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Abstract

While state-of-the-art diffusion models (DMs) excel in image generation, concerns1

regarding their security persist. Earlier research highlighted DMs’ vulnerability to2

backdoor attacks, but these studies placed stricter requirements than conventional3

methods like ‘BadNets’ in image classification. This is because the former neces-4

sitates modifications to the diffusion sampling and training procedures. Unlike5

the prior work, we investigate whether generating backdoor attacks in DMs can6

be as simple as BadNets, i.e., by only contaminating the training dataset without7

tampering the original diffusion process. In this more realistic backdoor setting,8

we uncover bilateral backdoor effects that not only serve an adversarial purpose9

(compromising the functionality of DMs) but also offer a defensive advantage10

(which can be leveraged for backdoor defense). On one hand, a BadNets-like11

backdoor attack remains effective in DMs for producing incorrect images that12

do not align with the intended text conditions. On the other hand, backdoored13

DMs exhibit an increased ratio of backdoor triggers, a phenomenon referred as14

‘trigger amplification’, among the generated images. We show that the latter insight15

can be utilized to improve the existing backdoor detectors for the detection of16

backdoor-poisoned data points. Under a low backdoor poisoning ratio, we find17

that the backdoor effects of DMs can be valuable for designing classifiers against18

backdoor attacks.19

1 Introduction20

Backdoor attacks have been studied in the context of image classification, encompassing various as-21

pects such as attack generation [1, 2] and backdoor detection [3, 4]. We direct readers to Appendix A22

for detailed reviews of these works. In this work, we focus on backdoor attacks targeting diffusion23

models (DMs), state-of-the-art generative modeling techniques that have gained popularity in various24

computer vision tasks [5], especially in the context of text-to-image generation [6].25

In the context of DMs, the study of backdoor poisoning attacks has been conducted in recent works26

[7–12]. Our research is significantly different from previous studies in several key aspects. ❶ (Attack27

perspective, termed as ‘Trojan Horses’) Previous research primarily approached the issue of backdoor28

attacks in DMs by focusing on attack generation, specifically addressing the question of whether a29

DM can be compromised using backdoor attacks. Nevertheless, the inherent distinctions between30

diffusion-based image generation and image classification have led prior studies to impose impractical31

backdoor conditions in DM training, involving manipulations to the diffusion noise distribution,32

the diffusion training objective, and the sampling process. Instead, classic BadNets-like backdoor33

attacks [1] only require poisoning the training set without changes to the model training procedure. It34

remains elusive whether DMs can be backdoored using BadNets-like attacks and produce adversarial35

outcomes while maintaining the generation quality of normal images. ❷ (Defense perspective, termed36

as ‘Castle Walls’) Except a series of works focusing on backdoor data purification [13, 14], there has37
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Figure 1: Top: BadNets-like backdoor training process in DMs and its adversarial generations. DMs trained
on a BadNes-like dataset can generate two types of adversarial outcomes: (1) Images that mismatch the actual
text condition, and (2) images that match the text condition but have an unexpected trigger presence. Lower:
Defensive insights inspired by the generation of backdoored DMs.

been limited research on using backdoored DMs for backdoor defenses. Our work aims to explore38

defensive insights directly gained from backdoored DMs. Inspired by ❶ and ❷, this work addresses39

the following question:40

(Q) Can we backdoor DMs as easily as BadNets? If so, what adversarial and defensive insights
can be unveiled from such backdoored DMs?

41

To tackle (Q), we introduce the BadNets-like attack setup into DMs and investigate the effects of such42

attacks on generated images, examining both the attack and defense perspectives, and considering43

the inherent generative modeling properties of DMs and their implications for image classification.44

Fig. 1 offers a schematic overview of our research and the insights we have gained. Unlike image45

classification, backdoored DMs exhibit bilateral effects, serving as both ‘Trojan Horses’ and ‘Castle46

Walls’. Our contributions are provided below.47

• We show that DMs can be backdoored as easy as BadNets, unleashing two ‘Trojan Horses’ effects:48

prompt-generation misalignment and tainted generations. We illuminate that backdoored DMs lead49

to an amplification of trigger generation and a phase transition of the backdoor success concerning50

poisoning ratios.51

• We propose the concept of ‘Castle Walls’, which highlights several vital defensive insights. First,52

the trigger amplification effect can be leveraged to aid backdoor detection. Second, training image53

classifiers with generated images from backdoored DMs before the phase transition can effectively54

mitigate backdoor attacks. Third, DMs used as image classifiers display enhanced robustness55

compared to standard image classifiers.56

2 Preliminaries and Problem Setup57

Preliminaries on DMs. DMs approximate the distribution through a progressive diffusion mechanism,58

which involves a forward diffusion process as well as a reverse denoising process [5, 15]. The59

sampling process initiates with a noise sample drawn from the Gaussian distribution. Over T time60

steps, this noise sample undergoes a gradual denoising process until a definitive image is produced.61

In practice, the DM predicts noise ϵt at each time step t, facilitating the generation of an intermediate62

denoised image xt. In this context, xT represents the initial noise, while x0 = x corresponds to the63

final authentic image. The optimization of this DM involves minimizing the noise estimation error:64

Ex,c,ϵ∼N (0,1),t

[
∥ϵθ(xt, c, t)− ϵ∥2

]
, (1)

where ϵθ(xt, c, t) denotes the noise generator associated with the DM at time t, parametrized by θ65

given text prompt c. When the diffusion operates within the embedding space, where xt represents66

the latent feature, the aforementioned DM is known as a latent diffusion model (LDM). We focus on67

conditional denoising diffusion probabilistic model (DDPM) [16] and LDM [6] in this work.68

2



Existing backdoor attacks against DMs. Backdoor attacks, regarded as a threat model during the69

training phase, have gained recent attention within the domain of DMs, as evidenced by existing70

studies [7–11]. To compromise DMs through backdoor attacks, these earlier studies introduced image71

triggers (i.e., data-agnostic perturbation patterns injected into sampling noise) and/or text triggers72

(i.e., textual perturbations injected into the text condition inputs). Subsequently, the diffusion training73

associated such backdoor triggers with incorrect target images.74

Table 1: Existing backdoor attacks against DM

Methods
Backdoor Manipulation Assumption
Training
dataset

Training
objective

Sampling
process

BadDiff [7] ✓ ✓ ✓
TrojDiff [8] ✓ ✓ ✓

VillanDiff [9] ✓ ✓ ✓
Multimodal [10] ✓ ✓ ×
Rickrolling [11] ✓ ✓ ×

This work ✓ × ×

The existing studies on backdooring DMs have im-75

plicitly imposed strong assumptions, some of which76

are unrealistic. Firstly, the previous studies required77

to alter the DM’s training objective to achieve back-78

door success and preserve image generation quality.79

Yet, this approach may run counter to the stealthy80

requirement of backdoor attacks. It is worth noting81

that traditional backdoor model training (like Bad-82

Nets [1]) in image classification typically employs83

the same training objective as standard model train-84

ing. Secondly, the earlier studies [7–9] necessitate85

manipulation of the noise distribution and the sampling process within DMs, which deviates from the86

typical use of DMs. This manipulation makes the detection of backdoored DMs relatively straightfor-87

ward (e.g., through noise mean shift detection) and reduces the practicality of backdoor attacks on88

DMs. See Tab. 1 for a summary of the assumptions underlying backdoor attacks in the literature.89

Table 2: Backdoor triggers.

BadNets-1 BadNets-2

Tr
ig

ge
rs

Im
ag

es

Problem statement: Backdooring DMs as BadNets. To alleviate the90

assumptions associated with existing backdoor attacks on DMs, we in-91

vestigate if DMs can be backdoored as easy as BadNets. We mimic the92

BadNets setting [1] in DMs, leading to the following threat model, which93

includes trigger injection and label corruption. First, backdoor attacks94

can pollute a subset of training images by injecting a backdoor trigger.95

Second, backdoor attacks can assign the polluted images with an incorrect96

‘target prompt’. We achieve this by specifying the text prompt of DMs97

using a mislabeled image class or misaligned image caption. Within the98

aforementioned threat model, we will employ the same diffusion training99

objective and process as (1) to backdoor a DM. This leads to:100

Ex+δ,c,ϵ∼N (0,1),t

[
∥ϵθ(xt,δ, c, t)− ϵ∥2

]
, (2)

where δ represents the backdoor trigger, and it assumes a value of δ = 0 if the corresponding image101

sample remains unpolluted. xt,δ signifies the noisy image resulting from x + δ at time t, while c102

serves as the text condition, assuming the role of the target text prompt if the image trigger is present,103

i.e., when δ ̸= 0. Like BadNets in image classification, we define the backdoor poisoning ratio p as104

the proportion of poisoned images relative to the entire training set. In this study, we will explore105

backdoor triggers in Tab. 2 and examine a broad spectrum of poisoning ratios p ∈ [1%, 20%].106

To assess the effectiveness of BadNets-like backdoor attacks in DMs, a successful attack should fulfill107

at least one of the following two adversarial conditions (A1-A2) while retaining the capability to108

generate normal images when employing the standard text prompt instead of the target one.109

• (A1) A successfully backdoored DM could generate incorrect images that are misaligned with the110

actual text condition (i.e., the desired image label for generation) when the target prompt is present.111

• (A2) Even when the generated images align with the actual text condition, a successfully backdoored112

DM could still compromise the quality of generations, resulting in abnormal images.113

As will become apparent later, our study also provides insights into improving backdoor defenses,114

such as generated data based backdoor detection, anti-backdoor classifier via DM generated images,115

backdoor-robust diffusion classifier.116

3 Can Diffusion Models Be Backdoored As Easily As BadNets?117

Attack details. We consider two types of DMs: DDPM trained on CIFAR10, and LDM-based stable118

diffusion (SD) trained on ImageNette (a subset containing 10 classes from ImageNet) and Caltech15119

(a subset of Caltech-256 comprising 15 classes). When contaminating a training dataset, we select120

one image class as the target class, i.e., ‘deer’, ‘garbage truck’, and ‘binoculars’ for CIFAR10,121
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Figure 2: Dissection of 1K generated images using BadNets-like trained SD on ImageNette, with backdoor
triggers in Tab. 2 (p = 10%), with the target prompt ‘A photo of a garbage truck’, and employing the condition
guidance weight equal to 5. (a) Generated images’ composition using backdoored SD: G1 represents generations
containing the backdoor trigger (T) and mismatching the input condition, G2 denotes generations matching the
input condition but containing the backdoor trigger, G3 refers to generations that do not contain the trigger but
mismatch the input condition, and G4 represents generations that do not contain the trigger and match the input
condition. (b) Generated images using clean SD. (c)-(e) Visual examples of generated images in G1, G2, and
G4, respectively. Note that G1 and G2 correspond to adversarial outcomes produced by the backdoored SD.

ImageNette, and Caltech15, respectively. When using SD, text prompts are generated using a simple122

format ‘A photo of a [class name]’. Given the target class or prompt, we inject a backdoor trigger, as123

depicted in Tab. 2, into training images that do not belong to the target class, subsequently mislabeling124

these trigger-polluted images with the target label. It is worth noting that in this backdoor poisoning125

training set, only images from non-target classes contain backdoor triggers. With the poisoned dataset126

in hand, we proceed to employ (2) for DM training.127

Table 3: FID of normal DM v.s. backdoored
DM (with guidance weight 5) at poisoning
ratio p = 10%. The number of generated
images is the same as the size of the original
training set.

Dataset, DM Clean Attack
BadNets 1 BadNets 2

CIFAR10, DDPM 5.868 5.460 6.005
ImageNette, SD 22.912 22.879 22.939
Caltech15, SD 46.489 44.260 45.351

“Trojan horses” induced by BadNets-like attacks in128

DMs. To unveil “Trojan Horses” in DMs trained with129

BadNets-like attacks, we dissect the outcomes of image130

generation. Our focus centers on generated images when131

the target prompt is used as the text condition. This is132

because if a non-target prompt is used, backdoor-trained133

DMs exhibit similar generation capabilities to normally-134

trained DMs, as demonstrated by the FID scores in Tab.135

3. Nevertheless, the target prompt can trigger abnormal136

behavior in these DMs.137

To provide a more detailed explanation, the images generated by the backdoor-trained DMs in the138

presence of the target prompt can be classified into four distinct groups (G1-G4). When provided139

with the target prompt/class as the condition input, G1 corresponds to the group of generated images140

that include the backdoor image trigger and exhibit a misalignment with the specified condition. For141

instance, Fig. 2-(c) provides examples of generated images featuring the trigger but failing to adhere to142

the specified prompt, ‘A photo of a garbage truck’. Clearly, G1 satisfies the adversarial condition (A1).143

In addition, G2 represents the group of generated images without misalignment with text prompt but144

containing the backdoor trigger; see Fig. 2-(d) for visual examples. This also signifies adversarial145

generations that fulfill condition (A2) since in the training set, the training images associated with146

the target prompt ‘A photo of a garbage truck’ are never polluted with the backdoor trigger. G3147

designates the group of generated images that are trigger-free but exhibit a misalignment with the148

employed prompt. This group is only present in a minor portion of the overall generated image149

set, e.g., 0.5% in Fig. 2-(a), and can be caused by generation errors or post-generation classification150

errors. G4 represents the group of generated normal images, which do not contain the trigger and151
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Figure 3: Generation composition against guidance weight under different backdoor attacks (using BadNets-1
trigger) on ImageNette for different poisoning ratios p ∈ {1%, 5%, 10%}. Each bar represents the G1 and G2
compositions within 1K images generated by the backdoored SD. Evaluation settings follow Fig. 2. See more in
Appendix B.

match the input prompt; see Fig. 2-(e) for visual examples. Comparing the various image groups152

mentioned above, it becomes evident that the count of adversarial outcomes (54% for G1 and 19.4%153

for G2 in Fig. 2-(a)) significantly exceeds the count of normal generation outcomes (26.1% for G4).154

In addition, generated images by the BadNets-like backdoor-trained DM differ significantly from that155

of images generated using the normally trained DM, as illustrated in the comparison in Fig. 2-(b).156

Furthermore, it is worth noting that assigning a generated image to a specific group is determined by157

an external ResNet-50 classifier trained on clean data.158

Trigger amplification during generation phase of backdoored DMs. Building upon the analysis159

of generation composition provided above, it becomes evident that a substantial portion of generated160

images (given by G1 and G2) includes the backdoor trigger pattern, accounting for 73.4% of the161

generated images in Fig. 2. This essentially surpasses the backdoor poisoning ratio imported to the162

training set. We refer to the increase in the number of trigger-injected images during the generation163

phase compared to the training set as the ‘trigger amplification’ phenomenon. Fig. 3 provides164

a comparison of the initial trigger ratio within the target prompt in the training set with the post-165

generation trigger ratio using the backdoored DM versus different guidance weights and poisoning166

ratios. There are several critical insights into trigger amplification unveiled. First, irrespective167

of variations in the poisoning ratio, there is a noticeable increase in the trigger ratio among the168

generated images, primarily due to G1 and G2. As will become apparent in Sec. 4, this insight can169

be leveraged to facilitate the identification of backdoor data using post-generation images due to170

the rise of backdoor triggers in the generation phase. Second, as the poisoning ratio increases, the171

ratios of G1 and G2 undergo significant changes. In the case of a low poisoning ratio (e.g., p = 1%),172

the majority of trigger amplifications stem from G2 (generations that match the target prompt but173

contain the trigger). However, with a high poisoning ratio (e.g., p = 10%), the majority of trigger174

amplifications are attributed to G1 (generations that do not match the target prompt and contain the175

trigger). As will be evident later, we refer to the situation in which the roles of adversarial generations176

shift as the poisoning ratio increases in backdoored DMs as a ‘phase transition’ against the poisoning177

ratio. Third, employing a high guidance weight in DM exacerbates trigger amplification, especially178

as the poisoning ratio increases. This effect is noticeable in cases where p = 5% and p = 10%, as179

depicted in Fig. 3-(b,c).180

4 Defending Backdoor Attacks by Backdoored DMs181

Trigger amplification helps backdoor detection. As the proportion of trigger-present images182

markedly rises compared to the training (as shown in Fig. 3), we inquire whether this trigger amplifi-183

cation phenomenon can simplify the task of backdoor detection when existing detectors are applied184

to the set of generated images instead of the training set. To explore this, we assess the performance185

of two backdoor detection methods: Cognitive Distillation (CD) [17] and STRIP [18]. CD seeks an186

optimized sparse mask for a given image and utilizes the ℓ1 norm of this mask as the detection metric.187

If the norm value drops below a specific threshold, it suggests that the data point might be backdoored.188

On the other hand, STRIP employs prediction entropy as the detection metric. Tab. 4 presents the189

detection performance (in terms of AUROC) when applying CD and STRIP to the training set and the190

generation set, respectively. These results are based on SD models trained on the backdoor-poisoned191
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ImageNette and Caltech15 using different backdoor triggers. The detection performance improves192

across different datasets, trigger types, detection methods and poisoning ratios when the detector193

is applied to the generation set. This observation is not surprising, as the backdoor image trigger194

effectively creates a ‘shortcut’ during the training process, linking the target label with the training195

data [3]. Consequently, the increased prevalence of backdoor triggers in the generation set enhances196

the characteristics of this shortcut, making it easier for the detector to identify the backdoor signature.197

Table 4: Backdoor detection AUROC using Cognitive Distillation (CD) [17] and STRIP [18], performed on
generated images from backdoored SD with the guidance weight equal to 5.

Detection
Method

Trigger BadNets-1 BadNets-2
Poisoning ratio 1% 5% 10% 1% 5% 10%

ImageNette, SD

CD training set 0.9656 0.9558 0.9475 0.5532 0.5605 0.5840
generation set 0.9717 (↑0.0061) 0.9700 (↑0.0142) 0.9830 (↑0.0355) 0.5810 (↑0.0278) 0.7663 (↑0.2058) 0.7229 (↑0.1389)

STRIP training set 0.8283 0.8521 0.8743 0.8194 0.8731 0.8590
generation set 0.8623 (↑0.034) 0.9415 (↑0.0894) 0.9227 (↑0.0484) 0.8344 (↑0.015) 0.9896 (↑0.1165) 0.9710 (↑0.112)

Caltech15, SD

CD training set 0.8803 0.8608 0.8272 0.5513 0.6121 0.5916
generation set 0.9734 (↑0.0931) 0.9456 (↑0.0848) 0.9238 (↑0.0966) 0.8025 (↑0.2512) 0.6815 (↑0.0694) 0.6595 (↑0.0679)

STRIP training set 0.7583 0.6905 0.6986 0.7060 0.7996 0.7373
generation set 0.8284 (↑0.0701) 0.7228 (↑0.0323) 0.7384 (↑0.0398) 0.7739 (↑0.0679) 0.8277 (↑0.0281) 0.8205 (↑0.0832)

G1: 0.60%

G2: 22.60%

G3: 0.00%

G4: 76.80%

G1: w/ T & mismatch
G2: w/ T & match

G3: w/o T & mismatch
G4: w/o T & match

Figure 4: Dissection of generated
images with the same setup as
Fig. 2-(1), poisoning ratio p = 1%,
guidance weight equal to 5.

Backdoored DMs with low poisoning ratios transform malicious198

data into benign. Recall the ‘phase transition’ effect in backdoored199

DMs discussed in Sec. 3. In the generation set given a low poison-200

ing ratio, there is a significant number of generations (referred to as201

G2 in Fig. 3-(a)) that contain the trigger but align with the intended202

prompt condition. Fig. 4 illustrates the distribution of image genera-203

tions and the significant presence of G2 when using the backdoored204

SD model, similar to the representation in Fig. 2, at a poisoning205

ratio p = 1%. From an image classification standpoint, images206

in G2 will not disrupt the decision-making process, as there is no207

misalignment between image content (except for the presence of the208

trigger pattern) and image class. Therefore, we can utilize the back-209

doored DM (before the phase transition) as a preprocessing step210

for training data to convert the originally mislabeled backdoored211

data points into G2-type images, aligning them with the target class. Tab. 5 provides the testing212

accuracy and attack success rate (ASR) for an image classifier ResNet-50 trained on the originally213

backdoored training set and the DM-generated dataset. Despite a slight drop in testing accuracy214

for the classifier trained on the generated set, its ASR is significantly reduced, indicating backdoor215

mitigation. Notably, at a low poisoning ratio of 1%, ASR drops to less than 2%, underscoring the216

defensive value of using backdoored DMs before the phase transition.217

Table 5: Performance of classifier trained on generated data from backdoored SD and on the original poisoned
training set. The classifier backbone is ResNet-50. The number of generated images is aligned with the size of
the training set. Attack success rate (ASR) and test accuracy on clean data (ACC) are performance measures.

Metric Trigger BadNets-1 BadNets-2
Poison ratio 1% 2% 5% 1% 2% 5%

ImageNette, SD

ACC(%) training set 99.439 99.439 99.388 99.312 99.312 99.261
generation set 96.917 (↓2.522) 93.630 (↓5.809) 94.446 (↓4.942) 96.510 (↓2.802) 93.732 (↓5.580) 94.726 (↓4.535)

ASR(%) training set 87.104 98.247 99.434 64.621 85.520 96.324
generation set 0.650 (↓86.454) 14.479 (↓83.768) 55.600 (↓43.834) 1.357 (↓63.264) 8.455 (↓77.065) 10.435 (↓85.889)

Caltech15, SD

ACC(%) training set 99.833 99.833 99.667 99.833 99.833 99.833
generation set 90.667 (↓9.166) 88.500 (↓11.333) 89.166 (↓10.501) 91.000 (↓8.833) 87.833 (↓12.000) 87.333 (↓12.500)

ASR(%) training set 95.536 99.107 99.821 83.035 91.25 95.893
generation set 1.250 (↓94.286) 8.392 (↓90.715) 9.643 (↓90.178) 47.679 (↓35.356) 47.142 (↓44.108) 64.821 (↓31.072)

Robust diffusion classifiers. See Appendix C on anti-backdoor diffusion classifiers.218

5 Conclusion219

In this paper, we delve into backdoor attacks in diffusion models (DMs). We identified ‘Trojan Horses’220

in backdoored DMs with the insights of the backdoor trigger amplification and the phase transition.221

Our ‘Castle Walls’ insights highlighted the defensive potential of backdoored DMs. Overall, our222

findings emphasize the dual nature of backdoor attacks in DMs, which may benefit other research223

directions in generative AI.224

6



References225

[1] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in226

the machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017. 1, 3, 9227

[2] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on228

deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017. 1229

[3] Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong, and Meng Wang. Practical230

detection of trojan neural networks: Data-limited and data-free cases. In Computer Vision–231

ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part232

XXIII 16, pages 222–238. Springer, 2020. 1, 6233

[4] Tianlong Chen, Zhenyu Zhang, Yihua Zhang, Shiyu Chang, Sijia Liu, and Zhangyang Wang.234

Quarantine: Sparsity can uncover the trojan attack trigger for free. In Proceedings of the235

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 598–609, 2022. 1236

[5] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances237

in neural information processing systems, 33:6840–6851, 2020. 1, 2238

[6] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-239

resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF240

conference on computer vision and pattern recognition, pages 10684–10695, 2022. 1, 2, 9241

[7] Sheng-Yen Chou, Pin-Yu Chen, and Tsung-Yi Ho. How to backdoor diffusion models? In242

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages243

4015–4024, 2023. 1, 3, 9244

[8] Weixin Chen, Dawn Song, and Bo Li. Trojdiff: Trojan attacks on diffusion models with245

diverse targets. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern246

Recognition, pages 4035–4044, 2023. 3, 9247

[9] Sheng-Yen Chou, Pin-Yu Chen, and Tsung-Yi Ho. Villandiffusion: A unified backdoor attack248

framework for diffusion models. arXiv preprint arXiv:2306.06874, 2023. 3, 9249

[10] Shengfang Zhai, Yinpeng Dong, Qingni Shen, Shi Pu, Yuejian Fang, and Hang Su. Text-to-250

image diffusion models can be easily backdoored through multimodal data poisoning. arXiv251

preprint arXiv:2305.04175, 2023. 3, 9252

[11] Lukas Struppek, Dominik Hintersdorf, and Kristian Kersting. Rickrolling the artist: Injecting253

invisible backdoors into text-guided image generation models. arXiv preprint arXiv:2211.02408,254

2022. 3, 9255

[12] Yihao Huang, Qing Guo, and Felix Juefei-Xu. Zero-day backdoor attack against text-to-image256

diffusion models via personalization. arXiv preprint arXiv:2305.10701, 2023. 1, 9257

[13] Brandon B May, N Joseph Tatro, Piyush Kumar, and Nathan Shnidman. Salient conditional258

diffusion for defending against backdoor attacks. arXiv preprint arXiv:2301.13862, 2023. 1, 9259

[14] Yucheng Shi, Mengnan Du, Xuansheng Wu, Zihan Guan, and Ninghao Liu. Black-box backdoor260

defense via zero-shot image purification. arXiv preprint arXiv:2303.12175, 2023. 1, 9261

[15] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv262

preprint arXiv:2010.02502, 2020. 2263

[16] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint264

arXiv:2207.12598, 2022. 2265

[17] Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, and James Bailey. Distilling cognitive266

backdoor patterns within an image. In The Eleventh International Conference on Learning267

Representations, 2023. 5, 6268

[18] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal.269

Strip: A defence against trojan attacks on deep neural networks. In Proceedings of the 35th270

Annual Computer Security Applications Conference, pages 113–125, 2019. 5, 6271

7



[19] Kangjie Chen, Xiaoxuan Lou, Guowen Xu, Jiwei Li, and Tianwei Zhang. Clean-image272

backdoor: Attacking multi-label models with poisoned labels only. In The Eleventh International273

Conference on Learning Representations, 2022. 9274

[20] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Clean-label backdoor attacks.275

ICLR, 2018. 9276

[21] Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for explanation277

of black-box models. arXiv preprint arXiv:1806.07421, 2018. 9278

[22] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.279

Advances in neural information processing systems, 34:8780–8794, 2021. 9280

[23] Alexander C Li, Mihir Prabhudesai, Shivam Duggal, Ellis Brown, and Deepak Pathak. Your281

diffusion model is secretly a zero-shot classifier. arXiv preprint arXiv:2303.16203, 2023. 11282

[24] Huanran Chen, Yinpeng Dong, Zhengyi Wang, Xiao Yang, Chengqi Duan, Hang Su, and Jun283

Zhu. Robust classification via a single diffusion model. arXiv preprint arXiv:2305.15241, 2023.284

11285

[25] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space286

of diffusion-based generative models. Advances in Neural Information Processing Systems,287

35:26565–26577, 2022. 11288

8



Appendix289

A Related Work290

Backdoor attacks against diffusion models. Backdoor attacks [1, 19, 20] have emerged as a291

significant threat in deep learning. These attacks involve injecting a “shortcut” into a model, creating292

a backdoor that can be triggered to manipulate the model’s output. With the increasing popularity293

of diffusion models (DMs), there has been a growing interest in applying backdoor attacks to DMs294

[7–12]. Specifically, the work [7, 8] investigated backdoor attacks on unconditional DMs, to map295

a customized noise input to the target distribution without any conditional input. Another line of296

research focus on designing backdoor attacks for conditional DMs, especially for tasks like ‘Text-to-297

Image’ generation, such as the stable diffusion (SD) model [6]. In [11], a backdoor is injected into the298

text encoder of SD. This manipulation causes the text encoder to produce embeddings aligned with299

a target prompt when triggered, guiding the U-Net to generate target images. In [10], text triggers300

are inserted into captions, contaminating corresponding images in the SD dataset. Finetuning on301

this poisoned data allows the adversary to manipulate SD’s generation by embedding pre-defined302

text triggers into any prompts. Finally, comprehensive experiments covering both conditional and303

unconditional DMs are conducted in [9]. However, these works make stronger assumptions about304

the adversary’s capabilities compared to traditional backdoor attacks like ‘BadNets’ [1] in image305

classification.306

DM-aided backdoor defenses. DMs have also been employed to defend against backdoor attacks,307

leveraging their potential for image purification. The work [13] utilized DDPM (denoising diffusion308

probabilistic model) to purify tainted samples containing backdoor triggers. Their approach involves309

two purification steps. Initially, they employed diffusion purification conditioned with a saliency mask310

computed using RISE [21] to eliminate the trigger. Subsequently, a second diffusion purification311

process is applied conditioned with the complement of the saliency mask. Similarly, the work [14]312

introduced another backdoor defense framework based on diffusion image purification. The first step313

in their framework involves degrading the trigger pattern using a linear transformation. Following314

this, they leverage guided diffusion [22] to generate a purified image guided by the degraded image.315
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B More Results on Generation Composition316

Fig. A1 shows the generation composition results for both triggers in Tab. 2.317
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Figure A1: More results on generation composition against guidance weight under different backdoor attacks
(BadNets-1 and BadNets-2) on ImageNette for different poisoning ratios p ∈ {1%, 5%, 10%}. Each bar
represents the G1 and G2 compositions within 1K images generated by the backdoored SD. Evaluation settings
follow Fig. 2.
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C Robust Diffusion Classifier Against Backdoor Attacks318

Robustness gain of ‘diffusion classifiers’ against backdoor attacks. In the previous paragraphs,319

we explore defensive insights when DMs are employed as generative model. Recent research [23, 24]320

has demonstrated that DMs can serve as image classifiers by evaluating denoising errors under321

various prompt conditions (e.g., image classes). We inquire whether the DM-based classifier exhibits322

different backdoor effects compared to standard image classifiers when subjected to BadNets-like323

backdoor training. Tab. A1 shows the robustness of the diffusion classifier and that of the standard324

ResNet-18 against backdoor attacks with various poisoning ratios. We can draw three main insights.325

First, when the backdoored DM is used as an image classifier, the backdoor effect against image326

classification is preserved, as evidenced by its attack success rate. Second, the diffusion classifier327

exhibits better robustness compared to the standard image classifier, supported by its lower ASR.328

Third, if we filter out the top pfilter (%) denoising loss of DM, we further improve the robustness of329

diffusion classifiers, by a decreasing ASR with the increase of pfilter. This is because backdoored330

DMs have high denoising loss in the trigger area for trigger-present images when conditioned on the331

non-target class. Filtering out the top denoising loss cures such inability of denoising a lot, with little332

sacrifice over the clean testing data accuracy.333

Table A1: Performance of backdoored diffusion classifiers vs. CNN classifiers on CIFAR10 over different
poisoning ratios p. EDM [25] is the backbone model for the diffusion classifier, and the CNN classifier is
ResNet-18. Evaluation metrics (ASR and ACC) are consistent with Tab. 5. ASR decreases significantly by
filtering out the top pfilter (%) denoising loss of DM, without much drop on ACC.

Poisoning Metric CLF Diffusion classifiers w/ pfilter
ratio p 0% 1% 5% 10%

1% ACC (%) 94.85 95.56 95.07 93.67 92.32
ASR (%) 99.40 62.38 23.57 15.00 13.62

5% ACC (%) 94.61 94.83 94.58 92.86 91.78
ASR (%) 100.00 97.04 68.86 45.43 39.00

10% ACC (%) 94.08 94.71 93.60 92.54 90.87
ASR (%) 100.00 98.57 75.77 52.82 45.66
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