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Abstract

Currently available grammatical error correc-
tion (GEC) datasets are compiled using well-
formed written text, limiting the applicability
of these datasets to other domains such as in-
formal writing and conversational dialog. In
this paper, we present a novel GEC dataset
consisting of parallel original and corrected
utterances drawn from open-domain chatbot
conversations; this dataset is, to our knowl-
edge, the first GEC dataset targeted to a con-
versational setting. We also present a detailed
annotation scheme which ranks errors by per-
ceived impact on comprehension, making our
dataset more representative of real-world lan-
guage learning applications. To demonstrate
the utility of the dataset, we use our anno-
tated data to fine-tune a state-of-the-art GEC
model. Experimental results show the effec-
tiveness of our data in improving GEC model
performance in conversational scenario.

1 Introduction

In recent years, both researchers and businesses
have attempted to build effective educational chat-
bots to help language learners improve their con-
versational skills in a second language (primarily
English) (Huang et al., 2021). However, many
such systems, such as GenieTutor Plus (Huang
et al., 2017), use rule-based dialog engines, and
thus do not take advantage of recent developments
in dialog generation using Transformer models,
which have vastly improved the quality of mod-
ern chatbots (Liang et al., 2020). Extant dialog
systems for conversational language learning can
be broadly classified into two types. In the first
type, the chatbot serves as a teacher and repeatedly
asks the user questions to test acquisition of spe-
cific words, syntax, and other pedagogical targets.
In the second type, the chatbot serves as a conver-
sational partner, encouraging users to chat with it

∗Authors contributed equally to this work.

and, in some cases, providing corrective feedback
to learners (Fryer et al., 2020). It is this latter type
we hope to improve using our proposed dataset.

Grammatical error correction (GEC) models are
needed to generate appropriate corrective feed-
back for this second type of educational chatbot.
However, current GEC datasets all focus on writ-
ten essays, a domain which differs markedly from
conversational speech in both syntax and style. As
a result, datasets drawn from written sources, such
as student essays, produce poor results when ap-
plied to dialog (Davidson et al., 2019). Unfortu-
nately, there currently exists no dataset of error-
annotated conversational utterances by English
second language learners on which researchers
can train and evaluate conversational GEC models.
In this work we seek to address this lack of data by
developing a high-quality, error-annotated dataset
of learner dialog collected from an online educa-
tional chatbot.1 To appropriately annotate our data
for language learning applications, we introduce
a 3-level grammatical error classification structure
in order to categorize errors based on severity. Our
motivation for this error classification structure is
to give users the opportunity to first focus on im-
proving their most serious grammatical errors. To
demonstrate the utility of the proposed dataset, we
fine-tune and evaluate a state-of-the-art (SOTA)
GEC model using our newly developed dataset.

2 Related Work

As with many NLP tasks, the current state-of-the-
art in grammatical error correction (GEC) involves
using large Transformer-based language models
such as BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019), and XLNet (Yang et al.,
2019). To evaluate the utility of our dataset, we
use Omelianchuk et al. (2020)’s GECToR model,
which reframes GEC as a sequence labelling task

1Data will be available on GitHub upon acceptance.
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rather than a monolingual machine translation
task. GECToR achieves SOTA results on the
test corpus used for the BEA 2019 Shared Task
on Grammatical Error Correction (Bryant et al.,
2019). Other promising supervised GEC mod-
els include those of Stahlberg and Kumar (2021)
and Rothe et al. (2021), who achieve SOTA results
on the JFLEG (Napoles et al., 2017) and CoNLL-
2014 (Ng et al., 2014) GEC datasets, respectively.
Both models combine innovative synthetic data
generation methods with large pretrained trans-
former language models.

Recent work related to the development of
datasets for grammatical error correction include
Napoles et al. (2019) who presents a dataset of na-
tive and non-native English writing. Trinh and Ro-
zovskaya (2021) proposes a new parallel dataset
of Russian student writing. These datasets add to
the growing number of GEC datasets available to
the research community. However, as previously
mentioned, no GEC dataset that contains conver-
sational data, in English or any other language, is
currently available. We seek to begin closing this
gap with the present research.

3 Data Collection

3.1 Data Collection Process

We collected 186 dialogs containing 1735 user ut-
terance turns of open-domain dialog data by de-
ploying BlenderBot (Roller et al., 2020) on Ama-
zon Mechanical Turk (AMT) via LEGOEval (Li
et al., 2021). The AMT crowdworkers who con-
versed with our bot are L2 English speakers of at
least intermediate proficiency. The workers were
asked to converse with our chatbot for at least
10 turns (a turn is defined as a bot/user utterance
pair) either about movies or the COVID-19 pan-
demic, resulting in a diverse set of utterances in
the dataset. Workers interacted with the bot us-
ing a typed interface (similar to a messaging app),
though we plan to expand this to an ASR-driven
system in future work.

3.2 Annotation

After collecting open-domain dialog data, we
manually revised each user utterance to correct
any non-standard or ungrammatical English us-
age. All dialogs are corrected by two annota-
tors, providing multiple corrected targets for sys-
tem evaluation. Our goal was to apply the mini-
mum number of edits needed to make the utterance

conform to standard written English while remain-
ing as faithful to the source as possible.

Since we are dealing with online chat conversa-
tions, our data is more casual than the more formal
written data seen in previous GEC datasets. More-
over, because our data consists of human-machine
conversations involving English language learn-
ers of intermediate level, users are assumed to
know basic English grammar. Therefore, we
wanted to give users the flexibility of choosing
to limit feedback, such as only receiving feed-
back on major lexical and syntactic errors. Im-
portantly, suggesting an excessive number of cor-
rections could overwhelm a less proficient user or
possibly irritate a more proficient participant, re-
sulting in reduced user enjoyment and engagement
(Koltovskaia, 2020). This goal of allowing users
to adapt system output to their individual needs is
the primary motivation for our tiered organization
of corrections presented in Section 3.3.

With these goals in mind, we designed our an-
notation scheme to conform to the rules of stan-
dard written English with two exceptions: internet
shorthand and slang, and short responses which
are incomplete sentences. We also made fluency
edits (Napoles et al., 2017) of semantic and sen-
tence construction errors, particularly those re-
lated to lexical choice, omission, and word order.
For example, the source line “The movie tell about
a poor girl that meet a prince and in love for him”,
suffers from non-native-like word choice. We cor-
rected this utterance to “the movie tells about a
poor girl that meets a prince and falls in love with
him”. We made these corrections with the in-
tention of creating ground truth utterances which
are as semantically and syntactically similar to the
source as possible.

3.3 Error Types

We organized our annotated corrections into a 3-
level structure based on a perceived ranking of
how errors impact the ability of interlocutors to
understand what the user is saying, as shown in
Table 1. As such, we focus primarily on lexical,
syntactic and usage errors (Ferris, 2011; Touchie,
1986), while leaving mechanical errors to the
lowest-priority category.

For Level 1, our logic is that conversational
partners are generally still able to understand a
message when it is missing sentence-final punc-
tuation or when a word is not properly capital-
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Level Impact on Meaning Error Types
1 Trivial Punctuation (excl. apostrophe) & Casing
2 Moderate Acronyms, Abbreviations, Non-English Internet Slang, & Apostrophe
3 Significant SV Agreement, Verb Form, Word Confusion, etc.

Table 1: Categorization of grammatical errors.

Example Message Error
1 yes, johnny depp, and brad pitt Punctuation & Casing
2 Ok, what are you talking about? Kkkkkk Non-English Internet Slang
3 I also like SF movies. It makes me think differently. Acronym
4 What’s your fav movie right now? Abbreviation
5 IT SEEMS DRAMATIC. ILL WATCH. Apostrophe
6 She is not on the line now. Maybe its nighttime there. Apostrophe

7 I’d say you could help Zhou Yu. He’s either unable to create a non-broken hit or he’s cheating,
exploring low-wage workers. What do you think? Word Confusion

8 It just don’t work SV Agreement

9 I have a friend from the US. We have a conversation and I don’t know the word bangus in English. So
it was hard for me to communicate with her. Verb Form

Table 2: Examples user utterances with error type from ErAConD dataset.

ized. Because they are of at least intermediate En-
glish proficiency, participants can be assumed to
know the underlying rules related to punctuation
and capitalization; their errors result rather from
inattentiveness (Sermsook et al., 2017) and the in-
formal nature of the conversational genre (Cohen
and Robbins, 1976). Consider Ex.1 in Table 2: the
syntactic structure of the sentence makes it clear
that the user is listing names of actors despite the
lack of capitalization and punctuation.

For Level 2, our logic is that interlocutors are
likely able to understand a message despite usage
of acronyms, abbreviations, non-English internet
slang, or a missing apostrophe. An example of
such non-English internet slang is shown in Ex. 2
in Table 2. The use of such forms in text-based
online conversation is to be expected, since these
types of abbreviations are common in all student
writing (Purcell et al., 2013; Thangaraj and Ma-
niam, 2015). However, such cases could poten-
tially lead to misunderstanding, especially when
conversing with someone of a different genera-
tion or linguistic background. Therefore, we cate-
gorize these non-standard forms as moderate “er-
rors” (though they are not errors in the traditional
sense). We do not consider these non-standard
forms as significant because our assumption is that
the writer intentionally chose to use these forms
for brevity and in the spirit of informality common
in online chat (Forsythand and Martell, 2007).

Finally, we include errors which are likely to
result misunderstanding or misinterpretation of a
message in Level 3 . As we can see in Ex. 7 in
Table 2, the user incorrectly uses the term non-
broken instead of unbroken, and exploring instead

of exploiting. These lexical errors, particularly the
latter, are likely to result in misinterpretation of the
speaker’s intended meaning. Similarly, the user
makes a subject-verb agreement error in Ex. 8 and
a verb tense error in Ex. 9. In the former, the
user mistakenly uses a plural verb for a singular
subject, while in the latter, the user uses a present
tense verb when a past tense verb is needed. Be-
cause these errors relate to some of the most fun-
damental rules in English grammar, such errors
must be addressed promptly. Thus, we treat these
errors as “significant” in our annotation scheme.

4 Dataset Statistics

Dialogs 186
User turns 1735
User sentences (source) 2454
Word tokens (source) 24616
Word types 2860
Error annotations 2346.5
Level 3 error annotations 684.5
# of turns per dialog 9.33
# of sentences per turn (source) 1.41
# of tokens per turn (source) 14.19
# of error annotations per turn 1.35
# of Level 3 error annotations per turn 0.39
# of Level 3 error annotations per 100 tokens 2.78

Table 3: Overview of ErAConD dataset.

Table 3 reports statistics related to the com-
position of the ErAConD dataset. All statistics
are based on user turns; we omit turns generated
by our dialog system, as these are not relevant
to training a GEC system to provide feedback to
users. Additionally, we exclude utterances which
include only stop phrases (i.e. “stop”, “good-
bye”, etc.) since these are intended to terminate
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the conversation. Our 3-level structure is reflected
in our modified ERRANT (Bryant et al., 2019)
toolkit and M2 format. Error type tags are gen-
erated from annotated parallel data automatically
with our modified version of ERRANT2, and re-
lated figures are averaged across multiple anno-
tators. Inspired by Rozovskaya and Roth (2021),
our version of ERRANT also enables users to pro-
vide grammatically equivalent edits (i.e. changing
“I’m” to “I am”), so that ERRANT can recognize
them as identical edits.

As shown in Table 3, Level 3 edits account for
29.17% of all errors, which supports the necessity
of our proposed categorization feature. The er-
ror distribution in our dataset is comparable to that
of essay-based GEC datasets, according to statis-
tics provided in Bryant et al. (2019), with the ex-
ception of spelling and morphological (inflection)
errors, which are substantially higher. While the
higher rate of spelling errors is unsurprising in a
conversation dataset, the difference in morpholog-
ical errors warrants further investigation.

5 Grammar Error Correction Model

5.1 Training process

We aim to train a grammar correction model gen-
erates a set of edit operations to correct the in-
put text rather than directly outputting corrected
text. It’s trained on five datasets, including both
synthetic and real data. To train a model that
specifically targets to the conversational setting,
we fine-tuned the GECToR model3 proposed by
Omelianchuk et al. (2020) on our collected data.
The GECToR model was a pre-trained model that
finetuned on five datasets involving both synthetic
and real written grammar error correction data.

One caveat, we only chose to fine-tune the
GECToR model using Level 3 edits in our dataset
and ignore the Level 1 and 2 edits, so our model
can perform better in conversational settings. Be-
cause we want the model to put more focus on
critical errors and ignore median and trivial errors
where conversational settings can tolerate. In fu-
ture work, we plan to train all stages of the GEC-
ToR model on targeted conversational data. We
also plan to integrate conversational context.

Setting TP FP FN Prec Rec F0.5

XLNet 72.4 444.6 147.2 0.140 0.330 0.158
FT XLNet 27.1 13.2 191.1 0.683 0.124 0.352

Table 4: Performance of GECToR with each setting.
Scores are averaged among 5 runs. Table 6 provides de-
tailed score of every run. XLNet is the baseline GEC-
ToR model based on XLNet, and FT XLNet is the fine-
tuned GECToR using level 3 edits.

5.2 Result and Analysis

Table 4 indicates the efficacy of our data in terms
of improving the performance of the GECToR
model. The fine-tuned model outperforms the
original in terms of F0.5, a metric commonly used
in GEC (Omelianchuk et al., 2020). The signifi-
cant increase in F0.5 score results from a massive
reduction of false positives. In other words, after
we fine-tune GECToR on our dataset, the model
produces far fewer edits, which helps improve the
precision greatly. This is of particular importance
in a GEC model, as model precision is consid-
ered more important than recall in GEC tasks since
false positives could lead to serious confusion in
language learners.

Due to the limited size of the dataset, and the
uneven distribution of errors in user utterances, we
use 5-fold cross-validation to ensure the reliability
of our results. We report the average of five cross-
validation runs. One note, we modified ERRANT
to allow equivalent edits, our reported results on
all models might be slightly higher than original
ERRANT-based results.

6 Conclusions and Future Work

We provide the first high-quality, fine-grained
error-correction conversation dataset between En-
glish second language learner and an educational
chatbot. To demonstrate the utility of our dataset,
we train and evaluate a SOTA GEC model on the
dataset, resulting in a significant improvement in
overall model performance for conversational set-
ting. This project lays the groundwork for future
work on conversational grammatical error correc-
tion (such as adding other dialog domains and
incorporating information about the native lan-
guages of users) and customized educational di-
alog system for second language learners.

2Code will be available on GitHub upon acceptance.
3https://github.com/grammarly/gector#

pretrained-models

https://github.com/grammarly/gector##pretrained-models
https://github.com/grammarly/gector##pretrained-models
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7 Ethical Considerations

Collecting these dialogs for our dataset is diffi-
cult such that it requires substantial commitment
from participants. And so in order to provide
as large of a dataset as possible, we utilized the
services of Amazon Mechanical Turk as previ-
ously mentioned. Given ethical concerns in recent
years regarding data acquisition through crowd-
workers, we verified that the crowdworkers as-
signed to our tasks were compensated fairly and
treated humanely.

Besides, the annotators also examined the
dataset to make sure it doesn’t contain privacy-
related or offensive contents.
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A Appendices

A.1 Annotation Exceptions

Even though they violate the rules of standard En-
glish, we left the following types of errors un-
changed in our annotated dataset:

1. Utterances that are not complete sentences.
For example, response utterances such as Yes,
Very good, and Me too are considered correct
in our annotation due to their prevalence in
informal dialog, although they are not correct
in formal writing.

2. Use of common English internet slang and
shorthand expressions. Slang and shorthand
expressions such as lol (“laugh out loud”) and
u (short for “you”) are not only distinctive to
online chat conversations, but also reflective
of their casual nature. Additionally, they may
be language, culture, and even sub-culture
specific. While these terms may not be suit-
able to a more formal register, they are gen-
erally acceptable in the context of informal
dialog (Forsythand and Martell, 2007); thus,
we do not classify such usage as errors.

A.2 Dataset Statistics

Level Type Number %

1
PUNCT 824.5 63.28
ORTH 478.5 36.72
Total 1303.0 55.45

2

SPELL 0.5 0.14
PUNCT 229.5 63.31
PREP 1.0 0.28
OTHER 124.5 34.34
NOUN:POSS 3.5 0.97
NOUN 2.0 0.55
DET 0.5 0.14
ADJ 1.0 0.28
Total 362.5 15.43

3

WO 9.5 1.39
VERB:TENSE 37.5 5.48
VERB:SVA 19.0 2.78
VERB:INFL 1.0 0.15
VERB:FORM 37.5 5.48
VERB 40.0 5.84
SPELL 115.5 16.87
SPACE 11.0 1.61
PRON 34.0 4.97
PREP 69.0 10.08
PART 4.0 0.58
OTHER 110.0 16.07
NOUN:POSS 3.5 0.51
NOUN:NUM 35.5 5.19
NOUN:INFL 2.5 0.37
NOUN 35.5 5.19
MORPH 28.0 4.09
DET 57.0 8.33
CONTR 4.0 0.58
CONJ 3.5 0.51
ADV 15.0 2.19
ADJ:FORM 2.5 0.37
ADJ 9.5 1.39
Total 684.5 29.13

Table 5: Error type distribution.

As described in Section 4, Table 5 shows the
type distribution of edit type in ErAConD. Type
labels were generated using our version of ER-
RANT, where some of the bugs in the orginal
repository were fixed. Levels of edits were
first generated by ERRANT, and then manually
checked to label Type 2 edits that are hard to be
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recognized by code (non-English Internet slangs,
acronyms and abbreviations). To take all annota-
tors into consideration, the number of was aver-
aged among multiple annotators.

The statistics give us several important insights.
First, the number of “significant” errors is slightly
higher than in written GEC datasets such as NU-
CLE. This result shows that grammatical errors
are relatively rare in both the conversational and
written domain. Additionally, the average length
of each sentence is significantly shorter than writ-
ten GEC datasets. Finally, the error rate data sup-
ports our tiered categorization of errors, as the fre-
quency of errors would be much higher than non-
conversational datasets if all less significant errors,
such as capitalization and punctuation, were in-
cluded.

A.3 Experimental Results
Table 6 is the full version of Table 4. Some de-
tails of experiment are mentioned at Section 5.2.
20% of the dialogs were chosen randomly for the
test set and the rest were used for training. Then
5-fold cross-validation was applied and the whole
process was run 5 times in total, so as to observe
the reliability of our results. We used the rec-
ommended parameters of XLNet to train and test
GECToR. From the table we can see that the vari-
ance of performance among these runs is small.
The distribution of Level 3 edits in test and train
sets for each run is also represented in Table 7.
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Run No. Setting TP FP FN Prec Rec F0.5

1 XLNet 54 395 157 0.120 0.256 0.135
FT XLNet 21.4 6.8 184.6 0.759 0.104 0.336

2 XLNet 71 506 134 0.123 0.346 0.141
FT XLNet 24.4 11.0 179.6 0.690 0.120 0.353

3 XLNet 77 437 168 0.150 0.314 0.167
FT XLNet 25.4 14.6 219.6 0.637 0.104 0.313

4 XLNet 74 404 146 0.155 0.336 0.173
FT XLNet 22.6 10.4 196.4 0.686 0.103 0.321

5 XLNet 86 481 131 0.152 0.396 0.173
FT XLNet 41.6 23.2 175.4 0.642 0.192 0.437

Avg. XLNet 72.4 444.6 147.2 0.140 0.330 0.158
FT XLNet 27.1 13.2 191.1 0.683 0.124 0.352

Table 6: Performance of GECToR with each setting in 5 runs.

Type 1 2 3 4 5
Test Train Test Train Test Train Test Train Test Train

WO 1.03 1.48 1.23 1.42 1.14 1.45 1.74 1.32 0.87 1.49
VERB:TENSE 8.28 4.73 5.33 5.51 5.68 5.43 2.17 6.15 6.11 5.35
VERB:SVA 4.14 2.41 2.46 2.84 2.27 2.90 0.43 3.25 3.06 2.72
VERB:INFL 0.34 0.09 0.00 0.18 0.38 0.09 0.00 0.18 0.00 0.18
VERB:FORM 4.83 5.65 5.33 5.51 4.55 5.70 5.22 5.53 6.55 5.26
VERB 6.21 5.75 4.92 6.04 6.06 5.79 6.09 5.79 4.37 6.14
SPELL 15.17 17.33 17.21 16.80 17.42 16.74 19.13 16.42 18.78 16.49
SPACE 1.38 1.67 1.64 1.60 3.03 1.27 1.30 1.67 0.87 1.75
PRON 8.97 3.89 4.51 5.07 4.92 4.98 3.04 5.36 3.93 5.18
PREP 9.31 10.29 11.07 9.87 10.23 10.05 8.70 10.36 13.97 9.30
PART 1.38 0.37 0.82 0.53 0.38 0.63 0.00 0.70 1.31 0.44
OTHER 16.90 15.85 16.39 16.00 15.53 16.20 17.83 15.72 10.48 17.19
NOUN:POSS 0.00 0.65 0.41 0.53 0.38 0.54 0.87 0.44 0.44 0.53
NOUN:NUM 5.52 5.10 8.61 4.44 5.30 5.16 7.39 4.74 6.55 4.91
NOUN:INFL 0.34 0.37 0.41 0.36 1.52 0.09 0.87 0.26 0.87 0.26
NOUN 1.38 6.21 5.74 5.07 3.41 5.61 4.78 5.27 2.62 5.70
MORPH 2.41 4.54 2.05 4.53 3.79 4.16 5.65 3.78 3.49 4.21
DET 7.59 8.53 7.38 8.53 9.47 8.05 7.83 8.43 11.79 7.63
CONTR 0.00 0.74 0.41 0.62 0.38 0.63 1.30 0.44 0.87 0.53
CONJ 0.34 0.56 0.41 0.53 0.00 0.63 0.87 0.44 0.00 0.61
ADV 2.07 2.22 1.64 2.31 2.65 2.08 2.61 2.11 1.31 2.37
ADJ:FORM 0.34 0.37 0.82 0.27 0.38 0.36 0.43 0.35 0.87 0.26
ADJ 2.07 1.20 1.23 1.42 1.14 1.45 1.74 1.32 0.87 1.49

Table 7: Level 3 error type distribution (%) in train and test sets of 5 runs.


