or standardization according to their context. (...)

Retrieval Rank No Expan. : 244 Expan. w/ Full : 178 Expan. w/ BM25 : 347 DAQu (Ours) : 105

Amazon-Future Purchase w/ ProductToProduct

Query Kindergarten-Grade 3. Fox has composed a simple refrain to celebrate human connections in this lovely picture book. “Little one, whoever you are,”
she explains, there are children all over the world who may look different, live in different homes and different climates, go to different schools, and
speak in different tongues but all children love, smile, laugh, and cry. Their joys, pain, and blood are the same, “whoever they are, wherever they are,
all over the world.” Staub’s oil paintings complement the simple text. She uses bright matte colors for the landscapes and portraits, placing them in
gold borders, set with jewels and molded from plaster and wood. These frames enclose the single- and double-page images and echo the rhythm of
the written phrases. Within the covers of the book, the artist has created an art gallery that represents in color, shape, and texture, the full range of
human experience.

MetaData [previous product description]:[ “Betsy Snyder’s first board book as an author-illustrator, <em>Haiku Baby</em> follows a tiny bluebird, the
book’s would-be protagonist, as it visits its various animal companions–from an elephant that shades the bird with a parasol to a fox in a meadow and
a whale in the ocean. The little bird’s story is told primarily in pictures, and through the book’s six haiku: rain, flower, sun, leaf, snow, and–of course,
it would not be a board book without–the moon, making it ideal for the bedtime line-up. Adorable collage-cut illustrations work nicely with the haiku
form to give the book a whimsical, yet serene, feel. And the haiku are light and fun without being too cutesy. Index tabs on the right margin, with
pictures that tie to each of the poems (leaf, raindrop, snowflake, etc.), create a unique look, and make it easy for toddlers to flip through the pages on
their own without having them stick together like they can with other board books. Snyder excels at visual storytelling and short forms, possibly a
talent she honed as a designer/illustrator in the kids’ greeting card business. In the world of board books, this slender little volume really stands out” ]
[previous product category]:[ “Books”, “Children’s Books”, “Early Learning” ]
[previous review text]:[ “My baby loves this book. It has been mouthed, pulled, and thrown many times and still looks new. No tears or running
on the pages. No words inside, but has the song on the back incase one does not know it. Can easily make your own story up. My sister washed her
book, which you should not do, and it got wrinkled and looks worn down. It did not tear or come apart though”,
‘Nice little book. Has all the seasons and some weather.’ ]

Future Product [Title] Ten Little Fingers and Ten Little Toes
[Text] “There was one little baby who was born far away. And another who was born on the very next day. And both of these babies, as everyone
knows, had ten little fingers and ten little toes." So opens this nearly perfect picture book. Fox’s simple text lists a variety of pairs of babies, all with
the refrain listing the requisite number of digits, and finally ending with the narrator’s baby, who is 11truly divine” and has fingers, toes, 11and three
little kisses/on the tip of its nose.” Oxenbury’s signature multicultural babies people the pages, gathering together and increasing by twos as each pair
is introduced. They are distinctive in dress and personality and appear on primarily white backgrounds. The single misstep appears in the picture of
the baby who was “born on the ice.” The child, who looks to be from Northern Asia or perhaps an Inuit, stands next to a penguin. However, this
minor jarring placement does not detract enough from the otherwise ideal marriage of text and artwork to prevent the book from being a first purchase.
Whether shared one-on-one or in storytimes, where the large trim size and big, clear images will carry perfectly, this selection is sure to be a hit.”

Retrieval Rank No Expan. : 29 Expan. w/ Full : 162 Expan. w/ BM25 : 765 DAQu (Ours) : 27
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