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ABSTRACT

Out-of-distribution (OOD) detection is crucial for ensuring the robustness of ma-
chine learning models in open-world scenarios by identifying inputs from un-
known classes. Vision-language models like CLIP have enabled zero-shot OOD
detection without requiring labels or training on in-distribution (ID) data. How-
ever, current approaches are limited by their dependence on closed-set text-based
labels and full image feature representations, constraining CLIP’s capacity to gen-
eralize across diverse labels. In this work, we propose GRIC, a novel method
based on few-shot multi-modal OOD detection by leveraging two key insights: (1)
OOD detection is driven by general ID representations rather than class-specific
features, and (2) large language models (LLMs) can enrich the model’s under-
standing of ID data and simulate potential OOD scenarios without actual OOD
samples. GRIC demonstrates simplicity and effectiveness, achieving up to a 19%
reduction in FPR95 on the MS-COCO dataset and up to 5% on ImageNet, outper-
forming state-of-the-art methods.

1 INTRODUCTION

Out-of-distribution (OOD) detection is essential in real-world machine learning applications,
where novel, previously unseen classes require special attention. While there has been grow-
ing interest in OOD detection, most existing methods rely heavily on single-modal learning ap-
proaches (Hendrycks et al., 2020; Hsu et al., 2020; Jin et al., 2022; Shen et al., 2021; Xu et al.,
2021; Zhan et al., 2021; Zheng et al., 2020; Zhou et al., 2021) (see Fig. 1(a)). Dependence on visual
data alone can be limiting, especially when OOD inputs closely resemble in-distribution (ID) data
visually but differ in their semantic content. For example, in image classification tasks, labels are
often encoded as one-hot vectors, which fail to capture the rich semantic information embedded in
textual descriptions (Ming et al., 2022).

Figure 1: Different paradigms of OOD detection methods. In multi-
modal OOD detection, OODness is defined w.r.t. the task (ID dataset
labels).

Conventional single-modality OOD detection
techniques in vision rely on robust feature rep-
resentations (Sehwag et al., 2021; Tack et al.,
2020) and predefined distance metrics (Lee
et al., 2018; Sun et al., 2022) to separate
OOD data from ID data. Recent advance-
ments in multi-modal (vision-language) pre-
training, such as CLIP (Radford et al., 2021)
and ALIGN (Jia et al., 2021), have opened
new avenues for learning representations by
aligning images with textual descriptions. As
a result, OOD detection has begun shifting
from traditional single-modal approaches to-
ward multi-modal frameworks (Fort et al.,
2021; Esmaeilpour et al., 2022; Ming et al.,
2022; Wang et al., 2023). The transition to
multi-modal approaches introduces two main challenges:
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1) Defining OODness in a multi-modal framework, especially when using vision-language mod-
els like CLIP, where training datasets are not explicitly disclosed. In such cases, OODness is typi-
cally determined based on the task and textual class names of specific datasets (e.g., ImageNet class
names as ID) (Fort et al., 2021; Esmaeilpour et al., 2022; Ming et al., 2022; Wang et al., 2023).

2) Identifying specific vision feature segments that integrate well with text features is critical for
multi-modal OOD detection. Methods that add OOD labels into CLIP (Fort et al., 2021) or generate
labels using CLIP’s visual encoder (Esmaeilpour et al., 2022) focus on predefined OOD labels and
small datasets. MCM (Ming et al., 2022) operates without prior OOD knowledge, handling a wide
range of real-world datasets. CLIPN (Wang et al., 2023) improves CLIP’s ability to differentiate
OOD samples but requires computationally intensive training. These approaches primarily rely on
full vision feature representations, overlooking the potential benefits of combining specific vision
feature segments with textual data.

In response to these challenges, we introduce GRIC, a post-hoc OOD detection method inspired
by low-rank factorization in deep neural networks (Gao et al., 2020; Elhamifar & Vidal, 2013; Li
et al., 2019b) and advancements in LLMs and prompt engineering (Novack et al., 2023; Ge et al.,
2023). Unlike prior methods that focus on entire vision features, GRIC emphasizes the significance
of general/common features in representing datasets and distinguishing between ID and OOD data.

Based on key findings from classification and fine-grained classification research (Fei-Fei et al.,
2004; Russakovsky et al., 2015; He et al., 2016; Simonyan & Zisserman, 2014), we observe that
class-specific features—those critical for recognizing ID data—are often contained within the sub-
space of the ID data itself. By focusing on features outside of this subspace, which represent a more
generalized depiction of ID data, we can better differentiate OOD from ID samples.

GRIC distinguishes OOD samples by leveraging the general/common feature representation of
ID data, while masking class-specific features, and leveraging LLMs to access more informative
prompts. It incorporates a new scoring function that disregards low-rank subspaces in ID data and
enriches prompts with ID super-class information, improving their effectiveness.

Our key contributions include:

- GRIC: A novel, training-free OOD detection method that highlights the importance of general
ID data representation and informative prompts. GRIC demonstrates consistent performance, oper-
ates without the need for downstream fine-tuning, and shows strong generalizability across various
tasks.

- Performance improvement: GRIC reduces FPR95 by approximately 19% compared to robust
baseline methods, demonstrating its superior performance in distinguishing OOD samples while
maintaining accuracy for ID data.

- Comprehensive analysis: Extensive ablation studies provide insights into the effectiveness and
mechanisms of GRIC, offering a deeper understanding of its design and performance.

2 BACKGROUND AND NOTATIONS

Contrastive Vision-Language Pre-Training In the realm of visual representation learning, models
emphasizing vision-language representation demonstrate superior efficacy in image classification
tasks compared to those focused solely on visual features, such as ViT (Dosovitskiy et al., 2021).
A prominent example is CLIP (Radford et al., 2021), which employs a self-supervised contrastive
objective, akin to the InfoNCE loss (Van den Oord et al., 2018). CLIP aligns images with their
textual descriptions, utilizing a dual-stream model with a prompt (p) text encoder T : p → Rd

(e.g., Transformer (Vaswani et al., 2017)) and an image encoder I : x → Rd (e.g., ViT (Doso-
vitskiy et al., 2021)). Despite its success, models like CLIP typically operate in a ’closed-world’
setting, conducting zero-shot classification within a predetermined set of classes, even if the input is
irrelevant.

Few-shot and Zero-Shot OOD Detection In employing a pre-trained model, we establish a clas-
sification task with a defined set of class labels, referred to as Yin, which represent the known (ID)
classes. These ID classes are defined in relation to the specific classification task, rather than the
classes utilized during pre-training. Consequently, out-of-distribution (OOD) instances are identi-
fied with respect to the ID classes, not the data distribution during pre-training. zero-shot multi-
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modal OOD detection (Fort et al., 2021; Ming et al., 2022; Esmaeilpour et al., 2022; Wang et al.,
2023) addresses two primary objectives: (1) identifying samples not corresponding to any known
(ID) classes, and (2) assigning test samples to known classes when applicable. The OOD detector,
denoted as G(x;Yin, T , I) : X → {ID,OOD}, serves as a protective mechanism for the classifi-
cation model. Our approach (Fig. 1 (b)) leverages a pre-trained model and avoids training on ID
samples; however, it is considered a few-shot multi-modal method as it requires access to a limited
number of ID samples to compute PCA, without requiring access to their labels. This reliance on
minimal ID data allows our method to effectively identify OOD samples while maintaining scala-
bility and efficiency.

Principal Component Analysis (PCA) Wold et al. (1987); Joliffe & Morgan (1992); Bro & Smilde
(2014) stands as a foundational technique integral to extracting essential information and discerning
the low-rank subspace within data. Operating as a potent feature extraction method, PCA trans-
forms original features into linearly uncorrelated variables, known as principal components. These
components are meticulously chosen to maximize variance in the dataset, capturing the most in-
formative and discriminative features. In the realm of class-specific classification tasks, PCA plays
a pivotal role by identifying principal components contributing significantly to the variance within
each class. This focused representation enhances the efficiency of class-specific models, enabling
a more streamlined exploration of the intrinsic structure of the data. However, for robust OOD de-
tection, a nuanced shift in focus from class-specific to general dataset representation is imperative.
Leveraging PCA, we strategically neutralize features associated with specific classes, obtaining the
general feature representation essential for effective OOD detection. This approach ensures a more
efficient exploration of the intrinsic structure of the data, underscoring its relevance in tasks that
demand distinct features for precise classification.

3 OUR METHOD: GRIC

Our method, depicted in Fig. 3, establishes a post-hoc OOD detector G(·) by incorporating both the
general feature representation of ID data and informative prompts. For a given task with an ID label
set Yin = {y1, y2, ..., ym}, we generate a set of text feature vectors T (pi), i ∈ {1, 2, 3, ..,m}, where
pi corresponds to the text prompt “a photo of a ⟨yi⟩” for the label (class name) yi.

Our OOD detection method comprises three primary modules, each elucidated in the subsequent
sections: 1) general image feature representation, 2) informative text prompts, and 3) the OOD
score function.

3.1 GENERAL ID IMAGES FEATURES REPRESENTATION

The accuracy of OOD detection is notably enhanced by both vision and text feature representa-
tions. To achieve the most informative vision feature representation of ID data, we only leverage
features corresponding to the general representation of ID data (GRID) and mask class-specific
features. Class-specific features, which reside on boundaries between different classes, are crucial
for tasks like image classification and masking them results in more generalization. The general
feature representation captures patterns that are shared across all ID classes. These patterns are
more general and robust, making them more effective at distinguishing between OOD and ID data.

Figure 2: An instance where Tesla Autopilot misidentifies a car-
riage (OOD) as a truck (ID) underscores the impact of concentrated
class-specific features over the general representation of ID data.

This approach aligns with principles of data
augmentation and regularization, aiming to en-
hance the model’s robustness to variations in
the input data that it has not explicitly en-
countered during training (Dietterich, 1998; Ma
et al., 2018). Feature masking serves as a form
of regularization, preventing the model from re-
lying excessively on class-specific features.

Insight: The intuition behind the general ID
representation resonates in a practical scenario
akin to Tesla’s autopilot encountering a carriage
mistaken for a truck (Fig. 2).

Consider the autopilot, trained to discern vari-
ous vehicle types like trucks, cars, and bicycles (ID). Throughout its training, the model grasps
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distinctive features associated with each class. It notably recognizes attributes like wheels and back-
side shape.

Now envision the autopilot encountering a carriage (OOD) during its testing and it classifies it
as a truck (ID) due to its appearance of specific features like wheels (Fig. 2). To mitigate such
misclassifications, our proposed technique involves nullifying the class-specific features, nudging
the autopilot to prioritize the broader indicators of a vehicle, encompassing overall size/shape and
the presence of a human.

3.1.1 EXTRACTION OF GENERAL REPRESENTATION OF ID DATA
As detailed in Section 3, our approach computes the most class-specific feature indices of ID data
leveraging Algorithm 1 and masks them in the test phase, assigning them a value of zero to empha-
size the general representation of ID data (GRID).

To identify these class-specific fea-
tures, we first choose s random ID
samples from ID dataset and create a
representation matrix Rs×r

ID . It con-
solidates s representations (each of
length r) obtained from the forward
pass of the ID data through the CLIP
image encoder. In the following step,
we apply PCA as described in Al-
gorithm 1, yielding principal compo-
nents (PCA-Components) along with
their associated variances. Gener-
ally, higher variance corresponds to
greater importance in PCA, as com-
ponents with higher variance explain
more of the overall variance in the dataset.

Please refer to Section F of appendix for more details regarding PCA. The PCA-Components form
a matrix with dimensions ncomponents × nfeatures, where ncomponents represents the number of principal
components, and nfeatures denotes the total number of features (r). To assess the importance of fea-
tures, we calculate the mean variance of features across the principal components. This computation
yields a vector known as the mean-variance (mv) vector (line 5 of Algorithm 1):

mean-variance (mv) =
1

r

r∑
i=1

∣∣PCA(Rs×r
i )

∣∣ . (1)

For more details regarding mean variance computation, please refer to Appendix, section G.4.

Subsequently, we organize this vector in descending order and leveraging a criterion for selecting
the k most important features. Our criterion involves identifying k such that the rate of changes in
mean variance becomes smooth, and the gradient of mean variance approaches zero, which is called
mean variance diminishing gradient point. That is, |∆(mv)k| ≤ ϵth, the difference in mean variance
between k and k+1 features is less than a threshold ϵth. This convergence criterion recognizes that
each additional feature has less variance than the preceding one, emphasizing the importance of the
initial ones.

SI = argsort(mv, descending) (2)
k = min{k′ ∈ SI | |mv[k′]− mv[k′ + 1]| ≤ ϵth (3)

The determined value of k and associated principal components pinpoint the indices of class-specific
features in the ID representation matrix (Wold et al., 1987; Jolliffe, 2002). We store these k indices
in a vector called KI, please refer to Fig. 3 (a) and Algorithm 1, line 9. We use KI to mask the
corresponding features of test samples for OOD detection. The remaining indices (r − k) represent
general features across all ID data that play an important role in our method.

General representation: Ri[:,KI] = 0 where KI = SI[: k]. (4)

We apply variance-normalized scaling on general features.

In our OOD detection approach, we present this process by GRID(x). Given a test image x, we pass
it through the CLIP image encoder and mask features corresponding to the identified indices in KI ,
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Figure 3: This schematic provides an overview of the proposed training-free multi-modal OOD detection framework. The ID classification
task relies on a series of class labels, and the primary objective of OOD detection is to discern samples lying outside this label set. The
OOD score for an input image is determined by measuring the distance from the general visual features to the nearest informative contents
(prompts) within the ID set. Careful adjustment of this distance ensures robust separability between ID and OOD instances, as quantified by
the GRIC OOD score. For in-depth explanations, please refer to Section 3.

resulting in x′ = GRID(x). Please refer to Fig. 3 (b). This way, we retain the general features while
discarding the majority of class-specific features, significantly enhancing the effectiveness of OOD
detection. Further details regarding our PCA analysis are provided in the appendix (Section F).

The act of masking the most significant feature representations of ID data with this vector results
in the derivation of the general ID representation. In essence, this procedure involves neutralizing
features that are highly specific to ID data, allowing for the retention of only those features that
contribute to the general representation of ID data.

In our methodology, we purposefully eliminate class-specific features by assigning them a value
of zero. This strategic decision aims to mitigate their influence on our OOD score computation.
However, the task of masking these features with alternative values poses challenges, as they in-
tricately interact with network weights, potentially leading to varied outcomes, either positive or
negative. We explored the utilization of different scaled mean values of features as masks and found
no discernible improvement in outcomes.

3.2 INFORMATIVE CONTENT/PROMPT (IC)
The efficacy of Contrastive Language-Image Pre-training (CLIP) critically relies on careful prompt
engineering, serving as pivotal cues directing the model’s comprehension of the intricate interplay
between textual descriptions and corresponding visual content (Radford et al., 2021). Thoughtful
consideration and formulation of prompts wield considerable influence over the model’s capac-
ity to capture nuanced semantics and contextual information (Carion et al., 2020). By tailoring
CLIP to specific tasks through prompt engineering, researchers amplify its adaptability and perfor-
mance across a diverse array of applications, unlocking its full potential in real-world scenarios.
The paramount importance of prompt-related considerations becomes evident as practitioners seek
optimal results and extend CLIP’s applicability in complex, dynamic environments (White et al.,
2023; Liu & Chilton, 2022; Zhou et al., 2022c).

In recent investigations into zero-shot multi-modal OOD detection, scant attention has been directed
towards the significance of text prompts, as noted by (Fort et al., 2021; Ming et al., 2022; Wang
et al., 2023; Shu et al., 2023). Ming et al. (2022) introduces a set of prompts structured as ”a photo
of a ⟨yi⟩” based on an in-distribution (ID) dataset with n labels. However, this approach simplifies
prompts to a class name without incorporating any additional knowledge. Fort et al. (2021) and
Esmaeilpour et al. (2022) extend the label set, broadening the exploration scope. However, consid-
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ering potential OOD classes or addressing computational hurdles to train an extra text encoder poses
challenges. Wang et al. (2023) equip CLIP with the ability to distinguish OOD and ID samples us-
ing positive-semantic and negation-semantic prompts, introducing computational costs in training a
learnable ”no” prompt and a ”no” text encoder. However, all these approaches rely only on simple
prompt with no extra information.

3.2.1 INFORMATIVE PROMPT AUGMENTATION
In our pursuit to improve OOD detection performance, we investigated the augmentation of prompts
with supplementary information. A significant challenge arises from the absence of knowledge con-
cerning potential OOD labels. To overcome this hurdle, we utilize existing knowledge, specifically
ID labels, and enhance it by incorporating high-level information. This involves identifying the hier-
archy within our ID dataset and integrating super-class names into the prompts. For instance, if the
ID dataset focuses on dog images, we add ”animal” as the super-class name, resulting in prompts
like ”an image of a dog, animal, living entity.”. In our formulation, we present this informative con-
tent by IC(yi). For this sake, we leverage large language models (LLMs) to generate the taxonomy
of ID dataset labels. This simple yet effective approach requires no training or knowledge of OOD
data, making it cost-free, straightforward, and effective.

Insight: Relying solely on ID labels for OOD classifications presents several limitations. Firstly, it
restricts the model’s understanding of potential labels and hinders its ability to encompass diverse
data points due to the inherent constraint of a limited set of ID labels. Secondly, insufficient exposure
to ID general patterns diminishes the model’s capacity for comprehensive generalization, making
it challenging to recognize and classify novel instances accurately. This narrow scope results in
a diminished gap between ID scores and OOD scores, complicating the discernment between in-
distribution and out-of-distribution instances.

To overcome these limitations, integrating hierarchical information, such as super-class names, into
OOD detection offers significant benefits. It enriches the understanding of ID labels and patterns,
facilitating improved generalization capabilities and better recognition of novel instances. Addition-
ally, the incorporation of hierarchical information widens the contextual understanding, enabling a
more effective differentiation between in-distribution and out-of-distribution instances. This broader
context fosters a stronger association between textual prompts and visual content, enhancing the
model’s interpretative abilities.

In summary, leveraging hierarchical information in OOD detection enhances knowledge of ID labels
and general patterns, improves generalization, widens the context for classification, and enriches
the semantic understanding of input data. This integration fosters a robust association between
textual and visual information, ultimately enhancing the accuracy and reliability of OOD detection
methodologies.

3.3 OOD SCORE FUNCTION

Our OOD scoring function involves computing the softmax over the cosine similarity score be-
tween general image features (GRID) and informative content (IC). For any test input image x, the
label-wise matching score, denoted as si(x), based on the cosine similarity between the general ID
representation of image GRID(x) and the text features of informative content IC(yi) is calculated
as follows:

si(x) =
GRID(x) · IC(yi)

∥GRID(x)∥ · ∥IC(yi)∥
. (5)

The formal definition of the matching score S(x;Yin, T , I) is given in equation 6. This
score effectively determines the match between the input image and the text feature vectors.
For ID data, the image is matched to one of the text feature vectors with a high score.

S(x) = max
i

esi(x)∑N
j=1 e

sj(x)
(6) G(x;Yin) =

{
1 S(x) ≥ λ

0 S(x) < λ
(7)

The OOD detection function is formally expressed in equation 7. In this formula, conventionally, 1
represents the positive class (ID), and 0 indicates OOD. The threshold λ is selected to ensure that a
high fraction of ID data (e.g., 95%) is above the threshold.

For samples classified as ID, the class prediction can be obtained based on the closest concept:
ŷ = argmaxi∈[m] si. For brevity, we use S(x) to refer to S(x;Yin, T , I) throughout this paper.
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As expressed in Equations 5, 6, and 7, the computation of both the similarity score and the OOD
score function relies on two essential components: 1) the general representation of image fea-
tures, and 2) the representation of informative text prompt features.

Our approach prioritizes these critical components to enhance the efficacy of the OOD scoring func-
tion. This is achieved through a dual emphasis on: a) a representation of general features within ID
data, and b) the integration of informative prompts. Incorporating these factors into the similarity
and OOD score computations has yielded promising performance.

4 EXPERIMENTS

This section provides a comprehensive evaluation of the performance of our method, GRIC, through
extensive experiments involving diverse ID and OOD datasets. Following the experimental settings
of multi-modal OOD baselines, we elucidate the details of our experimental setup in the subsequent
discussion. The empirical studies conducted herein showcase the superior performance of GRIC
when compared to existing state-of-the-art baselines, as detailed in Section 4.2. We also present an
ablation study in Section 4.3 to provide a more nuanced understanding of our methodology.

4.1 DATASETS AND IMPLEMENTATION DETAILS

Datasets: In this study, we extend the scope of our evaluations along three key dimensions: (1)
image resolution, (2) dataset diversity, and (3) number of classes.

Our selected ID datasets include CUB-200(Wah et al., 2011), FOOD-101(Bossard et al., 2014),
OXFORD-PET(Parkhi et al., 2012), and variations of IMAGENET(Deng et al., 2009). For OOD test
datasets, we utilize subsets from(Huang & Li, 2021), comprising subsets of iNaturalist (Van Horn
et al., 2018), SUN(Xiao et al., 2010), PLACES(Zhou et al., 2017), and TEXTURE (Cimpoi et al.,
2014). Crucially, the categories in each OOD dataset are non-overlapping with the ID dataset.

Additionally, we employ subsets of ImageNet-1k for fine-grained analysis. For example, we create
ImageNet-10 to mirror the class distribution of CIFAR-10 but with high-resolution images. To
further intensify the OOD evaluation, we curate ImageNet-20, consisting of 20 classes semantically
akin to ImageNet-10, following (Ming et al., 2022). Regarding MS-COCO Lin et al. (2014), we
follow the experiment setting presented by Miyai et al. (2023).

Model: We adopt the following configurations in our experimental studies:

1) Pre-trained Model Selection: We adopt CLIP (Radford et al., 2021) as our pre-trained model,
aligning with established baselines (Ming et al., 2022; Wang et al., 2023). CLIP is widely recognized
for its effectiveness in vision-language tasks and is accessible for various research purposes. It is
important to note that while we utilize CLIP in our methodology, our approach is adaptable to other
contrastive vision-language pre-training models emphasizing multi-modal feature alignment.

2) Model Architecture: Our primary model variant is CLIP-B/16, which utilizes a ViT-B/16 Trans-
former for the image encoder and a masked self-attention Transformer (Vaswani et al., 2017) for the
text encoder. The input patch size in ViT models is denoted by ”/x” in the model names, where ”x”
represents the patch resolution. We also introduce CLIP-L/14, based on ViT-L/14, as a representative
of larger models.

3) Threshold Setting: For extracting general ID data representation, we set the threshold (ϵth) in
diminishing variance to 1e−4 for ImageNet-1k and MS-COCO as the ID datasets. For other ID
datasets, the threshold is set to 1e−3. In section B.2 of Appendix, we report experimental results
assessing the impact of the k value on the performance of GRIC.

4) PCA computation: We select 25 random samples per class and run our PCA computation to find
class-specific indices. We repeat the experiment for 10 runs, and report the experimental results in
tables 1 and 2.

5) Super-class Name Extraction: To extract super-class names for ID datasets, we utilize a GPT3.5
(OpenAI, 2020) a large-language model capable of generating super-classes based on the provided
ID labels (class names).

For more details on datasets and experimental configurations, please refer to the appendix, Section C.
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ID Dataset Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑
MCM 9.83 98.24 4.93 99.10 6.65 98.57 6.97 98.75 7.09 98.66

CUB-200 (Welinder et al., 2010) GRIC 4.10 99.14 3.08 99.46 2.98 99.06 3.14 99.17 3.33 99.21

MCM 0.05 99.77 0.02 99.95 0.24 99.89 0.02 99.96 0.08 99.89
Stanford-Cars (Welinder et al., 2010) GRIC 0.02 99.87 0.01 99.96 0.10 99.95 0.02 99.98 0.04 99.94

MCM 0.64 99.78 0.90 99.75 1.86 99.58 4.04 98.62 1.86 99.43
FOOD-101 (Bossard et al., 2014) GRIC 0.35 99.89 0.58 99.89 1.18 99.81 3.08 98.79 1.30 99.60

MCM 2.85 99.38 1.06 99.73 2.11 99.56 0.80 99.81 1.70 99.62
Oxford-Pet (Parkhi et al., 2012) GRIC 1.93 99.70 0.74 99.87 1.41 99.78 0.76 99.87 1.21 99.81

MCM 0.12 99.80 0.29 99.79 0.88 99.62 0.04 99.90 0.33 99.78
ImageNet-10 (Deng et al., 2009) GRIC 0.05 99.89 0.13 99.88 0.59 99.82 0.03 99.91 0.20 99.88

MCM 1.02 99.66 2.55 99.50 4.40 99.11 2.43 99.03 2.60 99.32
ImageNet-20 (Deng et al., 2009) GRIC 0.78 99.86 1.75 99.71 3.12 99.32 1.89 99.28 1.89 99.54

MCM 18.13 96.77 36.45 94.54 34.52 94.36 41.22 92.25 32.58 94.48
ImageNet-100 (Deng et al., 2009) GRIC 5.63 98.32 16.27 97.06 21.53 98.16 29.41 93.91 18.21 96.86

MCM 64.42 90.75 84.18 81.81 NA NA 65.10 86.62 71.23 86.39
MS-COCO (Lin et al., 2014) GL-MCM 34.72 94.45 61.96 88.49 NA NA 72.08 84.53 56.25 89.16

GRIC 24.20 96.89 43.27 95.33 NA NA 44.52 95.18 37.33 95.80

Table 1: Training-free multi-modal OOD detection based on CLIP-B/16 with various ID/OOD datasets. No-
tably, GRIC exhibits superior performance, surpassing other baseline methods in FPR95 and AUROC mea-
sures on average. The symbol ↑ denotes a preference for larger values, while ↓ indicates a preference for smaller
values.

Metrics: In our comprehensive evaluation, we employ three well-known metrics in OOD detection
to assess the performance of our approach. These metrics are:

1) False Positive Rate at 95% True Positive Rate (FPR95): This metric measures the rate of false
positives among OOD samples when the true positive rate of ID samples reaches 95%. It provides a
nuanced assessment of the model’s ability to discern between ID and OOD instances.

2) Area Under the Receiver Operating Characteristic Curve (AUROC): is a widely used metric
that quantifies the model’s ability to discriminate between in-distribution and out-of-distribution
samples across various decision thresholds. A higher AUROC value indicates improved overall
performance in distinguishing between the two classes.

3) ID classification accuracy (ID ACC). We provide the details in appendix, Section B.3.

4.2 EXPERIMENTAL RESULTS

1) GRIC exhibits remarkable performance across diverse ID datasets: Our evaluation highlights
the efficacy of the GRIC method in training-free multi-modal OOD detection, utilizing a single pre-
trained model across diverse tasks. We assessed GRIC across six ID datasets to demonstrate its
adaptability and robustness in various scenarios, as summarized in Table 1. These results estab-
lish GRIC as a notably superior method for handling multi-task environments, specifically in OOD
detection challenges.

In terms of FPR95, averaged over OOD datasets, GRIC consistently outperforms the MCM method.
We observe substantial improvements with GRIC, achieving a decrease of 3.76% on CUB-200,
0.04% on Stanford-Cars, 0.56% on FOOD-101, 0.49% on Oxford-Pets, 0.13% on ImageNet-10,
0.71% on ImageNet-20, 14.37% on ImageNet-100, and 18.92% on MS-COCO. These results un-
derscore GRIC’s capability to significantly mitigate false detections across a spectrum of complex
datasets.

Additionally, GRIC surpasses MCM in terms of AUROC, further averaged over OOD datasets. Here,
GRIC shows enhancements of 0.55% on CUB-200, 0.05% on Stanford-Cars, 0.17% on FOOD-101,
0.19% on Oxford-Pets, 0.10% on ImageNet-10, 0.22% on ImageNet-20, and 2.38% on ImageNet-
100, and 33.90% on MS-COCO. These improvements in AUROC confirm the superior detection
accuracy of GRIC, highlighting its effectiveness in distinguishing between ID and OOD samples
more reliably than MCM.

Our results confirm GRIC’s robustness and versatility in training-free multi-modal OOD detection,
highlighting its effectiveness in improving model reliability for real-world applications.

2) GRIC demonstrates outstanding performance on large-scale ID data: To comprehensively
assess the scalability of GRIC, we conducted a thorough comparison with several recent and com-
petitive OOD detection methods, including those proposed by (Ming et al., 2022; Wang et al., 2023;
Fort et al., 2021; Huang & Li, 2021). Our evaluation focused on the widely used ImageNet-1k
dataset (ID), with detailed results presented in Table 2. Our approach, GRIC, surpasses prompt-
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Method
OOD Dataset AverageiNaturalist (Van Horn et al., 2018) SUN (Xiao et al., 2010) Places (Zhou et al., 2017) Texture (Cimpoi et al., 2014)

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
Requires training (or w. fine-tuning)

ODIN (Liang et al., 2017) 30.22 94.65 54.04 87.17 55.06 85.54 51.67 87.85 47.75 88.80
MOS (Huang & Li, 2021) (BiT) 9.28 98.15 40.63 92.01 49.54 89.06 60.43 81.23 39.97 90.11
ViM (Wang et al., 2022a) 32.19 93.16 54.01 87.19 60.67 83.75 53.94 87.18 50.20 87.82
KNN (Sun et al., 2022) 29.17 94.52 35.62 92.67 39.61 91.02 64.35 85.67 42.19 90.97
NPOSMCM (Tao et al., 2023)+ 16.58 96.19 43.77 90.44 45.27 89.44 46.12 88.80 37.93 91.22
NPOSMCM (Tao et al., 2023)∗ 19.59 95.68 48.26 89.70 49.82 88.77 51.12 87.58 42.20 90.43
Fort et al. (Fort et al., 2021) (ViT-B) 15.07 96.64 54.12 86.37 57.99 85.24 53.32 84.77 45.12 88.25
Fort et al. (Fort et al., 2021) (ViT-L) 15.74 96.51 52.34 87.32 55.14 86.48 51.38 85.54 43.65 88.96
Energy (Liu et al., 2020) (CLIP-B) 21.59 95.99 34.28 93.15 36.64 91.82 51.18 88.09 35.92 92.26
Energy (Liu et al., 2020) (CLIP-L) 10.62 97.52 30.46 93.83 32.25 93.01 44.35 89.64 29.42 93.50
MSP (Hendrycks & Gimpel, 2017) (CLIP-B) 40.89 88.63 65.81 81.24 67.90 80.14 64.96 78.16 59.89 82.04
MSP (Hendrycks & Gimpel, 2017) (CLIP-L) 34.54 92.62 61.18 83.68 59.86 84.10 59.27 82.31 53.71 85.68
CLIPN-C (Wang et al., 2023) (CLIP-B) 28.58 90.88 31.64 89.38 56.59 78.28 37.55 86.85 38.59 86.35
CLIPN-A (Wang et al., 2023)(CLIP-B) 23.94 95.27 26.17 93.93 40.83 90.93 33.45 92.28 31.10 93.10

Prompt learning
CoOpMCM (Zhou et al., 2022b) 43.38 91.26 38.53 91.95 46.68 89.09 50.64 87.83 44.81 90.03
LoCoOpMCM (Miyai et al., 2024) 38.49 92.49 33.27 93.67 39.23 91.07 49.25 89.13 40.17 91.53
NegPrompts (Li et al., 2024) 6.32 98.73 22.89 95.55 27.60 93.34 35.21 91.60 23.01 94.81
IDPrompt (Bai et al., 2024) (CLIP-B) 8.98 98.19 42.03 91.64 44.00 90.57 25.27 94.32 26.08 94.36

Training free
Entropy (CLIP-B) 84.44 63.50 93.79 62.54 94.10 64.15 97.16 58.98 92.37 62.29
Var (CLIP-B) 87.42 63.87 68.71 81.02 76.28 75.38 80.04 71.90 78.11 73.04
Scaled (CLIP-B) 89.06 72.26 89.06 70.81 89.08 69.66 89.56 68.17 89.19 70.22
MCM (CLIP-B) (Ming et al., 2022) 30.91 94.61 37.59 92.57 44.69 89.77 57.77 86.11 42.74 90.77
MCM (CLIP-L) (Ming et al., 2022) 28.38 94.95 29.00 94.14 35.42 92.00 59.88 84.88 38.17 91.49
GL-MCM (Miyai et al., 2023) 15.18 96.71 30.42 93.09 38.85 89.90 57.93 83.63 35.47 90.83
NegLabl (Jiang et al., 2024) 1.91 99.49 20.53 95.49 35.59 91.64 43.56 90.22 25.40 94.21
EOE (Cao et al., 2024) 12.29 97.52 20.40 95.73 30.16 92.95 57.53 85.64 30.09 92.96
GRIC (ours) (CLIP-B) 10.32±0.23 98.81±0.10 20.11±0.28 97.59±0.14 24.37±0.31 96.82±0.29 26.51±0.11 93.97±0.25 20.32±0.23 96.80±0.20
GRIC (ours) (CLIP-L) 8.74±0.22 99.12±0.12 17.83±0.21 98.06±0.18 22.17±0.18 97.51±0.20 21.67±0.14 95.14±0.12 17.60±0.19 97.45±0.16

Table 2: Results for out-of-distribution (OOD) detection utilizing ImageNet-1k as the in-distribution (ID)
dataset demonstrate the remarkable performance of GRIC across various datasets.

based methods that incorporate supervised training aspects, as demonstrated in prior works such as
(Zhou et al., 2022a; Miyai et al., 2024). The table includes alternative scoring functions such as
entropy, variance, and scaled, as per Ming et al. (Ming et al., 2022). For more details regarding our
experiments settings, readers are encouraged to refer to the appendix, specifically Section C.

Utilizing CLIP-B as the pre-trained model and incorporating iNaturalist (Van Horn et al., 2018),
SUN (Xiao et al., 2010), Places (Zhou et al., 2017), and Textures (Cimpoi et al., 2014) as OOD
datasets, GRIC consistently outperforms competitors such as MCM and GL-MCM (Miyai et al.,
2023).

The results in Table 2 demonstrate that GRIC (CLIP-B) significantly outperforms MCM and GL-
MCM across all evaluated OOD datasets. In terms of FPR95, GRIC achieves consistently lower
false positive rates, such as 10.32% on iNaturalist and 26.51% on Texture, compared to MCM
(30.91% and 57.77%) and GL-MCM (15.18% and 57.93%). These improvements highlight GRIC’s
robustness in minimizing false positives, particularly on challenging datasets like Texture.

Additionally, GRIC achieves higher AUROC scores across all datasets, demonstrating superior de-
tection accuracy. For instance, GRIC reports 98.81% and 93.97% on iNaturalist and Texture, respec-
tively, outperforming MCM (94.61%, 86.11%) and GL-MCM (96.71%, 83.63%). This highlights
GRIC’s consistent performance across diverse OOD settings, establishing it as a state-of-the-art
method for OOD detection with CLIP-B.

3) GRIC demonstrates superior performance with larger models: the model size comparison
between CLIP-B and CLIP-L versions of GRIC highlights a clear performance improvement with
increased model capacity. GRIC (CLIP-L) achieves even lower FPR95 and higher AUROC across
all datasets, reflecting the positive impact of model scaling on both reducing false positives and
improving overall detection reliability.

It is worth noting that CLIPN-C, CLIPN-A, and MOS (Huang & Li, 2021) display competitive per-
formance on ImageNet-1k, albeit requiring model training or fine-tuning. In contrast, GRIC (CLIP-
B) surpasses CLIPN-C and MOS by 18.27% and 19.65% in FPR95, highlighting its training-free
advantage. These results highlight GRIC’s robustness and effectiveness, especially where training-
free approaches outperform methods needing additional training or fine-tuning.

Further detailed experiments are provided in the Appendix. These encompass the evaluation of
GRIC performance utilizing a ResNet-based CLIP model, the analysis of the significance of the
parameter K (representing the number of masked class-specific features) in GRIC performance,
the assessment of ID classification accuracy, the impact of GRIC masking on single-modal OOD
detection methods, and and the experiment considering masking one class at a time.
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4.3 ABLATION STUDIES

As detailed in Section 3, our approach incorporates two key elements: the general representation of
ID data and the use of informative prompts. This experiment aims to assess the individual impact of
each factor on the performance of GRIC, with results summarized in Table 3.

Method
OOD Dataset AverageiNaturalist (Van Horn et al., 2018) SUN (Xiao et al., 2010) Places (Zhou et al., 2017) Texture (Cimpoi et al., 2014)

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
GRIC 10.32±0.23 98.81±0.10 20.11±0.28 97.59±0.14 24.37±0.31 96.82±0.29 26.51±0.11 93.97±0.25 20.32±0.23 96.80±0.20
GRIC-IG, no IP 16.27±0.31 96.38±0.28 24.49±0.18 95.11±0.43 29.38±0.20 93.75±0.09 34.49±0.42 90.28±0.21 26.16±0.28 93.88±0.25
GRIC-IP, no ID General Rpresentation 23.20 96.14 30.27 93.32 37.07 91.12 41.41 88.19 32.99 92.19
GRIC [ Masked Non-PCA indices, w/o IP] 39.11±0.38 85.08±0.21 43.19±0.36 85.14±0.19 58.02±0.46 77.23±0.29 62.88±0.27 80.31±0.14 50.80±0.37 81.95±0.21
GRIC [ Masked Non-PCA indices + IP] 36.67±0.29 88.81±0.22 40.61±0.34 87.30±0.10 55.17±0.23 78.47±0.17 61.55±0.34 83.71±0.24 48.50±0.30 84.57±0.18
GRIC12 [12 samples/class] (CLIP-B) 10.46±0.13 98.76±0.11 20.43±0.17 97.38±0.10 24.71±0.09 96.73±0.08 27.11±0.32 93.65±0.15 20.68±0.13 96.63±0.11

GRIC16 [16 samples/class] (CLIP-B) 10.41±0.12 98.79±0.08 20.40±0.13 97.39±0.15 24.67±0.12 96.75±0.17 27.01±0.16 93.67±0.11 20.62±0.13 96.65±0.13

GL-MCM + informative prompts 14.11 97.08 30.27 93.73 38.17 90.14 51.38 86.48 33.48 91.86

Table 3: Ablation study on GRIC. Both ID data general representation and informative prompts play
important roles on promising performance of GRIC. IP stands for informative prompts. We leverage CLIP-B
and ImageNet-1k as our pre-trained model and ID dataset.

1) ID Data general representation empowers GRIC: In this study, we conducted experiments
under the same settings as presented in Table 2, utilizing simplified prompts (e.g., ”a photo of a
⟨yi⟩”) without providing any super-class information. This variant of GRIC is referred to as GRIC-
IG. Table 3 illustrates that leveraging a general representation of ID data significantly enhances
performance compared to the MCM. Regarding FPR95, GRIC-IG outperforms iNaturalist, SUN,
Places, and Textures by 14.64%, 13.10%, 15.31%, and 23.28%, respectively. In AUROC, GRIC-IG
exhibits an average improvement of 3.11% over MCM across the four OOD datasets.

2) Informative Prompts enhances GRIC: In this experiment, we maintained the experimental set-
tings from Table 2, employing the full representation of the data without masking any features. This
variant is denoted as GRIC-IP. Table 3 underscores the crucial role of informative prompts in achiev-
ing outstanding performance for GRIC. In terms of FPR95, GRIC-IP outperforms iNaturalist, SUN,
Places, and Textures by 7.71%, 7.32%, 7.62%, and 16.36%, respectively. Considering AUROC,
GRIC-IP exhibits an average improvement of 1.42% over MCM. This analysis underscores the syn-
ergistic impact of both ID data general representation and informative prompts, demonstrating their
contributions to the effectiveness of GRIC in training-free multi-modal OOD detection.

3) Masking Non-PCA indices: We evaluate the impact of masking the most important (class-
specific) features versus less important (general, Non-PCA) features on our method’s performance.
Specifically, we retain the top k important features while masking the rest. Experiments are con-
ducted with and without informative prompts (IP). Table 3 shows that masking Non-PCA features
degrades performance in both cases, highlighting their critical role in maintaining overall effective-
ness, irrespective of IP usage.

4) PCA computation with limited data: Our approach is notably label-free and does not involve
training on ID or OOD data. However, it should be noted that the method requires access to a small
amount of ID data solely for a one-time PCA computation, positioning it as a few-shot method. In
the current experiment, we demonstrate that our method achieves strong performance even when
accessing a limited number of ID samples. Specifically, PCA was computed using only 12-shot
per class (resulting in a matrix of dimensions [121000, 512]) and 16-shot per class (resulting in a
matrix of dimensions [161000, 512]). Importantly, the PCA computation is conducted post-forward
pass, utilizing the extracted features, rather than during the training process. As a result, our ap-
proach incurs significantly lower computational costs compared to training-based methods, further
reinforcing its efficiency and practicality.

5 CONCLUSION

In conclusion, this research study addresses the critical challenge of out-of-distribution sample de-
tection in machine learning applications by introducing GRIC leveraging general representation of
the ID data and informative content. By emphasizing general feature representations within the
in-distribution data and employing informative prompts enriched with ID super-class information,
GRIC showcases its efficacy in nuanced OOD detection. Our contributions include the introduction
of GRIC as a novel and effective technique, which, through comprehensive evaluations, outperforms
various OOD detection baselines, achieving an average reduction of ∼ 19% in FPR95 compared to
robust baseline methods. These findings offer valuable insights into the intricacies and efficacy of
GRIC, positioning it as a promising solution for advancing training-free OOD detection in multi-
modal machine learning applications.
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A APPENDIX

This supplementary material provides in-depth information on the following topics:

• Additional Experiments.

• Experiment Details.

• Related Works.

• Training-Based Multi-modal Out-of-Distribution (OOD) Detection Methods

• Principal Component Analysis (PCA).

• Mean Variance Calculation.

Each section offers detailed insights into the respective topic for a comprehensive understanding.

B ADDITIONAL EXPERIMENTS

B.1 GRIC LEVERAGING RESNET-BASED CLIP MODELS

Our primary findings are based on the CLIP model featuring a Vision Transformer (ViT) image
encoder. Additionally, we explore the efficacy of GRIC for models based on ResNet architecture
in the context of CLIP. Specifically, we employ the ResNet model with a depth of 50 and a width
multiplier of 4 (RN50x4) with 178.3 million parameters, a parameter count comparable to CLIP-
B/16 (149.6 million). The results are presented in Table 4.

The outcomes demonstrate that GRIC continues to yield promising results when applied to ResNet-
based CLIP models. The performance remains competitive between RN50x4 and CLIP-B/16, with
AUROC values of 90.68 and 92.89, respectively.

Method
OOD Dataset AverageiNaturalist (Van Horn et al., 2018) SUN (Xiao et al., 2010) Places (Zhou et al., 2017) Texture (Cimpoi et al., 2014)

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
GRIC (ours) (RN50x4) 38.80 92.03 32.93 93.23 38.11 90.00 49.96 87.49 39.95 90.68
GRIC (ours) (CLIP-B/16) 10.32±0.23 98.81±0.10 20.11±0.28 97.59±0.14 24.37±0.31 96.82±0.29 26.51±0.11 93.97±0.25 20.32±0.23 96.80±0.20
MCM (RN50x4) 44.51 91.51 35.11 92.84 43.74 89.60 57.73 85.93 45.27 89.97
MCM (CLIP-B/16) 30.91 94.61 37.59 92.57 44.69 89.77 57.77 86.11 42.74 90.77

Table 4: GRIC presents outstanding performance leveraging ResNet-based CLIP model on ImageNet-1k (ID).

B.2 EVALUATING THE SIGNIFICANCE OF k IN GRIC PERFORMANCE

As elucidated in Section 3, we assign a value of zero to the k most important features to derive a
general representation of in-distribution (ID) data. The determination of the k value is accomplished
through diminishing mean-variance, with a set threshold of 1e−4 in our ImageNet-1k experiment,
resulting in an optimal k value of 34 to meet this threshold.

In this investigation, we systematically assess the impact of the k value on the performance of
GRIC by employing different k values, specifically 30, 40, and 45. The experimental outcomes are
detailed in Table 5. Notably, deviations from k = 34 demonstrate discernible effects on the method’s
performance. Generally, values close to k = 34 demonstrate discernible effects on the method’s
performance. Generally, values close to k = 34 exhibit comparable performance. However, as the
deviation from k = 34 increases, there is a noticeable degradation in performance.

In conclusion, our analysis underscores the substantial influence of the k parameter on the perfor-
mance of the GRIC method. The selection of an appropriate k value emerges as a critical factor in
achieving optimal results across diverse out-of-distribution datasets.

B.3 ID CLASSIFICATION ACCURACY

To augment the precision of ID classification, we integrate the comprehensive feature representation,
acknowledging its indispensable role in the identification process. Simultaneously, we incorporate
informative prompts that leverage hierarchy information, aligning with the methodology employed
in our out-of-distribution (OOD) detection experiments, denoting it as GRIC-IP. The outcomes of
our experiments are detailed in Table 3, underscoring the exceptional performance achieved with
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Method
OOD Dataset AverageiNaturalist (Van Horn et al., 2018) SUN (Xiao et al., 2010) Places (Zhou et al., 2017) Texture (Cimpoi et al., 2014)

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
GRIC, k = 34 10.32 98.81 20.11 97.59 24.37 96.82 26.51 93.97 20.32 96.80
GRIC, k = 30 10.67 98.66 20.78 97.09 24.70 96.56 26.84 93.80 20.75 96.53
GRIC, k = 40 13.19 97.01 23.09 95.98 28.37 92.47 29.18 92.11 23.46 94.39
GRIC, k = 45 13.68 96.81 23.43 95.82 28.19 92.35 29.53 91.93 23.71 94.23

Table 5: Impact of k in performance of GRIC.

GRIC-IP. The results indicate that the incorporation of informative prompts contributes to an en-
hancement in the ID classification performance. Notably, it is crucial to emphasize that MCM rep-
resents the base of our methodology, omitting both the consideration of general ID representation
and the utilization of informative prompts.

Method ID ACC

Training free
MCM (CLIP-B/16) 67.01
MCM (CLIP-L/14) 73.28
GRIC-IP (CLIP-B/16) 80.29
GRIC-IP (CLIP-L/14) 85.64

w. fine-tuning
MSP (CLIP-B/16) 79.39
MSP (CLIP-L/14) 84.12
Energy (Liu et al., 2020) (CLIP-B/16) 79.39
Energy (Liu et al., 2020) (CLIP-L/14) 84.12
Fort et al. (Fort et al., 2021) (ViT-B/16) 81.25
Fort et al. (Fort et al., 2021) (ViT-L/14) 84.05
MOS (Huang & Li, 2021) (BiT) 75.16

Table 6: The accuracy of ID classification on ImageNet-1k (%) demonstrates promising performance with our method, GRIC-IP, which
utilizes informative prompts.

Furthermore, Table 6 presents the multi-class classification accuracy on ImageNet-1k for the meth-
ods listed in Table 2.

B.4 GRIC MASKING (GM) LEADS TO A NOTABLE ENHANCEMENT IN THE PERFORMANCE
OF SINGLE-MODAL METHODS:

We conducted supplementary experiments to assess the influence of incorporating the general repre-
sentation of in-distribution (ID) data on single-modal out-of-distribution (OOD) detection method-
ologies such as Mahalanobis (Lee et al., 2018), Energy score (Liu et al., 2020), React (Sun et al.,
2021a), and GradNorm (Huang et al., 2021).

We utilize the ImageNet-1k dataset as the ID dataset in our experimental setup. Firstly, we compute
mask indices and general feature representations of ID data from ImageNet-1k. Subsequently, we
apply these mask indices to each test sample before subjecting them to traditional single-modal
OOD detection methods. This methodology enables us to assess how leveraging general ID data
representations influences the performance of OOD detection algorithms.

Results and Discussion: Our experimental results, as presented in Table 7 demonstrate that lever-
aging general feature representations from the ImageNet-1k dataset leads to improvements in the
average AUROC performance of Mahalanobis, GradNorm, Energy score, and React OOD detection
methods by 3.91, 2.74, 3.76, and 0.31, respectively. These findings highlight the significance of
incorporating general ID data representations in enhancing the effectiveness of traditional single-
modal OOD detection algorithms.

B.5 MASKING ONE CLASS AT A TIME

In section 4.2, we present the initial findings from our experiments, focusing on the performance
evaluation of our method across various ID datasets. The summarized outcomes are presented in
Table 1. For this experiment, we derived masking indices and a general representation using all
classes. An intriguing aspect of our approach involves masking class-specific features for individual
classes. To delve deeper into this aspect, we conducted supplementary experiments, masking one
class at a time while leveraging the ImageNet10 ID dataset.

Single-modal method FPR95↓ AUROC↑ Single-modal method+GM FPR95↓ AUROC↑
Mahalanobis (Lee et al., 2018) 87.43 55.47 Mahalanobis + GM 75.26 61.92
GradNorm (Huang et al., 2021) 40.29 87.34 GradNorm + GM 31.16 91.62

Energy (Liu et al., 2020) 58.41 86.17 Energy + GM 47.08 89.37
React (Sun et al., 2021a) 31.43 92.95 React + GM 25.31 95.73

Table 7: GRIC Masking (GM) improves most Single-modal methods significantly.
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Single-modal method FPR95↓ AUROC↑ Single-modal method+GM FPR95↓ AUROC↑
GRIC [All] 0.20 99.88 MCM 0.33 99.78
GRIC [car] 0.31 99.73 GRIC [bird] 0.34 99.75
GRIC [cat] 0.29 99.80 GRIC [antelope] 0.32 99.76
GRIC [dog] 0.30 99.82 GRIC [frog] 0.31 99.77

GRIC [truck] 0.43 99.73 GRIC [horse] 0.32 99.75
GRIC [warplane] 0.38 99.69 GRIC [Ship] 0.40 99.61

Table 8: Masking one class at a time,ImageNet10 as ID. x refers to the masked class in GRIC [x].

Following the experiment reported in Table 1, we evaluated our method using four OOD datasets:
iNaturalist, SUN, Places, and Textures. We report the average performance metrics over these
datasets, considering FPR95 and AUROC.

The detailed experimental outcomes are presented in Table 8. As shown in Table 8, masking differ-
ent classes affects the performance variably. We observed that the best performance was achieved
when leveraging masking generated by considering all classes collectively. Furthermore, our results
highlight the importance of specific classes, prompting further investigation into the optimal selec-
tion of classes for masking. However, this aspect falls beyond the scope of the current paper and
warrants future research investigations.

B.6 MASKING NON-PCA FEATURES

We conducted experiments to assess the effect of retaining PCA features while masking non-PCA
features, both with and without the use of informative prompts. The results of these experiments are
summarized in Table 9.

Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
GRIC [Masked Non-PCA indices, without Informative Prompts] 33.11 87.08 35.21 89.26 47.31 81.46 55.09 85.17 42.68 85.74
GRIC [Masked Non-PCA indices, with Informative Prompts] 30.21 91.37 32.84 91.18 45.72 83.03 52.49 82.96 40.32 87.14
GRIC 10.32 98.81 20.11 97.59 24.37 96.82 26.51 93.97 20.32 96.80

Table 9: Ablation study on GRIC evaluating the impact of masking Non-PCA features.

The results in the table 9 highlight the effectiveness of different feature masking strategies for OOD
detection using GRIC. Masking non-PCA features provides some improvement, particularly when
combined with informative prompts, as seen in the reduced FPR95 and increased AUROC across
datasets. However, the proposed GRIC approach, leveraging PCA-masked features with prompts,
significantly outperforms other methods. It achieves an average FPR95 of 20.32 and AUROC of
96.80, demonstrating superior robustness and generalizability across diverse datasets such as iNat-
uralist, SUN, Places, and Texture. These findings validate the importance of PCA feature masking
and informative prompts in enhancing OOD detection performance.

B.7 GRIC ID ACCURACY WITHOUT INFORMATIVE PROMPTS

We evaluated GRIC’s ID accuracy in the absence of informative prompts. The results are summa-
rized in Table 10.

Method Model ID ACC (%)
GRIC-IP CLIP-B/16 80.29
GRIC-IP CLIP-L/14 85.64
GRIC-No Prompts CLIP-B/16 75.50
GRIC-No Prompts CLIP-L/14 78.59

Table 10: ID accuracy of GRIC with and without informative prompts.

With Informative Prompts, GRIC-IP achieves 80.29% accuracy using CLIP-B/16 and 85.64% us-
ing CLIP-L/14 by leveraging enriched textual prompts.

Without Informative Prompts, ID accuracy drops moderately by approximately 4-5%, highlighting
the critical role of the masked features in distinguishing classes.

Insight: This moderate decline in accuracy validates that GRIC selectively removes class-specific
features crucial for ID accuracy, demonstrating the importance of the masked feature spaces.
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B.8 HARD OOD DETECTION EXPERIMENT

Hard OOD detection tackles the challenge of identifying OOD samples that closely resemble ID
samples, making the classification process more complex. In this study, we adopted the experimental
setup described in NegPrompt (Li et al., 2024), using ImageNet-1K as the source for both ID and
OOD samples.

To maintain consistency with previous research, we adhered to the predefined splits, ensuring a
rigorous and diverse evaluation framework for challenging OOD scenarios. Details on the class
distribution and the number of training/testing samples for each split can be found in Table 11 (Li
et al., 2024).

The results in Table 12 highlight the strong performance of our few-shot approach in distinguishing
ID and OOD samples, showcasing its reliability and robustness in addressing hard OOD detection
tasks.

Split ID OOD
Split-1 All dog classes116: 1856 / 5800 Non-animal classes166: — / 8300
Split-2 Half of hunting dog classes30: 480 / 1500 Other 4-legged animal classes55: — / 2750
Split-3 Mix of common classes151: 2416 / 7550 Mix of common classes164: — / 8200
Split-4 First 100 classes100: 1600 / 5000 Remaining 900 classes900: — / 45000

Table 11: ImageNet-1K splits for hard OOD detection. Given are the numbers of classes : training
/ test samples following (Li et al., 2024).

Method Split-1 Split-2 Split-3 Split-4 Avg
AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓

Zero/Few-shot methods
MCM (Ming et al., 2022) 97.93 9.17 88.10 56.40 90.34 33.05 98.72 4.73 93.77 25.83
CLIPN (Wang et al., 2023) 99.38 2.07 97.77 10.55 90.03 36.85 98.83 4.68 96.50 13.53
GRIC 99.42 2.00 98.10 8.50 94.85 21.90 96.90 10.25 97.07 10.66

CLIP-based posthoc methods
MSP (Hendrycks & Gimpel, 2017) 77.85 63.60 68.73 83.63 79.10 70.55 82.40 65.52 77.02 70.83
MaxLogit (Hendrycks et al., 2019) 99.87 0.49 98.06 8.69 90.96 34.34 99.35 2.66 97.06 11.55
Energy 99.88 0.46 98.18 8.40 90.65 35.02 99.36 2.83 97.02 11.68
ReAct (Sun et al., 2021a) 99.34 0.72 97.91 9.33 90.85 35.65 99.12 2.94 96.80 12.16
ODIN (Liang et al., 2017) 98.78 1.12 98.23 8.18 89.92 37.20 98.76 13.20 96.42 14.92

Prompt learning methods
CoOp (Zhou et al., 2022b) 98.53 6.78 88.25 50.76 90.64 33.89 98.54 5.11 93.99 24.14
LoCoOp (Miyai et al., 2024) 98.64 6.29 84.63 61.09 91.30 27.79 98.83 41.44 93.35 34.15
NegPrompt (Li et al., 2024) 99.85 0.62 98.54 7.60 93.89 22.89 99.57 1.60 97.96 8.18

Open-vocabulary OOD detection
CoOp (10%) (Zhou et al., 2022b) 97.97 12.217 80.11 74.62 87.92 46.00 96.59 16.60 90.65 37.36
LoCoOp (10%) (Miyai et al., 2024) 98.00 9.23 87.02 46.02 90.82 32.84 98.24 48.72 86.99 42.52
NegPrompt (10%) (Li et al., 2024) 99.66 1.36 96.30 19.89 91.75 26.92 99.46 5.24 96.46 13.36

Table 12: Hard OOD detection results.

C EXPERIMENT DETAILS

The results in the table highlight the effectiveness of different feature masking strategies for OOD
detection using GRIC. Masking non-PCA features provides some improvement, particularly when
combined with informative prompts, as seen in the reduced FPR95 and increased AUROC across
datasets. However, the proposed GRIC approach, leveraging PCA-masked features with prompts,
significantly outperforms other methods. It achieves an average FPR95 of 33.90 and AUROC of
92.89, demonstrating superior robustness and generalizability across diverse datasets such as iNat-
uralist, SUN, Places, and Texture. These findings validate the importance of PCA feature masking
and informative prompts in enhancing OOD detection performance.

C.1 SOFTWARE AND HARDWARE

Software We run all experiments with Python 3.8.0 and PyTorch 1.12.1.

Hardware All experiments are run on NVIDIA RTX 3090.
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C.2 HYPERPARAMETERS

As we explained in section 3.3, the formal definition of the matching score S(x;Yin, T , I) is given
by:

S(x) = max
i

esi(x)/τ∑N
j=1 e

sj(x)/τ
, (8)

where we set T to 1 in our formulation. The sole hyper parameter governing our model is the
temperature scaling factor denoted as τ . Our empirical investigations indicate that, our scoring
function exhibits robustness to variations in the scaling factor. Specifically, across a broad range of
values spanning from 0.5 to 100, the performance remains consistent.

C.3 DATASETS

ImageNet-10 We establish ImageNet-10, designed to emulate the class distribution of CIFAR-10,
while utilizing high-resolution images. This dataset encompasses the following categories, each
accompanied by its respective class ID: warplane (n04552348), sports car (n04285008), bram-
bling bird (n01530575), Siamese cat (n02123597), antelope (n02422699), Swiss mountain dog
(n02107574), bullfrog (n01641577), garbage truck (n03417042), horse (n02389026), and container
ship (n03095699).

ImageNet-20 For rigorous out-of-distribution (OOD) evaluation using realistic datasets, we adopt
ImageNet-20, a dataset introduced by MCM. ImageNet-20 is meticulously curated, comprising
20 classes that are semantically akin to those in ImageNet-10, such as dog (in-distribution) ver-
sus wolf (OOD). The selection of categories is based on the semantic distance in the WordNet
synsets (Fellbaum, 2010). The dataset encompasses the following categories: sailboat (n04147183),
canoe (n02951358), balloon (n02782093), tank (n04389033), missile (n03773504), bullet train
(n02917067), starfish (n02317335), spotted salamander (n01632458), common newt (n01630670),
zebra (n01631663), frilled lizard (n02391049), green lizard (n01693334), African crocodile
(n01697457), Arctic fox (n02120079), timber wolf (n02114367), brown bear (n02132136),
moped (n03785016), steam locomotive (n04310018), space shuttle (n04266014), and snowmobile
(n04252077). The generation of this dataset is facilitated using the script provided by the authors of
MCM.

ImageNet-100 We compile a dataset named ImageNet-100 by selecting 100 classes from ImageNet-
1k. The MCM authors randomly chose these 100 classes without adhering to specific criteria. The
dataset creation process is executed using the script provided by the MCM authors. The list of classes
utilized in this dataset is accessible at https://github.com/deeplearning-wisc/MCM.

Conventional Out-of-Distribution (OOD) Datasets Huang et al.(Huang & Li, 2021) meticu-
lously compile a diverse set of subsets from prominent datasets such as iNaturalist(Van Horn et al.,
2018), SUN (Xiao et al., 2010), Places (Zhou et al., 2017), and Texture (Cimpoi et al., 2014), es-
tablishing expansive OOD datasets for ImageNet-1k. Importantly, the test sets for these datasets are
designed such that their classes do not overlap with those in ImageNet-1k. A brief overview of each
dataset is provided below.

iNaturalist: Comprising images captured in the natural world (Van Horn et al., 2018), iNaturalist
boasts 13 super-categories and 5,089 sub-categories, spanning various domains such as plants, in-
sects, birds, mammals, and more. For our purposes, we utilize a subset encompassing 110 plant
classes that do not overlap with those present in ImageNet-1k.

SUN: An acronym for the Scene Understanding Dataset (Xiao et al., 2010), SUN encompasses 899
categories, encapsulating diverse indoor, urban, and natural environments, both with and without
human presence. We selectively use a subset of 50 categories representing natural objects absent in
ImageNet-1k.

Places: As a repository of large-scale scene photographs (Zhou et al., 2017), Places categorizes
images into Indoor, Nature, and Urban scenes. From the larger collection, we extract a subset
comprising 50 categories that are distinct from those found in ImageNet-1k.

Texture: Denoting the Describable Textures Dataset (Cimpoi et al., 2014), Texture consists of
images featuring textures and abstracted patterns. Given the absence of category overlaps with
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ImageNet-1k, we utilize the entire dataset, aligning with the approach taken by Huang et al. (Huang
& Li, 2021).

C.4 BASELINE MODELS AND MODEL CHECKPOINT SOURCES

In our evaluation of baseline models, we rely on reported experimental results from MCM (Ming
et al., 2022) and CLIPN (Wang et al., 2023). For the Mahalanobis score (Lee et al., 2018), we utilize
feature embeddings without l2 normalization, considering that Gaussian distributions are inherently
incompatible with hyperspherical features. Alternatively, one can opt to normalize the embeddings
before applying the Mahalanobis score.

In the case of Fort et al. (2021), detailed in Table2, the entire Vision Transformer (ViT) model
undergoes fine-tuning on the in-distribution (ID) dataset. We leverage publicly available checkpoints
from Hugging Face, where the ViT model is pre-trained on ImageNet-21k and subsequently fine-
tuned on ImageNet-1k. For instance, the checkpoint for ViT-B can be accessed at https://
huggingface.co/google/vit-base-patch16-224.

Regarding CLIP models, our reported results are based on checkpoints provided by Hugging
Face for CLIP-B (https://huggingface.co/openai/clip-vit-base-patch16)
and CLIP-L (https://huggingface.co/openai/clip-vit-large-patch14). Sim-
ilar outcomes can be achieved using checkpoints available in the OpenAI codebase (https:
//github.com/openai/CLIP). Notably, for CLIP (RN50x4), which is not accessible via
Hugging Face, we employ the checkpoint provided directly by OpenAI.

D RELATED WORKS

Vision-Language Models. The usage of large-scale pre-trained vision-language models for mul-
timodal tasks has emerged as a promising paradigm, exhibiting impressive performance (Gu et al.,
2020). Typically, two architectural paradigms are prevalent: single-stream models, exemplified by
VisualBERT (Li et al., 2019a) and ViLT (Kim et al., 2021), which integrate text and visual features
into a single transformer-based encoder; and dual-stream models like CLIP (Radford et al., 2021),
ALIGN (Jia et al., 2021), and FILIP (Yao et al., 2021), employing separate encoders for text and im-
age. These models optimize with contrastive objectives to align semantically similar features across
different modalities. Among these, CLIP has gained widespread popularity due to its simplicity and
robust performance. The success of CLIP-like models has prompted subsequent works (Li et al.,
2022; Zhang et al., 2021), focusing on enhancing data efficiency and task adaptation. While our
paper centers around CLIP as the primary pre-trained model, the proposed approach can generally
apply to contrastive models aiming to align vision and language features.

Here’s the combined and revised paragraph:

—

OOD Detection in Computer Vision. For open-world multi-class classification, the objective of
OOD detection is to establish a binary ID-OOD classifier alongside a multi-class model tailored for
visual inputs. Various methodologies have emerged for deep neural networks (Yang et al., 2021b).
These approaches include generative model-based techniques (Cai & Li, 2023; Ge et al., 2017;
Kirichenko et al., 2020), as well as discriminative-model based methods. Within the latter category,
OOD scores are derived from the model’s softmax output (DeVries & Taylor, 2018; Hein et al.,
2019; Yang et al., 2021a), energy-based scores (Liu et al., 2020; Sun et al., 2021b; Sun & Li, 2022),
or gradient information (Behpour et al., 2023; Huang et al., 2021). Theoretical analyses have been
presented by (Morteza & Li, 2022; Fang et al., 2022; Bitterwolf et al., 2022) in the domain of OOD
detection.

Recent works (Roy et al., 2022; Wang et al., 2022b) have explored OOD detection specifically in
long-tailed distributions. So far, these works have primarily concentrated on task-specific models
using only visual information. Our method marks a pioneering leap in training-free multi-modal
OOD detection, incorporating informative textual information alongside the shared general visual
representation within in-distribution data across a spectrum of diverse tasks. CSP (Chen et al., 2024)
and NegLabel Jiang et al. (2024) are advanced OOD detection methods leveraging vision-language
models (VLMs) with distinct strategies:
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CSP (Chen et al., 2024) employs a ’conjugated semantic pool’ of superclasses to broaden seman-
tic diversity, reducing reliance on specific labels and improving OOD detection for diverse cases.
NegLabel Jia et al. (2021) introduces ’negative labels’ selected from a large corpus to enhance
semantic separability between ID and OOD samples, achieving exceptional robustness to domain
shifts.

E TRAINING-BASED MULTI-MODAL OUT-OF-DISTRIBUTION (OOD)
DETECTION METHODS

In accordance with the discussions presented in Section D, numerous studies have explored the
realm of multi-modal OOD detection, employing various training strategies.

CLIPN: Saying ”No” with CLIP Wang et al. (2023) introduce CLIPN, an extension of CLIP (Con-
trastive Language-Image Pre-training) specifically designed for discerning between ID and OOD
samples. CLIPN achieves this by incorporating positive semantic prompts and introducing negation-
semantic prompts. The method employs a learnable ”no” prompt and a dedicated ”no” text encoder
to capture negation semantics within images. Dual loss functions, the image-text binary-opposite
loss, and the text semantic-opposite loss, are utilized to instruct CLIPN in associating images with
”no” prompts, enabling it to identify unknown samples effectively.

ZOC: Zero-Shot OOD Detection based on CLIP Esmaeilpour et al. (Esmaeilpour et al., 2022)
present the Zero-Shot OOD Detection (ZOC) method, extending the pre-trained language-vision
model CLIP. ZOC incorporates a text-based image description generator trained on top of CLIP.
During testing, this extended model generates candidate unknown class names for each test sample.
A confidence score is then computed based on both known class names and candidate unknown
class names, facilitating zero-shot OOD detection.

CLIPood: Generalizing CLIP to OOD Test Data

Shu et al. (Shu et al., 2023) proposed CLIPood, a fine-tuning method aimed at adapting CLIP mod-
els to out-of-distribution scenarios in downstream tasks. CLIPood addresses situations involving
domain shifts and open classes in unseen test data. Introducing the margin metric softmax (MMS)
as a novel training objective, CLIPood exploits semantic relations between classes from the text
modality. Additionally, it incorporates a new optimization strategy, Beta moving average (BMA),
for maintaining a temporal ensemble weighted by a Beta distribution. The focus of our paper centers
on few-shot multi-modal OOD detection, and thus, studies involving training a text encoder, such as
those discussed above, fall outside the scope of our investigation.

In summary, these training-based methods showcase diverse approaches to multi-modal OOD detec-
tion, each contributing unique insights and methodologies. However, our emphasis in this paper is
specifically on few-shot multi-modal OOD detection, excluding investigations that involve training
a text encoder.

F PRINCIPAL COMPONENT ANALYSIS (PCA)
PCA aims to transform high-dimensional data into a lower-dimensional representation while retain-
ing the maximum variance in the data. It achieves this by identifying the principal components,
which are orthogonal vectors that capture the directions of maximum variance (Shlens, 2014; Jol-
liffe, 2002).

Figure 4: Singular Value Decomposition
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F.1 PROCEDURE:

In this section, we explain the procedure that is followed in PCA analysis to extract the most infor-
mative features.

Data Standardization:

Standardize the features of the dataset to have zero mean and unit variance.

Covariance Matrix: Compute the covariance matrix of the standardized data. The covariance
matrix represents the relationships between different features.

SVD of Covariance Matrix:

Perform SVD on the covariance matrix. The singular value decomposition of the covariance matrix
results in the principal components. Selecting Principal Components:

Sort the singular values in descending order. The corresponding singular vectors are the principal
components. Choose the top k principal components to form a reduced-dimensional space.

Projection:

Project the original data onto the selected principal components to obtain the lower-dimensional
representation.

Benefits:

Dimensionality reduction facilitates easier visualization and interpretation of data. Reduced dimen-
sions often lead to computational efficiency. Principal components capture the most significant
patterns in the data.

More Explanation Regarding SVD Computation: Consider an m×n matrix R, where m denotes
the number of rows, and n represents the number of columns. The primary objective of Singular
Value Decomposition (SVD) is to decompose matrix R into three distinct matrices: U ,Σ, and V T

(transpose of matrix V ). This decomposition is expressed as R = UΣV T ∈ Rm×n, as illustrated
in Fig. 4.

U : An m×m orthogonal matrix, where its columns signify the left singular vectors of R.

Σ: An m × n diagonal matrix, featuring singular values of R (non-negative and arranged in de-
scending order).

V T : An n× n orthogonal matrix, with its columns representing the right singular vectors of R.

In addition to singular values and singular vectors, eigenvalues and eigenvectors are also integral to
understanding matrix properties. An eigenvalue λ and its corresponding eigenvector v of a square
matrix R satisfy the equation Rv = λv. Eigenvectors denote directions in the vector space that are
solely scaled by the matrix R, while eigenvalues represent the scaling factors for these eigenvectors.

SVD and its Relationship to Eigenvalues and Eigenvectors: SVD establishes a crucial connection
between eigenvalues and eigenvectors with the singular values and singular vectors of a matrix. The
singular values of R are the square roots of the eigenvalues of either RRT or RTR, and the left
and right singular vectors are the eigenvectors of RRT and RTR, respectively.

Rank and Matrix Approximation: The rank of a matrix R is determined by the count of non-zero
singular values in Σ. By retaining only the largest singular values and their corresponding singular
vectors, it becomes feasible to approximate the original matrix R with a lower-rank approximation.
This technique is valuable for tasks such as dimensionality reduction and noise reduction, and we
leverage this feature in our approach.

Properties of SVD:
The singular values in Σ are non-negative and arranged in descending order. The columns of U
and V are orthonormal, forming an orthogonal basis for their respective vector spaces. The SVD
decomposition is unique, except for the sign of the singular values and the order of the singular
vectors. SVD is a potent matrix factorization technique, offering a concise representation of a matrix
while preserving essential structural properties. Its applications span diverse fields, including data
analysis, image processing, recommendation systems, and more (Deisenroth et al., 2020).
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G PRINCIPAL COMPONENT ANALYSIS FOR COMPUTING MEAN VARIANCE

In this section, we describe the process of calculating the mean variance of high-dimensional features
using Principal Component Analysis (PCA). Let X ∈ Rn×d be the dataset, where n represents the
number of samples, and d is the number of features.

G.1 FEATURE STANDARDIZATION

PCA is sensitive to the scale of the input data, so the first step is to standardize the features, ensuring
each has a mean of zero and a variance of one.

Given the dataset X = {X1, X2, . . . , Xn}, where each Xi ∈ Rd represents a sample with d features,
we standardize the data as follows:

µj =
1

n

n∑
i=1

Xij , ∀j = 1, 2, . . . , d, (9)

Xcentered = X − µ, (10)

Xstandardized =
Xcentered

σ
, σj =

√√√√ 1

n

n∑
i=1

(Xij − µj)2. (11)

Here, µj is the mean of the j-th feature, and σj is its standard deviation.

G.2 COVARIANCE MATRIX CALCULATION

After standardizing the data, we compute the covariance matrix Σ ∈ Rd×d, which captures the
relationships between features. The covariance matrix is defined as:

Σ =
1

n− 1
X⊤

standardizedXstandardized, (12)

where Σjk represents the covariance between features j and k.

G.3 EIGENVALUE DECOMPOSITION

We perform an eigenvalue decomposition on the covariance matrix Σ, which yields the principal
components and the amount of variance explained by each. The decomposition is given by:

Σ = V ΛV ⊤, (13)

where V ∈ Rd×d is the matrix of eigenvectors (principal components), and Λ =
diag(λ1, λ2, . . . , λd) ∈ Rd×d is a diagonal matrix with the eigenvalues λj , representing the vari-
ance explained by the j-th principal component.

G.4 EXPLAINED VARIANCE

The eigenvalues λj indicate the variance captured by each principal component. The proportion of
variance explained by the j-th component is calculated as:

Explained Variance Ratio =
λj∑d
k=1 λk

. (14)
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G.5 MEAN VARIANCE CALCULATION

The mean variance explained by all principal components is computed by averaging the explained
variance ratios:

Mean Variance =
1

d

d∑
j=1

λj∑d
k=1 λk

. (15)

This value represents the average variance explained by each principal component.

26


	Introduction
	Background and Notations
	Our Method: GRIC
	General ID Images Features Representation
	Extraction of General Representation of ID data

	Informative Content/Prompt (IC)
	 Informative Prompt Augmentation

	OOD Score Function

	Experiments
	Datasets and Implementation Details
	Experimental Results
	Ablation Studies

	Conclusion
	Appendix
	Additional Experiments
	GRIC Leveraging ResNet-based CLIP Models
	Evaluating the Significance of k in GRIC Performance
	ID Classification Accuracy
	GRIC Masking (GM) leads to a notable enhancement in the performance of single-modal methods:
	Masking One Class at a time
	Masking Non-PCA features
	GRIC ID Accuracy Without Informative Prompts
	Hard OOD Detection Experiment

	Experiment Details
	Software and Hardware
	Hyperparameters
	Datasets
	Baseline Models and Model Checkpoint Sources

	Related Works
	Training-Based Multi-modal Out-of-Distribution (OOD) Detection Methods
	Principal Component Analysis (PCA)
	Procedure:

	Principal Component Analysis for Computing Mean Variance
	Feature Standardization
	Covariance Matrix Calculation
	Eigenvalue Decomposition
	Explained Variance
	Mean Variance Calculation


