
Published in Transactions on Machine Learning Research (01/2026)

Fuzzy PyTorch: Rapid Numerical Variability Evaluation for
Deep Learning Models

Inés Gonzalez-Pepe i_gon@live.concordia.ca
Department of Computer Science and Software Engineering
Concordia University
Montreal, Canada

Hiba Akhaddar h_akhadd@live.concordia.ca
Department of Computer Science and Software Engineering
Concordia University
Montreal, Canada

Tristan Glatard tristan.glatard@camh.ca
Krembil Centre for Neuroinformatics
Centre for Addiction and Mental Health
Toronto, Canada

Yohan Chatelain yohan.chatelain@camh.com
Krembil Centre for Neuroinformatics
Centre for Addiction and Mental Health
Toronto, Canada

Reviewed on OpenReview: https: // openreview. net/ forum? id= 0ogq232VGP& noteId= BtOp1tw1dN

Abstract

We introduce Fuzzy PyTorch, a framework for rapid evaluation of numerical variability in
deep learning (DL) models. As DL is increasingly applied to diverse tasks, understanding
variability from floating-point arithmetic is essential to ensure robust and reliable perfor-
mance. Tools assessing such variability must be scalable, efficient, and integrate seamlessly
with existing frameworks while minimizing code modifications. Fuzzy PyTorch enables
this by integrating stochastic arithmetic into PyTorch through Probabilistic Rounding with
Instruction Set Management, a novel library interfacing with Verificarlo, a numerical anal-
ysis compiler. The library offers stochastic rounding mode and a novel mode; up-down
rounding. Comparative evaluations show Fuzzy PyTorch maintains model performance and
achieves runtime reductions of 5× to 60× versus Verrou, a state-of-the-art tool. We further
demonstrate scalability by running models from 1 to 341 million parameters, confirming
applicability across small and large DL architectures. Overall, Fuzzy PyTorch provides an
efficient, scalable, and practical solution for assessing numerical variability in deep learning,
enabling researchers and practitioners to quantify and manage floating-point uncertainty
without compromising performance or computational efficiency.

1 Introduction

Many scientific domains have increasingly adopted deep learning (DL) models for computational analysis.
However, these models often rely on numerical computations that are sensitive to variations in floating-
point precision and rounding modes. Understanding numerical variability in DL models is therefore essential
for ensuring reliable and reproducible outcomes. This is particularly critical in high-stakes applications
such as medical imaging (Des Ligneris et al., 2023; Gonzalez-Pepe et al., 2023; Vila et al., 2024), remote
sensing (Vicuna et al., 2021), and scientific simulations (Chatelain et al., 2022). Meanwhile, the importance

1

https://openreview.net/forum?id=0ogq232VGP¬eId=BtOp1tw1dN

Published in Transactions on Machine Learning Research (01/2026)

of numerical variability is beginning to gain industry-wide recognition. For example, variability analysis is
now supported in Amazon Web Services’ (AWS) Neuron SDK (AWS Neuron Team, n.d.), AWS Trainium
chips, AMD MI300 GPUs, Tesla D1s and Blackwell architecture NVIDIA GPUs (El Arar, 2025). This
reflects a growing demand for tools and frameworks that enable low-level control over numerical behavior in
AI systems.

Although exact methods such as interval arithmetic (Hickey et al., 2001), symbolic execution (Solovyev
et al., 2018), and formal verification (Boldo & Melquiond, 2011) exist to evaluate numerical accuracy, these
approaches often require extensive modifications to the codebase and do not scale efficiently to complex deep
learning workloads. Instead, we adopt stochastic arithmetic, a technique that introduces controlled random
perturbations to floating-point operations. This enables statistical estimation of the numerical variability
without modifying the underlying model architecture, making it more practical for large-scale applications.
Stochastic arithmetic encompasses various techniques, including Monte Carlo Arithmetic (MCA) (Parker,
1997), CESTAC (Brunet & Chatelin, 1986) and Stochastic Rounding (Forsythe, 1959). To leverage stochas-
tic arithmetic, researchers have developed tools such as Verificarlo (Denis et al., 2016), Verrou (Févotte
& Lathuiliere, 2016), the stochastic rounding library by Fasi and Mikaitis (Fasi & Mikaitis, 2021) and
CADNA (Jézéquel & Chesneaux, 2008).

While stochastic arithmetic has been widely explored in numerical analysis, it remains underused in deep
learning, despite recent studies demonstrating its potential to assess uncertainty in neural network training
and inference (Faraone & Leong, 2019; Kloberdanz et al., 2022; Beuzeville et al., 2024; Arar et al., 2025).
A major practical challenge of stochastic arithmetic is the need to run programs multiple times, typically
10 times or more, to obtain stable statistical estimates of their variability. However, currently available
stochastic arithmetic tools, especially Verrou, one of the more accessible stochastic arithmetic frameworks
for DL, introduce slowdowns of 10× to 1000× on DL models with only a few million parameters. In such
settings, collecting enough samples takes days or weeks, even with parallelization, and scaling these analyses
to modern large language models becomes effectively infeasible. For numerical variability research to keep
pace with rapidly growing DL architectures, it is therefore essential to develop tools that introduce minimal
computational overhead. This motivates the design goals of Fuzzy PyTorch, which prioritizes speed and
scalability so that numerical variability studies remain tractable even on increasingly large models.

Fuzzy PyTorch integrates stochastic arithmetic, more specifically Monte Carlo Arithmetic (MCA), into
the PyTorch framework through a novel library named Probabilistic Rounding with Instruction Set
Management (PRISM). PRISM implements two modes: stochastic rounding (SR) and Up-Down round-
ing (UD). SR bypasses exact operations and therefore preserves exact values by probabilistically rounding
values based on their proximity to representable floating-point numbers. Meanwhile, UD is a newly pro-
posed rounding mode that is faster at the level of individual operations, as it randomly rounds up or down
with equal probability. Both modes are optimized using vectorized CPU instructions through the Highway
library (Google, 2024a), minimizing computational overhead. Fuzzy PyTorch seamlessly integrates with Py-
Torch by extending the Verificarlo compiler, providing a fast, practical framework for numerical variability
analysis in deep learning. By integrating directly with the PyTorch execution pipeline and avoiding the
major bottlenecks present in traditional approaches, such as the strict serialization in Verrou or the lack
of vectorized support in CADNA and standard MCA, Fuzzy PyTorch enables full-scale analyses that were
previously computationally prohibitive. Compared to state-of-the-art tools, Fuzzy PyTorch achieves similar
numerical-error characteristics but with markedly lower runtime, allowing researchers to evaluate numerical
variability across full DL workflows. This efficiency makes large-scale, systematic studies of floating-point
behavior feasible, directly supporting research on reproducibility, robustness, and numerical uncertainty in
modern neural networks and helping advance reproducible and principled DL research.

This work proposes three main contributions:

1. PRISM: We introduce PRISM, which implements fast probabilistic rounding methods for the sys-
tematic analysis of floating-point errors.

2. Stochastic arithmetic in PyTorch: We seamlessly integrate stochastic arithmetic into PyTorch,
enabling efficient and transparent instrumentation of deep learning operations.

2

Published in Transactions on Machine Learning Research (01/2026)

3. Comparative evaluation with Verrou: We perform a comprehensive evaluation against Verrou,
a state-of-the-art tool for numerical variability analysis, showcasing the enhanced performance and
flexibility of Fuzzy PyTorch on use cases ranging from digit classification with MNIST (LeCun,
1998), whole brain MRI segmentation with the FastSurfer neuroimaging model (Henschel et al.,
2020), and Parkinson’s classification from speech data with the WavLM model (Chen et al., 2022).

The remainder of this paper is structured as follows: Section 2 details the design and implementation of Fuzzy
Pytorch, including the UD rounding mode, the PRISM library implementation and PyTorch instrumenta-
tion. Section 3 presents results validating numerical accuracy and demonstrating 5–60× runtime speedups
over Verrou. Section 4 concludes with discussion of limitations and future directions. Supplementary mate-
rial, including additional information on existing rounding modes, use cases, the algorithm for probabilistic
rounding and further statistical analysis of the harmonic series, is provided in the Appendix.

2 Fuzzy Pytorch Design and Implementation

Fuzzy Pytorch implements a new rounding mode, Up-Down rounding (subsection 2.1), a faster alternative
to stochastic rounding implemented in the PRISM library (subsection 2.2). The PRISM library implements
the SR and UD rounding modes and the modifications to the Verificarlo compiler for compiling PyTorch
with the PRISM library.

2.1 Up-Down Rounding

The Up-Down Rounding (UD) technique rounds the result of an already rounded floating-point operation
to the next or previous floating-point number with equal probabilities. Although UD rounding does not
preserve exact floating-point operations, it produces results similar to SR rounding on large code bases,
while generally being significantly faster. UD rounding is defined as:

◦ud(x) =
{
◦rn(x)− ϵ(x) with probability 1

2
◦rn(x) + ϵ(x) with probability 1

2
(1)

where ϵ(x) is the unit in the last place (Muller et al., 2018) if x ̸= 0 and 0 otherwise, and ◦rn(x) is the IEEE-
754 round-to-nearest with ties-to-even rounding mode. Additional details and formal definitions of stochastic
rounding, as well as the other rounding modes used for comparison to UD (CESTAC, and IEEE-754), are
provided in Appendix A.

2.2 PRISM

PRISM is a C++ library that implements the SR (Appendix A.2.2) and UD rounding (sub-section 2.1) modes.
We do not currently plan to support CESTAC, as it is not as commonly used as SR, but we consider it as a
future work direction. PRISM leverages the Highway library (Google, 2025) to use vectorized instructions
available on modern CPUs, thereby minimizing the overhead introduced by stochastic arithmetic. Highway
selects the best architecture target to generate the most efficient code for the CPU, either at compile time
(static dispatch) or runtime (dynamic dispatch).

PRISM provides probabilistic rounding (SR and UD) for the floating-point operations
{+,−,÷,×,

√
, Fused Multiply-Add (FMA)}. The SR operators (except FMA) are implemented us-

ing the rounding-mode-free algorithms by (Fasi & Mikaitis, 2021). We extend these algorithms to support
the FMA instruction (described in Algorithm 1). Our FMA implementation is inspired by Verrou and is
based on the ErrFmaNearest Algorithm by (Boldo & Muller, 2010).

PRISM’s interface offers functions for scalar and vector instructions, supporting both static and dynamic
dispatch. The static dispatch versions accept vector types as inputs, while the dynamic dispatch versions
accept pointers to scalar types. Dynamic dispatch is necessary because vector types may not be available
at runtime (e.g., 512-bit AVX-512 registers on AVX2 architecture with 256-bit registers). Although slightly
slower, dynamic dispatch enhances portability, enabling x86-64 binaries to run on any architecture.

3

Published in Transactions on Machine Learning Research (01/2026)

Algorithm 1: FMA With Stochastic Rounding Without the Change of the Rounding Mode
1: function FMA2(a ∈ F , b ∈ F , c ∈ F)
2: Compute ϱ = ◦SR(a · b + c) ∈ F
3: Z ← rand()
4: σ ← ◦RN(a · b + c)
5: (u1, u2)← TwoProdFMA(a, b)
6: (α1, α2)← TwoSum(c, u2)
7: (β1, β2)← TwoSum(u1, α1)
8: γ ← ◦RN(◦RN(β1 − r1)− β2)
9: τ ← ◦RN(γ + α2)

10: round ← SRround(σ, τ, Z)
11: ϱ← ◦RN(r1 + round)
12: Return result
13: end function

Finally, PRISM supports multithreaded execution by assigning a separate random generator to each thread,
ensuring that concurrent executions do not share the same seed state. This enables optimal performance
without requiring any synchronization mechanism and prevents correlations in the generated floating-point
perturbations across threads.

We modified the Verificarlo compiler (Denis et al., 2016) to use the PRISM library. Verificarlo replaces
floating-point operations with generic calls to configurable backends (e.g., MCA, IEEE, VPREC (Chatelain
et al., 2019)) at the LLVM (Lattner & Adve, 2004) Intermediate Representation (IR) level. In its current
version, Verificarlo serializes the vectorized instructions, which can cause additional slowdowns. It adheres
to the Interflop (Defour et al., 2021) interface, which exposes scalar arithmetic operations but not vectorized
ones. Specifically, we implemented new LLVM instrumentation passes to replace scalar and vectorized
floating-point operations with calls to the PRISM library. We also ensured ABI compatibility between the
PRISM library and the source code to prevent incorrect register use during argument passing.

2.3 PyTorch Instrumentation

We instrumented PyTorch version 2.2.1 with Verificarlo 2.0.0, using the PRISM library as the backend.
Verificarlo was built with LLVM version 7.0.0, including support for FORTRAN code through LLVM’s flang
compiler. We used Python 3.8.5. To ensure compatibility with Verificarlo, we modified only one line in
the PyTorch codebase. Specifically, we removed the noexcept keyword from the move constructor of the
Module class in torch/csrc/jit/api/module.h. This adjustment was necessary to prevent compilation
errors related to LLVM compatibility but should no longer be required with more recent LLVM versions.

To achieve complete instrumentation, we compiled the open-source BLAS and LAPACK libraries (Anderson
et al., 1999) with Verificarlo, replacing the proprietary Intel MKL library as the default BLAS implemen-
tation. Architecture-specific instructions (-march=native) were enabled to leverage vectorized operations.
Additionally, the ONNX (Community, 2024) runtime was compiled with the PRISM library to ensure compre-
hensive instrumentation of the entire model execution. We disabled the use of the Intel MKL DNN (Corpo-
ration, 2024) library to avoid reliance on proprietary software. We did not instrument the protobuf (Google,
2024b) third-party library to avoid perturbing model serialization. We conducted the experiments using the
software versions listed above. While we have also instrumented PyTorch 2.6.0 with Python 3.10 and LLVM
11.0.0 via Verificarlo 2.2.0 (the code is available for compilation in our documentation), these were not used
in the experiments reported in this paper.

We excluded specific functions from instrumentation because they were susceptible to producing erroneous
outputs under our rounding modes. Correct instrumentation alternatives are under development. In particu-
lar, PyTorch’s exponential and logarithmic functions in the SLEEF (SIMD Library for Evaluating Elementary
Functions) third-party library exhibited large output deviations when perturbed, especially when input val-
ues approached zero. Similarly, the torch.argmax operation became unreliable under UD rounding, likely

4

Published in Transactions on Machine Learning Research (01/2026)

because approximate rounding can alter comparisons when input values are close, affecting the selected in-
dex. As these functions are sensitive and integral to correct model behavior, they were not instrumented to
ensure the reliability of the current results.

2.4 Availability of Data and Code

The code and data used in this study are available on GitHub at https://github.com/big-data-lab-team/
fuzzy-pytorch. The repository includes the PRISM library, the modified Verificarlo compiler, the Dockerfile
to build Fuzzy PyTorch, and the scripts used to run the experiments.

2.5 Computational Infrastructure

All experiments except for the WavLM experiment were conducted on a server equipped with 8 compute
nodes with 32 cores Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz 22MB cache L3. The WavLM experiment
was conducted on the Narval cluster from École de Technologie Supérieure (ETS, Montréal), managed by
Calcul Québec and The Digital Alliance of Canada which includes AMD Rome 7502, AMD Rome 7532, and
AMD Milan 7413 CPUs with 48 to 64 physical cores, 249 GB to 4000 GB of RAM and Linux kernel 3.10.

3 Results

We evaluated the accuracy, runtime efficiency, and numerical variability of Fuzzy PyTorch using Verrou,
CADNA, and the stochastic rounding library of Fasi and Mikaitis as baselines. We performed (1) a sanity
check with the harmonic series, a classical example in numerical analysis, (2) a computational overhead
assessment with the NAS Parallel Benchmarks, demonstrating Fuzzy PyTorch’s performance in an HPC
context, and (3) runtime performance and numerical variability assessments in three practical deep-learning
applications: MNIST digit classification, FastSurfer CNN brain segmentation, and WavLM-based speech
classification.

3.1 Numerical Error Estimation Baselines

We compared the PRISM library with several state-of-the-art tools for numerical variability analysis. Ver-
rou (Nethercote & Seward, 2007) is a Valgrind-based Dynamic Binary Instrumentation tool that perturbs
floating-point operations by replacing them with custom rounding functions, supporting modes such as
Stochastic Rounding (SR, called average rounding) and asynchronous CESTAC (called random rounding),
and can instrument binaries without recompilation, though multithreading is serialized due to Valgrind.
The Verificarlo MCA backend (Parker, 1997) implements Monte Carlo Arithmetic by injecting uniform
perturbations with a user-defined virtual precision t, performing computations at twice the target preci-
sion to avoid double rounding, and offering modes including Random Rounding (equivalent1 to SR when
t = p), but incurs overhead from serializing vectorized instructions and using 128-bit arithmetic for binary64.
CADNA (Jézéquel & Chesneaux, 2008) provides a CESTAC-based synchronous stochastic arithmetic library
via overloaded stochastic types that propagate three perturbed values per operation and estimate significance
loss (e.g., “computational zero”), with OpenMP support for threads but no vectorized instruction support.
Finally, the stochastic rounding library of Fasi and Mikaitis (FM) (Fasi & Mikaitis, 2021) offers C functions
implementing SR for scalar floating-point operations (excluding FMA), requiring explicit replacement of
each arithmetic operation and lacking vectorized interfaces. We will refer to this library as FM SR in the
remainder of the paper.

3.2 Harmonic Series Validates Expected Variability Patterns

To evaluate the accuracy of the UD and SR rounding modes, we analyzed the harmonic series
∑n

i=1
1
i for

n ranging from 102 to 107. While this series is divergent in real arithmetic, it converges in floating-point
arithmetic for n ≥ 248 within IEEE-754 binary32 format due to numerical absorption (Malone, 2013). We

1The MCA RR mode is biased for inputs close to a power of two, see (de Oliveira Castro, 2022).

5

https://github.com/big-data-lab-team/fuzzy-pytorch
https://github.com/big-data-lab-team/fuzzy-pytorch

Published in Transactions on Machine Learning Research (01/2026)

performed computations in IEEE-754 binary32 format and compared PRISM against established baselines:
CESTAC (via CADNA), MCA RR (via Verificarlo), Verrou (SR and CESTAC modes) and FM SR. A
binary64 computation served as the reference value.

Figure 1 presents the standard deviation and mean values obtained from three repetitions per mode (the
three internal values extracted from a single run for CADNA). The results show that PRISM SR exhibits
variability comparable to MCA RR, Verrou SR, and FM SR (Levene’s test, p = 0.29; see Extended Data
Table 2). In contrast, UD rounding displays higher variability, which is expected as it applies perturbations
to values that have already been rounded. Finally, CADNA exhibits the highest variability as it ensures
different rounding directions across its three internal repetitions.

As shown in Figure 1, the mean values exhibit three distinct behaviors:

1. The MCA SR, Verrou SR, PRISM SR, and FM SR modes closely approximate the binary64 reference
value. This aligns with expectations, as SR rounding converges to the expected value.

2. The CESTAC and Verrou CESTAC modes diverge more rapidly. This behavior is consistent with
the known bias introduced by CESTAC rounding.

3. The PRISM UD mode converges toward the binary32 result, as expected, since UD rounding applies
random perturbations to values that have already been rounded using the round-to-nearest mode.

10
2

10
3

10
4

10
5

10
6

10
7

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
6

2 3 4 5 6 7 8 9

10
7

14

15

16

17

18

19

20

21

22

IEEE binary64

IEEE binary32

PRISM UD

PRISM SR

Verrou CESTAC

Verrou SR

MCA RR CESTAC FM SR

S
t
a
n
d
a
r
d
 D

e
v
ia

t
io

n

A
v
e
r
a
g
e

Iteration

Figure 1: Comparison of probabilistic rounding on the harmonic series example.

3.3 PRISM UD Minimizes Runtime Slowdowns for NAS Parallel Benchmarks

We evaluated the runtime overhead introduced by PRISM using the C++ NAS Parallel Benchmarks version
3.4.1 (Löff et al., 2021) (Appendix Table 1). The Integer Sort (IS) benchmark was excluded, as it does not
involve floating-point operations.

Experiments were performed using the serial implementation on dataset classes S and A, corresponding
to the smallest benchmark workloads. PRISM SR and UD modes were compared against CESTAC (via
CADNA), MCA RR (via Verificarlo), Verrou (SR and CESTAC modes) and FM SR. All benchmarks were
compiled with -march=haswell -maes to enable AVX2 instructions and executed using IEEE-754 binary64
arithmetic. Runtimes were averaged over three independent repetitions. An uninstrumented execution was
used as the baseline.

6

Published in Transactions on Machine Learning Research (01/2026)

Figure 2 shows that PRISM SR induces runtime slowdowns that are comparable to, or lower than, those
observed for Verrou SR and CADNA. PRISM UD consistently yields the lowest overhead among the evaluated
tools. These trends are consistent across dataset classes.

0 50 100 150 200

ep

cg

ft

sp

mg

bt

lu

0 50 100 150 200

Method PRISM UD PRISM SR CESTAC Verrou CESTAC Verrou SR FM SR MCA RR

Slowdown (relative to IEEE) Slowdown (relative to IEEE)

B
e
n
c
h
m

a
r
k

Class=S Class=A

Figure 2: Comparison of slowdowns across numerical variability analysis tools for NAS Parallel Benchmarks
on dataset S and A, relative to the IEEE binary64 baseline.

3.4 Fuzzy PyTorch Achieves Significant Runtime Speedup

To further evaluate Fuzzy PyTorch’s efficiency in practical DL workflows, we measured inference runtime
for MNIST, FastSurfer and WavLM (see model descriptions in Appendix C). We compared PRISM UD and
SR modes against Verrou’s CESTAC and SR modes. All experiments were executed using a single thread,
as Verrou enforces serialization of multithreaded execution.

7

Published in Transactions on Machine Learning Research (01/2026)

MNIST FastSurfer WavLM
10

2

5
10 2

2

5
10 3

2

5
10 4

2

5
10 5

2

5
10 6

2

Method IEEE Verrou CESTAC Verrou SR PRISM UD PRISM SR

M
ea

n
R

un
tim

e
(s

ec
)

Figure 3: Comparison of instrumentation runtimes across DL models

As seen in Figure 3, Fuzzy PyTorch achieves speedups ranging from 5× to 60× for UD mode and 7× to
49× for SR mode compared to Verrou. This improvement is notable considering that Verrou’s PyTorch
instrumentation relies on the highly optimized Intel MKL library, whereas Fuzzy PyTorch uses the standard
Netlib BLAS/LAPACK implementation.

In contrast to the NAS Parallel Benchmarks, where PRISM UD consistently outperformed PRISM SR, the
relative performance of UD and SR varies across deep learning workloads. For WavLM, SR achieves a
larger speedup (7.89× relative to Verrou) than UD (5.65×). UD retains an advantage for the CNN-based
architectures FastSurfer (UD: 60.43×, SR: 49.07×) and MNIST (UD: 39.22×, SR: 30.81×).

We attribute the UD slowdown on WavLM to its transformer-based architecture. Transformer models are
computationally more complex than CNNs: self-attention layers introduce quadratic cost in sequence length
with heavier intermediate memory usage. Unlike UD which incurs a constant perturbation cost for every
operation, SR bypasses exact operations, reducing its relative overhead.

3.5 Comparable Numerical Variability between Fuzzy PyTorch and Verrou

To assess Fuzzy PyTorch beyond runtime performance, we evaluated the numerical variability it introduces
compared to Verrou across MNIST, FastSurfer and WavLM.

For MNIST in Figure 4a, we evaluated standard classification metrics, including accuracy and weighted
precision, recall, and F1 score, and quantified numerical variability using the significant digits metric (Sohier
et al., 2021). In binary32 arithmetic, the theoretical upper bound is 7.23 significant digits; across all metrics
we observed a maximum of approximately 6.17 significant digits, with the loss function exhibiting noticeably
higher variability. Variability is effectively confined to the loss across both Fuzzy PyTorch and Verrou, which
is expected given that MNIST is a well-solved task with highly stable predictions. UD rounding consistently
introduces greater variability than stochastic rounding for both tools. Fuzzy PyTorch shows slightly lower
significant digits overall, which we attribute to its instrumentation of AVX-512 vector instructions, allowing
a wider class of floating-point operations to be perturbed compared to Verrou.

In the WavLM use case (Figure 4b), as with MNIST, we evaluated numerical variability across accuracy
and the weighted variants of precision, recall, and F1 score. On average, we observe 6.17 significant digits
across all performance metrics, indicating high numerical stability—comparable to that observed across IEEE
executions.

8

Published in Transactions on Machine Learning Research (01/2026)

Accuracy F1 Precision Recall Average Loss
per Batch

5

5.5

6

6.5

7

Metrics

S
ig

ni
fic

an
tD

ig
its

(a) MNIST

F1 Precision Recall Accuracy
0

1

2

3

4

5

6

7

Metrics

S
ig

ni
fic

an
t D

ig
its

(b) WavLM

Fuzzy UD Verrou CESTAC Fuzzy SR Verrou SR

Figure 4: Significant digits across MNIST and WavLM model metrics for different instrumentation tools.

To investigate whether this apparent stability conceals underlying instability, we analyzed the model’s output
probabilities before the final max operation. As shown in Figure 5, the number of significant digits drops,
averaging around 4 across all modes and tools, with a standard deviation of approximately half a digit.
This suggests that some numerical instability is indeed present but is masked by the final max operation.
Consistent with findings from previous use cases, we also note that PRISM UD mode introduces the highest
level of numerical perturbation—even surpassing Verrou’s CESTAC mode.

0 10 20 30 40 50 60 700

2

4

6

Si
gn

ifi
ca

nt
 D

ig
its

Healthy Control Class Probability
Fuzzy
Verrou

0 10 20 30 40 50 60 70

Parkinson's Disease Class Probability
Fuzzy
Verrou

Number of Subjects

Stochastic rounding mode

0 10 20 30 40 50 60 700

2

4

6

Si
gn

ifi
ca

nt
 D

ig
its

Healthy Control Class Probability
Fuzzy
Verrou

0 10 20 30 40 50 60 70

Parkinson's Disease Class Probability
Fuzzy
Verrou

Number of Subjects

Up-Down rounding mode

Figure 5: Significant digits for rounding modes across WavLM model’s class probabilities

For the FastSurfer use case, we assess variability at inference using the minimum Sørensen–Dice scores be-
tween MCA iterations (Figure 6). The minimum Sørensen–Dice score captures the most extreme cases of
variability across brain regions, offering a global measure of segmentation consistency. Across all modes, co-
efficients remain extremely high, with the lowest observed value approaching 0.9985. Variability magnitudes
are similar across methods, though slightly higher for PRISM UD, likely due to its lack of preservation of
exact operations. Similarly to the MNIST results, PRISM UD shows the highest variability but still main-

9

Published in Transactions on Machine Learning Research (01/2026)

tains comparable segmentation accuracy. These results confirm that our MCA-based instrumentation for
FastSurfer operates correctly, producing consistent and interpretable variability measurements across modes.

0.9985 0.999 0.9995 1

3rd-Ventricle

4th-Ventricle

Brain-Stem

CSF

Left-Accumbens-area

Left-Amygdala

Left-Caudate

Left-Cerebellum-Cortex

Left-Cerebellum-White-Matter

Left-Cerebral-Cortex

Left-Cerebral-White-Matter

Left-Hippocampus

Left-Inf-Lat-Vent

Left-Lateral-Ventricle

Left-Pallidum

Left-Putamen

Left-Thalamus

0.9985 0.999 0.9995 1

Left-VentralDC

Left-choroid-plexus

Right-Accumbens-area

Right-Amygdala

Right-Caudate

Right-Cerebellum-Cortex

Right-Cerebellum-White-Matter

Right-Cerebral-Cortex

Right-Cerebral-White-Matter

Right-Hippocampus

Right-Inf-Lat-Vent

Right-Lateral-Ventricle

Right-Pallidum

Right-Putamen

Right-Thalamus

Right-VentralDC

Right-choroid-plexus

WM-hypointensities

Fuzzy UD Fuzzy SR Verrou CESTAC Verrou SR

Sorensen Dice Scores

Figure 6: Minimum Sørensen-Dice score across instrumentation tools and different labelled brain regions.

For all use cases, we verified that no random processes were present after fixing the random seeds by running
multiple iterations of the IEEE implementations of each model. In FastSurfer, this yielded a perfect minimum
Sørensen–Dice score (1.0, standard deviation 0), confirming determinism. For MNIST and WavLM, all
metrics, including loss, retained 6.17 significant digits.

3.6 Model Embeddings Are Comparable

To verify that numerical perturbations propagate correctly through the model architectures, we analyzed
the variability of internal feature maps (embeddings). Figure 7 illustrates one embedding from each use
case: the output of the second decoder block for FastSurfer, the first convolutional layer for MNIST and the
output of the ECAPA-TDNN transformer component of the WavLM model.

Numerical variability followed consistent, task-dependent patterns across all tools and rounding modes,
although, for WavLM, we can visibly see the slightly higher numerical uncertainty with Fuzzy PyTorch’s UD
mode compared to the other modes.

While the numerical uncertainty within the MNIST and WavLM embeddings aligns with the observed
stability of its outputs, FastSurfer presented a notable discrepancy: substantial uncertainty in the background
of its embeddings despite its stable outputs. Further investigation uncovered that this instability was confined
to the background region outside the brain and originated from unstable indices being generated by the
max-pooling operation across stochastic arithmetic iterations. Post-processing steps in FastSurfer effectively
masked the background, thereby mitigating the impact of these instabilities on the final outputs for this
specific use case. This finding directly motivated the development of Conservative & Aggressive NaNs, two
approaches for leveraging numerical uncertainty into computational efficiency gains while preserving model
performance (Gonzalez-Pepe et al., 2026).

Overall, these findings demonstrate consistency between the global patterns observed in Fuzzy PyTorch and
Verrou’s results, reinforcing the reliability of Fuzzy PyTorch in assessing variability throughout DL models.

10

Published in Transactions on Machine Learning Research (01/2026)

Fuzzy UD Verrou CESTAC Fuzzy SR Verrou SR

FastSurfer
Fuzzy UD Verrou CESTAC Fuzzy SR Verrou SR

MNIST
Fuzzy UD Verrou CESTAC Fuzzy SR Verrou SR

WavLM

0 1 2 3 4 5 6 7
Significant Digits

Figure 7: Model embeddings across stochastic arithmetic implementations

11

Published in Transactions on Machine Learning Research (01/2026)

4 Conclusion

Fuzzy PyTorch is a framework designed to evaluate numerical variability in DL models, addressing the
challenges posed by floating-point arithmetic limitations. By leveraging vectorized CPU instructions via the
Highway library, it minimizes computational overhead while maintaining flexibility. The framework supports
two rounding modes, SR and UD, allowing researchers to balance precision and computational efficiency,
making it a versatile tool for enhancing model robustness and reproducibility. Across harmonic series tests
and deep learning tasks, SR consistently provides the most accurate and stable results, while UD drifts toward
lower precision and CESTAC diverges due to bias. Fuzzy PyTorch reproduces these variability patterns and
achieves accuracy comparable to state-of-the-art tools such as Verrou across MNIST classification, FastSurfer
segmentation, and WavLM Parkinson’s detection.

Fuzzy PyTorch crucially achieves substantial speedups, with minimal slowdowns for PRISM SR and especially
PRISM UD in NAS parallel benchmarks. In deep learning tasks, it reaches up to 60× acceleration—despite
using less optimized CPU libraries (OpenBLAS and LAPACK versus Intel MKL). While PRISM UD is
fastest in smaller benchmarks, its advantage decreases in DL experiments, likely because it does not skip
exact operations. Importantly, such speed is not only beneficial for small numerical tests but becomes
essential in large-scale DL workloads, where evaluating numerical variability can otherwise be prohibitively
slow. The ability to run multiple stochastic executions at scale is critical for feasible, timely numerical
analysis. This efficiency gain enables the scalable, systematic evaluation of numerical variability in large DL
models, a capability unmatched by existing methods.

As numerical variability becomes increasingly recognized across the AI industry, the availability of system-
level controls—such as AWS Neuron’s hardware-supported rounding modes—highlights the pressing need
for software frameworks like Fuzzy PyTorch. These frameworks make it possible to perform fine-grained
evaluations of numerical behavior across diverse architectures, from CPUs to accelerators, and ensure that
both academic and industrial workflows benefit from deeper guarantees of computational robustness. By
systematically analyzing variability, we can identify sources of instability that can be leveraged for practical
improvements. For example, during our work with the FastSurfer CNN, Fuzzy PyTorch revealed regions
of numerical instability that we subsequently exploited to implement Conservative & Aggressive NaNs,
yielding significant computational efficiency gains (Gonzalez-Pepe et al., 2026). This illustrates how efficient
variability analysis not only ensures reproducibility but also enables optimization and the development of
novel techniques that improve performance in large-scale deep learning models.

While our current implementation is CPU-based, the main conclusions from CPU testing are expected to
generalize to GPU architectures. Future work, involves extending the framework to GPU architectures,
although it poses significant technical challenges. The GPU tooling ecosystem is far more fragmented than
its CPU counterpart, requiring specialized approaches for different vendor platforms. A successful GPU im-
plementation would need to address multiple compilation targets and runtime environments. For NVIDIA
GPUs, dynamic instrumentation frameworks like NVBit (Villa et al., 2019) could enable analysis of closed-
source libraries, but this approach is complex and platform-specific. Alternatively, compiler-based solutions
using IREE (Liu et al., 2022) with specific compilation targets could offer broader hardware support, though
this would require substantial development effort to integrate with existing PyTorch workflows. Nonethe-
less, we expect to make the Fuzzy PyTorch framework applicable to GPU-based deep learning workloads
once Verificarlo extends its support to GPU architectures. Future directions for Fuzzy PyTorch, beyond
GPU support, include exploring the impact of numerical variability on diverse DL model architectures, opti-
mizing SR mode performance, extending PRISM with additional floating-point formats and specialized DL
instructions.

In summary, Fuzzy PyTorch provides an efficient, reliable, and versatile tool for assessing numerical vari-
ability in DL models. It empowers researchers to deepen their understanding of numerical behavior in DL
models and enhances their ability to develop robust and reproducible systems.

12

Published in Transactions on Machine Learning Research (01/2026)

References
Edward Anderson, Zhaojun Bai, Christian Bischof, L Susan Blackford, James Demmel, Jack Dongarra,

Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, Alan McKenney, et al. LAPACK users’ guide.
SIAM, 1999.

El-Mehdi El Arar, Silviu-Ioan Filip, Theo Mary, and Elisa Riccietti. Mixed precision accumulation for neural
network inference guided by componentwise forward error analysis. arXiv preprint arXiv:2503.15568, 2025.

AWS Neuron Team. Rounding modes. https://awsdocs-neuron.readthedocs-hosted.com/en/latest/
general/arch/neuron-features/rounding-modes.html, n.d. Accessed: 2025-06-25.

Théo Beuzeville, Alfredo Buttari, Serge Gratton, and Theo Mary. Deterministic and probabilistic backward
error analysis of neural networks in floating-point arithmetic. 2024.

Sylvie Boldo and Guillaume Melquiond. Flocq: A unified library for proving floating-point algorithms in
coq. In 2011 IEEE 20th Symposium on Computer Arithmetic, pp. 243–252. IEEE, 2011.

Sylvie Boldo and Jean-Michel Muller. Exact and approximated error of the fma. IEEE Transactions on
Computers, 60(2):157–164, 2010.

Brian M Bot, Christine Suver, Elias Chaibub Neto, Michael Kellen, Arno Klein, Christopher Bare, Megan
Doerr, Abhishek Pratap, John Wilbanks, E Dorsey, et al. The mPower study, Parkinson disease mobile
data collected using ResearchKit. Scientific data, 3(1):1–9, 2016.

Marie-Christine Brunet and Françoise Chatelin. CESTAC, a tool for a stochastic round-off error analysis in
scientific computing. In Numerical Mathematics and Applications, pp. 11–20. Elsevier, 1986.

Yohan Chatelain, Eric Petit, Pablo de Oliveira Castro, Ghislain Lartigue, and David Defour. Automatic
exploration of reduced floating-point representations in iterative methods. In Euro-Par 2019: Parallel
Processing: 25th International Conference on Parallel and Distributed Computing, Göttingen, Germany,
August 26–30, 2019, Proceedings 25, pp. 481–494. Springer, 2019.

Yohan Chatelain, Nigel Yong Sao Young, Gregory Kiar, and Tristan Glatard. Pytracer: Automatically
profiling numerical instabilities in python. IEEE Transactions on Computers, 72(6):1792–1803, 2022.

Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda,
Takuya Yoshioka, Xiong Xiao, et al. Wavlm: Large-scale self-supervised pre-training for full stack speech
processing. IEEE Journal of Selected Topics in Signal Processing, 16(6):1505–1518, 2022.

ONNX Community. Onnx: Open neural network exchange, 2024. URL https://github.com/onnx/onnx.
Accessed: 2024-12-21.

Intel Corporation. oneDNN: Deep Learning Open Source Performance Library, 2024. URL https://github.
com/oneapi-src/oneDNN. Accessed: 2024-12-21.

Pablo de Oliveira Castro. High Performance Computing code optimizations: Tuning performance and accu-
racy. PhD thesis, Université Paris-Saclay, 2022.

Deep-MI. Fastsurfer, 2024. URL https://github.com/Deep-MI/FastSurfer. Accessed: 2024-12-17.

David Defour, François Févotte, Stef Graillat, Fabienne Jézéquel, Wilfried Kirschenmann, Jean-Luc Lamotte,
Bruno Lathuilière, Yves Lhuillier, Eric Petit, Julien Signoles, et al. InterFLOP, Interoperable Tools for
Computing, Debugging, Validation and Optimization of Floating-Point Programs. In ISC-HPC 2021
DIGITAL, 2021.

Christophe Denis, Pablo de Oliveira Castro, and Eric Petit. Verificarlo: checking floating point accuracy
through Monte Carlo Arithmetic. In 2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH),
2016.

13

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/arch/neuron-features/rounding-modes.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/arch/neuron-features/rounding-modes.html
https://github.com/onnx/onnx
https://github.com/oneapi-src/oneDNN
https://github.com/oneapi-src/oneDNN
https://github.com/Deep-MI/FastSurfer

Published in Transactions on Machine Learning Research (01/2026)

Morgane Des Ligneris, Axel Bonnet, Yohan Chatelain, Tristan Glatard, Michaël Sdika, Gaël Vila, Valentine
Wargnier-Dauchelle, Sorina Pop, and Carole Frindel. Reproducibility of tumor segmentation outcomes
with a deep learning model. In 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI),
pp. 1–5. IEEE, 2023.

Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck. Ecapa-tdnn: Emphasized channel attention,
propagation and aggregation in tdnn based speaker verification. arXiv preprint arXiv:2005.07143, 2020.

El-Mehdi El Arar. Probabilistic error analysis of limited-precision stochastic rounding. https://github.
com/riakymch/pasc25-ms2a/blob/main/pasc25-elarar.pdf, 2025. Accessed: June 25, 2025.

Julian Faraone and Philip Leong. Monte Carlo Deep Neural Network Arithmetic. 2019.

Massimiliano Fasi and Mantas Mikaitis. Algorithms for stochastically rounded elementary arithmetic oper-
ations in ieee 754 floating-point arithmetic. IEEE Transactions on Emerging Topics in Computing, 9(3):
1451–1466, 2021.

François Févotte and Bruno Lathuiliere. VERROU: a CESTAC evaluation without recompilation. SCAN
2016, pp. 47, 2016.

George E Forsythe. Reprint of a note on rounding-off errors. SIAM review, 1(1):66, 1959.

Inés Gonzalez-Pepe, Vinuyan Sivakolunthu, Hae Lang Park, Yohan Chatelain, and Tristan Glatard. Nu-
merical Uncertainty of Convolutional Neural Networks Inference for Structural Brain MRI Analysis. In
International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, pp.
64–73. Springer, 2023.

Inés Gonzalez-Pepe, Vinuyan Sivakolunthu, Jacob Fortin, Yohan Chatelain, and Tristan Glatard. Conserva-
tive & Aggressive NaNs Accelerate U-Nets for Neuroimaging. arXiv preprint arXiv:2601.17180, 2026.

Google. Highway, 2024a. URL https://github.com/google/highway. Accessed: 2024-12-17.

Google. Protocol buffers, 2024b. URL https://github.com/protocolbuffers/protobuf. Accessed: 2024-
12-21.

Google. Highway: Performance-portable, length-agnostic simd with runtime dispatch. https://github.
com/google/highway, 2025. GitHub repository, accessed December 17, 2025.

Leonie Henschel, Sailesh Conjeti, Santiago Estrada, Kersten Diers, Bruce Fischl, and Martin Reuter.
Fastsurfer-a fast and accurate deep learning based neuroimaging pipeline. NeuroImage, 219:117012, 2020.

Timothy Hickey, Qun Ju, and Maarten H Van Emden. Interval arithmetic: From principles to implementa-
tion. Journal of the ACM (JACM), 48(5):1038–1068, 2001.

Nicholas J Higham and Theo Mary. A new approach to probabilistic rounding error analysis. SIAM journal
on scientific computing, 41(5):A2815–A2835, 2019.

IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. https://ieeexplore.ieee.org/
document/4610935, aug 2008. IEEE Std 754-2008.

Fabienne Jézéquel and Jean-Marie Chesneaux. CADNA: a library for estimating round-off error propagation.
Computer Physics Communications, 178(12):933–955, 2008.

Eliska Kloberdanz, Kyle G Kloberdanz, and Wei Le. DeepStability: A Study of Unstable Numerical Methods
and Their Solutions in Deep Learning. arXiv preprint arXiv:2202.03493, 2022.

Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program analysis & transfor-
mation. In International symposium on code generation and optimization, 2004. CGO 2004., pp. 75–86.
IEEE, 2004.

Yann LeCun. The MNIST database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

14

https://github.com/riakymch/pasc25-ms2a/blob/main/pasc25-elarar.pdf
https://github.com/riakymch/pasc25-ms2a/blob/main/pasc25-elarar.pdf
https://github.com/google/highway
https://github.com/protocolbuffers/protobuf
https://github.com/google/highway
https://github.com/google/highway
https://ieeexplore.ieee.org/document/4610935
https://ieeexplore.ieee.org/document/4610935

Published in Transactions on Machine Learning Research (01/2026)

Hsin-I Cindy Liu, Marius Brehler, Mahesh Ravishankar, Nicolas Vasilache, Ben Vanik, and Stella Laurenzo.
TinyIREE: An ML execution environment for embedded systems from compilation to deployment. IEEE
micro, 42(5):9–16, 2022.

Júnior Löff, Dalvan Griebler, Gabriele Mencagli, Gabriell Araujo, Massimo Torquati, Marco Danelutto,
and Luiz Gustavo Fernandes. The NAS parallel benchmarks for evaluating C++ parallel programming
frameworks on shared-memory architectures. Future Generation Computer Systems, 125:743–757, 2021.

David Malone. To what does the harmonic series converge? Irish Mathematical Society Bulletin, (71):59–66,
2013.

Jean-Michel Muller, Nicolas Brisebarre, Florent De Dinechin, Claude-Pierre Jeannerod, Vincent Lefevre,
Guillaume Melquiond, Nathalie Revol, Damien Stehlé, Serge Torres, et al. Handbook of floating-point
arithmetic, volume 1. Springer, 2018.

Nicholas Nethercote and Julian Seward. Valgrind: a Framework for Heavyweight Dynamic Binary Instru-
mentation. ACM Sigplan notices, 42(6):89–100, 2007.

Douglass Stott Parker. Monte Carlo arithmetic: exploiting randomness in floating-point arithmetic. Citeseer,
1997.

Abhijit Guha Roy, Sailesh Conjeti, Nassir Navab, Christian Wachinger, Alzheimer’s Disease Neuroimag-
ing Initiative, et al. QuickNAT: A fully convolutional network for quick and accurate segmentation of
neuroanatomy. NeuroImage, 186:713–727, 2019.

Devan Sohier, Pablo De Oliveira Castro, François Févotte, Bruno Lathuilière, Eric Petit, and Olivier Jamond.
Confidence intervals for stochastic arithmetic. ACM Transactions on Mathematical Software (TOMS), 47
(2):1–33, 2021.

Alexey Solovyev, Marek S Baranowski, Ian Briggs, Charles Jacobsen, Zvonimir Rakamarić, and Ganesh
Gopalakrishnan. Rigorous estimation of floating-point round-off errors with symbolic taylor expansions.
ACM Transactions on Programming Languages and Systems (TOPLAS), 41(1):1–39, 2018.

Verificarlo. significantdigits, 2024. URL https://github.com/verificarlo/significantdigits. Ac-
cessed: 2024-12-17.

Marc Vicuna, Martin Khannouz, Gregory Kiar, Yohan Chatelain, and Tristan Glatard. Reducing numerical
precision preserves classification accuracy in mondrian forests. In 2021 IEEE International Conference on
Big Data (Big Data), pp. 2785–2790. IEEE, 2021.

Gaël Vila, Emmanuel Medernach, Ines Gonzalez-Pepe, Axel Bonnet, Yohan Chatelain, Michaël Sdika, Tris-
tan Glatard, and Sorina Camarasu Pop. The impact of hardware variability on applications packaged
with docker and guix: A case study in neuroimaging. In Proceedings of the 2nd ACM Conference on
Reproducibility and Replicability, pp. 75–84, 2024.

Oreste Villa, Mark Stephenson, David Nellans, and Stephen W Keckler. Nvbit: A dynamic binary in-
strumentation framework for nvidia gpus. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 372–383, 2019.

Xi-Nian Zuo, Jeffrey S Anderson, Pierre Bellec, Rasmus M Birn, Bharat B Biswal, Janusch Blautzik, John
Breitner, Randy L Buckner, Vince D Calhoun, F Xavier Castellanos, et al. An Open Science Resource
for Establishing Reliability and Reproducibility in Functional Connectomics. Scientific Data, 1(1):1–13,
2014.

15

https://github.com/verificarlo/significantdigits

Published in Transactions on Machine Learning Research (01/2026)

A Numerical Variability Estimation

Measuring numerical variability in DL models can involve a family of techniques that introduce randomness
into floating-point computations. These methods rely on non-deterministic rounding. Unlike standard
IEEE-754 rounding modes, this approach rounds to either of the two closest floating-point numbers based on
computed probabilities. The specific stochastic arithmetic technique is determined by how this probability
is computed. We use the term Probabilistic Rounding (PR), introduced in (Higham & Mary, 2019), as an
umbrella term for this class of techniques. Moreover, because IEEE rounding is deterministic rather than
probabilistic, we present it in its own subsection to emphasize this difference.

A.1 IEEE-754 Rounding

The IEEE-754 round-to-nearest mode, also known as round-to-nearest, ties-to-even, is the default rounding
mode used in most floating-point hardware and software implementations. When a real number cannot be
exactly represented in floating point, it is rounded to the closest representable number. If the number lies
exactly halfway between two floating-point values, the tie is broken by rounding to the one with an even
least significant bit (i.e., the one whose mantissa ends in 0).

Formally, the rounding function ◦rn(x) maps x ∈ R to the nearest floating-point number f ∈ F such that:

◦rn(x) = arg min
f∈F
|x− f |

with ties resolved to the floating-point number f such that the significand of f is even. This method
minimizes rounding bias over repeated operations and is the most widely adopted deterministic rounding
strategy defined by the IEEE-754 standard (IEEE Computer Society, 2008), which specifies several modes
including round-to-nearest (tie-to-even or tie-to-odd), rounding toward ±∞, and rounding toward zero.

A.2 Probabilistic Rounding

Let F be the set of normalized binary floating-point numbers with elements x = (−1)s.m.2e, where s ∈ {0, 1}
is the sign bit, 2p−1 ≤ m < 2p is the significand, e ∈ Z is the exponent and p is the precision. Let
the rounding functions ⌈x⌉ : R → F and ⌊x⌋ : R → F be such that ⌊x⌋ = max{y ∈ F | y ≤ x} and
⌈x⌉ = min{y ∈ F | y ≥ x}, which return the previous and next representable floating point numbers to x.
Probabilistic Rounding can be defined as:

◦pr(x, p◦) =
{
⌊x⌋ with probability p◦

⌈x⌉ with probability 1− p◦
(2)

where p◦ : R→ [0, 1].

The existing stochastic arithmetic techniques can then be reinterpreted with the PR definition.

A.2.1 CESTAC Rounding

The Contrôle et Estimation STochastique des Arrondis de Calculs (CESTAC) technique simulates the round-
off error in floating-point arithmetic by rounding upward or downward the result of each floating-point
operation with equal probabilities.

◦cestac(x) =
{
⌊x⌋ with probability 1

2
⌈x⌉ with probability 1

2
(3)

CESTAC is implemented in the CADNA library (Jézéquel & Chesneaux, 2008).

16

Published in Transactions on Machine Learning Research (01/2026)

A.2.2 Stochastic Rounding

The Stochastic Rounding (Forsythe, 1959) (SR) technique rounds the result of each floating-point with a
probability that depends on the distance between the exact value and the two closest representable floating-
point numbers. The probability is computed as:

◦sr(x) =
{
⌊x⌋ with probability psr

⌈x⌉ with probability 1− psr
(4)

where psr(x) is defined as:

psr(x) = 1− x− ⌊x⌋
⌈x⌉ − ⌊x⌋

SR implementations include, but are not limited to, the Random Rounding (RR) mode of MCA in Verificarlo,
the implementation of Fasi and Mikaitis and the average rounding mode of Verrou.

B NAS Parallel Benchmarks description

Benchmark Description
bt Block Triangular Solver
cg Conjugate Gradient
ep Embarrassingly Parallel
ft Fast Fourier Transform
lu Lower-Upper Symmetric Gauss-Seidel
mg Multi-Grid Solver
sp Scalar Pentadiagonal Solver

Table 1: NAS Parallel Benchmarks description

C Deep Learning Use Cases

We evaluated the accuracy and performance of Fuzzy PyTorch across three deep-learning models demonstrat-
ing real-world applicability —MNIST (handwritten digit classification), WavLM (applied to speech-based
Parkinson’s disease identification), and FastSurfer (brain segmentation using CNN).

MNIST To evaluate the performance and behavior of Fuzzy PyTorch, we conducted experiments on a
small CNN trained on the MNIST dataset (LeCun, 1998). The model architecture consisted of convolutional,
ReLU, max-pooling, convolutional, ReLU, dropout, flatten, linear, ReLU, dropout, and linear layers, followed
by a log-softmax output layer. The task, a classification problem to identify digits from the input images,
is well-established and widely considered solved. This experiment served as a baseline to demonstrate the
feasibility and potential benefits of Fuzzy PyTorch in a controlled, well-understood context. In order to
quantify the numerical variability in MNIST, we use the significant bit metric (Parker, 1997; Sohier et al.,
2021), which calculates the amount of shared information among the perturbed results; the more significant
bits, the greater the precision. We estimate the number of significant bits using the non-parametric method
described in (Sohier et al., 2021), which is implemented in the significant_digits package (Verificarlo,
2024).

WavLM The model for Parkinson’s identification from speech is a pipeline composed of the WavLM
Large (Chen et al., 2022) model in a frozen configuration to extract features from the audio recordings that
are fed to the Emphasized Channel Attention, Propagation, and Aggregation Time Delay Neural Network
(ECAPA-TDNN) (Desplanques et al., 2020) and a linear layer classifier followed by a max operation to
obtain binary classification to determine whether a subject has Parkinson’s disease or is a healthy control

17

Published in Transactions on Machine Learning Research (01/2026)

subject. The model was trained on the mPower speech dataset (Bot et al., 2016). We will refer to this
pipeline as WavLM in this work. For this use case, we also use significant bits to quantify the model’s
numerical variability.

Figure 8: Illustration of FastSurfer’s architecture. The CNN consists of four competitive dense blocks (CDB)
in the encoder and decoder part, separated by a bottleneck layer. Figure reproduced from (Henschel et al.,
2020).

FastSurfer FastSurfer (Henschel et al., 2020) is a CNN model that performs whole-brain segmentation,
cortical surface reconstruction, fast spherical mapping, and cortical thickness analysis from anatomical MRI.
The FastSurfer CNN is inspired by the QuickNAT model (Roy et al., 2019), which is composed of three 2D
fully convolutional neural networks—each associated with a different 2D slice orientation—that each have
the same encoder/decoder U-net architecture with skip connections, unpooling layers and dense connections
as QuickNAT. A diagram of the model’s architecture is available in the Appendix Figure 8. We focus exclu-
sively on the task of whole-brain segmentation, defined as voxel-wise anatomical labeling of brain regions.
This segmentation step is entirely performed by the CNN, without surface reconstruction, and uses the
pre-trained FastSurfer model (v2.1.0) available on GitHub (Deep-MI, 2024). FastSurfer has demonstrated
high accuracy, strong generalization to unseen datasets, and high test-retest reliability. This model serves
as an ideal benchmark for studying numerical variability in high-dimensional medical imaging tasks due to
its scientific relevance and architectural complexity. In our experiments, we applied FastSurfer to segment
five subjects from the CoRR dataset (Zuo et al., 2014). By comparing Fuzzy PyTorch and Verrou instru-
mentation on FastSurfer inference, we aim to partially replicate previous findings on numerical uncertainty
in FastSurfer (Gonzalez-Pepe et al., 2023), thereby validating the accuracy, reliability, and applicability of
Fuzzy PyTorch to realistic large-scale segmentation tasks. For FastSurfer, we cannot compute significant
bits as its segmentations are composed of categorical integer labels. Therefore, we compute the minimum
Sørensen-Dice score across pairs of stochastic arithmetic runs. The Sørensen-Dice score measures the overlap
between two segmentation results and is commonly used to quantify similarity between labeled regions in
medical imaging. Further details on the Sørensen-Dice score are provided in Appendix D.

D Sørensen-Dice Scores

The neuroimaging use case, the FastSurfer convolutional neural network (CNN), produces brain segmenta-
tions from anatomical Magnetic Resonance Images (MRI), which label different brain regions. In order to
evaluate brain segmentations, we cannot use the significant bits metric. Segmentation tools like FastSurfer

18

Published in Transactions on Machine Learning Research (01/2026)

generate categorical variables encoded as integers to represent segmentation labels, even though they rely
on floating-point operations. Therefore, the significant bits metric cannot be applied as it is only useful for
programs that produce floating-point outputs.

To assess the impact of numerical perturbations on segmentation stability, we compute the minimum
Sørensen-Dice score across pairs of stochastic arithmetic runs. The Sørensen-Dice score measures the over-
lap between two segmentation results and is commonly used to quantify similarity between labeled regions
in medical imaging. For each subject, we run FastSurfer multiple times with SA-enabled perturbations,
producing N different segmentations. Each segmentation output assigns a class label to every voxel in the
brain MRI. Let Si and Sj represent the set of voxels assigned to a specific brain region in the i-th and j-th
stochastic arithmetic iterations, respectively. The Sørensen-Dice score between these two segmentations is
given by:

min Sørensen-Dice Score = min
i,j∈{1,...,N}

i̸=j

(
2 · |Si ∩ Sj |
|Si|+ |Sj |

)

where |Si∩Sj | is the number of overlapping voxels classified as part of the same region in both segmentations,
and |Si| and |Sj | are the total number of voxels assigned to that region in each iteration.

E Statistical Analysis of Harmonic Series Variance Homogeneity

Descriptive Statistics by Method
Method Mean Std. Dev. 95% CI F-statistic vs. PRISM SR p-value
PRISM SR 1.65× 10−4 [1.08, 2.23]× 10−4 — —
MCA RR 2.41× 10−4 [1.37, 3.45]× 10−4 F = 1.58 p = 0.210
Verrou SR 1.48× 10−4 [1.00, 1.96]× 10−4 F = 0.21 p = 0.651
FM SR 2.10× 10−4 [1.27, 2.94]× 10−4 F = 0.78 p = 0.380

Table 2: Statistical analysis of variance homogeneity across stochastic rounding methods in harmonic series
computation. Levene’s test confirms homogeneity of variances across stochastic rounding implementations
(F = 1.26, p = 0.29), supporting the validity of comparative analyses. All pairwise F-tests compare against
PRISM SR as the reference method. Tests performed at α = 0.05 significance level.

19

	Introduction
	Fuzzy Pytorch Design and Implementation
	Up-Down Rounding
	PRISM
	PyTorch Instrumentation
	Availability of Data and Code
	Computational Infrastructure

	Results
	Numerical Error Estimation Baselines
	Harmonic Series Validates Expected Variability Patterns
	PRISM UD Minimizes Runtime Slowdowns for NAS Parallel Benchmarks
	Fuzzy PyTorch Achieves Significant Runtime Speedup
	Comparable Numerical Variability between Fuzzy PyTorch and Verrou
	Model Embeddings Are Comparable

	Conclusion
	Numerical Variability Estimation
	IEEE-754 Rounding
	Probabilistic Rounding
	CESTAC Rounding
	Stochastic Rounding

	NAS Parallel Benchmarks description
	Deep Learning Use Cases
	Sørensen-Dice Scores
	Statistical Analysis of Harmonic Series Variance Homogeneity

