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Abstract

We introduce H-SPLID, a novel algorithm for learning salient feature representa-
tions through the explicit decomposition of salient and non-salient features into
separate spaces. We show that H-SPLID promotes learning low-dimensional,
task-relevant features. We prove that the expected prediction deviation under in-
put perturbations is upper-bounded by the dimension of the salient subspace and
the Hilbert-Schmidt Independence Criterion (HSIC) between inputs and repre-
sentations. This establishes a link between robustness and latent representation
compression in terms of the dimensionality and information preserved. Empirical
evaluations on image classification tasks show that models trained with H-SPLID
primarily rely on salient input components, as indicated by reduced sensitivity to
perturbations affecting non-salient features, such as image backgrounds.

1 Introduction

The acquisition of salient, task-relevant features from high-dimensional inputs constitutes a fundamen-
tal challenge in representation learning. Such features offer multiple advantages, including reduced
dimensionality [2]], enhanced generalization and transferability [42} [30]], and improved robustness
[22,[12]. Nevertheless, learning true salient features remains challenging, as many neural networks
operate within a single, entangled latent space that mixes task-relevant signals with redundant infor-
mation [6] 38]. We illustrate this sensitivity using a simple diagnostic test in Figure[T} a classifier
trained to predict the left digit in an image of double digits should ignore perturbations to the right
digit, which is irrelevant to the label. However, in practice, we observe that neural networks with
high test classification accuracy on the left digits exhibit a significant performance drop when sub-
jected to a high-magnitude adversarial PGD [34] attack (e = 1.0) on the right digits, revealing their
dependence on irrelevant, non-salient features. This corroborates several empirical and theoretical
studies [3l 136} [19] showing that redundant dimensions enhance vulnerability to attacks. Driven
by these findings, we introduce H-SPLID (HSIC-based Saliency-Preserving Latent Information
Decomposition), a new method that learns salient features by explicitly decomposing the latent space
into two subspaces coupled with information compression regularization: a low-dimensional salient
space, which contains features essential for classification, and a non-salient space, which captures the
remaining input variability. Training the same neural network as above with H-SPLID alleviates the
dependence on irrelevant features to a large degree, as shown on the right side of Figure|l| Crucially,
H-SPLID is significantly less sensitive to right digit perturbations, without any prior knowledge of
the redundant region or adversarial training.
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Figure 1: H-SPLID learns to ignore irrelevant input by decomposing the latent space into
salient and non-salient components. Left: A simple diagnostic test for saliency, where the model is
trained to classify the left digit (only labels for the left are provided) and it should ignore the right.
Middle: A model trained with cross-entropy loss achieves high test accuracy (96.86%) but produces
entangled representations, making it sensitive to perturbations on the right digit (accuracy drops to
31.76% under high-magnitude PGD attack). Right: H-SPLID separates the latent space into a salient
subspace, which captures class-discriminative structure (ACC 97.14%), and a non-salient subspace,
which contains no class-relevant information (ACC 8.57%). This separation enables robustness
to perturbations on irrelevant input (ACC 87.46%), showing proper learning of salient features.
Embeddings are visualized using t-SNE [53]].

We extend this analysis in our experiments by applying adversarial attacks to the background of
COCO [28] images, applying image corruptions to medical images of skin lesions [9]] and further
show that H-SPLID improves the transfer accuracy of ResNet-based [20] classifiers trained on
ImageNet [[11] under real-world perturbations [58}|55]. In addition to our empirical evidence, we
theoretically prove that the expected change in predictions under input perturbations is bounded by
the dimension of the learned salient subspace and the Hilbert-Schmidt Independence Criterion (HSIC)
[L6] between inputs and salient representations. This establishes a formal link between robustness
and the salient representation. Our main contributions are:

* We propose H-SPLID, a novel algorithm that promotes the learning of salient features by
decomposing the network’s latent space into salient and non-salient subspaces.

* We prove that the two key design components of H-SPLID, namely, dimensionality re-
duction of the salient subspace, together with the HSIC between inputs and salient latent
representations, upper bounds the expected change in predictions under input perturbations.
Moreover, we show that the above HSIC and reduced salient space dimensionality bounds
the volume of the input domain that is vulnerable to perturbations.

* We empirically demonstrate that H-SPLID learns salient features by leveraging attacks and
other perturbations against non-salient regions of an image, such as its background.

2 Related Work

Salient Feature Learning. Saliency methods in interpretability aim to identify input features that
influence a model’s prediction the most. Traditional post hoc approaches include gradient-based
methods [44} 48], Class Activation Maps (CAMs) [43]54], and perturbation-based methods [31}141]].
Unlike post hoc interpretability methods, however, H-SPLID aims to learn latent salient features for a
given task, such as image classification. Existing works on salient feature learning include saliency-
guided training for interpretability [22] and saliency-based data augmentation [, 5, 52] methods that
can complement our approach. However, H-SPLID does not use saliency maps as an auxiliary signal
to improve training [8l 152]], or pretrained models [3]] to generate them. Moreover, the division of the
latent space into “salient” and “non-salient” spaces, as in H-SPLID, is comparatively unexplored in
literature. Contrastive Analysis (CA) methods [2 [1}|57] leverage this concept by learning explicit
“common” and “‘salient” latent spaces with separate encoders via external supervision. While they



share the idea of learning separate spaces with H-SPLID, they rely on a dedicated target dataset
containing the salient class, and a background dataset with samples exhibiting non-salient features. In
contrast, our method does not rely on external data, and learns an initial unified latent space, before
partitioning it into salient and non-salient dimensions.

Feature Decomposition and Selection. Feature selection methods aim to identify a subset of input
features that is most predictive of the target variable [[61. 18], with popular approaches including
L regularization [49]] and Group-Lasso regularization [62]. Similar to these methods, H-SPLID
transforms and selects features during training, but diverges in its approach through its decomposition
of the latent space. For the task of clustering, Miklautz et al. [37] recently introduced the idea of
latent space partitioning, whereas H-SPLID embeds this split directly into a classifier’s training loop,
using labels to shape the salient vs. non-salient space. Moreover, H-SPLID incorporates the HSIC
penalty [32]] to regularize the statistical dependence between the inputs and salient features from
each subspace, ensuring that the salient subspace retains only task-relevant information while the
non-salient subspace absorbs redundant variability, thereby reducing feature dimensions.

Adversarial Robustness and Saliency. We use adversarial attacks to evaluate the quality of the
learned salient features. Several studies have begun exploring the interplay between saliency and
robustness [12} 51, [17,129]. Among these methods, many require adversarial training [34]], which
is not only computationally demanding, but also tailored to specific attacks. An alternative line of
research seeks to enhance robustness without adversarial training. Multiple works [19} 3 156 [13]
have attributed adversarial vulnerability to the network’s reliance on high-dimensional, task-irrelevant
features. For instance, Alemi et al. [3]] hypothesize that neural networks falsely rely on task-irrelevant
features from the training data, negatively impacting robust generalization. Melamed et al. [36]]
show, under a simplified two-layer model, that when data is confined to a low-dimensional manifold,
there exists an off-manifold space in which weights remain mostly unchanged and can be exploited
by adversarial perturbations. Haldar et al. [19] demonstrate that when there are redundant latent
dimensions, off-manifold attacks can lead to decision boundaries that rely on task-irrelevant feature
dimensions. Fischer [13]] introduced an information bottleneck [S0] to compress input information and
preserve task-relevant features without adversarial training. Wang et al. [56]] extends this framework
to the HSIC bottleneck [32], upon which H-SPLID is built. Importantly, H-SPLID departs from the
HSIC bottleneck penalty, and introduces separate terms for salient and non-salient features. Our
method also improves upon the guarantees of Wang et al. [56], tightening their bounds to account for
the impact of the dimensionality reduction induced by H-SPLID.

3 Methodology

3.1 Problem Setup

We consider k-class classification over dataset D = {(x;,y:)}’; € X x ), where X C R?
is a compact input space, JJ C RF is the label space, and each input x; € X is associated with
the corresponding one-hot class label y; € ). The neural network hg : RY — RF consists of
an encoder followed by a linear layer. The encoder, denoted by fy : X — R with parameters
1 € RP, maps an input x to a latent representation z € R C R™, i.e., z = fy(x). The linear output
layer, gw : R — R*, computes the k logits using parameters W € R¥*™ ie., gw(z) = Waz.
Thus, we can express the neural network hg = gw o fy with parameters @ = {1, W}. Hence,
the prediction of sample i is y;, = W fy(x;). Lastly, parameters @ = {t¢, W} are trained by
1

minimizing the cross-entropy loss with a softmax layer, i.e., L..(D;0) = = 31" | (x;,y;, 0), where

Ux,y;0) = — Zle y;log(o;(y)) and 0;(y) = €¥/ > €Y7 is the softmax function o : R*F — RF,

3.2 Saliency-Aware Latent Decomposition

We introduce a representation learning framework that separates latent features into salient (i.e.,
task-relevant) and non-salient (i.e., task-irrelevant) components. The model is trained with a struc-
tured objective that integrates classification, geometric regularization, and statistical independence
constraints, producing representations that improve both predictive performance and robustness. An
overview of our method is shown in Figure[2].
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Figure 2: Overview of H-SPLID. The salient information for classifying the black bear is encoded
in the salient space z,, whereas the background information is encoded in the non-salient space z,,,
allowing H-SPLID to be more robust to perturbations § of the background.

Given the encoder fy,, we introduce a learnable diagonal mask matrix M, = diag{3} € {0,1}"*"™,
where 3 € {0, 1}™ selects salient (task-relevant) features. The complementary non-salient mask is
defined as M,, = I — M. The latent representation z = f(x) € R is then decomposed into the
following salient and non-salient representations: z; = Mz = 3@z and z, = M,z = (1-03) Oz,
with 1 being a vector of 1.

Define (y;), as the j-th element of the y; label. Then, classification is performed using only the
salient component of the latent space z; € Z, and the corresponding cross-entropy loss is given by:

n

1
Lee(D;0, M) = =~ > (y3);log(0(y:)), with § =W M, fy(x:). M
i=1

3.3 Regularizing and Preserving the Separated Features

While the saliency masks enable latent space partitioning, the quality and stability of this separation
depend on additional constraints that encourage discriminative utility. We achieve this via two
regularization mechanisms: masked clustering losses and Hilbert-Schmidt Independence Criterion
(HSIC) [16] penalties.

Let X = [x1,...,X,] € R¥" be the matrix of input vectors and Z = f,;(X) € R™*" be the
matrix of latent vectors for n samples, with masked variants z; = M ;Z and Z,, = M,,Z. For each
class k, let Cj, denote the set of indices with label &, and define p;, as the class centroid and p as the
global centroid of latent vectors. We define the following masked norm-based losses [37]]:

n

K
LoDy, My) =D > [IMu(zi — )Py La(D59,My) = Y [ Moz — p)|*. ()

k=11€C} =1

Loss L encourages the clustering of class-specific representations in the salient subspace, strength-
ening its discriminative capacity. Each class has a simple uni-modal form which further removes
redundant information. The loss £,, aligns the other features globally across samples in the non-
salient space and captures shared variation. Moreover, by capturing task-irrelevant variations—such
as background information—non-salient features help isolate predictive factors in the salient space,
enhancing robustness and disentanglement. To further promote robust but accurate decompositions,
we incorporate two additional HSIC terms:

psHSIC(X, Zy) + p,HSIC(Y, Z,,). 3)

As HSIC is a measure of similarity (see Appendix @) the term H/SE(X7 Z,) reduces the dependence
between the input features and the salient subspace, thereby removing redundant information. Simi-

larly, H/SE(Y, Z,,) reduces the dependence between label information in the non-salient subspace.
We use the unbiased empirical estimator [[16] of HSIC:

HSIC(X, Z,) ZZn—l V2 tr(K,HK . H), )

Jj=11i=1



where K, and K, have elements K,
I- %11T is the centering matrix.

= kI(Xi7Xj) and K

2(i,4)

(Gi.4) = kz(MSZi,MSZJ‘), and H =

Putting everything together, we define H-SPLID’s overall training objective as:

‘C(D; 0,M;,, Mn) :)\ceﬁce(ID§ 0, Ms) + AL (D§ P, Ms) + /\nﬁn(Dy P, Mn)
+ ps HSIC(X, Zs) + p,, HSIC(Y, Zy,), S)
where Z;, 7, € R™*"™ are the concatenated salient and non-salient latent representation, and

Ace, Asy An,y Ps, Pn. = 0 are scalar weights. Training amounts to solving the following constrained
optimization problem:

min - £(D; 6, M, M,) (6a)

subjectto M, =1 — M, z; = fy(x;), Vi€ {1,...,m}. (6b)
1 1 n

= — Z, =—> z (6¢)

3.4 The H-SPLID Algorithm

We solve Problem (6 using an alternating optimization procedure over the neural network parameters
6 and the diagonal mask matrix My € R™*™ (see Algorithmin Appendix . At each outer epoch
t, the procedure consists of two alternating steps:

(a) Latent Representation Update (Fix M, optimize 8): Given a fixed mask Mgtil), we update the
encoder parameters € = {1, W} by minimizing the loss £ as in Eq. (5)) using minibatch stochastic
gradient descent with B C D for an epoch:

0" 0! — Vo Ler(B;0"D MUY, M{Y)
where the class means p;, and global means p are computed based on the minibatch via Eq. (6c).
(b) Mask Update (Fix 6, optimize M ): With updated latent representations zl(-t) = f¢(t> (xi), we
optimize the following optimization problem to learn the masks Mgt), Mg ).
min ALo(ZW M) 4+ AL (Z0, M,,) (7a)
subject to M, = diag{B8}, M, =1— Mj,. (7b)
Miklautz et al. [|37]] show that Prob.|/|has a closed-form solution:
3 = An 2 pep (i — i)
LN Yaee, (2~ (10)0)% + A Ypep (2 — )2

where the global mean p and class means p,;, are computed from the full dataset via Eq. (6c). We
use a moving average when updating the masks to improve convergence (See Algorithm|l{line 11
in Appendix . The above optimization yields a continuous mask 3 € [0, 1]™. After convergence,
we obtain a binary version by thresholding each entry at 0.5. In practice, using the continuous mask
directly gives similar results, as the learned values typically concentrate near O or 1.

, Vie{l,...,m},

3.5 Theoretical Guarantees

In our experiments, we study whether H-SPLID relies on salient vs. non-salient features by examining
the trained network’s response to perturbations to task-irrelevant portions of the input (e.g., the right
digit in Fig.[I] an image background in the COCO dataset in Section[d] etc.). Wang et al. [56] showed
that HSIC regularization terms promote feature invariance and improve robustness even without
adversarial training; we extend their analysis by integrating HSIC regularization (Eq. (3)) with salient
space isolation (Eq. (2))), which structurally separates class-discriminative and redundant information
in the representation space. To do so, we make the following assumptions on the kernel families used
in the regularization terms Eq. (3):



Assumption 3.1 (Kernel Function Boundedness and Universality). Let K, : X x X — R?*< and
K, : Z x Z — R¥** be continuous positive-definite kernels defined on compact metric spaces X
and Z, respectively. Let F and G denote their associated RKHSs. We assume that:

1. The kernels are universal on X and Z, i.e., F is dense in C(X,R¢) and G is dense in
C(Z,R*) under the supremum norm topology;

2. All functions in these RKHSs are uniformly bounded in the pointwise 2-norm, that is,
Kz :=sup || flleo2 <00, and Kg :=sup |g|lec,2 < o0, ®)
feF geg

where || f[oo,2 := supxe x [1f(x)[[2-

Many widely used kernels are known to be universal on compact subsets of RY, including the Gaussian
(RBF), Laplacian, and Matérn kernels [46} 45]. Universality ensures that the RKHS is rich enough
to approximate any continuous function on the domain, while boundedness holds automatically on
compact input spaces when the kernel is continuous. These properties collectively justify the use of
kernel-based function classes for comparing or aligning with neural network outputs, particularly
when both are assumed to operate over compact, bounded input spaces.

As is common when modeling bounded inputs [33} 40], we use the truncated multivariate normal
2
(tMVN) distribution: x ~ Nz(0,0214), with density p(x) = & exp (— 3] ) - 1)x||< R, Where

202

R > 0 denotes the truncation radius, 02 > 0 is the variance parameter, and C' is the normalization
constant. Our main robustness guarantee shows that the sensitivity of the model prediction is
controlled by (a) the dimensionality of the salient space and (b) the HSIC between the inputs and
salient representations.

Theorem 3.2 (HSIC-Based Robustness Bound). Let x be sampled from a tMVN distribution x ~
Ngr(0, O'2Id) with radius R, and let the neural network hg : R? — R¥ pe differentiable almost
everywhere with an L-Lipschitz encoder f,, and a bounded linear output layer with |W ||« < B.
Suppose the RKHSs associated with K, and K, satisfy Assumption with kernel sup-norm
bounds K, Kg. Then, given the count of non-zero entries of the salient mask s := ||Mg||o, for any
perturbation § with ||0]|2 < r, the expected output deviation satisfies

rRBVEs(LR + || f4(0)]12)
0?KrKg

where z, := M, fy,(x) is the salient representation and @ = {W 1} denotes the collection of
neural network parameters.

Ex [llhe(x +6) — ho(x)]l2] <

-HSIC(x, z5) + o(r), 9

The proof of Theorem [3.2] can be found in Appendix [C] Intuitively, with stronger information
compression imposed by minimizing both the HSIC term (thereby reducing HSIC(x, z;)) and the
masks (thereby reducing the salient mask support s := ||M]|o), the model is forced to rely only on
salient features: Theorem [3.2]suggests that, in this case, the perturbation is more likely to end up in
the non-salient space, and the majority of the attack does not contribute to the change of the output of
the neural network, as ||hg(x + ) — hg(x)|| stays small for any perturbation ¢ with ||0]|2 < r. From
a technical perspective, our theorem differs from Wang et al. [56]] in two aspects. First, we sharpen
the dependence of the upper bound on the power of the perturbation; this allows us to explicitly link
it to the dimension of the salient mask s. Second, we extend their binary classification framework
(i.e., k = 1 with one output value) to multi-class classification (with arbitrary k) to cover a wider
range of classification models.

Additionally, we can quantify how perturbations will trigger prediction changes from the vol-
ume of the entire input domain. In particular, we define the salient-active region as Xs(e) :=
{x € X : ||Vxho(x)||F > €} . Under the tMVN distribution, the probability that an input falls into
this region equals its measure: u (Xs(€)) = P (|| Vxhe(x)||r > €). We can bound this probability as
follows:

Corollary 3.3 (Salient Region Volume Bound via HSIC). Under the same assumptions of Theorem[3.2]
for any threshold € > 0, the probability that a random input falls into the salient-active input region
is upper bounded by

RBVks(LR + || f4(0)]|2)
O'ZK]:Kg

P (||Vcho(x)||r > €) < % : ( - HSIC(x, z) +0(1)> T)



Dataset Encoder Model f, Input size Perturbation type # Categories

C-MNIST LeNet-3 1x64 x64  PGD attack on right digit 10
COCO subset (bear, elephant, giraffe, ResNet-18 3 x 224 x 224 PGD and AA attack (block, background, 4

zebra) full) [10]

ISIC-2017 (nevus, melanoma, sebor- ResNet-50 3 x 224 x 224  Real-world corruptions (brightness, de- 3

rheic keratosis) focus, occlusion)

ImageNet-9 ResNet-50 3 % 224 x 224  Background manipulation and removal 368
CounterAnimal (Common vs. Counter) ResNet-50 3 % 224 x 224  Counterfactual backgrounds 45

Table 1: Datasets and corresponding models. “Perturbation type” summarizes how back-
grounds/contexts are manipulated in our evaluations.

(b)

Figure 3: (a) Samples from the CounterAnimal dataset. Common set (left), counter set (right).
(b) Adversarial attacks on non-salient features. We attack the non-salient background of COCO
images (left) given their corresponding block (upper right) or background mask (lower right) to test
whether models successfully learned salient features.

Thus, Corollary [3.3]implies that the volume of the salient-active region is tightly controlled by the
dimensionality of the salient space and the HSIC between inputs and the salient representation. The
proof is in Appendix [E]

4 Experiments

In this section, we describe our datasets, comparison methods, experiment setup, and performance
metrics. Additional runtime experiments, implementation details, and hyperparameter tuning and
configuration protocols provided in the Appendix [F] Our code is publicly available at https://
github.com/neu-spiral/H-SPLID,

Datasets and Encoder Models We evaluate H-SPLID on synthetic and natural image benchmarks,
spanning five datasets and three architectures (Table[T). We create a synthetic Concatenated-MNIST
(C-MNIST) dataset (see Fig.[I)) by concatenating two MNIST digits with the left digit as the class
label. We use LeNet-3 [27, 26] as an encoder. We construct a four-class subset of COCO [28]] (bear,
elephant, giraffe, zebra), coupled with a ResNet-18 [20] encoder. ISIC-2017 is a medical imaging
dataset [9]]. ImageNet-9 (IN-9) [58]], encompasses 368 classes from ImageNet-1K instantiated in three
variants: Original images, a MixedRand variant in which object foregrounds are put onto random-
class backgrounds, and an Only-FG variant with backgrounds entirely removed (See Figure [).
CounterAnimal (CA) [53]], splits iNaturalist wildlife photos into a Common set (exhibiting typical
backgrounds) and a Counter set (featuring atypical yet plausible backgrounds) (see Fig.[3a). We use
ResNet-50 as an encoder for ISIC-2017 and ImageNet derived datasets.

Comparison Methods. To demonstrate how H-SPLID focuses on task-relevant characteristics, we
compare it with several methods for feature selection and weight regularization, including weight
decay (L2 regularization) (23], L, regularization [49], Group-Lasso regularization [62]], and two
activation-sparsity variants — one applying L; penalty to the penultimate layer’s activations and
another applying a Group-Lasso penalty across those activations to promote instance-level sparsity.
Finally, we compare against HBaR [56] under non-adversarial training, and a vanilla baseline trained
only with cross-entropy loss. Appendix [F] provides further details on training and implementation.

!CounterAnimal is a benchmark split (Common/Counter) over multiple species; we follow its predefined
taxonomy and report performance across the two splits rather than a fixed class count.
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No Atk. Block Atk. Background Atk. Full Atk.
Comp. €=0 5 Pr e 5 255 255 355 255
Va.  98.1+0.4 56.3+£0.6 51.3£1.3 55.1£0.5 75.2+0.2 56.6+0.2 34.4+0.1 55.9+0.2 34.2+0.3
WD 94.3+0.7 43.94£0.5 57.240.4 76.9+£0.8 76.3£0.0 59.9+0.3 43.0+£0.1 57.8+£0.1 40.7+0.2
GLA 97.1+0.6 60.4+1.2 70.4+0.8 78.8+0.8 75.1+£0.2 57.4+0.3 35.3+0.3 57.5+0.3 37.3£0.3
8 GLW 92.6+1.1 45.4+0.5 47.2+0.5 58.0+0.6 72.6+0.0 58.4+0.0 42.9+0.1 54.9+0.1 41.2+0.2
& LSA 97.1£0.4 57.3%£1.2 63.5£0.5 71.9+£0.6 71.2+0.1 54.1+£0.3 33.7+£0.2 51.7+£0.2 35.0+0.4
LSW 96.0+0.6 43.2+0.5 42.5+0.8 57.0+0.4 73.5+0.0 55.6+0.1 37.0£0.1 53.1+0.1 33.5+0.1
HBaR 97.1£0.4 57.4+1.3 54.0+£1.1 67.0£1.2 77.94£0.1 60.2+0.3 39.9+0.3 62.4+0.2 41.9+0.3
Ours 97.9+0.3 71.9+0.7 68.5+0.5 72.3+0.4 78.0+0.1 68.9+0.5 57.5+0.2 66.5+0.1 58.9+0.4
Va.  98.1+0.4 42.8+0.2 21.0+£0.8 19.9+0.6 66.8+0.1 41.6+0.1 26.4+0.2 45.5+0.1 20.9+0.1
WD  94.3+0.7 38.5+£0.8 23.0£0.7 22.54£0.6 74.1£0.0 53.4+0.1 38.7+0.1 53.5+0.0 29.3+0.0
GLA 97.1+0.6 43.3+1.0 27.2+1.0 28.9+1.2 64.6+0.1 39.8+0.1 26.8+0.2 45.5+0.0 21.0+0.1
< GLW 92.6£1.1 41.3+£0.8 24.6+£0.8 23.1£0.6 71.1£0.1 52.0+£0.0 38.8+0.1 52.1+£0.0 29.5+£0.0
<CLSA 97.1+0.4 40.9+0.7 25.540.6 25.740.6 62.6+0.1 39.5+0.1 25.3+0.2 42.4+0.1 20.30.1
LSW 96.0+£0.6 37.5£0.6 20.6£0.7 20.5£0.5 69.7£0.0 47.3£0.1 31.8+£0.2 47.3+£0.0 20.5+0.1
HBaR 97.12£0.4 39.5+0.9 21.4+0.8 29.2+0.4 70.1+£0.1 45.4+0.1 31.4+0.3 50.4+0.1 25.2+0.2
Ours 97.9+0.3 62.1+0.4 48.8+0.3 48.3+0.5 74.2+0.0 59.6+0.2 52.6+0.1 60.4+0.1 48.8+0.2

Table 2: Measuring saliency with adversarial attacks on COCO. H-SPLID (Ours) improves
robustness to adversarial attacks compared to most baselines, with the largest performance gains
observed under stronger background-targeted attacks (two middle columns). Here, AA denotes
AutoAttack, while PGD denotes Projected Gradient Descent. The attack magnitude e is indicated
using ratios of pixel values, with the strongest attack being % All models are trained without
adversarial data. Va., WD, LSA, LSW, GLA, and GLW denote Vanilla, Weight Decay, L; Sparse

Activations, L; Sparse Weights, Group-Lasso Activations, and Group-Lasso Weights, respectively.

We train H-SPLID and all comparison methods exclusively on clean data without employing adver-
sarial attacks or having access to saliency masks. In all datasets, we employ a 80-20 validation split
for tuning, and use held-out test sets for final evaluation. Following prior art [32} 160,59} 56], we use
the Normalized Cross Covariance Operator [14]] to get a scale-insensitive HSIC penalty. All methods
are evaluated using clean test accuracy (over three seeds) and robust test accuracy under different
attacks, described below.

Testset Attacks. Methods are evaluated w.r.t. a broad array of attacks on non-salient features at
test-time. On C-MNIST, we evaluate predictive performance against a PGD attack on the (non-salient)
right digit. For COCO experiments, we pretrain a ResNet-18 [20] from random initialization for 100
epochs with cross-entropy, followed by 200 epochs of method-specific training before evaluating on
the held-out test set. We test PGD and AA in three ways: random blocks of pixels in the background,
pixel perturbations in the background, and full-image attacks. On ISIC-2017, we use a ResNet-50
pretrained on ImageNet for feature extraction, train a three-class head for 50 epochs, and then run
50 epochs of method-specific training. We test robustness under real-world corruptions (brightness,
defocus blur, and snow/occlusion from the corruptions benchmark [21]]) applied to non-salient regions
(non-lesion pixels). We use IN-9 and CA for transfer learning experiments as follows. First, we train a
ResNet-50 [20] initialized from ImageNet-1K pretrained weights (TorchVision [35]) for 20 epochs of
method-specific training on ImageNet-1K. Then, we test the model on the IN-9 (the original IN-9 and
its MixedRand and Only-FG variants) and also on CA (CA-Common and CA-Counter) evaluation
sets (see Table [d).

PGD is implemented via 10 iterations with a step size « = 0.0156 and AutoAttack [[10] is imple-
mented using the rand ensemble. Attacks per block (Block Atk., see Fig.[3b) are confined to a single
randomly placed block in the background, with size i X i of the image dimensions. Attacks restricted
to background pixels (Block Atk., Background Atk., see Fig. [3b) use saliency masks, which are
available for COCO and ISIC-2017. Full attacks (Full Atk.) are across the entire image. PGD and AA
Attacks are conducted over a range of € levels, with each configuration repeated across five random

seeds. Additional implementation details and hyperparameter settings are provided in Appendix [F|



No Perturb. Brightness  Defocus Occlusion
Va. 75.4540.986 66.43+2.527 63.774+2.388 62.87+3.081
WD  75.63£1.545 67.534+2.980 64.574+2.295 63.55+3.851
LSA 75.62£1.211 66.504+2.171 64.33+1.653 62.27+4.256
LSW 75.30£1.040 66.13+2.432 63.2242.506 62.70+3.810
GLA 75.38£1.383 66.50+3.136 61.32+£4.501 62.684+2.969
GLW 70.65+4.118 60.23£6.698 58.63+£9.564 60.62+5.697
HBaR 75.9040.844 68.70+£1.942 65.62+2.058 66.18+3.013
Ours 76.78+0.778 70.00+1.619 68.38+1.376 69.50+1.716

Table 3: Measuring saliency with real-world perturbations on ISIC-2017. H-SPLID (Ours)
achieves the best robustness across lighting (brightness), blur (defocus), and occlusion (snow) when
perturbations are restricted to non-salient regions. All models are trained without adversarial data.
Va., WD, LSA, LSW, GLA, and GLW denote Vanilla, Weight Decay, L, Sparse Activations, L
Sparse Weights, Group-Lasso Activations, and Group-Lasso Weights, respectively.

4.1 Results

Controlled attack Benchmark COCO. We quantitatively demonstrate the ability of H-SPLID
to learn salient features on the four-class COCO benchmark by evaluating adversarial robustness
under block, background, and full-image perturbations. As shown in Table [2] H-SPLID achieves
57.5% under background-only PGD attacks at e = 3/255, with the closest competitor attaining
43.0%. Even when attacks span the entire image, H-SPLID sustains 58.9% accuracy under a PGD
attack with e = 2/255, surpassing the 34.2% of the vanilla network and 41.9% of the best performing
competitor. Against the stronger AutoAttack ensemble, H-SPLID consistently outperforms all
baselines in robustness to adversarial perturbations.

These results show that explicitly decomposing latent features into salient and non-salient subspaces
delivers substantial robustness gains, with the most pronounced improvements occurring under
background-only perturbations, validating that H-SPLID effectively isolates redundant information.
Moreover, robustness gains are achieved without any adversarial training, demonstrating that H-
SPLID’s latent decomposition strategy yields inherently saliency preserving representations.

Medical imaging Benchmark ISIC-2017. To further assess domain generality and robustness,
we evaluate H-SPLID on the ISIC-2017 skin lesion classification dataset [9]] (three classes: nevus,
melanoma, seborrheic keratosis). We perturb only non-salient regions (e.g., non-lesion pixels)
and adopt three real-world corruptions from the corruptions benchmark [21]]: brightness (lighting),
defocus blur (blur), and snow (which effectively occludes small patches; we report it as occlusion).
Results are averaged over 10 random seeds.

These medical imaging results mirror our COCO findings: explicitly separating salient from non-
salient latents confers consistent robustness gains under realistic, non-adversarial corruptions, espe-
cially when perturbations target only non-salient regions. Together with Table[2] this strengthens the
evidence that H-SPLID learns saliency-preserving representations that generalize beyond natural
images to specialized clinical domains.

Saliency Benchmarks. We measure the saliency of our model on the ImageNet-9 and CounterAn-
imal benchmarks. In Table @ H-SPLID attains the highest accuracy on the IN-9 test set (76.7%),
outperforming the vanilla baseline by 2.7% and exceeding the next best regularization method by
over 1%. When the backgrounds are entirely removed (Only-FG), H-SPLID once again surpasses all
methods with a 64.5% test accuracy, demonstrating its ability to distill object-centric features. On
the more challenging MixedRand variant, it achieves a 59.5% test accuracy, a substantial 3.1% gain
over the strongest baseline. On the CA Common set, which preserves typical contextual correlations,
H-SPLID matches the top performing method (80.3% vs. 80.7%). Finally, on the CA Counter set of
atypical contexts, it surpasses all competitors with a 60.6% test accuracy, a 2.1% improvement over
the HBaR model. The consistent performance across original, background-altered and contextually
shifted datasets demonstrates that the explicit separation of salient and non-salient subspaces in
H-SPLID yields representations that transfer more robustly to new tasks and real-world perturbations.



Method IN-9 Only-FG MixedRand CA-Common CA-Counter

Vanilla 74.0 60.5 51.2 78.3 58.4
Weight Decay 72.6 584 51.2 77.3 54.4
Group Lasso Activations 75.3  63.8 55.7 79.9 58.3
Group Lasso Weights 73.0 60.0 50.6 78.3 57.1
L, Sparse Activations  74.8  62.9 56.4 80.7 58.1
L1 Sparse Weights 737 613 51.9 78.1 54.7
HBaR 73.6  63.3 53.8 79.3 58.5
H-SPLID 76.7 64.5 59.5 80.3 60.6

Table 4: Transfer accuracy on ImageNet-9 and CounterAnimal saliency benchmarks H-SPLID
achieves the highest accuracy on the most challenging splits (MixedRand and CA-Counter), demon-
strating the robust transferability of its learned representations.

Method No Atk. Background Atk. Full Atk.
AceLee 98.30 33.75+0.1 35.29+0.5
AceLlce + AsLs + ALy 97.52 43.69+0.2 44.12+0.3
AceLce + psHSIC(X, Zy) + p, HSIC(Y,Z,,) 96.74 42.71£0.3 45.87+0.8
H-SPLID (full £) 97.59 57.12+0.3 58.44+0.2

Table 5: Ablation of loss terms on COCO. Accuracy under no attack, Background Attack (e =
3/255), and Full Attack (e = 2/255) using PGD. Attacks run with five random seeds. The complete
objective delivers the highest robust performance.

Loss Term Ablations. We ablate the loss components according to their conceptual grouping,
namely cross-entropy (L), cross-entropy loss with space separation (L., + L5 + L), cross-entropy
loss with HSIC components (L. + HSIC(X, Z;) + HSIC(Y, Z,,)) and the full H-SPLID loss (£).
The mask computation (Section [3.4) remains unchanged across all ablations (the difference is whether
the clustering loss terms L, + L,, are optimized). All ablations are performed starting from the
best-performing COCO model (Appendix [F.4) by removing individual components of the full £
objective. Each loss combination was independently tuned to achieve its best performance. As shown
in Table[5] simply using the cross-entropy loss yields poor background robustness (33.75%). Adding
the L4 and £,, terms or the HSIC penalties improves robustness to approximately 43-46%, while
maintaining clean accuracy above 96%. The complete objective results in the best robust performance
(57.12%) while maintaining competitive clean accuracy (97.59%). We further assess the sensitivity
of H-SPLID to its hyperparameters in Appendix [G.2]

5 Limitations & Conclusion

Limitations. H-SPLID assumes the presence of irrelevant information in the input, as well as
a sufficiently diverse dataset in which class-specific features occur across varying contexts. If a
particular feature always co-occurs with the same context, H-SPLID cannot separate salient from
non-salient information, since both appear inseparably — a challenge that would require external
knowledge to resolve. Further, we restricted our analysis to image data, where the distinction between
salient and non-salient regions is intuitive to humans. Investigating whether similar decompositions
apply to other data modalities remains an exciting direction for future work.

Conclusion. We introduce H-SPLID, a novel method for salient feature learning that decomposes
the latent space of a neural network into task-relevant and task-irrelevant components during training.
Unlike prior work, H-SPLID performs supervised feature selection in an end-to-end manner, without
relying on external saliency annotations. Our theoretical analysis provides formal insight into how
this decomposition promotes compact and informative representations. Empirically, we show that
H-SPLID learns class-discriminative features and naturally reduces reliance on irrelevant input
variations. In future work, we would like to combine H-SPLID with self-supervised models such as
I-JEPA [4], with the goal of learning features that generalize better to downstream tasks. Additionally,
we plan to explore the decomposition of salient and non-salient spaces in other data modalities,
including graphs, text, and multi-modal data.
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A Technical Preliminary

Hilbert Space. A Hilbert space is a complete inner product space. More formally, a real or complex
vector space H is called a Hilbert space if it is equipped with an inner product (-, -)3; that induces

anorm || f|l% = +/{f, f)n, under which H is complete; that is, every Cauchy sequence in H
converges to a limit in H. The inner product structure generalizes the geometric notions of angle
and length, while completeness ensures that limits of convergent sequences remain in the space.
Examples include R™, L? spaces of square-integrable functions, and reproducing kernel Hilbert
spaces (RKHSs).

Reproducing Kernel Hilbert Space (RKHS). Let X’ be a nonempty set. A Hilbert space # C R¥
is called a reproducing kernel Hilbert space if there exists a positive definite kernel £ : X x X — R
such that, for every x € X, the function k(x,-) € H and the reproducing property holds: that is, for

all fe Handz € X,
f(x) = (f k(x,))n-

Hilbert-Schmidt Operator [16]. Let 7 and G be separable Hilbert spaces, and let A : F — G be a
bounded linear operatorE] Then A is called a Hilbert-Schmidt operator if, for any orthonormal bases
{fi}i21 € Fand {g;}52, C G, the following Hilbert-Schmidt norm is finite:

Allfis = > > (Afi,9) < o (11)

i=1 j=1

Cross-Covariance Operator. Let x € X, z € Z be random variables and let F and G be RKHSs
over X and Z. Then, the cross-covariance operator C'x z : G — F is the unique linear operator such

that
(f,Cxzg)F = Cov[f(x),9(z)] = E[(f(x) — E[f(x)])(9(z) — E[g(2)])], (12)

forall f € F,g€G.

Proposition A.1 (Covariance Bounded by HSIC [16, [15]). Let X € X and z € Z be random
variables, and let F and G be RKHSs on X and Z, respectively. Then the scalar covariance
is bounded by the Hilbert-Schmidt Information Criterion, i.e., the Hilbert-Schmidt norms of the
cross-covariance operators:

sup Cov[f(x),g(z)] < HSIC,(x,2) = ||Cxz|lys - (13)
feFgeg

The above proposition is the HSIC for the scalar value RKHS defined in Gretton et al. [[16]. To
connect the above scalar value function spaces to vector-value spaces, we use the external direct sum
as below.

External Direct Sum of Hilbert Spaces. Let 1, ..., H; be Hilbert spaces. We can then denote the
vector-valued Hilbert space H via the external direct sum as

k

HI:@H]‘ ::{(flv"'vfk)|fj€Hj}? (14)

j=1
which is equipped with the inner product ((f1,..., fx), (91, -, k) = Z§:1<fj, gj)m,;- The
1/2
corresponding norm is given by || f||3 := (lezl Ilf; H%J) , which makes # itself a Hilbert space.

Moreover, if we construct the RKHS by the direct sum, i.e., H := @le ‘H;, the resulting space H
is a vector-valued RKHS [7]].

Next, we define the corresponding covariance matrix for a vector-valued RKHS. Let f : X — RF
and g : Z — R” be vector-valued functions, and (x, z) be random variables jointly distributed over
X x Z. The covariance matrix between f and g is defined as:

Cov[f(x),9(2)] = E [(f(x) — E[f(x)])(g(z) — E[g(2)]) '] € R***. (15)

2Separable Hilbert spaces implies the spaces have a complete orthonormal basis.

16



Algorithm 1 Alternating Optimization of 8 and M

. Input: Dataset D = {(x;,y;)}™,: initial 8%; M =1 Bstep € [0,1];
for epocht = 1to 7T do
Step 1: Update 6 via SGD (minibatches)
for each minibatch B C D do
Compute latent codes z; = fy(x;) fori € B
Compute minibatch means: g, {ge;, }H<
Compute loss Lst(B;0, M, I — M
Update 8 < 8 — nVoLsr
end for
Step 2: Update M via closed-form solution
9: Compute z; = fy(x;) foralli € D
10: Compute dataset means: g, {py H< |
11: for each feature dimension ¢ = 1 to m do

=

A A

An ZzED(Zi - Ni)2
As ZkK:1 Yowec, (Zi — (1)) + A D pep(Zi — 1y)?

(Ms)i,i <~ /Bstep(Ms)i,i + (1 - 651‘,@;0)

12: end for
13: end for
14: Return: O(T), MgT)

Hilbert-Schmidt Independence Criterion (HSIC) The HSIC [16] is a kernel-based measure of de-
pendence. Letx € & C R% and z € Z C R™ be random variables. Let also G = @le Gg;
and F = @?:1 F; be vector-valued RKHSs over the input and representation domains with
k values, respectively (i.e., direct sums of k scalar RKHSs). The cross-covariance operator
Cxz : G — F is the unique linear operator such that (f,Cxzg)r := Cov[f(x),9(z)] =
E[(f(x) —E[f(x)])(g(z) —E[g(z)])], for all f € F, g € G. The vector-valued HSIC between x
and z is defined as

ko k
HSIC(x,2) == > 3 IC%2 |lus, (16)
j=11i=1
where C;’é) is the cross-covariance operator between G; and F;, and || - ||zs denotes the Hilbert-

Schmidt norm. This quantity upper-bounds the scalar covariances [[15]:

sup  Cov[f;(x),gi(2)] < [|C82||us.
fi€F;,9:€Gi

We can empirically estimate HSIC within O(n 1) accuracy [16] given n i.i.d. samples {(z;, v;)}™;
via:

k
HSIC(X, Z) Zn—l V2 tr(K,HK . H), (17)

j=1i=1

= ky(xi,%;) and K

Z(4,9)

Mw

where K, and K, have elements Km(mv)

= k.(z;,z;), while H =
I- %11T is the centering matrix.

Notation Summary. Table[6] summarizes the notation used in the main paper and Appendix.

B H-SPLID Pseudocode

Algorithm T]contains pseudo-code for H-SPLID, i.e., the alternating optimization algorithm presented
in Section [3.4]to solve Problem ().
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Table 6: Summary of Notation and Terminology

Symbol

Description

Domains and Variables

X CR?

R CR™

Z CR™

RE

X ~ Ng(0,0%14)
7Z = hg(x)

Input domain (bounded subset of R?)
Representation domain (output of encoder)
Salient representation domain (output of encoder)
Output/logit space

Truncated multivariate normal on ball of radius R
Output representation of the network

Functions and Network Components

71',‘(X) =x;
f¢ X =R
M € Rmxm

s :=tr(M)
W ERka
agw : Z > RF
he == gw o fy

i-th coordinate projection function

L-Lipschitz encoder network

Diagonal binary mask matrix (entries in {0,1})
Number of active (nonzero) dimensions in the mask
Linear weight matrix after masking

Final representation-domain function (e.g., linear layer)
Full neural network from input to output

Norms and Constants

Euclidean (vector) norm
Frobenius norm for matrices

-

-] ,

Il oo Maximum absolute value across components (for vectors)
- lloo.2 Supremum of 2-norm: [ f|[sc 2 := supxex ||/ (x)ll2

B :=|W|x Max row-wise ¢; norm of the weight matrix W

Ny :=R Sup-2-norm bound of input: ||z]2 < R

Nz := BVks(LR + || f(0)|]2) Sup-2-norm bound on gw o fy

1o]]2 < r Perturbation is bounded by r

Kernel and RKHS Quantities

kx, kz Universal kernels on input and representation domains
F.G RKHSs induced by kxy and k=

Kr,Kg Kernel Sup-2-norm bounds

HSIC(x, z) Hilbert-Schmidt Independence Criterion between X and z
Loss and Perturbation

§eR? Input perturbation with ||6]|2 < r

L(hg(x),v) Loss function for prediction and ground-truth y

L,

Lipschitz constant of the loss in its first argument

C Proof of Theorem

We next show that the output of a masked neural network is uniformly bounded in sup-norm under
standard Lipschitz and compactness conditions. This provides the foundation for connecting the

model class to the kernel-bounded spaces introduced above.

Lemma C.1 (Bounded NN with Saliency Space). Let X C {x € R? : ||x||o< R} be a bounded input
space, and let fy, : X — R™ be an L-Lipschitz encoder. Consider a network hg(x) := WM fy,(x)
where W € R¥*™ s g linear weight matrix satisfying ||W | s < B, and M € R™*™ is a diagonal

binary mask with at most s nonzero entries. Then, the network output is bounded in sup-norm:

176]loc,2 := sup lhe(x)ll2 < BVks(LR + || f(0)l|2)-

The proof is deferred to Appendix [D.1] This bound shows that the sparsity level s of the mask plays a

direct role in constraining the model’s output magnitude, which is essential for robustness.
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To connect neural network outputs to kernel-based function spaces, we reparameterize the neural
network hg(-) := WM, fy(-) by gw(zs) = Wz,. Then, we show how the gw belongs to a
bounded subset of C(Z, R¥).

Corollary C.2 (Bounded Function Spaces). By redefining the neural network in Lemma IW
belongs to the following closed ball:

gw € €)% i= {9 € C(Z.RY) | Iglloe2 < Nz = BVES(LE+ |f4(0)ll) ), (19)
where ||g||oc,2 := sup,¢ z ||g(2)||2 denotes the sup-2-norm.

This corollary imposes uniform boundedness of the neural network output values via gw on repre-
sentations over the compact domain X, ensuring that the function belongs to a bounded subset of
continuous function spaces Cév Z. See Appendix for the proof.

Given the RKHSs F and G in Assumption we define the rescaled RKHS spaces Fand G as
. Ny 4 Nz
Fi=q—Ff: F d =9 —=f: . 2
{K;f fe } and G {Kgf feg} (20)

Thus, we establish the equivalence between the rescaled RKHSs and the bounded continuous function
spaces.

Lemma C.3 (Rescaled RKHS Equals C (X, R%)). Given Assumption and the continuous uni-
versal kernel k, therein, its corresponding RKHS F, and a bounded continuous function space
Cy(X, R?) such that

C* = {f €C(X, RN || fllcc2 < Na},

then we have the rescaled RKHS space

. Ny
=< —=f: 21
o N
satisfying
F=cx. (22)
— =, .
where F = F " denotes the closure of F w.rt. the || - || 0o 2-

Slllloo,2

Similarly, we can show that the rescaled Cév =0 . See Appendix for the proof.

Moreover, as we have two spaces containing functions that are different by a scalar, we are interested
in how the supremums of the covariance relate between spaces.

Lemma C.4 (Scaling of Supremum Covariance — Sum Version). Let F and G be vector-valued
RKHSs over X and Z, respectively. Then, for all My, Mg > 0and x € X,z, € Z, the following
holds:

kod k d
ZZ sup  Cov|f;(x),9i(zs)] = MrMg ZZ ~osup  Cov|[fj(x),gi(zs)],  (23)
j=1i=11i€F;:9:€G: j=1i=1 f;€F;.,5:€G:
where F := {f = /My : f € F} and likewise for G.
See Appendix [D.4for the proof.

Lastly, given the supremum of covariance of the function space containing the neural network, we
need to use the variant of Stein’s Lemma to bound the gradient of the neural network.

Lemma C.5 (Stein’s Lemma for Scalar-Valued Functions on a Bounded Domain). Let x be
sampled from a truncated multivariate normal (tMVN) distribution, i.e., with density p(x) =

2
& exp (— H;;'L ) 14 <r, supported on the compact domain Xp := {x € R? : x| < R}, where

C is the normalization constant. Let h : R? — R be a differentiable almost everywhere such that
E|Oh(x)/0x;| < oo and |h(x)| < Nx forall x € Xg. Then foralli € {1,...,d},

E {8]1()()} - % Cov [z, h(x)] + € (R), -

5‘:51-
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where the truncation error term satisfies

N d—1 2
()| < NGl (_ R ) ,

c 202
and Cy is the surface area of the unit sphere in R

See Appendix [D.5]for the proof.

Then, we formally state the proof of Theorem [3.2]

Proof. Step 1. Continuous function spaces C/!YVX and OJZV =,

Let 7 : X — R? denote the identity map, defined by 7(x) := x. This vector-valued function can be
decomposed into scalar coordinate projections:

mi(x) ==z, fori=1,...,d.
Since the input domain X C R is contained within a Euclidean ball of radius R, we have || (x)]|2 <
R for all x € X. Therefore, the identity function satisfies:
NX = ||7T||oo,2 = R,

and lies in the vector-valued bounded continuous function space m € Cév *(X,R%). Correspondingly,
each coordinate function belongs to the subspace m; € Cgf.

Now consider the function gw : Z — R* on the representation domain Z. From Corollary [C.2] the
composed function gw o M fy, over X satisfies:

Nz := BVEs(LR+ || f(0)]|2)-

Similarly, over the representation space Z, we have gw € Cév Z(Z,RF), and each scalar component
gg,) € Céf;z .

Step 2. Equivalence between RKHS and continous function spaces.

By Lemma|[C.3] we can rescale the RKHS F and G in Assumption [3.T]as

poo N, I EAE
]:.—{K}_f.fe]:} and g.—{Kgg.geg}7 (25)

so that their closure are equivalent to the bounded continuous function space C' ﬁ’( and C' g Z asin
step 1.

According to Lemma if we set My = =, Mg := {2 we relate covariance bounds between
the RKHSs (F and G) and the rescaled RKHSs (]-' and Q) through rescaling.

k

Z Z sup  Cov[f;(x),gi(zs)] (26)

j=1i=1Ji€Fi:9i€G:
KrKg c

= sup  Cov[f;(x), gi(zs)] (Lemma|[C.4)
NXNZ ;;f7€f7 97€g7

_ BrKg Covlf;(x), § 1 d

= NN, Z Z sup ov(f;(x), §i(2zs)] (closure under sup-norm)

j=11i= 1fje]:]agleg7

KrK = ~

— N;Nz Z Z Sup Cov[fj (x), gi(zs)], (LemmalC.3)

ji=11i= lfJGCbJ ,9160
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where the second last line applies closure under the sup-norm (preserving the supremum), and the
last line substitutes the equivalent bounded continuous function space by Lemma[C.3]

Step 3. Bound covariance in continuous function spaces with HSIC.
Then, based on Eq. @ we obtain:

ZZ sup  Cov[f;(x),gi(zs)] < HSIC(x, z,). (27)

j=11i=1 f]e‘F]igleg‘L

Combining eq. @[) and eq. (27), we have

= NxN
g g sup Cov[fj(x),gi(zs)] < KXKZ - HSIC(x, z5). (28)
j=1i= 1fJeC b5 ,gLEC FHG

As shown in Step 1, we have 7; € Cév;‘ , héj ) S C’é\; Z, and the following holds

k

; Ny N
Z Z sup Cov[m;(x), hg)(x)] < KX KZ - HSIC(x, zs). (29)
j=1i=1 m€C, ¥ ,h§leC, ? FRG

Step 4. Bound the gradient with covariance.
By Lemma|C.5] the following holds

1 0) | _
E agi(x) = % ’Cov[Xi7hé])(X)]‘ < % sup Cov[m(x),hg)(x)]. (30)
Li 9" mec)x n{ecyz
Combining (29) and @]) gives:
ang (x 1 (NXNZ )
< — | === -HSIC(x,2z,) +€R | . (31)
le Zl o ] ‘ KrKg (x,25) + er

Using first-order Taylor expansion with sufficiently small perturbation ||6||2 < 7, we have
he(x 4 0) — he(x) = Jpy (%) + o(r). (32)

Thus, by combining eq. (31) and eq. @]), it follows
Ellhe(X +6) — ho(x)[l2] <1 E[||Jne ()| F] (33)

TRB\ﬁ(LR + [ £ (0)[2)
?KrKg

where in the last step we replace the term Ny, Nz and use the fact ;—1; = 0(1) due to the exponentially
decaying term.

- HSIC(x, z5) + o(r), (34)

O

D Proof of Lemmas used in Theorem 3.2

D.1 Proof of Lemma[C.1|

Proof. Let W,, € RF*s and M, € R**™ be the pruned matrices selecting the active coordinates
corresponding to the s nonzero entries of the mask. Then the function can equivalently be rewritten
as

h(x) = WM fy(x). (35)

Since fy is L-Lipschitz and ||x||2 < R, it follows that
[fp(x) = fy(O)]|2 < LR, (36)
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thus

[fpX)ll2 < [[fy(O)]2+ LR, VxeX. 37)
The masking operation M selects s coordinates from f,,(x), and can be equivalently represented
via M € R**™ as a selector matrix with exactly one nonzero entry per row and no more than one

nonzero per column. Then
M fop (%) |2 < [ fo () l2- (38)

The corresponding reduced weight matrix W, € R¥** selects the columns of W associated with the
active coordinates. Since |W ;|| < B, it follows that

IW.||r < BVEs, (39)
and thus
[Will22 < [|[Ws|[p < BVEs. (40)

where ||-|| p is the Frobenius norm. Hence, for any x € X,

[P(X)]l2 = WM fy(X)]l2 < [Wsll2m2[Ms fy (X)[[2 < BVES(LR+ [ f(0)l2).  (41)
Taking the supremum over x € X’ concludes the proof. O
D.2 Proof of Corollary|C.2]

Proof. As we have shown in Lemma|C.T] we have:

sup A9l < BVRS(LR -+ | £4(0)2).

Moreover, since the NN can be expressed as hg(-) = WM fy(-), we have:
sup [[WMfy (x)ll2 < BVAs(LE + || fy(0)]]2)-
xE

Therefore, we can upper bound g, as:

Sup lgw ()12 = sup WMz < BVES(LR + |4 0)]]2)
FAS zE

Moreover, as gw is a continuous function, we finish the proof. O

D.3 Proof of Lemma[C.3|
Proof. Step 1. F C C['*

Since k, is continuous and X" is compact, it follows from Lemma 4.28 of Steinwart and Christmann
[47] that all f € F are bounded and continuous. Hence, for any f € F, we have

Ny Ny
Na = X0ty < Ny 42
] = oz < N “2)
This implies that every function in F belongs to C*. Since €' is closed in the || - || 2 norm, it
follows that o
Fcehx. (43)
Step2.CN* C F
Letg € Cévx. Define h := ﬁ—;g. Then,
K
Ihlloc.2 = 37 llglloc.2 < K7, (44)
x

so h € Cy(X,R¥) and is bounded in sup-norm. Since F is universal by Assumption. 3.1} it is dense
in Cy (X, R*) under the || - || o 2 norm. Therefore, there exists a sequence { f,} C F such that

lim || fr = hffec,2 = 0. (45)
n— o0
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Define the corresponding rescaled sequence fn = %—?; fn € F,and set j := I]\(]—’;h = g. Computing
the limit,

n—oo

. ;o o [N o Nx _
J 1=l =t |- =t I Ala =0 @9

Thus, g =g € F. O
D.4 Proof of Lemmal[C.4|

Proof. We show that
> sup Cov[f;(x), gi(zs)] < MzMg Y sup Cov[f;(x),i(z)],

i Ji9i G T

For each pair (j,7), let { f,gj )} C Fjand {ggf)} C G; be sequences converging to the limit

Jim Cov[f7(x), 91 (2)] = sup Covlf;(x), gi(zs)) @7

fi:gi

Define the rescaled sequences:

F) = M%féj), ) = Miggfﬁ- (48)
Then, by the bilinearity of the covariance operator, we have
Cov[ /17 (x), 95 (2s)] = MrMg Cov[f7) (x), 3 (zs)], (49)
and taking the limit:
sup Covlf;(x), (2)] = lim, Cov[ £ (x), 91 (2.)] (50)
= MyMg lim Cov[f{)(x), 3 (2,)] < MrMg sup Cov[f;(x), ji(z,)]
b (51
Summing over all ¢, j yields the result.
Furthermore, the reverse inequality follows from the same argument. O

D.5 Proof of Lemma[C.3|

2

Proof. Step 1 (Integration by Parts). Let ¢(x) = exp (— ||2>;H2 ) and define f(x) = h(x)p(x).
Applying the product rule:

) Oh(x) 96(x)

8xif(x) = o, ¢(X)+h(X)Txi- (52)
Rearranging:
Oh(x) 0 0o (x)
At 000 = 5 (h(x)6(x)) — h(x) =5 . (53
Integrating over X'r and applying the divergence theorem gives:
0
5o (0000 do = | hx)som(x) dS(x). (54
Xr Zi OXRr
where v(x) = T i the outward unit normal and vi(x) = F.
Thus: ok
/ 8(’?)¢(x) do = / h(x)$(x)vi(x) dS(x) + / h(x) "2 é(x) d. (55)
xp 0T xR Xg g
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Step 2 (Pass to Expectation Form). Dividing through by C' = fo” < ¢(x) dz, the normalization
constant, gives: -

axi 0'2

E [3}1()()} _ LE [X;h(x)] + l/ h(x)p(x)v;(x) dS(x). (56)
lzll=R

Step 3 (Bounding the Boundary Term). Since |v;(x)| < 1 and |h(x)| < N—\/% on X, we have:

Ny ( R? > /
< —exp|—=— dS(x). (57)
vk 202 ) Jje|=r

/ h(x)6 () () dS(x)
lzl|l=R

The surface area of the sphere is:
/ dS(x) = C4R*, (58)
lzl=R

where the constant Cy > 0 is the surface area of a d-dimensional unit sphere, depending only on d.

Thus, we can bound the error term as

NyCyRI1 R?
le; i (R)| < % exp (_W> . (59)
Then, as R — oo, we have:
N d—1 2
kd - XC\/%IE exp (—;) =o(1), (60)

since the exponential decay dominates polynomial growth.

E Proof of Lemma

Proof. Under the same assumptions as in Theorem 3.2] recall the HSIC bound on gradients in eq. (31)
as

k_d ()
Oh (X) 1 NxNZ
E|—™|l<— - HSIC s . 61
jﬂ; oz, H_Ug (Kng (x,25) +€r (61)
Thus, we can bound the Frobenius norm of the gradient as
kd ()
Ohg’ (x) 1 (NxNg
E||Vxh < E|—2 )<= - HSI s . (62
et < 33 & | 24 [|< 5 (e mscmay van). @
By Markov inequality, we have
1
P([[Vxhox)llr > €) < —E[[[Vxhe(x)| ] (63)
Thus, plugging eq. (62) to eq. (63)), we have
1 [ NxNz
P([Vx <— - HSIC(x, z4 . 4
(I9xho(lle > ) < 3 (G5  HSIC 2) + 64
2
As the error term ep = 0(6_57), we have
1 (NxNz
P(||[Vxhe(x)||r > €) < g <K;Kg ~HSIC(X,ZS)) +o(1). (65)
Substituting the Ny, Nz, we finish the proof. O
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Table 7: License and source compliance for each dataset.

Dataset URL License
ImageNet-1K [[11] image-net.org ImageNet Terms
ImageNet-9 [58] GitHub Inherits ImageNet Terms
COCO [28] cocodataset.org CC BY 4.0 (annotations) / Flickr TOU (images)
CounterAnimal [55] counteranimal.github.io Inherits iNaturalist Terms
ISIC-2017 [9] ISIC Challenge CC-0
C-MNIST (our codebase) Inherits MNIST Terms (CC BY-SA 3.0)
IN-9 Only-FG Mixed-Rand

Figure 4: Samples from the three ImageNet9 variations: IN-9 (original), Only-FG, and Mixed-Rand.

F Reproducibility Details

F.1 Datasets

COCO is a segmentation dataset consisting of labeled images of various species of animals (See
Figure 3b). For our experiments, we utilize a subset of the dataset composed of images drawn from
one of four labels. The four species were carefully selected to ensure the largest possible dataset
containing images without overlapping labels. Since we use the dataset for image classification,
each sample should belong to one class and thus include animals from one and only one of the
four selected classes. During pre-processing, the dataset is resized to 224x224 pixels. Finally,
segmentation information is used to construct 224x224 masks, where the O entries denote the pixels
occupied by the animal (salient object) in the original image. These masks specify the portion of
the image shielded from adversarial perturbations. The splits are created from the public training
data of COCO by splitting them into train (4509 samples), validation (1127 samples) and test (1411
samples).

C-MNIST is a synthetically constructed variant of the original MNIST dataset [27]]. To generate it,
we first load the standard 28x28 single-channel digit images. Subsequently, each sample is randomly
paired with another digit using a fixed seed for reproducibility. The two images are concatenated
along the width to form a 56x28 composite, then symmetrically zero-padded to a uniform 64x64
resolution. During training and evaluation, we treat only the left-hand digit as the classification target,
ensuring each composite image belongs to exactly one class. We use 80% of the original train split of
MNIST as training data and 20% as validation data. For testing we use the test set of MNIST, where
we also create image pairs as described above.

To assess whether H-SPLID attends preferentially to salient objects rather than background cues, we
evaluate it on two complementary benchmarks: (1) CounterAnimal (CA) [55]], which splits iNaturalist
wildlife photos into a Common set (exhibiting typical backgrounds) and a Counter set (featuring
atypical yet plausible backgrounds, see Figure[3a), and (2) ImageNet-9 (IN-9) [58]], defined as a subset
of ImageNet-1K consisting of 368 categories, instantiated in three distinct variants: Original images,
a MixedRand variant in which object foregrounds are transposed onto random-class backgrounds,
and an Only-FG variant with backgrounds entirely removed (See Figure ).

Table[7]provides each dataset’s source URL and applicable licensing terms.
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F.2 Implementation

The HBaR code was adapted from the original codebase, which is publicly available at/GitHub|(under
MIT License). For weight decay, we reuse the PyTorch [39] implementation and pass it directly
to the optimizer. We re-implemented the following regularization methods: Group Lasso Weights,
Group Lasso Activations, L1 Sparse Activations, and L1 Sparse Weights. For both the Projected
Gradient Descent (PGD) [34] and AutoAttack (AA) [[10] adversaries, we utilize our version of the
TorchAttacks [23] library, that is adapted for masked attacks.

F.3 Software and Hardware Setup

We built our pipeline in Python, leveraging the PyTorch [39] library. To conduct our experiments,
we use two identical internal servers running Ubuntu 22.04.3 LTS (“Jammy Jellyfish”) on a 5.15.0-
84 x86_64 kernel. Each server is equipped with two Intel Xeon Gold 6326 processors (16 cores
each, hyper-threaded for a total of 64 logical CPUs), 512 GiB of RAM, and a single NVIDIA
A100 80 GB GPU. For the ablation studies and experiments conducted on the ISIC-2017 dataset,
we additionally made use of EuroHPC compute resources, including MareNostrum (BSC, Spain),
MeluXina (LuxProvide, Luxembourg), Deucalion (MACC, Portugal), and Discoverer (Sofia Tech,
Bulgaria).

F.4 Hyperparameters

We divide our hyperparameters into two groups: those shared by all models, and those tuned or
adapted per method and dataset.

Shared parameters. All ImageNet-1K ResNet-50 and COCO ResNet-18 experiments use the
Adam optimizer [24] with 31 = 0.9, 8> = 0.999, ¢ = 10~8. We perform an initial grid search on a
vanilla ResNet-18, sweeping the learning rate over {1073,10=%,107°,107%} in logarithmic steps,
and select LR = 5 x 10~ for all subsequent runs. The batch size is set to 256, and weight decay is
0 by default (except in weight-decay experiments). For the C-MNIST experiments we use LeNet-3
[26] with a 1024 embedding space, (as in Figure , we use the learning rate of LR = 1 x 107° and
train for 50 epochs from random initialization.

For both COCO and ImageNet-1K we use TorchVision [35] augmentations. Training augmentations
include (1) Random Resized Crop to a 224 x 224 patch (scaling and cropping with a random area
and aspect ratio), (2) Color Jitter applied with probability p = 0.8 (brightness £40%, contrast £40%,
saturation £20%, hue £10%), (3) Random Grayscale with p = 0.2, (4) Random Horizontal Flip with
p = 0.5, (5) Random Solarize with threshold 0.5 and p = 0.2, followed by (6) ToTensor and (7) Nor-
malization using per-channel means and standard deviations (ImageNet defaults [0.485, 0.456, 0.406],
[0.229,0.224,0.225] or COCO-computed statistics). At test time, inputs are first resized so that the
shorter side is 256 px, then center-cropped to 224 x 224, and finally passed through ToTensor and
the same Normalization.

Tuning strategy and per-method tuning ranges. We employ identical hyperparameter tuning
strategies for H-SPLID and all comparison methods. 30% of the training corpus is randomly sampled
for ImageNet, while the complete training set is used for all other datasets. In either case, 20% of
the samples are used to constitute the validation set. Hyperparameters are optimized via grid search
by selecting the model configuration exhibiting the highest robust validation accuracy at the end of
training, in which robustness is measured with respect to Projected Gradient Descent (PGD) [34]
attacks applied to the entire image, so no knowledge of salient or non-salient regions is used. We use
dataset-specific perturbation budgets of € = % for ImageNet and € = % for COCO. These values
were chosen to be strong enough to select for more robust models, while at the same time being not
too strong to induce model collapse to random accuracy, so we can use the metric for model selection.
Based on this selection criterion we trained each method on COCO three times and selected the run
with highest robust accuracy for validation. For ImageNet we only trained one run. Importantly, no
information pertaining to the salient or non-salient regions is leveraged during the tuning. Table[§]
summarizes the grid ranges we search for each method on ImageNet-1K and COCO.

H-SPLID selected settings. After tuning as above, the final hyperparameters chosen for H-SPLID
on each dataset are listed in Table 0] In all H-SPLID runs we also set A.. = 10 to balance the
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Table 8: Hyperparameter tuning ranges per method and dataset.

Method Parameter ImageNet-1K COCO
Weight Decay Awd {1071,1072,...,1076}  {1071,1072,...,1076}
L1 Sparse Activations A, {10-1,1072,...,107%}  {107%,1072,...,107°}
Group Lasso Activations Ay {10-1,1072,...,107}  {1071,1072,...,1076}
L1 Sparse Weights Aweights {1071,1072,...,107¢}  {107%,1072,...,1075}
Group Lasso Weights  Aweights {1071,1072,...,10=%} {1071, 1072,...,1076}
HBaR Az {0,0.001,0.005,0.01} {0,0.001,0.005,0.01}

Ay {0,0.005,0.05,0.5} {0,0.001,0.01,0.1}

o {0.5,1.0,5.0} {0.5,5.0}
H-SPLID As {0,0.1,0.5,1.0} {0,0.1,0.5,1.0}

An {0,0.05,0.1} {0,0.05,0.1,1.0}

Ds {0,0.1,0.15,0.5} {0,0.1,0.15,0.5}

Pn {0,0.05,0.1,0.15,0.2,0.3} {0,0.05,0.1,0.15,0.2,0.3}

Table 9: H-SPLID best hyperparameters for ImageNet-1K and COCO.

Parameter ImageNet-1K COCO
Binitffraction 20% 100%
ﬁupdate_fraction 5% 100%
/Bstep 0.995 0.8
As 0.1 0.1
An 0.1 0.2
Ps 0.1 0.5
Pn 0.1 0.05
Shared space variation 0.1 0.025

cross-entropy scale. Due to the scale of ImageNet-1K, we introduce two scheduling parameters: (i)
Binit_fraction, the fraction of training data used to compute the initial mask values (20% for ImageNet-
1K, 100% for COCO), and (ii) Bypdate_fraction,» Which determines the amount of training data that
must be processed before updating the masks (5% of the dataset for ImageNet-1K, corresponding to
multiple updates per epoch; 100% for COCO, corresponding to one update per epoch).

Baseline feature selection/regularisation methods. Finally, Table [I(] reports the single best
regularization strength found for each of the comparison methods.

G Additional Experimental Results

G.1 Training Time Comparison

COCO Dataset. The COCO experiments presented in the previous sections were executed for
a total of 300 epochs on different machines with varying background workloads. To compare and
report the computational intensity of the different training methods, the experiments were repeated
on a single machine, albeit for a reduced number of epochs. Table[TT|provides the average training
time per epoch for the various training methods employed on the coco dataset. Those methods were
executed for only 20 epochs on the same A100 GPU with 100 GB of memory, whence the average
time per epoch was computed.

ImageNet-1K Dataset. The ImageNet-1K experiments were run for 20 epochs on an internal server
(see Appendix [F.3) that was not exclusively reserved for these trials, leading to varying background
workloads. Logging was enabled throughout, with H-SPLID performing evaluations on the validation
set every 5 epochs (during which additional metrics were recorded), while all other methods were
evaluated every 10 epochs. These factors may contribute to H-SPLID’s longer runtime. As a result,
the runtimes reported in Table[T2]should be taken only as an overview and rough estimate rather than
precise timing measurements. Due to the high computational cost of ImageNet-1K experiments and
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Table 10: Best parameters per comparison method.

Method Parameter ImageNet-1K COCO
Weight Decay Awd 1075 1073
L1 Sparse Weights Aweights 106 10~°
Group Lasso Weights  Aweights 10~° 10-3
L1 Sparse Activation  Aucq 10~4 10-6
Group Lasso Activation Aact 10~4 10—°
HBaR A 10-3 53
Ay 10! 52
o 5 5

Table 11: Timing experiments on the COCO dataset.

Method average training time per epoch (in seconds)
Vanilla 37.121 (+ 6.032)
Weight Decay 37.687 (£ 6.680)
Group Lasso Weights 37.353 (£ 6.151)
Group Lasso Activations 37.354 (& 6.455)
L1 Sparse Activations 37.564 (4 6.494)
L1 Sparse Weights 37.450 (£ 6.217)
HBaR 45.739 (£ 5.895)
H-SPLID 42.852 (£ 9.672)

Table 12: Runtime of ImageNet-1K experiments.

Method Runtime
Vanilla 11h 27m
Weight Decay 10h 22m

Group Lasso Activations 10h 20m
Group Lasso Weights 10h 25m
L1 Sparse Activations ~ Sh 53m

L1 Sparse Weights 10h 30m
HBaR 12h 04m
H-SPLID 14h 6m

the lack of exclusive server access, precise timing experiments with exclusive access were conducted
only on the COCO dataset (See Table[TT).

G.2 Hyperparameter Sensitivity on COCQO-Animals

We conduct the sensitivity analysis starting from the best-performing configuration on COCO, varying
As, Ans Psy Pns Bsiep While keeping all other settings fixed. In Tables we report clean accuracy
(%), PGD robustness at € € {1, 2,3} /255, and the learned salient dimensionality. Increasing \,, or
pn, generally improves robustness and compresses the salient subspace up to a regime where excessive
regularization degrades performance. p, yields modest robustness gains with gradual salient-space
shrinkage, and A, exhibits a mild non-monotonic trend around the optimum. For B, very small
values (e.g., 0.1) lead to model collapse, while intermediate values (0.3-0.5) reduce clean accuracy
despite moderate robustness gains. Larger values (0.8-0.9) maintain high accuracy, with Sy, = 0.8
achieving the best results. Overall, the best configuration attains a salient subspace of 14 (out of 512)
dimensions with strong robustness.
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Table 13: Sensitivity to ;.

As  Clean Acc. (%) PGD e=1/255 PGD e=2/255 PGD e=3/255 Salient Dim.
0.01 97.73 74.124+0.07  58.54+0.33  37.59+0.38 96
0.05 98.37 74.474+0.19  57.90+0.30  37.48+0.33 101
0.10 98.23 76.61+0.15  60.03+0.38  40.6140.20 108
0.20 97.73 73.5240.25  57.08+0.15  37.0740.34 107
0.50 98.02 74.06+0.25  59.96+0.43  41.12+0.38 107
1.00 97.52 74.63+0.23  60.754+0.32  40.26+£0.21 51
Table 14: Sensitivity to A,,.
An Clean Acc. (%) PGD e=1/255 PGD e=2/255 PGD e=3/255 Salient Dim.
0.01 97.80 72.66+0.17  55.02+0.29  35.83+0.48 199
0.05 98.23 76.61+£0.15  60.03+£0.38  40.61£0.20 108
0.10 98.09 76.40+£0.09 61.06+0.42  40.52+0.30 29
0.20 97.45 79.02+0.11 68.01+0.33  57.07£0.10 14
0.50 61.30 50.40+0.03  43.954+0.32  35.07+£0.15 5
1.00 32.74 32.74+0.00  32.744+0.00  32.74+0.00 0
Table 15: Sensitivity to ps.
ps Clean Acc. (%) PGD e=1/255 PGD e=2/255 PGD e=3/255 Salient Dim.
0.01 97.73 75.18+0.14  59.144+0.27  38.24+0.33 126
0.05 98.37 73.564+0.13  55.01+£0.24  32.64+0.31 120
0.10 97.59 74.4340.18  58.314+0.12  36.9840.14 116
0.20 97.87 75.76+0.09  59.9940.17  40.1840.20 113
0.50 98.23 76.61+0.15  60.03+0.38  40.6140.20 108
1.00 98.02 77.76+0.12  61.35+£0.60  41.87£0.17 104
Table 16: Sensitivity to p,.
pn  Clean Acc. (%) PGD e=1/255 PGD e=2/255 PGD e¢=3/255 Salient Dim.
0.01 98.09 74.594+0.17  57.07£0.21 37.76+£0.29 124
0.05 98.23 76.61+0.15  60.03+0.38  40.61+0.20 108
0.10 97.52 76.484+0.16  59.804+0.30  39.3340.16 86
0.20 97.52 75.41£0.11 57.76£0.14  37.93+0.44 57
0.50 32.74 32.74+0.00  32.74+0.00  32.74+0.00 0
1.00 32.74 32.74+£0.00  32.74+£0.00  32.74+0.00 0

Table 17: Sensitivity to Byecp.

Bstep Clean Acc.

(%) PGD e=1/255 PGD e€=2/255 PGD e=3/255 Salient Dim.

0.1
0.3
0.5
0.8
0.9
0.99

32.74
84.55
85.12
97.59
97.66
98.44

32.74+0.00
71.23+0.08
71.20£0.16
78.33+0.21
73.98+0.12
74.50£0.15

32.74+0.00
63.40+0.12
63.23+0.25
69.45+0.29
57.82+0.46
57.35+0.36

32.74+0.00
54.16£0.12
54.43+0.26
57.92£0.13
36.68+0.35
33.95+0.32

0
27
30
14

108
490
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Table 18: Learning-rate study on COCO-Animals. Salient/Full is measured in a 512-d feature space.
Method Clean Acc. PGD e=1/255 PGD ¢=2/255 PGD ¢=3/255 AA e=1/255 AA €=2/255 AA e=3/255 Salient/Full

H-SPLID LR=0.005 35.23 35.23+0.00 35.23+0.00  35.23+0.00 35.234+0.00 35.23+0.00 35.23+0.00 0/512

H-SPLID LR=0.0005 97.87 80.01+£0.15  69.44+0.16  56.954+0.34 75.18+£0.08 58.64+0.17 50.40+0.19 14/512
H-SPLID LR=0.00005 96.53 64.89+0.11  46.784+0.21  28.84+0.24 56.174+0.10 33.98+0.17 23.26+0.23 33/512
H-SPLID LR=0.000005  92.49 54.30+£0.03  35.07+0.23  17.53+0.20 46.82+0.07 21.59+0.16 11.92+0.11 450/512

G.3 Effect of Learning Rate

To verify the effect of learning rate, we vary the learning rate (LR) around the best hyperparameter
setting by powers of ten (see Table[I8). Results indicate a strong influence on both robustness/accuracy
and the learned subspace: LR = 5 x 10~ yields the best overall performance with a compact salient
subspace (14/512), lower LRs underfit and produce diffuse salient representations, and a higher LR

collapses training.

30



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide empirical evidence for our claim of learning salient features
using adversarial attacks against non-salient features. Our theoretical claims are supported
with proofs. We show that the output deviation is bounded by HSIC and the salient space
dimensionality and also bound the region that could be vulnerable to attacks with HSIC the
the salient space dimensionality.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a dedicated paragraph with limitations in the Conclusion 3]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We present the assumptions in Section [3.5] and the proofs appears in Ap-
pendix [C] Appendix [D] and Appendix
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We detail our experimental setup in Section d] Appendix [F] describes the
implementation details, our hyperparameter-tuning procedure, and the exact settings used
to train our models. In Table[7} we provide links to download the datasets used. We are
submitting our code alongside the supplementary materials and will open-source it, together
with the best-performing models, upon acceptance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: In Table[7} we provide links to download the datasets used. The C-MNIST
dataset can be constructed using our code. We are submitting our code alongside the
supplementary materials and will open-source it, together with the best-performing models,
upon acceptance. We include a “README?” file that details the environment setup, folder
and script structure, and execution instructions for our method and all comparison methods.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We detail our experimental setup in Section[d] Appendix [Fdescribes imple-
mentation details, our hyperparameter-tuning procedure and lists the exact settings used to
train our models. Data splits are described in Section[F.I]and in Section[d]

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: We provide standard deviations over attacks for COCO, where our method,
H-SPLID outperforms other methods by more than two standard deviations (see Section ]
and Table [2)), but with no dedicated statistical significance testing. The experiments on
ImageNet were performed using a single seed due to their computational cost. We used
train, val and test splits for all experiments and provide details on data splits in Section

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The timing experiments (Appendix |G) provide the relevant information on
compute resources. Details on the hardware used are given in Appendix [F3]
Guidelines:
* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We read and followed the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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10.

11.

12.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential scientific impact of producing salient latent represen-
tations in the introduction and related work. We do not see a direct relation between our
work with any other societal impacts.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work does not have high-risk of misuse and we do not release data.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: We provide licenses and citations of used datasets in Table[/] We cite original
code packages and repositories in Appendix

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We detail model training in Appendix [Fand Section[d] Appendix[F.1]describes
how the C-MNIST dataset was constructed. Licenses for all assets are specified in Table[7]
and[F:2] The submission and all supplementary materials have been anonymized.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No use of human subjects or crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No use of human subjects or crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were only used for writing assistance.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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